WO2022068068A1 - 风力发电机组及其功率控制方法及设备 - Google Patents

风力发电机组及其功率控制方法及设备 Download PDF

Info

Publication number
WO2022068068A1
WO2022068068A1 PCT/CN2020/135602 CN2020135602W WO2022068068A1 WO 2022068068 A1 WO2022068068 A1 WO 2022068068A1 CN 2020135602 W CN2020135602 W CN 2020135602W WO 2022068068 A1 WO2022068068 A1 WO 2022068068A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
speed
torque
point
value
Prior art date
Application number
PCT/CN2020/135602
Other languages
English (en)
French (fr)
Inventor
刘忠朋
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to CA3194316A priority Critical patent/CA3194316A1/en
Priority to US18/247,189 priority patent/US20230366376A1/en
Priority to AU2020471015A priority patent/AU2020471015A1/en
Priority to EP20956085.3A priority patent/EP4206460A4/en
Publication of WO2022068068A1 publication Critical patent/WO2022068068A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1032Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure generally relates to the technical field of wind power, and more particularly, to a wind generator set and a power control method and device thereof.
  • the main logic of the primary frequency regulation strategy of the wind turbine is in accordance with the way the unit discharges power.
  • the unit is limited to the variable speed stage, if the action of limiting the power is continued, the set speed and torque of the unit will be changed at the same time.
  • the unit receives a frequency modulation power increase command after the unit power is limited to the variable speed section, due to the large inertia of the impeller, if the ambient wind speed is small, the speed increase will be slower, thus affecting the response time of the primary frequency modulation.
  • Exemplary embodiments of the present disclosure provide a power control method and device for a wind turbine, which can effectively control the rotational speed and torque of the generator in response to a power-limiting operation command or a power-discharging operation command.
  • a power control method for a wind turbine comprising: when a power-limited operation command or a power-discharged operation command is received, based on an optimal rotational speed torque curve and a specific rotational speed Torque curve, which controls the rotational speed and torque of the generator of the wind turbine; wherein, for each point on the optimal rotational speed torque curve, the point on the isopower curve with this point as the starting point that meets the preset conditions constitutes a specific rotational speed The torque curve, wherein the preset condition is that the corresponding power value is lower than the power value corresponding to the point on the torque curve of the optimal rotation speed under the same rotation speed value by a preset value.
  • a power control device for a wind power generating set, the power control device comprising: a control unit, when receiving a power-limiting operation instruction or a power-discharging operation instruction, based on an optimal rotational speed
  • the torque curve and the specific speed torque curve are used to control the speed and torque of the generator of the wind turbine; wherein, for each point on the optimal speed torque curve, the preset conditions are met on the isopower curve with this point as the starting point
  • the points constitute a specific rotational speed torque curve, wherein the preset condition is that the corresponding power value is lower than the power value corresponding to the point on the optimal rotational speed torque curve under the same rotational speed value by a preset value.
  • a computer-readable storage medium storing a computer program, which, when the computer program is executed by a processor, implements the above-described power control method for a wind turbine.
  • a power control device for a wind turbine includes: a processor; a memory storing a computer program, when the computer program is executed by the processor, The power control method of the wind turbine as described above is realized.
  • a wind power generator set provided with the power control apparatus.
  • the power control method and device for a wind turbine can effectively control the rotational speed and torque of the generator in response to a power-limiting operation command or a power-discharging operation command.
  • the present disclosure effectively sets the discharge-limiting power
  • the speed target value and torque target value at the same time can reserve a certain space for the primary frequency modulation, so that the unit can directly complete the lifting torque during the primary frequency modulation without changing the speed, so it can quickly respond to the primary frequency modulation command.
  • the speed change is small, which has positive significance for the unit load.
  • FIG. 1 shows a flowchart of a power control method of a wind turbine according to an exemplary embodiment of the present disclosure
  • FIG. 2 shows an example of a specific rotational speed torque curve according to an exemplary embodiment of the present disclosure
  • FIG. 3 shows a flowchart of a method for limiting power according to an exemplary embodiment of the present disclosure
  • FIG. 4 illustrates an example of a method of controlling rotational speed and torque in response to a power-limited operation command according to an exemplary embodiment of the present disclosure
  • FIG. 5 shows a flowchart of a method of discharging power according to an exemplary embodiment of the present disclosure
  • FIG. 6 illustrates an example of a method of controlling rotational speed and torque in response to a discharge power operation command according to an exemplary embodiment of the present disclosure
  • FIG. 7 illustrates an example of a method for controlling rotational speed and torque after power limiting according to an exemplary embodiment of the present disclosure
  • FIG. 8 shows a structural block diagram of a power control device of a wind turbine according to an exemplary embodiment of the present disclosure
  • FIG. 9 shows a structural block diagram of a control unit according to an exemplary embodiment of the present disclosure.
  • FIG. 10 shows a structural block diagram of a control unit according to another exemplary embodiment of the present disclosure.
  • FIG. 1 shows a flowchart of a power control method of a wind turbine according to an exemplary embodiment of the present disclosure.
  • step S10 when a power-limiting operation command or a power-discharging operation command is received, the rotational speed and torque of the generator of the wind turbine are controlled based on the optimal rotational speed torque curve and the specific rotational speed torque curve.
  • the optimal speed and torque curve is the characteristic curve of the generator, indicating the optimal speed and optimal torque of the generator under different powers. on the optimum speed torque curve.
  • the specific speed-torque curve is constructed based on the optimal speed-torque curve. Specifically, for each point on the optimal speed-torque curve, the points on the isopower curve that meet the preset conditions with this point as the starting point constitute the specific speed The torque curve, wherein the preset condition is that the corresponding power value is lower than the power value corresponding to the point on the torque curve of the optimal rotation speed under the same rotation speed value by a preset value.
  • the relationship between the optimal rotational speed torque curve and the specific rotational speed torque curve may be as shown in FIG. 2 .
  • the preset value is the rated power of a preset ratio (for example, 10% of the rated power Pn)
  • Point A on the optimal speed-torque curve has the same power as point B on the specific speed-torque curve
  • the power value corresponding to point B that is, the power value when the speed and torque are the speed and torque values of point B
  • the rated power is 10% lower than the rated power.
  • point C on the optimal speed torque curve and point D on the specific speed torque curve equal power
  • the power value corresponding to point D is 10% lower rated power than the power value corresponding to the point on the optimal rotational speed torque curve where the rotational speed value is equal to point D
  • point E on the optimal rotational speed torque curve It has the same power as point F on the specific speed torque curve, and the power value corresponding to point F is 10% lower rated power than the power value corresponding to the point where the speed value is equal to point F on the optimal speed torque curve.
  • the power-limiting operation command or the power-releasing operation command may be a secondary frequency modulation command.
  • the requirements for the response time and stabilization time of the secondary frequency modulation are much slower than those of the primary frequency modulation.
  • the power control method of the wind turbine according to the exemplary embodiment of the present disclosure is applicable to both the power limiting action when the power is less than or equal to the rated power, and the minimum limitable power is 0; it is also applicable when the power is greater than or equal to 0
  • the discharge power action can be discharged up to the rated power.
  • FIG. 3 shows a flowchart of a method of limiting power according to an exemplary embodiment of the present disclosure.
  • the method may be executed in the step of controlling the rotational speed and torque of the generator of the wind turbine based on the optimal rotational speed torque curve and the specific rotational speed torque curve when receiving a power-limited operation instruction when step S10 is performed.
  • step S101 when a power-limited operation command is received, it is determined that the power needs to be limited to a first power value based on the received power-limited operation command.
  • step S102 point B1 on the specific rotational speed torque curve corresponding to the first power value is determined.
  • Point A1 is a point on the optimal speed-torque curve corresponding to point B1 along the equal power curve, that is, the power values corresponding to point A1 and point B1 are both the first power value.
  • step S103 the rotational speed and the torque are controlled with the rotational speed value and the torque value at the point B1 as target values (ie, set values).
  • step S103 when currently in a normal operation state, may include:
  • the torque curve changes to point B1 along a specific speed torque curve (that is, changes to the speed value and torque value at point B1), or controls the speed to drop to the speed value at point B1 and then controls the torque to drop to the torque value at point B1. (ie, control the speed to decrease first, and then control the torque to decrease);
  • the control torque drops to the constant power curve between point B1 and point A1, and then controls the speed and The torque changes along the isopower curve to point B1 (that is, first control the torque drop, and then control the torque and speed at the same time);
  • step S103 when it is currently in a power-limiting operating state or a power-discharging operating state, step S103 may include:
  • the control speed and torque change from the F1 point along the specific speed-torque curve to the B1 point ;
  • the F1 point can be the current power limit point;
  • the speed value is equal to the E1 point of the B1 point, and the control torque is reduced to the torque value of the B1 point.
  • FIG. 5 illustrates a flowchart of a method of discharging power according to an exemplary embodiment of the present disclosure. It should be understood that when step S10 is executed, the method may be executed in the step of controlling the rotational speed and torque of the generator of the wind turbine based on the optimal rotational speed torque curve and the specific rotational speed torque curve when receiving the discharge power operation command.
  • step S201 when a power discharge operation command is received, it is determined that the power needs to be discharged to a second power value based on the received power discharge operation command.
  • step S202 point B2 on the specific rotational speed torque curve corresponding to the second power value is determined.
  • Point A2 is a point on the optimal speed-torque curve corresponding to point B2 along the isopower curve, that is, the power values corresponding to points A2 and B2 are both the first power value.
  • step S203 the rotational speed and torque are controlled with the rotational speed and torque values at point B2 as target values.
  • step S203 when currently in a normal operation state, step S203 may include:
  • step S203 when the current state is in a power-limited operating state or a power-discharging operating state, step S203 may include:
  • control the speed and torque for example, currently running at the power limit point E2 to change to the point B2 along the specific speed and torque curve;
  • control speed and torque for example, from running at the power limit point E2 along the specific speed torque curve
  • the control speed and torque stay At point C2
  • the control torque target value rises from point C2 to the optimal speed torque curve
  • the control torque target value and speed target value rise to point A2 along the optimal speed torque curve
  • the control speed and torque will follow the power curve from point B1 along the same power curve as the wind speed decreases.
  • point A1 it will decrease along the optimal speed-torque curve, and then as the wind speed increases, the control speed and torque will increase to point A1 along the optimal speed-torque curve, and then change to point B1 along the equal-power curve.
  • the control speed and torque will change to the optimal speed and torque along the equal power curve as the wind speed decreases. After the curve, it descends along the optimal speed torque curve, and then as the wind speed increases, the control speed and torque rise along the optimal speed torque curve, and then change to a specific speed torque curve along the equal power curve.
  • control rotational speed and torque change from point B1 to point I1 if the wind speed first decreases and then increases, as the wind speed decreases, the control rotational speed remains unchanged and the control torque decreases until back to point B1 (ie, Change from point I1 to point B1), and then control the speed and torque to change along the equal power curve from point B1 to point A1 and then decrease along the optimal speed torque curve, and then as the wind speed increases, control the speed and torque along the optimal speed torque curve After rising to point A1, it changes to point B1 along the equal power curve.
  • the control speed and torque change along the isopower curve to the optimal speed and torque curve that is, , the control speed and torque change from the point J1 along the isopower curve to the point K1 and then decrease along the optimal speed torque curve, and then as the wind speed increases, the control speed and torque rise along the optimal speed torque curve to the A1 point and then Change along the isopower curve to point B1.
  • the rotational speed and torque can also be controlled with reference to the operation mode described above in conjunction with FIG. 7 .
  • the step of controlling the rotational speed and torque of the generator of the wind turbine based on the optimal rotational speed torque curve and the specific rotational speed torque curve when a power limited operation instruction is received when the power limited operation is currently performed state but cannot maintain operation at point B1 (for example, the wind speed is small and there is no reserve energy), and when a primary frequency modulation down-power command is received, based on the received primary frequency modulation down-power command and the current power (in other words, The current power target value of the unit jumps to the current actual power value to ensure that the unit will not have jump action), determine the need to reduce the power to the fifth power value; the control speed remains unchanged and the control torque decreases until the power drops to the fifth power value power value.
  • the control rotational speed and torque change along the equal power curve to the optimal rotational speed torque curve. Then it decreases along the optimal speed torque curve, and then as the wind speed increases, the control speed and torque rise along the optimal speed torque curve to point A1, and then change to point B1 along the equal power curve.
  • the rotational speed and torque can also be controlled with reference to the above-mentioned operation mode when a frequency modulation command is received.
  • FIG. 8 shows a structural block diagram of a power control apparatus of a wind turbine according to an exemplary embodiment of the present disclosure.
  • the power control apparatus of the wind turbine includes: a control unit 10 .
  • control unit 10 is configured to control the rotational speed and torque of the generator of the wind turbine based on the optimal rotational speed torque curve and the specific rotational speed torque curve when receiving a power-limiting operation instruction or a power-discharging operation instruction; wherein, for For each point on the optimal speed-torque curve, the point on the iso-power curve with this point as the starting point that meets the preset condition constitutes a specific speed-torque curve, wherein the preset condition is that the corresponding power value is higher than the same speed The power value corresponding to the point on the torque curve at the optimum speed is the low preset value.
