WO2022068703A1 - 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置 - Google Patents

一种后裙连接形式的固体火箭发动机点火试验用推力传递装置 Download PDF

Info

Publication number
WO2022068703A1
WO2022068703A1 PCT/CN2021/120509 CN2021120509W WO2022068703A1 WO 2022068703 A1 WO2022068703 A1 WO 2022068703A1 CN 2021120509 W CN2021120509 W CN 2021120509W WO 2022068703 A1 WO2022068703 A1 WO 2022068703A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting plate
base
rear skirt
solid rocket
thrust
Prior art date
Application number
PCT/CN2021/120509
Other languages
English (en)
French (fr)
Inventor
刘畅
王哲
宋飞飞
李贤君
祝子文
高永刚
朱瑶
崔宇杰
孙剑虹
Original Assignee
西安航天动力测控技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安航天动力测控技术研究所 filed Critical 西安航天动力测控技术研究所
Priority to GB2216941.1A priority Critical patent/GB2612455A/en
Publication of WO2022068703A1 publication Critical patent/WO2022068703A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/95Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by starting or ignition means or arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/83Testing, e.g. methods, components or tools therefor

Definitions

  • the invention relates to the technical field of solid rocket motor ignition test, in particular to a thrust transmission device for solid rocket motor ignition test in the form of rear skirt connection.
  • the ground ignition test of the solid rocket motor is a key test that directly affects the model development and product performance.
  • the traditional solid rocket motor ground ignition test is mostly the test form in which the front skirt of the solid rocket motor is connected to the transition frame and then the sensor is connected, and the engine is supported on the arc seat.
  • the squirrel cage thrust frame is generally used for ground tests in the existing scheme, as shown in Figures 1 to 3.
  • the squirrel-cage test device currently used is mainly composed of a squirrel-cage thrust frame and a pair of arc-shaped seats connected to the same-moving fixed frame platform.
  • the squirrel-cage thrust frame is composed of a front-end connecting plate, a rear-end connecting plate, an embracing ring and a connecting rod.
  • the parallel connecting rods are connected by welding, and two embracing rings are welded in the middle of the connecting rods.
  • the integral annular rear end connecting plate of the squirrel cage thrust frame is connected with the flange of the rear skirt of the engine; a pair of arc-shaped seats connected to the same moving fixed frame platform are responsible for supporting the two embracing rings welded in the middle of the connecting rod.
  • the dynamic fixed frame platform is used with force measuring components and load-bearing piers.
  • the squirrel cage thrust frame is a tubular one-piece structure and is connected to the rear skirt of the solid rocket engine, the engine is wrapped by the squirrel cage thrust frame, so it cannot be installed directly horizontally, and the engine needs to be inserted into the squirrel cage thrust frame upside down. , as shown in Figure 4, after installation, turn the two together into a horizontal state, and then fall on a pair of arc-shaped seats to achieve the pre-test state. In this way, in addition to the cumbersome installation process, a special turning device needs to be designed, which increases the design and processing costs.
  • the present invention proposes a thrust transmission device for the solid rocket motor ignition test in the form of rear skirt connection, wherein
  • the connection with the rear skirt of the engine adopts the form of upper and lower parts, and the horizontal installation of the engine can be quickly realized without the aid of a squirrel cage and a turning tool.
  • the engine avoids the stress concentration at the connection position of the rear skirt caused by the weight of the engine; the detachable thrust rod and the holding ring also facilitate the test, ensure the accurate installation of the engine, and avoid the occurrence of interference.
  • the movable fixed frame is connected to meet the test requirements of different specifications of the engine.
  • the device of the invention has the advantages of simple and convenient use, low cost, high efficiency, good safety and the like.
  • the thrust transmission device for a solid rocket motor ignition test in the form of a rear skirt connection includes a front end connecting plate, a base, a rear skirt connecting plate, an arc seat, a connecting rod and an embracing ring;
  • the lower surface of the base is connected with the test dynamic fixed frame platform
  • the front-end connecting plate is fixed at one end of the base by right-angle welding, the center of the front-end connecting plate has a mounting hole connected with the force measuring component, and the front-end connecting plate is connected to the force measuring component required for the test; a bolt through hole for connecting the connecting rod;
  • the rear skirt connecting plate is used to connect the rear skirt flange of the solid rocket motor;
