WO2022068106A1 - 摄像机及其成像组件 - Google Patents

摄像机及其成像组件 Download PDF

Info

Publication number
WO2022068106A1
WO2022068106A1 PCT/CN2020/140122 CN2020140122W WO2022068106A1 WO 2022068106 A1 WO2022068106 A1 WO 2022068106A1 CN 2020140122 W CN2020140122 W CN 2020140122W WO 2022068106 A1 WO2022068106 A1 WO 2022068106A1
Authority
WO
WIPO (PCT)
Prior art keywords
light sensor
visible light
light
infrared light
wavelength selector
Prior art date
Application number
PCT/CN2020/140122
Other languages
English (en)
French (fr)
Inventor
派瑞恩·奥赛
马蒂凯南·贾尔诺
Original Assignee
诚瑞光学(深圳)有限公司
常州市瑞泰光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司, 常州市瑞泰光电有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022068106A1 publication Critical patent/WO2022068106A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths

Definitions

  • the present invention relates to the field of camera equipment, in particular to a camera and an imaging assembly thereof.
  • the purpose of the present invention is to provide a camera and its imaging assembly to solve the problem of low accuracy in the related art.
  • the present invention provides an imaging component including an infrared light sensor, a visible light sensor and a wavelength selector, the wavelength selector is independently arranged between the infrared light sensor and the visible light sensor, and The infrared light is separated from the incident light by wavelength selection and sent to the infrared light sensor, and the visible light is sent to the visible light sensor.
  • the wavelength selector is a reflector, and the reflector is provided with a coating that allows visible light to pass therethrough.
  • the wavelength selector is a triangular prism.
  • the direction of the incident light forms an included angle of 45° with the wavelength selector.
  • it further includes a light guide element, and the wavelength selector is fixed to the light guide element.
  • the light guide element is in the shape of a cube and has a first plane parallel to the direction of the incident light and a second plane perpendicular to the direction of the incident light, the infrared light sensor and the first plane Adjacent, the visible light sensor is adjacent to the second plane.
  • it further comprises a lens for collecting light, the lens refracts the light to form the incident light, and the incident light is a concentrated parallel beam.
  • the infrared light sensor is a ToF lens.
  • the visible light sensor is an RGB lens.
  • the present invention provides a camera, which includes an imaging component, the imaging component includes an infrared light sensor, a visible light sensor, and a wavelength selector, and the wavelength selector is independently arranged on the infrared light sensor and the visible light sensor, and the infrared light is separated from the incident light by wavelength selection and sent to the infrared light sensor, and the visible light is sent to the visible light sensor.
  • the camera and the imaging assembly thereof of the present invention can obtain image signals with high accuracy and low distortion.
  • FIG. 1 is a schematic diagram of the structure of the imaging assembly of the present invention.
  • the imaging assembly 100 includes an infrared light sensor 1 , a visible light sensor 2 and a wavelength selector 3 .
  • the wavelength selector 3 is independently arranged between the infrared light sensor 1 and the visible light sensor 2.
  • the wavelength selector 3 separates the infrared light from the incident light and transmits it to the infrared light sensor 1 through wavelength selection, and separates the visible light from the incident light.
  • the plane where the visible light sensor 2 is located is substantially perpendicular to the direction of the incident light, and the plane where the infrared light sensor 1 is located is roughly parallel to the direction of the incident light.
  • the visible light sensor 2 can receive visible light
  • the infrared light sensor 1 can receive infrared light.
  • the wavelength selector 3 is a reflector, and the surface of the reflector is provided with a coating that allows only visible light to pass through, and infrared light cannot pass through the coating and is reflected to the infrared light sensor 1 by the reflector.