  • FIG. 9 shows a structural block diagram of a control unit according to an exemplary embodiment of the present disclosure.
  • control unit 10 may include a first target power value determination unit 101 and a first rotational speed torque control unit 102 .
  • the first target power value determining unit 101 is configured to, when a power-limited operation instruction is received, determine that the power needs to be limited to the first power value based on the received power-limited operation instruction.
  • the first rotational speed torque control unit 102 is configured to determine the B1 point on the specific rotational speed torque curve corresponding to the first power value, and control the rotational speed and torque with the rotational speed and torque values at the B1 point as target values.
  • the first rotational speed torque control unit 102 may perform the following operations to control the rotational speed and torque with the rotational speed and torque values at point B1 as target values:
  • the torque curve changes to point B1 along a specific speed torque curve (that is, changes to the speed value and torque value at point B1), or controls the speed to drop to the speed value at point B1 and then controls the torque to drop to the torque value at point B1. (ie, control the speed to decrease first, and then control the torque to decrease);
  • the control torque drops to the constant power curve between point B1 and point A1, and then controls the speed and The torque changes along the isopower curve to point B1 (that is, first control the torque drop, and then control the torque and speed at the same time);
  • the first rotational speed and torque control unit 102 may perform the following operations to control the rotational speed and torque with the rotational speed and torque values at point B1 as target values :
  • the control speed and torque change from the F1 point along the specific speed-torque curve to the B1 point ;
  • the F1 point can be the current power limit point;
  • the speed value is equal to the E1 point of the B1 point, and the control torque is reduced to the torque value of the B1 point.
  • FIG. 10 shows a structural block diagram of a control unit according to another exemplary embodiment of the present disclosure.
  • the control unit 10 may include a second target power value determination unit 103 and a second rotational speed torque control unit 104 . Further, the control unit 10 may include a first target power value determination unit 101, a first rotational speed torque control unit 102, a second target power value determination unit 103, and a second rotational speed torque control unit 104 as an example.
  • the second target power value determining unit 103 is configured to, when receiving the power discharging operation instruction, determine that the power needs to be discharged to the second power value based on the received power discharging operation instruction.
  • the second rotational speed torque control unit 104 is configured to determine point B2 on the specific rotational speed torque curve corresponding to the second power value, and control rotational speed and torque with the rotational speed and torque values at point B2 as target values.
  • the second rotational speed and torque control unit 104 may perform the following operations to control the rotational speed and torque with the rotational speed and torque values at point B2 as target values: When storing energy, control the speed and torque to change to point B2;
  • the second rotational speed and torque control unit 104 may perform the following operations to control the rotational speed and torque with the rotational speed and torque values at point B2 as target values :
  • control the speed and torque for example, currently running at the power limit point E2 to change to the point B2 along the specific speed and torque curve;
  • control speed and torque for example, from running at the power limit point E2 along the specific speed torque curve
  • the control speed and torque stay At point C2
  • the control torque target value rises from point C2 to the optimal speed torque curve
  • the control torque target value and speed target value rise to point A2 along the optimal speed torque curve
  • the first rotational speed and torque control unit 102 controls rotational speed and torque with the rotational speed and torque values at point B1 as target values
  • the first rotational speed and torque control unit 102 As the wind speed decreases, the control speed and torque change from point B1 along the isopower curve to point A1 and then decrease along the optimal speed torque curve, and then as the wind speed increases, the control speed and torque increase along the optimal speed torque curve to After point A1, it changes to point B1 along the equal power curve.
  • the second target power value may determine that the power needs to be increased to the third power value based on the received first frequency modulation power increasing command; the second rotational speed torque control unit 104 may control the rotational speed to remain unchanged and control the torque to increase until the power increases to the third power value.
  • the first target power value is The determining unit 101 may determine that the power needs to be reduced to the fourth power value based on the received first frequency modulation power reduction instruction; the first rotational speed torque control unit 102 may control the rotational speed to remain unchanged and control the torque to decrease until the power decreases to the fourth power value.
  • the second rotational speed torque control unit 104 may control the rotational speed to remain unchanged and control the wind speed as the wind speed decreases.
  • the torque decreases until it returns to point B1, and then the control speed and torque change from point B1 along the isopower curve to point A1 and then decrease along the optimal speed torque curve, and then as the wind speed increases, the control speed and torque increase along the optimal speed torque curve After reaching point A1, it changes to point B1 along the equal power curve.
  • the first rotational speed and torque control unit 102 may control the rotational speed and the torque along the same power as the wind speed decreases.
  • the curve changes to the optimal speed and torque curve, and then decreases along the optimal speed and torque curve. Then, as the wind speed increases, the control speed and torque rise along the optimal speed and torque curve to point A1, and then change to point B1 along the equal power curve.
  • the first target power value determination unit 101 may determine the power to be reduced to the fifth power value based on the adjustment amount and the current power in the received first frequency modulation power reduction command; the first rotational speed torque control unit 102 may control the The rotational speed remains the same and the control torque drops until the power drops to the fifth power value.
  • the power control device of the wind power plant may be provided in the main controller of the wind power plant.
  • each unit in the power control device of the wind turbine may be implemented as hardware components and/or software components.
  • Those skilled in the art can implement each unit by using, for example, a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC) according to the defined processing performed by each unit.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • Exemplary embodiments of the present disclosure provide a computer-readable storage medium storing a computer program, which, when executed by a processor, implements the power control method for a wind turbine according to the above-described exemplary embodiments.
  • the computer-readable storage medium is any data storage device that can store data read by a computer system. Examples of computer-readable storage media include read-only memory, random-access memory, optical disks, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission over the Internet via wired or wireless transmission paths).
  • a power control apparatus for a wind turbine includes a processor (not shown) and a memory (not shown), wherein the memory stores a computer program, and when the computer program is executed by the processor , the power control method of the wind power generating set as described in the above-mentioned exemplary embodiment is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种风力发电机组及其功率控制方法及设备。所述功率控制方法包括:当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩(S10);其中,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线,其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。