  • the rear skirt connecting plate is of an upper and lower split structure, and is divided into a rear upper connecting plate and a rear lower connecting plate, and the rear lower connecting plate is fixed by right-angle welding
  • the base, the front end connecting plate and the rear lower connecting plate are welded and fixed to form an integral structure; and corner ribs are arranged at the right-angle welding between the base, the front end connecting plate and the rear lower connecting plate;
  • the center of the rear skirt connecting plate composed of the rear upper connecting plate and the rear lower connecting plate has a central through hole with a diameter larger than the diameter of the cylinder of the rear skirt of the fixed rocket engine to be tested, and has a flange at the edge of the center through hole that is connected to the rear skirt of the fixed rocket engine.
  • the connecting mounting holes also have a plurality of bolt through holes for connecting connecting rods on the outside of the mounting holes connected with the flange of the rear skirt of the fixed rocket engine, which correspond to the positions of the bolt through holes of the connecting connecting rods on the front end connecting plate;
  • the arc-shaped seat is installed on the base in a height-adjustable manner to directly support the solid rocket motor;
  • a detachable thrust link is installed between the front end connecting plate and the rear skirt connecting plate.
  • the detachable thrust link is assembled after the engine is installed in place and the wiring is completed;
  • An embracing ring is added to the outer ring of the rod, and the embracing ring holds the thrust link tightly to reduce the variation of the thrust link.
  • a plurality of threaded joints are welded on the upper surface of the base, and threaded joints opposite to the threaded joints of the base are welded at the bottom of the arc-shaped seat; the arc-shaped seat and the base are connected by a sleeve, and the sleeve has two built-in sections.
  • the mutually opposite threads are respectively connected to the threaded joint at the bottom of the lower arc seat and the threaded joint on the upper surface of the base, and the height of the arc seat can be adjusted by rotating the sleeve.
  • the connecting rod, the holding ring and the rear upper connecting plate are first disassembled, the height of the arc seat is lowered, the solid rocket motor is hoisted horizontally, and the rear skirt of the solid rocket motor is connected with the rear lower connecting plate.
  • the plate is screwed together, then adjust the height of the arc seat to support the solid rocket motor, loosen the engine strap, use the arc seat and the rear upper connecting plate to hold the solid rocket motor tightly, connect the sensor in place on the surface of the solid rocket motor, and then put the The thrust link is installed in place, and the thrust link is installed and a holding ring is installed on the outer ring of the thrust link.
  • the thrust transmission device proposed by the present invention utilizes the detachable connecting rod, the holding ring and the rear upper connecting plate, which can directly realize the horizontal installation of the solid rocket motor. Compared with the current test scheme, the overturning of the engine and the test device is avoided.
  • the built-in arc seat with adjustable height can directly support the engine barrel section. Compared with the arc seat supporting the squirrel cage in the past, it also avoids the connection of the rear skirt.
  • the stress concentration improves the safety of the test; and the detachable connecting rod also facilitates the wiring work of the operator after the engine is installed in place, which improves the test efficiency and can be considered for subsequent promotion and use.
  • FIG 1 Traditional squirrel cage thrust transmission device
  • FIG. 1 Schematic diagram of squirrel cage thrust frame
  • FIG. 3 Squirrel cage test device
  • Figure 4 Schematic diagram of the engine installed upside down
  • FIG. 1 The thrust transmission device in the present invention
  • Figure 6 Structure diagram of the base; (the diagram of the through hole connected to the connecting rod is omitted in the figure)
  • FIG. 7 Schematic diagram of the rear connecting board
  • FIG. 8 Schematic diagram of forward and reverse threaded sleeves
  • Figure 9 Schematic diagram of the arc seat
  • Figure 10 Schematic diagram of the holding ring
  • Figure 11 Schematic diagram of the installation of the present invention; (a) the ready state of the device before the engine is installed, (b) the engine is horizontally installed on the test frame, (c) the upper arc seat and the rear upper connecting plate are installed; (d) the connecting rod and embrace;
  • Figure 12 Test device using the thrust transmission device of the present invention
  • the present invention proposes a new horizontal test thrust transmission device in the form of rear skirt connection.
  • the device is suitable for ground tests of solid rocket motors where only the rear skirt has access holes and the front skirt cannot be connected to tooling.
  • the thrust transmission device in the present invention includes a front end connecting plate, a base, a rear skirt connecting plate, an arc seat, a connecting rod and an embracing ring.
  • the base is used as the main supporting part, and the lower surface of the base is connected with the test dynamic fixed frame platform.
  • the front-end connecting plate is fixed at one end of the base by right-angle welding.
  • the center of the front-end connecting plate has a mounting hole connected with the force measuring component.
  • the front-end connecting plate is connected to the force measuring component required for the test to ensure accurate measurement of the thrust.
  • a plurality of bolt through holes for connecting the connecting rods are evenly distributed along the circumferential direction.
  • a plurality of threaded joints are welded on the upper surface of the base for connecting with the arc-shaped base through a threaded sleeve.
  • the rear skirt plate is used to connect the rear skirt flange of the solid rocket motor.
  • the rear skirt connecting plate is of upper and lower split structure, which is divided into rear upper connecting plate and rear lower connecting plate. , and corner ribs are evenly distributed at the right-angle welding of the base, the front end connecting plate and the rear lower connecting plate, which can reduce the stress concentration at the welding position.
  • the overall center of the rear skirt connecting plate composed of the rear upper connecting plate and the rear lower connecting plate has a central through hole with a diameter larger than the diameter of the cylinder of the rear skirt of the fixed rocket engine to be tested, and has a flange at the edge of the center through hole that is connected to the rear skirt of the fixed rocket engine.
  • the mounting hole connected with the disk also has a plurality of bolt through holes for connecting rods on the outside of the mounting hole connected with the flange of the rear skirt of the fixed rocket engine, corresponding to the positions of the bolt through holes of the connecting rod on the front end connecting plate.
  • the arc seat is divided into upper and lower parts.
  • the upper arc seat and the lower arc seat are fixedly connected by bolts.
  • the arc seat is installed on the base and can directly support the solid rocket motor.
  • the arc seat is designed to be height-adjustable.
  • the realization method is: the bottom of the lower arc seat is welded with a threaded joint opposite to the threaded joint of the base; the arc seat and the base are connected by a sleeve, The sleeve has built-in two opposite threads, which are respectively connected to the threaded joint at the bottom of the lower arc seat and the threaded joint on the upper surface of the base.
  • the height of the arc seat can be fine-tuned by rotating the sleeve, thereby ensuring the connection and installation of the rear skirt of the engine.
  • the completion of the rear arc seat can tightly support the engine to avoid the stress concentration at the connection of the rear skirt caused by the bending moment caused by the engine's own weight.
  • the present invention designs the thrust connecting rod to be detachable, that is, there are screw holes at the front and rear ends of the connecting rod, and both ends of the connecting rod are flush with the inner side of the front end connecting plate and the rear skirt connecting plate. , and bolted to the bolt through holes evenly distributed on the front connecting plate and the rear skirt connecting plate.
  • the detachable thrust connecting rod is assembled after the engine is installed in place and the wiring is completed, which avoids possible interference during the installation process. The problem also ensures that the arc seat can directly support the engine.
  • an embracing ring is added to the outer ring of the connecting rod to hold the connecting rod tightly to reduce the modification of the connecting rod.
  • it can be considered to install multiple pairs of embracing rings to reduce the thrust caused by the deformation of the connecting rod.
  • the front end connecting plate, base, rear lower connecting plate, rib plate and threaded joint are welded into one piece, and the connecting rod, the holding ring and the rear upper connecting plate are all disassembled.
  • the whole device is placed on various types of dynamic fixed-frame platforms commonly used in ground tests, and is used with force measuring components and bearing piers to meet the requirements of the formal ignition test for the device, and to measure various parameters such as test thrust.
  • force measuring components and bearing piers to meet the requirements of the formal ignition test for the device, and to measure various parameters such as test thrust.

