CN105909469B - 一种减小变桨动作的变速恒频风电机组的限功率控制方法 - Google Patents
一种减小变桨动作的变速恒频风电机组的限功率控制方法 Download PDFInfo
- Publication number
- CN105909469B CN105909469B CN201610279084.6A CN201610279084A CN105909469B CN 105909469 B CN105909469 B CN 105909469B CN 201610279084 A CN201610279084 A CN 201610279084A CN 105909469 B CN105909469 B CN 105909469B
- Authority
- CN
- China
- Prior art keywords
- speed
- pitch
- wind
- control
- variable
- Prior art date
Links
- 238000006243 chemical reactions Methods 0.000 claims description 9
- 230000003827 upregulation Effects 0.000 claims description 4
- 230000037290 Cpmax Effects 0.000 claims description 2
- 238000004088 simulation Methods 0.000 description 7
- 239000002002 slurries Substances 0.000 description 2
- 280000255884 Dispatching companies 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 280000174388 State Grid Corporation of China companies 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 238000010586 diagrams Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003638 reducing agents Substances 0.000 description 1
- 230000001172 regenerating Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling motor output power
- F03D7/0292—Controlling motor output power to increase fatigue life
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0276—Controlling rotor speed, e.g. variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/043—Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/1016—Purpose of the control system in variable speed operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/103—Purpose of the control system to affect the output of the engine
- F05B2270/1033—Power (if explicitly mentioned)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/327—Rotor or generator speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/335—Output power or torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/70—Type of control algorithm
- F05B2270/705—Type of control algorithm proportional-integral
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Abstract
Description
一种减小变桨动作的变速恒频风电机组的限功率控制方法
技术领域
[0001] 本发明属于风力机控制领域,特别是一种减小变桨动作的变速恒频风电机组的限 功率控制方法。
背景技术
[0002] 随着风电在电网中渗透率的不断提高,一方面,传统风机采用MPPT控制策略以最 大捕获风功率出力,但由于风速的不可预测性、随机波动性以及桨矩角执行机构的时滞,风 电机组的输出功率大范围波动会对电能质量产生影响,威胁电网的安全稳定运行;另一方 面,国家电网公司提出风电场必须具有有功功率调节能力,能根据电网调度部门指令控制 其有功输出,承担越来越多的电网责任。
[0003] 当前主流限功率方法在中低风速时,通过优先调节转速来优化风机运行工况;但 当风速在高风速段波动时,则通过调节桨矩角来使风轮维持在额定转速,此时变桨机构会 频繁动作,从而易导致疲劳,缩短使用寿命。
[0004] 基于上述情况,目前迫切需要一种新的变速恒频风电机组的限功率控制方法,能 够优化风力机在全风速段的运行工况,进一步避免变桨机构的频繁动作,减轻变桨系统的 机械疲劳。
发明内容
[0005] 本发明所解决的技术问题在于提供一种减小变桨动作的变速恒频风电机组的限 功率控制方法。
[0006] 实现本发明目的的技术解决方案为:一种减小变桨动作的变速恒频风电机组的限 功率控制方法,包括以下步骤:
[0007] 步骤1、确定风机目标功率指令Prrf并获取最优功率曲线,之后根据最优功率曲线 制成转速-功率表;
[0008] 步骤2、根据风机目标功率指令Pre3f,通过转速-功率表得到最低转速ω lciw,并设置 临界下调转速《lim;
[0009] 步骤3、测量风机的转速ω,根据转速ω划分转速和转矩的控制模式,当ω〈 ω lciw 时,执行步骤4,否则执行步骤5;之后判断转速与额定转速的关系,当转速大于额定转速时, 执行步骤6,否则执行步骤7;
[0010] 步骤4、转速控制采用最大功率点跟踪模式进行控制,以最大可能接近目标功率输 出;
[0011] 步骤5、转速控制采用恒目标功率输出模式;
[0012] 步骤6、选用PI控制,上调桨矩角将转速限定在额定转速;