Description

风力发电机组及其功率控制方法及设备 技术领域
本公开总体说来涉及风电技术领域,更具体地讲,涉及一种风力发电机组及其功率控制方法及设备。
背景技术
风力发电机组的一次调频策略的主要逻辑依照机组限放功率的方式。机组限功率至变速段时,若继续执行限放功率的动作将会同时改变机组的设定转速和设定扭矩。尤其对于大叶轮机组,当机组限功率至变速段后接收到一次调频升功率指令时,由于叶轮惯性较大,如果环境风速较小,则转速上升会较慢,从而影响一次调频的响应时间。
发明内容
本公开的示例性实施例在于提供一种风力发电机组的功率控制方法及设备,其能够有效地响应限功率运行指令或放功率运行指令控制发电机的转速和扭矩。
根据本公开的示例性实施例,提供一种风力发电机组的功率控制方法,所述功率控制方法包括:当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩;其中,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线,其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。
根据本公开的另一示例性实施例,提供一种风力发电机组的功率控制设备,所述功率控制设备包括:控制单元,当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩;其中,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线, 其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。
根据本公开的另一示例性实施例,提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时实现如上所述的风力发电机组的功率控制方法。
根据本公开的另一示例性实施例,提供一种风力发电机组的功率控制设备,所述功率控制设备包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如上所述的风力发电机组的功率控制方法。
根据本公开的再一示例性实施例,提供一种风力发电机组,所述风力发电机组设置有所述的功率控制设备。
根据本公开示例性实施例的风力发电机组的功率控制方法及设备,能够有效地响应限功率运行指令或放功率运行指令控制发电机的转速和扭矩,此外,本公开通过有效地设置限放功率时的转速目标值和扭矩目标值,为一次调频预留出一定的空间,从而能够使得机组在一次调频时可以直接通过升降扭矩完成,而无需改变转速,因此可以快速响应一次调频指令,同时由于转速变化较小,对机组载荷有正面意义。
将在接下来的描述中部分阐述本公开总体构思另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本公开总体构思的实施而得知。
附图说明
通过下面结合示例性地示出实施例的附图进行的描述,本公开示例性实施例的上述和其他目的和特点将会变得更加清楚,其中:
图1示出根据本公开的示例性实施例的风力发电机组的功率控制方法的流程图;
图2示出根据本公开的示例性实施例的特定转速扭矩曲线的示例;
图3示出根据本公开的示例性实施例的限功率的方法的流程图;
图4示出根据本公开的示例性实施例的响应限功率运行指令控制转速和扭矩的方法的示例;
图5示出根据本公开的示例性实施例的放功率的方法的流程图;
图6示出根据本公开的示例性实施例的响应放功率运行指令控制转速和扭矩的方法的示例;
图7示出根据本公开的示例性实施例的限功率后控制转速和扭矩的方法的示例;
图8示出根据本公开的示例性实施例的风力发电机组的功率控制设备的结构框图;
图9示出根据本公开的示例性实施例的控制单元的结构框图;
图10示出根据本公开的另一示例性实施例的控制单元的结构框图。
具体实施方式
现将详细参照本公开的实施例,所述实施例的示例在附图中示出,其中,相同的标号始终指的是相同的部件。以下将通过参照附图来说明所述实施例,以便解释本公开。
图1示出根据本公开的示例性实施例的风力发电机组的功率控制方法的流程图。
参照图1,在步骤S10,当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩。
作为示例,最优转速扭矩曲线为发电机的特性曲线,指示了发电机在不同功率下的最优转速和最优扭矩,当风力发电机组处于正常运行状态而非限放功率运行状态时,运行在最优转速扭矩曲线上。
特定转速扭矩曲线是基于最优转速扭矩曲线构建的,具体地,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线,其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。
例如,最优转速扭矩曲线和特定转速扭矩曲线之间的关系可如图2所示,仅作为示例,所述预设值为预设比例的额定功率(例如,10%的额定功率Pn),最优转速扭矩曲线上的A点与特定转速扭矩曲线上的B点等功率,且B点所对应的功率值(即,转速和扭矩为B点的转速值和扭矩值时的功率值)相较于最优转速扭矩曲线上转速值与B点相等的点所对应的功率值低了10%的额定功率,相应地,最优转速扭矩曲线上的C点与特定转速扭矩曲线上的D点等功率,且D点所对应的功率值相较于最优转速扭矩曲线上转速值与D点相等的点所对应的功率值低了10%的额定功率;最优转速扭矩曲线上的E点与 特定转速扭矩曲线上的F点等功率,且F点所对应的功率值相较于最优转速扭矩曲线上转速值与F点相等的点所对应的功率值低了10%的额定功率。
作为示例,所述限功率运行指令或者放功率运行指令可为二次调频指令,例如,对二次调频的响应时间和稳定时间的要求比对一次调频的要慢很多。
应该理解,根据本公开的示例性实施例的风力发电机组的功率控制方法既适用于功率小于或等于额定功率时的限功率动作,最低可限功率至0;也适用于功率大于或等于0时的放功率动作,最高可放功率至额定功率。
图3示出根据本公开的示例性实施例的限功率的方法的流程图。可在执行步骤S10时,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤中执行该方法。
在步骤S101,当接收到限功率运行指令时,基于接收到的限功率运行指令,确定需要限功率至第一功率值。
在步骤S102,确定第一功率值所对应的特定转速扭矩曲线上的B1点。
A1点为B1点沿等功率曲线所对应的最优转速扭矩曲线上的点,即,A1点和B1点所对应的功率值均为第一功率值。
在步骤S103,以B1点的转速值和扭矩值为目标值(也即,设定值),控制转速和扭矩。
参照图4,在一个实施例中,当当前处于正常运行状态时,步骤S103可包括:
当当前的转速值大于B1点的转速值(例如,当前运行在最优转速扭矩曲线上的C1点)时,控制转速和扭矩同时下降直接到达B1点,或控制转速和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至B1点(即,变化成B1点的转速值和扭矩值),或控制转速降到B1点的转速值之后再控制扭矩降到B1点的扭矩值(即,先控制转速下降,然后再控制扭矩下降);
当当前的转速值小于B1点的转速值(例如,当前运行在最优转速扭矩曲线上的D1点)时,控制扭矩下降至B1点与A1点之间的等功率曲线上之后再控制转速和扭矩沿等功率曲线变化至B1点(即,先控制扭矩下降,然后再同时控制扭矩和转速);
当当前的转速值等于B1点的转速值(例如,当前运行在最优转速扭矩 曲线上的E1点)时,控制扭矩降到B1点的扭矩值。
参照图4,在另一个实施例中,当当前已处于限功率运行状态或放功率运行状态时,步骤S103可包括:
当当前运行在特定转速扭矩曲线上的任意点F1点(即,当前的转速和扭矩为F1点的转速值和扭矩值)时,控制转速和扭矩从F1点沿特定转速扭矩曲线变化至B1点;例如,F1点可为当前所在的限功率点;
当当前运行在F1点与最优转速扭矩曲线上的G1点之间的等功率曲线上(例如,当前运行在等功率曲线上的H1点)时,控制转速和扭矩从H1点同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至B1点;
当当前运行在最优转速扭矩曲线上转速值大于B1点的C1点时,控制转速和扭矩同时下降直接到达B1点,或控制转速和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至B1点,或控制转速降到B1点的转速值之后再控制扭矩降到B1点的扭矩值;
当当前运行在最优转速扭矩曲线上转速值小于B1点的D1点时,控制扭矩下降至B1点与A1点之间的等功率曲线上之后再控制转速和扭矩沿等功率曲线变化至B1点;
当当前运行在最优转速扭矩曲线上转速值等于B1点的E1点时,控制扭矩降到B1点的扭矩值。
应该理解,图4中的带箭头的实线指示转速和扭矩的实际变化轨迹(趋势)。
图5示出根据本公开的示例性实施例的放功率的方法的流程图。应该理解,可在执行步骤S10时,在当接收到放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤中执行该方法。
在步骤S201,当接收到放功率运行指令时,基于接收到的放功率运行指令,确定需要放功率至第二功率值。
在步骤S202,确定第二功率值所对应的特定转速扭矩曲线上的B2点。
A2点为B2点沿等功率曲线所对应的最优转速扭矩曲线上的点,即,A2点和B2点所对应的功率值均为第一功率值。
在步骤S203,以B2点的转速值和扭矩值为目标值,控制转速和扭矩。
参照图6,在一个实施例中,当当前处于正常运行状态时,步骤S203可 包括:
当整个放功率过程中均有储备能量时,控制转速和扭矩变化至B2点;
当在放功率过程中,控制转速和扭矩变化至特定转速扭矩曲线上的任意点C2点后无储备能量时,控制转速和扭矩(即,转速实际值和扭矩实际值)停留在C2点,并控制扭矩目标值从C2点上升至最优转速扭矩曲线上的D2点的扭矩值(这过程中,转速目标值保持不变)之后再控制扭矩目标值和转速目标值从D2点沿最优转速扭矩曲线上升至A2点,再控制扭矩目标值和转速目标值从A2点沿等功率曲线变化至B2点。
参照图6,在另一个实施例中,当当前已处于限功率运行状态或放功率运行状态时,步骤S203可包括:
当整个放功率过程中均有储备能量时,控制转速和扭矩(例如,当前运行在限功率点E2)沿特定转速扭矩曲线变化至B2点;
当在放功率过程中,控制转速和扭矩(例如,从运行在限功率点E2沿特定转速扭矩曲线)变化至特定转速扭矩曲线上的任意点C2点后无储备能量时,控制转速和扭矩停留在C2点,并控制扭矩目标值从C2点上升至最优转速扭矩曲线上之后再控制扭矩目标值和转速目标值沿最优转速扭矩曲线上升至A2点,再控制扭矩目标值和转速目标值从A2点沿等功率曲线变化至B2点。
参照图7,在一个实施例中,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤之后,当当前运行在限功率点B1点(例如,风速较大、有储备能量)且未接收到一次调频指令时,如果风速先下降后上升,则随着风速下降,控制转速和扭矩从B1点沿等功率曲线变化至A1点之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点后再沿等功率曲线变化至B1点。
此外,作为示例,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤之后,当当前无法维持运行在限功率点B1点(例如,风速较小、无储备能量)且未接收到一次调频指令时,如果风速先下降后上升,则随着风速下降,控制转速和扭矩沿等功率曲线变化至最优转速扭矩曲线之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升后 再沿等功率曲线变化至特定转速扭矩曲线。
此外,作为示例,当当前运行在放功率点或当前处于放功率运行状态但当前无法维持运行在放功率点时,在未接收到一次调频指令且风速先下降后上升的情况下,也可参照上述结合图7描述的操作方式来控制转速和扭矩。
参照图7,在另一个实施例中,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤之后,当当前运行在B1点且接收到一次调频升功率指令时,基于接收到的一次调频升功率指令,确定需要升功率至第三功率值,控制转速保持不变且控制扭矩上升直至功率升为第三功率值,即,控制转速和扭矩从B1点变化至I1点。进一步地,作为示例,在控制转速和扭矩从B1点变化至I1点之后,如果风速先下降后上升,则随着风速下降,控制转速保持不变且控制扭矩下降直至回到B1点(即,从I1点变化至B1点),再控制转速和扭矩从B1点沿等功率曲线变化至A1点之后沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点之后再沿等功率曲线变化至B1点。
参照图7,在另一个实施例中,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤之后,当当前运行在B1点且接收到一次调频降功率指令时,基于接收到的一次调频降功率指令,确定需要降功率至第四功率值;控制转速保持不变且控制扭矩下降直至功率降为第四功率值,即,控制转速和扭矩从B1点变化至J1。进一步地,作为示例,在控制转速和扭矩从B1点变化至J1点之后,如果风速先下降后上升,则随着风速下降,控制转速和扭矩沿等功率曲线变化至最优转速扭矩曲线(即,控制转速和扭矩从J1点沿等功率曲线变化至K1点)上之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点之后再沿等功率曲线变化至B1点。
此外,作为示例,当当前运行在放功率点时,在接收到一次调频指令的情况下,也可参照上述结合图7描述的操作方式来控制转速和扭矩。
在另一个实施例中,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤之后,当当前处于限功率运行状态但无法维持运行在B1点(例如,风速较小、 无储备能量),且接收到一次调频降功率指令时,基于接收到的一次调频降功率指令中的调节量和当前的功率(换言之,机组当前的功率目标值跳变至当前的实际功率值以保证机组不会有跳变动作),确定需要降功率至第五功率值;控制转速保持不变且控制扭矩下降直至功率降为第五功率值。进一步地,作为示例,在控制转速保持不变且控制扭矩下降直至功率降为第五功率值的步骤之后,随着风速下降,控制转速和扭矩沿等功率曲线变化至最优转速扭矩曲线上之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点之后再沿等功率曲线变化至B1点。此外,作为示例,当当前处于放功率运行状态但当前无法维持运行在放功率点时,在接收到一次调频指令的情况下,也可参照上述操作方式来控制转速和扭矩。
图8示出根据本公开的示例性实施例的风力发电机组的功率控制设备的结构框图。
如图8所示,根据本公开的示例性实施例的风力发电机组的功率控制设备包括:控制单元10。
具体说来,控制单元10用于当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩;其中,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线,其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。
图9示出根据本公开的示例性实施例的控制单元的结构框图。
如图9所示,控制单元10可包括第一目标功率值确定单元101和第一转速扭矩控制单元102。
具体说来,第一目标功率值确定单元101用于当接收到限功率运行指令时,基于接收到的限功率运行指令,确定需要限功率至第一功率值。
第一转速扭矩控制单元102用于确定第一功率值所对应的特定转速扭矩曲线上的B1点,并以B1点的转速值和扭矩值为目标值,控制转速和扭矩。
作为示例,当当前处于正常运行状态时,第一转速扭矩控制单元102可执行以下操作以实现以B1点的转速值和扭矩值为目标值来控制转速和扭矩:
当当前的转速值大于B1点的转速值(例如,当前运行在最优转速扭矩曲线上的C1点)时,控制转速和扭矩同时下降直接到达B1点,或控制转速 和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至B1点(即,变化成B1点的转速值和扭矩值),或控制转速降到B1点的转速值之后再控制扭矩降到B1点的扭矩值(即,先控制转速下降,然后再控制扭矩下降);
当当前的转速值小于B1点的转速值(例如,当前运行在最优转速扭矩曲线上的D1点)时,控制扭矩下降至B1点与A1点之间的等功率曲线上之后再控制转速和扭矩沿等功率曲线变化至B1点(即,先控制扭矩下降,然后再同时控制扭矩和转速);
当当前的转速值等于B1点的转速值(例如,当前运行在最优转速扭矩曲线上的E1点)时,控制扭矩降到B1点的扭矩值。
作为另一示例,当当前已处于限功率运行状态或放功率运行状态时,第一转速扭矩控制单元102可执行以下操作以实现以B1点的转速值和扭矩值为目标值来控制转速和扭矩:
当当前运行在特定转速扭矩曲线上的任意点F1点(即,当前的转速和扭矩为F1点的转速值和扭矩值)时,控制转速和扭矩从F1点沿特定转速扭矩曲线变化至B1点;例如,F1点可为当前所在的限功率点;
当当前运行在F1点与最优转速扭矩曲线上的G1点之间的等功率曲线上(例如,当前运行在等功率曲线上的H1点)时,控制转速和扭矩从H1点同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至B1点;
当当前运行在最优转速扭矩曲线上转速值大于B1点的C1点时,控制转速和扭矩同时下降直接到达B1点,或控制转速和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至B1点,或控制转速降到B1点的转速值之后再控制扭矩降到B1点的扭矩值;
当当前运行在最优转速扭矩曲线上转速值小于B1点的D1点时,控制扭矩下降至B1点与A1点之间的等功率曲线上之后再控制转速和扭矩沿等功率曲线变化至B1点;
当当前运行在最优转速扭矩曲线上转速值等于B1点的E1点时,控制扭矩降到B1点的扭矩值。
图10示出根据本公开的另一示例性实施例的控制单元的结构框图。
如图10所示,控制单元10可包括第二目标功率值确定单元103和第二转速扭矩控制单元104。此外,作为示例,控制单元10可包括第一目标功率 值确定单元101、第一转速扭矩控制单元102、第二目标功率值确定单元103和第二转速扭矩控制单元104。
具体说来,第二目标功率值确定单元103用于当接收到放功率运行指令时,基于接收到的放功率运行指令,确定需要放功率至第二功率值。
第二转速扭矩控制单元104用于确定第二功率值所对应的特定转速扭矩曲线上的B2点,并以B2点的转速值和扭矩值为目标值,控制转速和扭矩。
作为示例,当当前处于正常运行状态时,第二转速扭矩控制单元104可执行以下操作以实现以B2点的转速值和扭矩值为目标值来控制转速和扭矩:当整个放功率过程中均有储备能量时,控制转速和扭矩变化至B2点;
当在放功率过程中,控制转速和扭矩变化至特定转速扭矩曲线上的任意点C2点后无储备能量时,控制转速和扭矩(即,转速实际值和扭矩实际值)停留在C2点,并控制扭矩目标值从C2点上升至最优转速扭矩曲线上的D2点的扭矩值(这过程中,转速目标值保持不变)之后再控制扭矩目标值和转速目标值从D2点沿最优转速扭矩曲线上升至A2点,再控制扭矩目标值和转速目标值从A2点沿等功率曲线变化至B2点。
作为另一示例,当当前已处于限功率运行状态或放功率运行状态时,第二转速扭矩控制单元104可执行以下操作以实现以B2点的转速值和扭矩值为目标值来控制转速和扭矩:
当整个放功率过程中均有储备能量时,控制转速和扭矩(例如,当前运行在限功率点E2)沿特定转速扭矩曲线变化至B2点;
当在放功率过程中,控制转速和扭矩(例如,从运行在限功率点E2沿特定转速扭矩曲线)变化至特定转速扭矩曲线上的任意点C2点后无储备能量时,控制转速和扭矩停留在C2点,并控制扭矩目标值从C2点上升至最优转速扭矩曲线上之后再控制扭矩目标值和转速目标值沿最优转速扭矩曲线上升至A2点,再控制扭矩目标值和转速目标值从A2点沿等功率曲线变化至B2点。
作为示例,在第一转速扭矩控制单元102以B1点的转速值和扭矩值为目标值控制转速和扭矩之后,当当前运行在B1点且未接收到一次调频指令时,第一转速扭矩控制单元102可可随着风速下降,控制转速和扭矩从B1点沿等功率曲线变化至A1点之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点后再沿等功率曲线变化至 B1点。
作为示例,在第一转速扭矩控制单元102以B1点的转速值和扭矩值为目标值控制转速和扭矩之后,当当前运行在B1点且接收到一次调频升功率指令时,第二目标功率值确定单元103可基于接收到的一次调频升功率指令,确定需要升功率至第三功率值;第二转速扭矩控制单元104可控制转速保持不变且控制扭矩上升直至功率升为第三功率值。
作为示例,在第一转速扭矩控制单元102以B1点的转速值和扭矩值为目标值控制转速和扭矩之后,当当前运行在B1点且接收到一次调频降功率指令时,第一目标功率值确定单元101可基于接收到的一次调频降功率指令,确定需要降功率至第四功率值;第一转速扭矩控制单元102可控制转速保持不变且控制扭矩下降直至功率降为第四功率值。
作为示例,在第二转速扭矩控制单元104控制转速保持不变且控制扭矩上升直至功率升为第三功率值之后,第二转速扭矩控制单元104可随着风速下降,控制转速保持不变且控制扭矩下降直至回到B1点,再控制转速和扭矩从B1点沿等功率曲线变化至A1点之后沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点之后再沿等功率曲线变化至B1点。
作为示例,在第一转速扭矩控制单元102控制转速保持不变且控制扭矩下降直至功率降为第四功率值之后,第一转速扭矩控制单元102可随着风速下降,控制转速和扭矩沿等功率曲线变化至最优转速扭矩曲线上之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至A1点之后再沿等功率曲线变化至B1点。
作为示例,在第一转速扭矩控制单元102以B1点的转速值和扭矩值为目标值控制转速和扭矩之后,当当前处于限功率运行状态但无法维持运行在B1点,且接收到一次调频降功率指令时,第一目标功率值确定单元101可基于接收到的一次调频降功率指令中的调节量和当前的功率,确定需要降功率至第五功率值;第一转速扭矩控制单元102可控制转速保持不变且控制扭矩下降直至功率降为第五功率值。
作为示例,根据本公开示例性实施例的风力发电机组的功率控制设备可设置在风力发电机组的主控器中。
应该理解,根据本公开示例性实施例的风力发电机组的功率控制设备所 执行的具体处理已经参照图1至图7进行了详细描述,这里将不再赘述相关细节。
应该理解,根据本公开示例性实施例的风力发电机组的功率控制设备中的各个单元可被实现硬件组件和/或软件组件。本领域技术人员根据限定的各个单元所执行的处理,可以例如使用现场可编程门阵列(FPGA)或专用集成电路(ASIC)来实现各个单元。
本公开的示例性实施例提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时实现如上述示例性实施例所述的风力发电机组的功率控制方法。该计算机可读存储介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读存储介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。
根据本公开的示例性实施例的风力发电机组的功率控制设备包括:处理器(未示出)和存储器(未示出),其中,存储器存储有计算机程序,当所述计算机程序被处理器执行时,实现如上述示例性实施例所述的风力发电机组的功率控制方法。
虽然已表示和描述了本公开的一些示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行修改。

Claims (16)

  1. 一种风力发电机组的功率控制方法,其中,所述功率控制方法包括:
    当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩;
    其中,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线,其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。
  2. 根据权利要求1所述的功率控制方法,其中,当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤包括:
    当接收到限功率运行指令时,基于接收到的限功率运行指令,确定需要限功率至第一功率值;
    确定第一功率值所对应的特定转速扭矩曲线上的A点;
    以A点的转速值和扭矩值为目标值,控制转速和扭矩。
  3. 根据权利要求2所述的功率控制方法,其中,以A点的转速值和扭矩值为目标值,控制转速和扭矩的步骤包括:
    在当前处于正常运行状态,且当前的转速值大于A点的转速值时,控制转速和扭矩同时下降直接到达A点,或控制转速和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至A点,或控制转速降到A点的转速值之后再控制扭矩降到A点的扭矩值;
    在当前处于正常运行状态,且当前的转速值小于A点的转速值时,控制扭矩下降至A点与B点之间的等功率曲线上之后再控制转速和扭矩沿等功率曲线变化至A点;
    在当前处于正常运行状态,且当前的转速值等于A点的转速值时,控制扭矩降到A点的扭矩值,
    其中,B点为最优转速扭矩曲线上的对应的功率值为第一功率值的点。
  4. 根据权利要求2所述的功率控制方法,其中,以A点的转速值和扭矩值为目标值,控制转速和扭矩的步骤包括:
    在当前已处于限功率运行状态或放功率运行状态,且当前运行在特定转速扭矩曲线上的任意C点时,控制转速和扭矩沿特定转速扭矩曲线从C点变 化至A点;
    在当前已处于限功率运行状态或放功率运行状态,且当前运行在C点与最优转速扭矩曲线上的点之间的等功率曲线上时,控制转速和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至A点;
    在当前已处于限功率运行状态或放功率运行状态,且当前运行在最优转速扭矩曲线上转速值大于A点的点时,控制转速和扭矩同时下降直接到达A点,或控制转速和扭矩同时下降至特定转速扭矩曲线上之后再沿特定转速扭矩曲线变化至A点,或控制转速降到A点的转速值之后再控制扭矩降到A点的扭矩值;
    在当前已处于限功率运行状态或放功率运行状态,且当前运行在最优转速扭矩曲线上转速值小于A点的点时,控制扭矩下降至A点与B点之间的等功率曲线上之后再控制转速和扭矩沿等功率曲线变化至A点;
    在当前已处于限功率运行状态或放功率运行状态,且当前运行在最优转速扭矩曲线上转速值等于A点的点时,控制扭矩降到A点的扭矩值,
    其中,B点为最优转速扭矩曲线上的对应的功率值为第一功率值的点。
  5. 根据权利要求1所述的功率控制方法,其中,当接收到放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤包括:
    当接收到放功率运行指令时,基于接收到的放功率运行指令,确定需要放功率至第二功率值;
    确定第二功率值所对应的特定转速扭矩曲线上的D点;
    以D点的转速值和扭矩值为目标值,控制转速和扭矩。
  6. 根据权利要求5所述的功率控制方法,其中,以D点的转速值和扭矩值为目标值,控制转速和扭矩的步骤包括:
    在当前处于正常运行状态,且整个放功率过程中均有储备能量时,控制转速和扭矩变化至D点;
    在当前处于正常运行状态,且在放功率过程中,控制转速和扭矩变化至特定转速扭矩曲线上的任意E点后无储备能量时,控制转速和扭矩停留在E点,并控制扭矩目标值从E点上升至最优转速扭矩曲线上之后再控制扭矩目标值和转速目标值沿最优转速扭矩曲线上升至F点,再控制扭矩目标值和转速目标值从F点沿等功率曲线变化至D点,
    其中,F点为最优转速扭矩曲线上的对应的功率值为第二功率值的点。
  7. 根据权利要求5所述的功率控制方法,其中,以D点的转速值和扭矩值为目标值,控制转速和扭矩的步骤包括:
    在当前已处于限功率运行状态或放功率运行状态,且整个放功率过程中均有储备能量时,控制转速和扭矩沿特定转速扭矩曲线变化至D点;
    在当前已处于限功率运行状态或放功率运行状态,且在放功率过程中,控制转速和扭矩变化至特定转速扭矩曲线上的任意E点后无储备能量时,控制转速和扭矩停留在E点,并控制扭矩目标值从E点上升至最优转速扭矩曲线上之后再控制扭矩目标值和转速目标值沿最优转速扭矩曲线上升至F点,再控制扭矩目标值和转速目标值从F点沿等功率曲线变化至D点,
    其中,F点为最优转速扭矩曲线上的对应的功率值为第二功率值的点。
  8. 根据权利要求2所述的功率控制方法,其中,在当接收到限功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩的步骤之后还包括:
    在当前运行在A点且未接收到一次调频指令时,随着风速下降,控制转速和扭矩从A点沿等功率曲线变化至B点之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至B点后再沿等功率曲线变化至A点,其中,B点为最优转速扭矩曲线上的对应的功率值为第一功率值的点;和/或,
    在当前运行在A点且接收到一次调频升功率指令时,基于接收到的一次调频升功率指令,确定需要升功率至第三功率值;并控制转速保持不变且控制扭矩上升直至功率升为第三功率值;和/或,
    在当前运行在A点且接收到一次调频降功率指令时,基于接收到的一次调频降功率指令,确定需要降功率至第四功率值;并控制转速保持不变且控制扭矩下降直至功率降为第四功率值;和/或,
    在前处于限功率运行状态但无法维持运行在A点,且接收到一次调频降功率指令时,基于接收到的一次调频降功率指令中的调节量和当前的功率,确定需要降功率至第五功率值;控制转速保持不变且控制扭矩下降直至功率降为第五功率值。
  9. 根据权利要求8所述的功率控制方法,其中,所述功率控制方法还包括:
    在控制转速保持不变且控制扭矩上升直至功率升为第三功率值的步骤之后,随着风速下降,控制转速保持不变且控制扭矩下降直至回到A点,再控制转速和扭矩从A点沿等功率曲线变化至B点之后沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至B点之后再沿等功率曲线变化至A点;和/或,
    在控制转速保持不变且控制扭矩下降直至功率降为第四功率值的步骤之后,随着风速下降,控制转速和扭矩沿等功率曲线变化至最优转速扭矩曲线上之后再沿最优转速扭矩曲线下降,之后随着风速上升,控制转速和扭矩沿最优转速扭矩曲线上升至B点之后再沿等功率曲线变化至A点。
  10. 一种风力发电机组的功率控制设备,其中,所述功率控制设备包括:
    控制单元,当接收到限功率运行指令或者放功率运行指令时,基于最优转速扭矩曲线和特定转速扭矩曲线,控制风力发电机组的发电机的转速和扭矩;
    其中,针对最优转速扭矩曲线上的每个点,以该点为起始点的等功率曲线上的满足预设条件的点构成特定转速扭矩曲线,其中,所述预设条件为对应的功率值比相同转速值下最优转速扭矩曲线上的点所对应的功率值低预设值。
  11. 根据权利要求10所述的功率控制设备,其中,控制单元包括:
    第一目标功率值确定单元,当接收到限功率运行指令时,基于接收到的限功率运行指令,确定需要限功率至第一功率值;
    第一转速扭矩控制单元,确定第一功率值所对应的特定转速扭矩曲线上的A点,并以A点的转速值和扭矩值为目标值,控制转速和扭矩。
  12. 根据权利要求10或11所述的功率控制设备,其中,控制单元包括:
    第二目标功率值确定单元,当接收到放功率运行指令时,基于接收到的放功率运行指令,确定需要放功率至第二功率值;
    第二转速扭矩控制单元,确定第二功率值所对应的特定转速扭矩曲线上的D点,并以D点的转速值和扭矩值为目标值,控制转速和扭矩。
  13. 根据权利要求10或12所述的功率控制设备,其中,所述功率控制设备设置在风力发电机组的主控器中。
  14. 一种存储有计算机程序的计算机可读存储介质,其中,当所述计算机程序被处理器执行时实现如权利要求1至9中的任意一项所述的风力发电 机组的功率控制方法。
  15. 一种风力发电机组的功率控制设备,其中,所述功率控制设备包括:
    处理器;
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至9中的任意一项所述的风力发电机组的功率控制方法。
  16. 一种风力发电机组,其中,所述风力发电机组设置有权利要求10-13中任一项所述的功率控制设备。
PCT/CN2020/135602 2020-09-30 2020-12-11 风力发电机组及其功率控制方法及设备 WO2022068068A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3194316A CA3194316A1 (en) 2020-09-30 2020-12-11 Wind turbine plant and power control method and device thereof
US18/247,189 US20230366376A1 (en) 2020-09-30 2020-12-11 Wind turbine plant and power control method and device thereof
AU2020471015A AU2020471015A1 (en) 2020-09-30 2020-12-11 Wind power generator set and power control method and device therefor
EP20956085.3A EP4206460A4 (en) 2020-09-30 2020-12-11 WIND POWER GENERATOR SET AND POWER CONTROL METHOD AND DEVICE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011058738.5 2020-09-30
CN202011058738.5A CN114320741A (zh) 2020-09-30 2020-09-30 风力发电机组的功率控制方法及设备

Publications (1)

Publication Number Publication Date
WO2022068068A1 true WO2022068068A1 (zh) 2022-04-07

Family

ID=80949509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135602 WO2022068068A1 (zh) 2020-09-30 2020-12-11 风力发电机组及其功率控制方法及设备

Country Status (6)

Country Link
US (1) US20230366376A1 (zh)
EP (1) EP4206460A4 (zh)
CN (1) CN114320741A (zh)
AU (1) AU2020471015A1 (zh)
CA (1) CA3194316A1 (zh)
WO (1) WO2022068068A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116690A1 (en) * 2006-11-16 2008-05-22 Nordex Energy Gmbh Method and apparatus for the operation of a wind energy plant in the power-limited operation
CN102900611A (zh) * 2011-05-12 2013-01-30 通用电气公司 风力涡轮机扭矩-速度控制
CN103174587A (zh) * 2011-12-26 2013-06-26 台达电子工业股份有限公司 风力发电系统及其控制方法
CN104153941A (zh) * 2014-07-18 2014-11-19 新疆金风科技股份有限公司 一种风机的限功率运行控制方法、装置及系统
CN105927469A (zh) * 2016-05-09 2016-09-07 北京金风科创风电设备有限公司 风力发电机组的限功率控制方法和控制装置
CN109973302A (zh) * 2017-12-28 2019-07-05 北京金风科创风电设备有限公司 风力发电机组的限功率控制方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504738B2 (en) * 2005-09-29 2009-03-17 General Electric Company Wind turbine and method for operating same
CN103061972A (zh) * 2011-10-20 2013-04-24 华锐风电科技(集团)股份有限公司 风力发电机组的功率控制方法及系统
CN103187912B (zh) * 2011-12-29 2015-04-01 中国科学院沈阳自动化研究所 一种快速穿越共振带的风力发电机转矩控制方法
US9863400B2 (en) * 2013-12-11 2018-01-09 General Electric Company System and method for controlling a wind turbine system
CN104074679B (zh) * 2014-07-02 2017-02-22 国电联合动力技术有限公司 一种变速变桨距风电机组全风速限功率优化控制方法
CN105041567B (zh) * 2015-07-29 2017-11-17 明阳智慧能源集团股份公司 一种设有转速禁区的风电机组限功率控制方法
CN105909470B (zh) * 2016-04-15 2018-08-24 上海瑞伯德智能系统股份有限公司 风力发电机组的自适应最大功率跟踪控制方法
CN105909469B (zh) * 2016-04-29 2018-09-25 南京理工大学 一种减小变桨动作的变速恒频风电机组的限功率控制方法
GB2551701A (en) * 2016-06-21 2018-01-03 Univ Court Univ Of Edinburgh Control or processing system and method
ES2947412T3 (es) * 2018-05-31 2023-08-08 Ge Renewable Tech Wind Bv Métodos y sistemas para el funcionamiento una turbina eólica
CN111262256A (zh) * 2018-11-30 2020-06-09 北京金风科创风电设备有限公司 风力发电机组的一次调频的控制方法及设备
CN112392656B (zh) * 2019-08-16 2022-03-29 北京金风科创风电设备有限公司 风力发电机组的功率控制方法、装置以及介质
CN110529336B (zh) * 2019-09-06 2020-07-10 国电联合动力技术有限公司 一种风力发电机组有功功率快速调节的方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116690A1 (en) * 2006-11-16 2008-05-22 Nordex Energy Gmbh Method and apparatus for the operation of a wind energy plant in the power-limited operation
CN102900611A (zh) * 2011-05-12 2013-01-30 通用电气公司 风力涡轮机扭矩-速度控制
CN103174587A (zh) * 2011-12-26 2013-06-26 台达电子工业股份有限公司 风力发电系统及其控制方法
CN104153941A (zh) * 2014-07-18 2014-11-19 新疆金风科技股份有限公司 一种风机的限功率运行控制方法、装置及系统
CN105927469A (zh) * 2016-05-09 2016-09-07 北京金风科创风电设备有限公司 风力发电机组的限功率控制方法和控制装置
CN109973302A (zh) * 2017-12-28 2019-07-05 北京金风科创风电设备有限公司 风力发电机组的限功率控制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206460A4 *

Also Published As

Publication number Publication date
AU2020471015A1 (en) 2023-05-25
US20230366376A1 (en) 2023-11-16
CA3194316A1 (en) 2022-04-07
EP4206460A1 (en) 2023-07-05
CN114320741A (zh) 2022-04-12
EP4206460A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US7855467B2 (en) Hybrid power generation of wind-power generator and battery energy storage system
CN110445198B (zh) 一种基于储能电池的电网一次调频控制方法及系统
EP1512869B2 (en) Voltage control for windpark
US20070194574A1 (en) Method for the operation of a wind turbine generator system
US9900424B2 (en) Chip aware thermal policy
CN112392656B (zh) 风力发电机组的功率控制方法、装置以及介质
WO2022068068A1 (zh) 风力发电机组及其功率控制方法及设备
CN115268536A (zh) 一种储能系统的温度控制方法及相关装置
EP3594489B1 (en) Noise control method and device for wind power generator set
CN112665132B (zh) 空调系统及其冷却侧的节能控制方法、装置和控制器
US11114864B2 (en) Method and device for distributing active power for wind farm
CN113162073A (zh) 一种风电机组与储能协调调频控制方法及系统
CN113452034B (zh) 一次调频的方法、装置及系统
JP6987292B1 (ja) 充放電制御装置、充放電制御プログラム
CN114320865B (zh) 一种压缩机的控制方法及控制系统
CN111564871B (zh) 基于燃煤电站热惯性的自适应变负荷指令生成方法及装置
CN112065703A (zh) 一种压缩机运行频率的分段控制方法及装置
CN113540507B (zh) 一种燃料电池热管理系统散热风扇控制方法
CN111262256A (zh) 风力发电机组的一次调频的控制方法及设备
CN112012883B (zh) 风力发电机组运行控制方法和装置、存储介质
CN113915112B (zh) 一种机组变频压缩机控制方法、装置以及冷凝机组
CN109981029A (zh) 一种电机的控制方法及装置
JP2021181758A (ja) 電動ポンプの制御装置
CN112532032A (zh) 一种用于恒压控制电源的防过冲电路
WO2020158028A1 (ja) 複合発電電源設備におけるドループ特性制御

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3194316

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020956085

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020471015

Country of ref document: AU

Date of ref document: 20201211

Kind code of ref document: A