Abstract

一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,包括前端连板(16)、底座(20)、后裙连板(14,17)、弧形座(12)、连杆(11)和抱环(13);底座下表面同试验动定架平台连接;前端连板直角焊接固定在底座一端,前端连板连接试验所需的测力组件;后裙连板用于连接固体火箭发动机的后裙法兰盘,后裙连板为上下分体式结构,分为后上连板(14)和后下连板(17),后下连板直角焊接固定在底座另一端;后上连板和后下连板组成的后裙连板中心具有孔径大于待试验固定火箭发动机后裙部位筒体直径的中心通孔;弧形座采用高度可调方式安装在底座上,用于直接支撑固体火箭发动机;在前端连板与后裙连板之间安装有可拆卸式的推力连杆。

Description

一种后裙连接形式的固体火箭发动机点火试验用推力传递装置 技术领域
本发明涉及固体火箭发动机点火试验技术领域,具体为一种后裙连接形式的固体火箭发动机点火试验用推力传递装置。
背景技术
固体火箭发动机地面点火试验是直接影响到型号研制和产品性能的关键性试验。传统的固体火箭发动机地面点火试验多是采用固体火箭发动机前裙连接过渡架再连接传感器,发动机支撑于弧座上的试验形式。对于一些特殊设计的固体火箭发动机,只提供后裙连接,则现有方案中一般都采用鼠笼式推力架进行地面试验,如图1至图3所示。目前采用的鼠笼式试验装置主要由鼠笼式推力架及一对同动定架平台连接的弧形座组成。鼠笼式推力架由前端连板、后端连板、抱环和连杆组成;其中鼠笼式推力架的前端连板以及后端连板分别为整体结构,两者之间通过多根相互平行的连杆焊接连接,连杆中部焊接有两个抱环。鼠笼式推力架的整体式环形后端连板与发动机后裙法兰连接;一对同动定架平台连接的弧形座负责支撑连杆中部焊接的两个抱环,整个装置落于传统的动定架平台,并搭配测力组件及承力墩使用。
由于鼠笼式推力架为筒状一体式结构,又同固体火箭发动机后裙连接,发动机被鼠笼式推力架包裹,因此无法直接卧式安装,需将发动机倒立着插入鼠笼式推力架内,如图4所示,安装好后再将二者一齐翻转为卧式状态后,落于一对弧形座之上,才能达到试前状态。这样除了安装工序烦琐外,还需设计专用的翻转装置,又增加了设计及加工成本。另外通过总装图可发现,固体火箭发动机与试验装置之间仅后裙法兰处有配合关系,前端整个发动机筒段均为悬空状态;一对弧形座仅支撑于鼠笼上焊接的抱环处,其与发动机筒段壳体必然存在间隙,因此发动机在鼠笼内便类似一个悬臂梁,连接处承受发动机自重带来的弯矩形成的应力集中会更为严重并导致发动机轴线偏离,降低了试验的安全性和准确性。
另外,由于测试的要求,固体火箭发动机筒段壳体表面需贴有很多传感器,而鼠笼的存在导致传感器的接线变得困难,其连杆影响了操作工人连接发动机上传感器的 线缆,降低试验效率。
发明内容
考虑到现有固体火箭发动机地面点火实验中,后裙连接卧式试验方式较为复杂且效率低下、实施难度高,本发明提出一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,其中与发动机后裙连接处采用上下分体的形式,不需借助鼠笼及翻转工装即可快速实现发动机的卧式安装;而弧形座设计为同装置一体的可调节式,通过调整高度直接支撑发动机,避免了发动机自重导致的后裙连接位置处的应力集中;可拆卸式的推力杆件及抱环也方便了试验的进行,保证发动机的精准安装,避免了干涉情况的出现,可与不同的动定架连接以满足不同规格发动机的试验要求。该发明装置具有使用简便、成本低、效率高、安全性好等优点。
本发明的技术方案为:
所述一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,包括前端连板、底座、后裙连板、弧形座、连杆和抱环;
所述底座下表面同试验动定架平台连接;
所述前端连板直角焊接固定在底座一端,前端连板中心具有与测力组件连接的安装孔,前端连板连接试验所需的测力组件;前端连板上还开有在周向均布的多个用于连接连杆的螺栓通孔;
所述后裙连板用于连接固体火箭发动机的后裙法兰盘;所述后裙连板为上下分体式结构,分为后上连板和后下连板,后下连板直角焊接固定在底座另一端,底座、前端连板以及后下连板焊接固定为整体结构;且在底座与前端连板以及后下连板的直角焊接处布置有角筋;
后上连板和后下连板组成的后裙连板中心具有孔径大于待试验固定火箭发动机后裙部位筒体直径的中心通孔,在中心通孔边缘具有与固定火箭发动机后裙法兰盘连接的安装孔,在与固定火箭发动机后裙法兰盘连接的安装孔外侧还具有多个用于连接连杆的螺栓通孔,与前端连板上的连接连杆的螺栓通孔位置对应;
弧形座采用高度可调方式安装在底座上,用于直接支撑固体火箭发动机;
在前端连板与后裙连板之间安装有可拆卸式的推力连杆,可拆卸的推力连杆在发动机安装到位且接线完成以后再进行装配;在推力连杆安装到位后,在推力连杆外圈加有抱环,抱环抱紧推力连杆,减少推力连杆的变型量。
进一步的,通过改变底座及前端连板的开孔位置和形式,能够连接不同形式的动定架平台及测力组件,满足不同规格固体火箭发动机的试验要求。
进一步的,所述底座上表面焊接有多个螺纹接头,所述弧形座底部焊接有与底座螺纹接头方向相反的螺纹接头;弧形座与底座之间通过套筒连接,套筒内置两段互为反向的螺纹,分别连接下弧座底部的螺纹接头以及底座上表面的螺纹接头,通过旋转套筒即可实现弧形座高度的调整。
进一步的,推力连杆前后两端有螺孔,推力连杆两端同前端连板以及后裙连板内侧齐平,并与前端连板以及后裙连板上均布的螺栓通孔用螺栓连接。
进一步的,该推力传递装置安装时,连杆、抱环及后上连板先处于拆卸状态,将弧形座高度调低,卧式吊装固体火箭发动机,将固体火箭发动机后裙同后下连板螺纹连接,而后调整弧形座高度以支撑固体火箭发动机,松开发动机吊带,采用弧形座和后上连板将固体火箭发动机抱紧,将传感器在固体火箭发动机表面连接到位后,再将推力连杆安装到位,推力连杆安装好在推力连杆外圈加装抱环。
有益效果
本发明提出的推力传递装置利用可拆卸的连杆、抱环及后上连板,可直接实现固体火箭发动机的卧式安装,同目前采用的试验方案相比,避免了发动机及试验装置的翻转过程,同时不需要设计翻转装置,降低了试验成本;另外,其内置可调节高度的弧形座可直接支撑发动机筒段,同以往支撑鼠笼的弧座相比,也避免了后裙连接处的应力集中,提升了试验的安全性;而可拆卸式连杆也便于发动机安装就位后操作人员的接线工作,提升了试验效率,可考虑后续的推广使用。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1:传统鼠笼式推力传递装置;
其中:1、鼠笼式推力架;2、弧形座;3、仅有后裙连接孔的固体火箭发动机;
图2:鼠笼式推力架示意图;
其中:4、前端连板;5、抱环;6、连杆;7、后端连板;
图3:鼠笼式试验装置;
其中:8、测力组件;9、动定架平台;10、鼠笼式推力传递装置;
图4:倒立式安装发动机示意图;
图5:本发明中的推力传递装置;
其中:11、连杆;12、弧形座;13、抱环;14、后上连板;15、套筒;
图6:底座结构图;(图中省略了与连杆连接的通孔示意)
其中:16、前端连板;17、后下连板;18、筋板;19、螺纹接头;20、底板;
图7:后上连板示意图;
图8:正反向螺纹套筒示意图;
图9:弧形座示意图;
其中:21、上弧座;22、下弧座;23、反向螺纹接头;
图10:抱环示意图;
图11:本发明的安装示意图;(a)发动机安装前装置准备状态,(b)发动机卧式安装于试验架,(c)安装上弧座及后上连板;(d)安装连杆及抱环;
图12:采用本发明推力传递装置的试验装置;
其中:24、本发明提出的推力传递装置。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽 度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明提出的一种新的后裙连接形式的卧式试验推力传递装置,该装置适用于仅后裙有接孔、前裙无法连接工装的固体火箭发动机地面试验,其无需翻转发动机即可直接卧式安装;弧形座直接支撑发动机,高度可调,避免了发动机后裙处的应力集中;传力连杆连接前后端面,为可拆卸式,便于发动机的安装和试验装置的调试。
如图5~图10所示,本发明中的推力传递装置包括前端连板、底座、后裙连板、弧形座、连杆和抱环。
其中底座作为主承托部件,底座下表面同试验动定架平台连接。前端连板直角焊接固定在底座一端,前端连板中心具有与测力组件连接的安装孔,前端连板连接试验所需的测力组件,以保证准确测得推力,此外在前端连板周围还沿周向均布有多个连接连杆的螺栓通孔。通过改变底座及前端连板的接孔位置和形式,可连接不同形式的动定架平台及测力组件,以满足不同规格固体火箭发动机的试验要求。
底座上表面焊接有多个螺纹接头,用于通过螺纹套筒与弧形座连接。
后裙连板用于连接固体火箭发动机的后裙法兰盘。后裙连板为上下分体式结构,分为后上连板和后下连板,后下连板直角焊接固定在底座另一端,这样底座、前端连板以及后下连板焊接固定为整体结构,且在底座与前端连板以及后下连板直角焊接处均布有角筋,可减少焊接位置处的应力集中。
后上连板和后下连板组成的后裙连板整体中心具有孔径大于待试验固定火箭发动机后裙部位筒体直径的中心通孔,在中心通孔边缘具有与固定火箭发动机后裙法兰盘连接的安装孔,在与固定火箭发动机后裙法兰盘连接的安装孔外侧还具有多个连接连杆的螺栓通孔,与前端连板上的连接连杆的螺栓通孔位置对应。
弧形座分上下两部分,上弧座与下弧座之间通过螺栓固定连接,弧形座安装在底座上,能够直接支撑固体火箭发动机。为了减小安装误差的影响,弧形座设计为高度 可调节式,实现方式是:下弧座底部焊接有与底座螺纹接头方向相反的螺纹接头;弧形座与底座之间通过套筒连接,套筒内置两段互为反向的螺纹,分别连接下弧座底部的螺纹接头以及底座上表面的螺纹接头,通过旋转套筒即可实现弧形座高度的微调,从而保证发动机后裙连接安装完成后弧形座可紧密支撑发动机,以避免发动机自重导致的弯矩对后裙连接处带来的应力集中影响。
在推力传递方面,不同于以往的焊接形式,本发明将推力连杆设计为可拆卸式,即连杆前后两端有螺孔,连杆两端同前端连板以及后裙连板内侧齐平,并与前端连板以及后裙连板上均布的螺栓通孔用螺栓连接,可拆卸的推力连杆在发动机安装到位且接线完成以后再进行装配,这样避免了安装过程中可能出现的干涉问题,也保证了弧形座可以实现直接支撑发动机。
在连杆安装到位后,在连杆外圈加有抱环,抱紧连杆,以减少连杆的变型量,尤其针对长径比大的发动机,可考虑加装多对抱环,减少推力造成的连杆形变问题。
本发明的操作使用过程:
试验准备时,前端连板、底座、后下连板、筋板以及螺纹接头焊接为一体件,连杆、抱环及后上连板均为拆卸状态,发动机安装前先在底座上安装好正反向螺纹套筒及下弧座,将下弧座高度调低,卧式吊装发动机,将发动机后裙先同后下连板螺纹连接,而后调整好弧座高度以支撑发动机,松开发动机吊带,再安装上弧座及后上连板,将各路传感器在发动机表面连接到位后,再将所有连杆一一安装到位,连杆安装好后对中间部位加装一对螺栓连接的抱环。
整个装置落于地面试验常用的各类动定架平台之上,并搭配测力组件及承力墩使用,即可实现正式点火试验对装置的需求,测得试验推力等各项参数。通过改变前端及底部的接孔形式,可连接不同类型的测力组件及动定架组合体,以满足不同规格发动机的试验要求。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (5)

  1. 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,其特征在于:包括前端连板、底座、后裙连板、弧形座、连杆和抱环;
    所述底座下表面同试验动定架平台连接;
    所述前端连板直角焊接固定在底座一端,前端连板中心具有与测力组件连接的安装孔,前端连板连接试验所需的测力组件;前端连板上还开有在周向均布的多个用于连接连杆的螺栓通孔;
    所述后裙连板用于连接固体火箭发动机的后裙法兰盘;所述后裙连板为上下分体式结构,分为后上连板和后下连板,后下连板直角焊接固定在底座另一端,底座、前端连板以及后下连板焊接固定为整体结构;且在底座与前端连板以及后下连板的直角焊接处布置有角筋;
    后上连板和后下连板组成的后裙连板中心具有孔径大于待试验固定火箭发动机后裙部位筒体直径的中心通孔,在中心通孔边缘具有与固定火箭发动机后裙法兰盘连接的安装孔,在与固定火箭发动机后裙法兰盘连接的安装孔外侧还具有多个用于连接连杆的螺栓通孔,与前端连板上的连接连杆的螺栓通孔位置对应;
    弧形座采用高度可调方式安装在底座上,用于直接支撑固体火箭发动机;
    在前端连板与后裙连板之间安装有可拆卸式的推力连杆,可拆卸的推力连杆在发动机安装到位且接线完成以后再进行装配;在推力连杆安装到位后,在推力连杆外圈加有抱环,抱环抱紧推力连杆,减少推力连杆的变型量。
  2. 根据权利要求1所述一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,其特征在于:通过改变底座及前端连板的开孔位置和形式,能够连接不同形式的动定架平台及测力组件,满足不同规格固体火箭发动机的试验要求。
  3. 根据权利要求1所述一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,其特征在于:所述底座上表面焊接有多个螺纹接头,所述弧形座底部焊接有与底座螺纹接头方向相反的螺纹接头;弧形座与底座之间通过套筒连接,套筒内置两段互为反向的螺纹,分别连接下弧座底部的螺纹接头以及底座上表面的螺纹 接头,通过旋转套筒实现弧形座高度的调整。
  4. 根据权利要求1所述一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,其特征在于:推力连杆前后两端有螺孔,推力连杆两端同前端连板以及后裙连板内侧齐平,并与前端连板以及后裙连板上均布的螺栓通孔用螺栓连接。
  5. 根据权利要求1所述一种后裙连接形式的固体火箭发动机点火试验用推力传递装置,其特征在于:该推力传递装置安装时,连杆、抱环及后上连板先处于拆卸状态,将弧形座高度调低,卧式吊装固体火箭发动机,将固体火箭发动机后裙同后下连板螺纹连接,而后调整弧形座高度以支撑固体火箭发动机,松开发动机吊带,采用弧形座和后上连板将固体火箭发动机抱紧,将传感器在固体火箭发动机表面连接到位后,再将推力连杆安装到位,推力连杆安装好在推力连杆外圈加装抱环。
PCT/CN2021/120509 2020-10-04 2021-09-25 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置 WO2022068703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2216941.1A GB2612455A (en) 2020-10-04 2021-09-25 Thrust transfer apparatus for ignition test of solid rocket engine in form of rear skirt connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011066998.7 2020-10-04
CN202011066998.7A CN112012853B (zh) 2020-10-04 2020-10-04 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置

Publications (1)

Publication Number Publication Date
WO2022068703A1 true WO2022068703A1 (zh) 2022-04-07

Family

ID=73528116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120509 WO2022068703A1 (zh) 2020-10-04 2021-09-25 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置

Country Status (3)

Country Link
CN (1) CN112012853B (zh)
GB (1) GB2612455A (zh)
WO (1) WO2022068703A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856867A (zh) * 2022-05-27 2022-08-05 哈尔滨工程大学 一种固体火箭发动机主动减振装置
CN115184028A (zh) * 2022-08-25 2022-10-14 芜湖中科飞机制造有限公司 一种用于航空发动机检测的固定装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112012853B (zh) * 2020-10-04 2021-07-06 西安航天动力测控技术研究所 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置
CN113638822B (zh) * 2021-06-30 2023-12-29 西安航天动力测控技术研究所 一种固体火箭发动机后裙连接机械臂式级间分离试验装置
CN114184386B (zh) * 2021-11-29 2023-07-21 西安航天动力测控技术研究所 一种球形固体火箭发动机测试装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032545A (en) * 1998-04-17 2000-03-07 California Polytechnic State University Foundation Nozzle flow thrust vector measurement
CN102818671A (zh) * 2012-08-16 2012-12-12 北京航空航天大学 一种高精度的液体或气体火箭发动机推力台架
CN103115716A (zh) * 2013-01-25 2013-05-22 南京理工大学 六分量试验台推力墩装置
CN104019994A (zh) * 2014-04-24 2014-09-03 北京理工大学 一种固体火箭发动机过载试验装置及试验方法
CN107100761A (zh) * 2017-06-29 2017-08-29 湖北三江航天江河化工科技有限公司 一种试验发动机
CN108590889A (zh) * 2018-05-09 2018-09-28 北京理工大学 一种喉栓式变推力固体火箭发动机地面测试装置
CN112012853A (zh) * 2020-10-04 2020-12-01 西安航天动力测控技术研究所 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140215B2 (en) * 2012-03-14 2015-09-22 Aerojet Rocketoyne Of De, Inc. Rocket engine pressure sense line
CN205785819U (zh) * 2016-05-24 2016-12-07 华中科技大学 一种用于火箭发动机地面点火试验的测试装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032545A (en) * 1998-04-17 2000-03-07 California Polytechnic State University Foundation Nozzle flow thrust vector measurement
CN102818671A (zh) * 2012-08-16 2012-12-12 北京航空航天大学 一种高精度的液体或气体火箭发动机推力台架
CN103115716A (zh) * 2013-01-25 2013-05-22 南京理工大学 六分量试验台推力墩装置
CN104019994A (zh) * 2014-04-24 2014-09-03 北京理工大学 一种固体火箭发动机过载试验装置及试验方法
CN107100761A (zh) * 2017-06-29 2017-08-29 湖北三江航天江河化工科技有限公司 一种试验发动机
CN108590889A (zh) * 2018-05-09 2018-09-28 北京理工大学 一种喉栓式变推力固体火箭发动机地面测试装置
CN112012853A (zh) * 2020-10-04 2020-12-01 西安航天动力测控技术研究所 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114856867A (zh) * 2022-05-27 2022-08-05 哈尔滨工程大学 一种固体火箭发动机主动减振装置
CN114856867B (zh) * 2022-05-27 2024-02-06 哈尔滨工程大学 一种固体火箭发动机主动减振装置
CN115184028A (zh) * 2022-08-25 2022-10-14 芜湖中科飞机制造有限公司 一种用于航空发动机检测的固定装置
CN115184028B (zh) * 2022-08-25 2023-09-01 芜湖中科飞机制造有限公司 一种用于航空发动机检测的固定装置

Also Published As

Publication number Publication date
GB202216941D0 (en) 2022-12-28
CN112012853B (zh) 2021-07-06
GB2612455A (en) 2023-05-03
CN112012853A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022068703A1 (zh) 一种后裙连接形式的固体火箭发动机点火试验用推力传递装置
CN107238457B (zh) 一种小推力测量装置
CN109131734B (zh) 一种船舶轴系的安装校中工艺
CN108072489B (zh) 一种旋转动平衡式的质心测量仪及测量质心的方法
CN110220712B (zh) 一种火箭发动机推力测试装置
CN101354314B (zh) 轴承刚度测试装置
CN103091110A (zh) 一种立式六分力试验台动架装置
GB2619480A (en) Solid rocket engine rear skirt connection mechanical arm type interstage separation test device and method
CN210198239U (zh) 一种轮辋跳动检测装置
CN111571181A (zh) 一种角接触球轴承组推力间隙测量和调整装置
CN202836408U (zh) 内燃机车找正表架
CN210863378U (zh) 一种竖向加载转水平加载的试验装置
CN205138394U (zh) 简易转子测圆架
CN213658220U (zh) 一种微量天平校准装置
CN115560989A (zh) 一种航空发动机高空模拟测试集成式平台
CN106768746B (zh) 一种用于大型齿轮箱机座的扭曲度测量方法及装置
CN109304591B (zh) 一种自动扶梯的梳板装配工装结构
CN107806950A (zh) 一种大推力矢量立式测试装置结构
CN112027110B (zh) 一种用于测试飞机驾驶杆传动系统的装置
CN109356612B (zh) 站立式原型结构试验盾构管片的拼装方法
CN216771312U (zh) 一种大型筒形工件用轴向拉力试验装置
CN215261592U (zh) 一种同心度检具
CN113804230B (zh) 一种双环式多功能传感器校准装置
CN108838604B (zh) 一种蒸汽发生器支承腿柱组件装焊定位装置
CN217210696U (zh) 一种轴类零部件中心孔的圆度检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202216941

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210925

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874363

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21874363

Country of ref document: EP

Kind code of ref document: A1