[0013] 步骤7、选用PI控制,下调桨矩角增加捕获风能,使其高于切入转速。
[0014] 本发明与现有技术相比,其显著优点为:1)本发明对优化了高风速段的变桨运行 工况,能够避免变桨机构的频繁动作,可有效地减少变桨机构的疲劳程度。2)本发明所提限 功率控制方法的控制输入为机组目标输出功率和电机转速,不需要可靠性不高的现场实测 风数据,增强了工程应用性。
[0015] 下面结合附图对本发明作进一步详细描述。
附图说明
[0016] 图1为本发明的减小变桨动作的变速恒频风电机组的限功率控制方法流程图。
[0017] 图2为本发明的具体实施例中采用湍流风速波形图。
[0018] 图3为具体实施例中改进方法与主流方法的桨矩角仿真对比图。
[0019] 图4为具体实施例中改进方法与主流方法的转速仿真对比图。
[0020] 图5为具体实施例中改进方法与主流方法的功率仿真对比图。
[0021] 图6为具体实施例中改进方法与主流方法的变桨速率仿真对比图。
具体实施方式
[0022] 结合图1,本发明的一种减小变桨动作的变速恒频风电机组的限功率控制方法,包 括以下步骤:
[0023] 步骤1、确定风机目标功率指令Pre3f并获取最优功率曲线,之后根据最优功率曲线 制成转速-功率表;获取最优功率曲线的具体方法包括:
[0024] 步骤1-1、获取风力机参数和环境参数,所述风力机参数具体包括风轮半径R、最佳 叶尖速比Acipt、最大风能利用系数Cpmax,所述环境参数为空气密度P;
[0025] 步骤1-2、将桨矩角设置为初始桨矩角,模拟在不同恒定风速下的转速-功率曲线, 将每条曲线最优功率点连接起来,得到最优功率曲线。
[0026] 步骤2、根据风机目标功率指令Pre3f,通过转速-功率表得到最低转速ω lciw,并设置 临界下调转速ω Hm;临界下调转速ω lim的确定公式为:
[0028] 式中,Δ ω lQW为转速控制误差限制。
[0029] 步骤3、测量风机的转速ω,根据转速ω划分转速和转矩的控制模式,当ω〈 ω lciw 时,执行步骤4,否则执行步骤5;之后判断转速与额定转速ω rate的关系,当转速大于额定转 速时,执行步骤6,否则执行步骤7;
[0030] 步骤4、转速控制采用最大功率点跟踪模式进行控制,以最大可能接近目标功率输 出;最大功率点跟踪模式中电磁功率参考值Tgrf的确定公式为:
[0032] 式中,kQpt为最优转矩增益系数。
[0033] 步骤5、转速控制采用恒目标功率输出模式;恒功率控制模式中电磁功率参考值 Tyrf的确定公式为:
[0035] 步骤6、选用PI控制,上调桨矩角将转速限定在额定转速;所述上调控制中变桨控 制输入信号ω OTCir up的确定公式为:
[0037]步骤7、选用PI控制,下调桨矩角增加捕获风能,使其高于切入转速。下调控制中变 桨控制输入信号ω errcir_d_的确定公式为:
[0039] 本发明优化了高风速段的变桨运行工况,能够避免变桨机构的频繁动作,可有效 地减少变桨机构的疲劳程度。
[0040] 下面结合实施例对本发明做进一步详细的描述:
[0041] 实施例
[0042] 利用美国国家能源部可再生能源实验室(NREL)提供的开源的专业风力机仿真软 件FAST (Fatigue ,Aerodynamics,Structures ,and Turbulence)来模拟控制效果。风力机模 型采用NERL开发的600kW CART3试验机型,具体参数如表1所示。
[0043] 表I NREL 600kW CART3风力机主要参数
[0045] 首先,选定目标功率Pref= 123kW。关闭FAST的电气部分,固定桨矩角为初始桨矩 角,模拟恒定风速V下,转速从切入转速到额定转转速的功率值,分别绘制出风速从3m/s到 13.5m/s的转速-功率曲线;选取每条曲线最高值,将最大功率与所对应的转速制成表格。
[0046] 然后,查转速-功率表得对应最低转速为c〇lciw=837rpm,设置临界下调转速Colim= 900rpm〇
[0047] 与当前主流的限功率控制策略(转速优先控制)进行仿真实验对比。
[0048] 转速优先控制策略:当风机转速低于能实现目标功率的最低转速时,实行MPPT控 制;当转速小于额定转速时,通过转速控制实现限功率输出;当转速大于额定转速时,启动 变桨控制限制转速不超过额定转速。
[0049] 本发明改进方法:当风机转速低于能实现目标功率的最低转速时,实行MPPT控制; 当转速大于最低转速时,通过转速控制实现限功率输出;当转速大于额定转速时增加浆矩 角;当转速低于临界转速时才降低浆矩角。
[0050] 根据仿真结果进行分析对比。①功率方面:两种方法都能实现目标功率下的稳定 输出;②桨矩角方面:用以下两个指标来衡量桨矩系统的疲劳度和动作情况。
[0051] A)变桨速率
[0052] 对变桨执行机构的疲劳度可以用变桨总角度数与变桨时间的比值,即变桨速度来 衡量。由图6可知,采用改进方法后,变桨速率降低较多,且减少变桨动作次数,减轻变桨轴 承和变桨减速机的磨损,减少变桨电机的发热,对于延长其使用寿命和降低故障发生率具 有重要意义。
[0053] B)变桨幅度
[0054] 变桨动作量Δ β用如下公式进行计算:
[0056]式中,β⑴为t时刻桨矩值,T为仿真周期,t为仿真步长。
[0058] 可以看出改进方法明显降低了变桨系统的动作量。
[0059] 由上可知,本发明提出的改进方法能够进一步改善风力机在限功率控制模式下的 运行工况,能够避免变桨机构的频繁动作,可以有效地减少变桨机构的疲劳程度。
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610279084.6A CN105909469B (zh) | 2016-04-29 | 2016-04-29 | 一种减小变桨动作的变速恒频风电机组的限功率控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610279084.6A CN105909469B (zh) | 2016-04-29 | 2016-04-29 | 一种减小变桨动作的变速恒频风电机组的限功率控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105909469A CN105909469A (zh) | 2016-08-31 |
CN105909469B true CN105909469B (zh) | 2018-09-25 |
Family
ID=56752201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610279084.6A CN105909469B (zh) | 2016-04-29 | 2016-04-29 | 一种减小变桨动作的变速恒频风电机组的限功率控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105909469B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106777525B (zh) * | 2016-11-24 | 2020-07-31 | 南京理工大学 | 考虑设计叶尖速比风轮静、动态影响的风力机气动设计方法 |