  • a coating of another material may also be provided on the surface of the reflector, in addition, visible light cannot pass through and is reflected to the visible light sensor 2, and infrared light can enter the infrared light sensor 1 through the coating.
  • other structures can also be used to realize the separation of visible light and infrared light, for example, other materials or micro-devices are arranged on the mirror.
  • the wavelength selector 3 can also be a triangular prism, and the triangular prism can refract the visible light and the infrared light in the incident light to different directions respectively.
  • the triangular prism can refract the visible light and the infrared light in the incident light to different directions respectively.
  • Such a design can reduce the mutual interference between the visible light and the infrared light, so as not to affect the The detection results of infrared light sensor 1 and visible light sensor 2.
  • the wavelength selector 3 of the imaging assembly 100 separates the infrared light and the visible light, and achieves precise separation, resulting in less light loss, and the infrared light and the visible light originate from the same beam of incident light, thereby reducing errors and reducing image distortion.
  • the imaging assembly 100 further includes a light guide element 4 , and the wavelength selector 3 is fixed to the light guide element 4 .
  • the light guide element 4 is in the form of a cube, and includes a first plane 41 substantially parallel to the direction of incident light and a second plane 42 substantially perpendicular to the direction of incident light.
  • the infrared light sensor 1 is disposed adjacent to the first plane 41
  • the visible light sensor 2 is disposed adjacent to the second plane 42 .
  • the light guide element 4 is made of resin or other materials.
  • the light guide element 4 is beneficial to the installation of the wavelength selector 3 and the transmission of incident light, reducing external interference factors, thereby improving the accuracy of the collected signal and improving the picture quality in practical use.
  • the imaging assembly 100 further includes a lens 5 for collecting light, and the light is refracted by the lens 5 to form concentrated and parallel incident light and enter the light guide element 4 .
  • a lens 5 for collecting light, and the light is refracted by the lens 5 to form concentrated and parallel incident light and enter the light guide element 4 .
  • Such a design can make the beam of incident light more concentrated, and the infrared light transmitted to the infrared light sensor 1 and the visible light transmitted to the visible light sensor 2 are also more concentrated, thereby reducing light loss.
  • the infrared light sensor 1 is a ToF lens (time-of-flight lens).
  • the ToF lens works in the infrared light band, so the ToF lens can receive infrared light, the ToF lens can realize photography and AR functions, and can also be used to test distance, height and width.
  • the visible light sensor 2 is an RGB lens.
  • the RGB lens works in the visible light band.
  • the ToF lens and the RGB lens share the same source of light and a common optical path.
  • the visible light and infrared light have a very clear band boundary and produce very little light loss.
  • the RGB lens and ToF lens work together to improve the high-definition of the image, especially in the AR camera function. And since only one light source window is required, the volume of the entire device is correspondingly reduced.
  • a camera comprising an imaging component 100, comprising an infrared light sensor 1, a visible light sensor 2 and a wavelength selector 3, the wavelength selector 3 is independently arranged between the infrared light sensor 1 and the visible light sensor 2, and can be obtained from the infrared light sensor 1 and the visible light sensor 2.
  • the infrared light separated from the incident light is sent to the infrared light sensor 1
  • the visible light is sent to the visible light sensor 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)

Abstract

本发明提供了一种成像组件,包括红外光感应器、可见光感应器以及波长选择器,所述波长选择器独立设置于所述红外光感应器及可见光感应器之间,且通过波长选择从入射光中分离出红外光传送至所述红外光感应器、可见光传送至所述可见光感应器。与相关技术相比,本发明的成像组件获得精确的信号,并且具有较少的模糊和失真。

Description

摄像机及其成像组件 技术领域
本发明涉及摄像设备领域,尤其涉及一种摄像机及其成像组件。
背景技术
计算摄影以及AR应用要求精确的信息,传统中使用多个独立的镜头元件来采集不同的数据,但是在这样的结构中,不同的镜头元件有各自独立的光学路径,容易导致视差。因而,每个镜头元件需要校正获得精确的信息,如果多个镜头元件之间任意一个发生错误,则会影响到探测信号的精确度。
因此,实有必要提供一种新的摄像机及其成像组件解决上述技术问题。
技术问题
本发明的目的在于提供一种摄像机及其成像组件,以解决相关技术中的精确度低的问题。
技术解决方案
为了达到上述目的,本发明提供了一种成像组件,包括红外光感应器、可见光感应器以及波长选择器,所述波长选择器独立设置于所述红外光感应器及可见光感应器之间,且通过波长选择从入射光中分离出红外光传送至所述红外光感应器、可见光传送至所述可见光感应器。
优选地,所述波长选择器为反光镜,所述反光镜上设有可容可见光通过的涂层。
优选地,所述波长选择器为三棱镜。
优选地,所述入射光的方向与所述波长选择器形成45°夹角。
优选地,其还包括导光元件,所述波长选择器固定于所述导光元件。
优选地,所述导光元件呈立方体且具有与所述入射光的方向平行的第一平面以及与所述入射光的方向垂直的第二平面,所述红外光感应器与所述第一平面相邻,所述可见光感应器与所述第二平面相邻。
优选地,其还包括采集光线的镜头,所述镜头将所述光线折射形成所述入射光,所述入射光为集中的平行光束。
优选地,所述红外光感应器为ToF镜头。
优选地,所述可见光感应器为RGB镜头。
为了达到上述目的,本发明提供了一种摄像机,其包括成像组件,所述成像组件包括红外光感应器、可见光感应器以及波长选择器,所述波长选择器独立设置于所述红外光感应器及可见光感应器之间,且通过波长选择从入射光中分离出红外光传送至所述红外光感应器、可见光传送至所述可见光感应器。
有益效果
与相关技术相比,本发明的摄像机及其成像组件能够获得高精确度以及低失真的图像信号。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明成像组件的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,成像组件100包括红外光感应器1、可见光感应器2以及波长选择器3。波长选择器3独立设置于红外光感应器1及可见光感应器2之间,波长选择器3通过波长选择从入射光中分离出红外光传送至红外光感应器1,从入射光中分离出可见光传送至可见光感应器2。可见光感应器2所在平面与入射光的方向大致垂直,红外光感应器1所在平面与入射光的方向大致平行。
当入射光进入成像组件100时,入射光中的可见光、红外光经过波长选择器3分别被传送至不同的方向,可见光感应器2能够接收可见光,红外光感应器1能够接收红外光。通过这样的设计,可见光与红外光共享了部分光线路径,从而减小了视差,提高了采集信号的精确度,进而提升了图像的清晰度。同时,成像组件的光学窗口不需要设置多个,所有的感应器都共用同一来源的光线,从而可以减小了视差以及图像的失真。
在本实施例中,波长选择器3是反光镜,反光镜的表面设置仅容可见光通过的涂层,红外光无法通过涂层并且被反光镜反射到红外光感应器1。在其它实施例中,也可以在反光镜表面设置另一种材料的涂层,另可见光无法通过且被反射到可见光感应器2,红外光可以通过涂层进入红外光感应器1。在其它实施例中,也可以采用其它的结构来实现可见光与红外光的分离,例如在镜子上设置其它材料或者微型装置。
在其它实施例中,波长选择器3也可以是三棱镜,三棱镜可以将入射光中的可见光、红外光分别折射至不同方向,这样的设计可以减少可见光与红外光之间的相互干扰,从而不影响红外光感应器1、可见光感应器2的探测结果。
本实施例中,成像组件100的波长选择器3将红外光、可见光分离,并且实现了精确分离、产生较小的光损耗,红外光、可见光来源于同一束入射光,从而减少了误差以及降低了成像的失真。
如图1所示,成像组件100还包括导光元件4,波长选择器3固定于导光元件4。导光元件4呈立方体,包括与入射光的方向大致平行的第一平面41以及与入射光的方向大致垂直的第二平面42。红外光感应器1与第一平面41相邻设置,可见光感应器2与第二平面42相邻设置。入射光的方向与波长选择器3形成夹角A,A=45°,可见光的传输方向与红外光的传输方向相互垂直。通过这样的设计可以提高采集信号的精确度,并且提高图片质量。
导光元件4由树脂或者其它材料制成。导光元件4有利于波长选择器3的安装,且有利于入射光的传输、减少外部干扰因素,从而提高采集信号的精确度,并且在实际使用中提高图片质量。
如图1所示,成像组件100还包括采集光线的镜头5,光线被镜头5折射后形成集中的平行的入射光进入导光元件4。这样的设计可以使入射光的光束更集中,传输至红外光感应器1的红外光、传输至可见光感应器2的可见光也更集中,减少了光损耗。
在其它实施例中,红外光感应器1为ToF镜头(飞行时间镜头)。ToF镜头在红外光波段工作,因此ToF镜头可以接收红外光,ToF镜头可以实现摄影以及AR功能,也可以用来测试距离、高度及宽度。可见光感应器2为RGB镜头,RGB镜头在可见光波段工作,ToF镜头与RGB镜头共享了同一来源的光线以及一段共同的光学路径,可见光与红外光的波段分界非常清晰且产生很小的光损耗,RGB镜头与ToF镜头共同配合提升图像的高清度,尤其在AR摄像功能上效果更好。且由于只需要一个光源窗口,整个装置的体积也相应降低。
一种摄像机,包括成像组件100,其包括红外光感应器1、可见光感应器2以及波长选择器3,波长选择器3独立设置于红外光感应器1及可见光感应器2之间,且可从入射光中分离出红外光传送至红外光感应器1、可见光传送至所述可见光感应器2。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种成像组件,包括红外光感应器、可见光感应器以及波长选择器,其特征在于:所述波长选择器独立设置于所述红外光感应器及可见光感应器之间,且通过波长选择从入射光中分离出红外光传送至所述红外光感应器、可见光传送至所述可见光感应器。
  2. 根据权利要求1所述的成像组件,其特征在于,所述波长选择器为反光镜,所述反光镜上设有可容可见光通过的涂层。
  3. 根据权利要求1所述的成像组件,其特征在于,所述波长选择器为三棱镜。
  4. 根据权利要求1所述的成像组件,其特征在于,所述入射光的方向与所述波长选择器形成45°夹角。
  5. 根据权利要求1所述的成像组件,其还包括导光元件,所述波长选择器固定于所述导光元件。
  6. 根据权利要求5所述的成像组件,其特征在于,所述导光元件呈立方体且具有与所述入射光的方向平行的第一平面以及与所述入射光的方向垂直的第二平面,所述红外光感应器与所述第一平面相邻,所述可见光感应器与所述第二平面相邻。
  7. 根据权利要求6所述的成像组件,其还包括采集光线的镜头,所述镜头将所述光线折射形成所述入射光,所述入射光为集中的平行光束。
  8. 根据权利要求1所述的成像组件,其特征在于:所述红外光感应器为ToF镜头。
  9. 根据权利要求1所述的成像组件,其特征在于:所述可见光感应器为RGB镜头。
  10. 一种摄像机,其包括成像组件,其特征在于:所述成像组件包括红外光感应器、可见光感应器以及波长选择器,所述波长选择器独立设置于所述红外光感应器及可见光感应器之间,且通过波长选择从入射光中分离出红外光传送至所述红外光感应器、可见光传送至所述可见光感应器。
PCT/CN2020/140122 2020-09-29 2020-12-28 摄像机及其成像组件 WO2022068106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/037,604 2020-09-29
US17/037,604 US20220103732A1 (en) 2020-09-29 2020-09-29 Imaging assembly and camera

Publications (1)

Publication Number Publication Date
WO2022068106A1 true WO2022068106A1 (zh) 2022-04-07

Family

ID=77845226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140122 WO2022068106A1 (zh) 2020-09-29 2020-12-28 摄像机及其成像组件

Country Status (3)

Country Link
US (1) US20220103732A1 (zh)
CN (1) CN214315372U (zh)
WO (1) WO2022068106A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765494B1 (ja) * 2019-10-31 2020-10-07 パナソニックi−PROセンシングソリューションズ株式会社 3板式カメラ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2373943A (en) * 2001-03-28 2002-10-02 Hewlett Packard Co Visible and infrared imaging camera
KR20130005162A (ko) * 2011-07-05 2013-01-15 주식회사 지멤스 다파장 광선용 카메라 시스템
CN203414717U (zh) * 2013-08-23 2014-01-29 重庆米森科技有限公司 一种用于摄像/照相设备分频处理短波红外与可见光的装置
CN104822033A (zh) * 2015-05-05 2015-08-05 太原理工大学 一种红外与可见光图像融合的视觉传感器及其使用方法
CN105763774A (zh) * 2016-02-29 2016-07-13 联想(北京)有限公司 一种摄像模组、电子设备以及图像采集方法
CN105988215A (zh) * 2015-02-15 2016-10-05 宁波舜宇光电信息有限公司 一种多光谱模组成像系统及其制造方法和应用
CN108650447A (zh) * 2018-07-06 2018-10-12 上海图漾信息科技有限公司 图像传感器、深度数据测量头及测量系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839632B2 (ja) * 2005-02-25 2011-12-21 ソニー株式会社 撮像装置
KR101680762B1 (ko) * 2010-10-29 2016-11-29 삼성전자주식회사 3d 카메라용 빔스플리터 및 상기 빔스플리터를 채용한 3차원 영상 획득 장치
WO2016158856A1 (ja) * 2015-04-02 2016-10-06 株式会社ニコン 撮像システム、撮像装置、撮像方法、及び撮像プログラム
US10475171B2 (en) * 2016-01-22 2019-11-12 Hera Systems, Inc. Multi-camera imaging system for nanosatellites
JP2017176811A (ja) * 2016-03-28 2017-10-05 ソニー株式会社 撮像装置、撮像方法及び医療用観察機器
US10313643B2 (en) * 2017-03-13 2019-06-04 Omnivision Technologies, Inc. Imaging system having four image sensors
US10674096B2 (en) * 2017-09-22 2020-06-02 Feedback, LLC Near-infrared video compositing
JP7171254B2 (ja) * 2018-06-13 2022-11-15 キヤノン株式会社 画像処理装置、撮像装置、および画像処理方法
US11513343B2 (en) * 2019-09-27 2022-11-29 Faro Technologies, Inc. Environmental scanning and image reconstruction thereof
KR20210100412A (ko) * 2020-02-06 2021-08-17 에스케이하이닉스 주식회사 이미지 센서

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2373943A (en) * 2001-03-28 2002-10-02 Hewlett Packard Co Visible and infrared imaging camera
KR20130005162A (ko) * 2011-07-05 2013-01-15 주식회사 지멤스 다파장 광선용 카메라 시스템
CN203414717U (zh) * 2013-08-23 2014-01-29 重庆米森科技有限公司 一种用于摄像/照相设备分频处理短波红外与可见光的装置
CN105988215A (zh) * 2015-02-15 2016-10-05 宁波舜宇光电信息有限公司 一种多光谱模组成像系统及其制造方法和应用
CN104822033A (zh) * 2015-05-05 2015-08-05 太原理工大学 一种红外与可见光图像融合的视觉传感器及其使用方法
CN105763774A (zh) * 2016-02-29 2016-07-13 联想(北京)有限公司 一种摄像模组、电子设备以及图像采集方法
CN108650447A (zh) * 2018-07-06 2018-10-12 上海图漾信息科技有限公司 图像传感器、深度数据测量头及测量系统

Also Published As

Publication number Publication date
US20220103732A1 (en) 2022-03-31
CN214315372U (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
EP2875315B1 (en) Stereo camera
US20070097249A1 (en) Camera module
US9414045B2 (en) Stereo camera
US20080297612A1 (en) Image pickup device
CN102192724B (zh) 距离测量和光度测定装置、以及成像设备
WO2007083579A1 (ja) 複眼方式のカメラモジュール及びその製造方法
EP0038557A2 (en) Optical low-pass filter
US4857997A (en) Color television camera incorporating a color resolving prism system
CN105280653A (zh) 图像传感器
KR20170023430A (ko) 카메라 모듈
WO2022068106A1 (zh) 摄像机及其成像组件
US3976363A (en) Optical system for color television camera
US3794407A (en) Color pick-up device
JP2014003433A (ja) 撮像装置
WO2022111459A1 (zh) 芯片结构、摄像组件和电子设备
US20200096739A1 (en) Optical image capturing module
US4643556A (en) Automatic focusing adjustment device
CN214101550U (zh) 图像传感组件、成像设备和终端
US2889735A (en) Beam splitter comprising colour separating planoparallel plates
WO2023179602A1 (zh) 测距装置及电子设备
US6686577B2 (en) Device detecting focus of a taking lens without decrease in focus detection accuracy when the auto focus area is disposed at an inclination relative to the photographic field
JP4366107B2 (ja) 光学装置
JPS6017983Y2 (ja) テレビジヨンカメラの分光透過率調整装置
JPS59196682A (ja) 撮像光学系
JPH0444727B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956122

Country of ref document: EP

Kind code of ref document: A1