CN107465208B (zh) * | 2017-08-24 | 2020-09-08 | 上海大学 | 改进式双馈风力发电机系统及其控制方法 |
CN111255629A (zh) * | 2020-02-18 | 2020-06-09 | 明阳智慧能源集团股份公司 | 一种降低风力发电机组变桨系统疲劳载荷的控制方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104074679A (zh) * | 2014-07-02 | 2014-10-01 | 国电联合动力技术有限公司 | 一种变速变桨距风电机组全风速限功率优化控制方法 |
CN104612897A (zh) * | 2015-03-10 | 2015-05-13 | 中船重工(重庆)海装风电设备有限公司 | 一种风力发电机组的控制方法及装置 |
CN105041567A (zh) * | 2015-07-29 | 2015-11-11 | 广东明阳风电产业集团有限公司 | 一种设有转速禁区的风电机组限功率控制方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8858174B2 (en) * | 2011-05-12 | 2014-10-14 | General Electric Company | Wind turbine torque-speed control |
-
2016
- 2016-04-29 CN CN201610279084.6A patent/CN105909469B/zh active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104074679A (zh) * | 2014-07-02 | 2014-10-01 | 国电联合动力技术有限公司 | 一种变速变桨距风电机组全风速限功率优化控制方法 |
CN104612897A (zh) * | 2015-03-10 | 2015-05-13 | 中船重工(重庆)海装风电设备有限公司 | 一种风力发电机组的控制方法及装置 |
CN105041567A (zh) * | 2015-07-29 | 2015-11-11 | 广东明阳风电产业集团有限公司 | 一种设有转速禁区的风电机组限功率控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105909469A (zh) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heier | Grid integration of wind energy: onshore and offshore conversion systems | |
CN107250532B (zh) | 最佳风场运行 | |
Zhang et al. | Pitch angle control for variable speed wind turbines | |
US4832569A (en) | Governed vane wind turbine | |
US8128362B2 (en) | Method of operating a wind turbine, a wind turbine and a cluster of wind turbines | |
CN102906418B (zh) | 风力涡轮机 | |
DK3047143T3 (en) | Management procedure for a windmill | |
US7945350B2 (en) | Wind turbine acoustic emission control system and method | |
EP2400153B1 (en) | Methods and systems for operating a wind turbine | |
DK2273105T3 (en) | Method and system for noise controlled operation of a wind turbine | |
TWI351470B (zh) | ||
US9970413B2 (en) | Wind turbine with a load controller | |
ES2382631B1 (es) | METHODS AND SYSTEMS OF AIRCRAFT CONTROL | |
EP2578874A1 (en) | Monitoring/control device and method and wind farm provided therewith | |
US9879653B2 (en) | Power management system | |
US9371819B2 (en) | Method and system to actively pitch to reduce extreme loads on wind turbine | |
EP2644888A2 (en) | Control system and method for avoiding overspeed of a wind turbine | |
EP1918581A2 (en) | Methods and apparatus for operating a wind turbine | |
CN106812658B (zh) | 一种风力发电机组的控制方法及装置 | |
CN203939626U (zh) | 用于在偏航误差过程中减小风力涡轮机上负载的控制系统 | |
CN105308312B (zh) | 风力发电厂控制器 | |
US8267651B2 (en) | Pitch of blades on a wind power plant | |
US20100133821A1 (en) | Method and system for extracting inertial energy from a wind turbine | |
JP5979887B2 (ja) | ピッチ角オフセット信号を決定するための、および、速度回避制御のための風力タービンロータのロータ周波数を制御するための方法およびシステム | |
CN103161666A (zh) | 控制风力涡轮机的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |