WO2022068052A1 - 电机、压缩机和制冷设备 - Google Patents

电机、压缩机和制冷设备 Download PDF

Info

Publication number
WO2022068052A1
WO2022068052A1 PCT/CN2020/134781 CN2020134781W WO2022068052A1 WO 2022068052 A1 WO2022068052 A1 WO 2022068052A1 CN 2020134781 W CN2020134781 W CN 2020134781W WO 2022068052 A1 WO2022068052 A1 WO 2022068052A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
motor
core
outer diameter
iron core
Prior art date
Application number
PCT/CN2020/134781
Other languages
English (en)
French (fr)
Inventor
毛临书
邱小华
江波
王玉龙
李为谦
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022188662.XU external-priority patent/CN212304904U/zh
Priority claimed from CN202011051293.8A external-priority patent/CN112217298A/zh
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Publication of WO2022068052A1 publication Critical patent/WO2022068052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles

Definitions

  • the present application relates to the technical field of compressors, and in particular, to a motor, a compressor and a refrigeration device.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application is to propose a motor.
  • a second aspect of the present application is to propose a compressor.
  • a third aspect of the present application is to provide a refrigeration device.
  • a motor including a stator iron core and a rotor iron core, wherein the stator iron core has an inner cavity, the stator iron core includes a plurality of stator slots, and the number of the stator slots is is Z, the outer diameter of the stator iron core is D1, the rotor iron core is set in the inner cavity of the stator iron core, and the outer diameter of the rotor iron core is D2, wherein the number of poles P of the motor satisfies 6 ⁇ P ⁇ 8, the stator slot The number Z satisfies 36 ⁇ Z ⁇ 48, the outer diameter D1 of the stator core and the outer diameter D2 of the rotor core satisfy
  • the motor provided by the present application includes a stator iron core and a rotor iron core, wherein the rotor iron core is set in the inner cavity of the stator iron core, and the stator iron core includes a plurality of stator slots.
  • the number Z of the stator slots satisfies 36 ⁇ Z ⁇ 48
  • the number of poles of the motor is 6 ⁇ P ⁇ 8, that is to say, for the motor with the above slot-pole matching, by limiting the value range of the ratio of the outer diameter of the rotor core to the outer diameter of the stator core, the motor
  • the size of the stator can meet the requirements of a specific number of stator slots and poles, so that by increasing the number of stator slots, the magnetic field distribution of the motor can be more uniform, thereby reducing the generation of harmonics and effectively reducing the impact of noise.
  • the coil ends after the stator windings are wound can be located at a relatively low position in the axial direction of the stator core. , that is, the coil is wound at the position of the coil end in the stator core with a large number of stator slots, and can be wound at the position of the coil end in the stator core with a relatively small number of stator slots. It is lower in the axial direction, which can reduce the losses at the ends of the stator winding coils, thereby improving the energy efficiency of the motor.
  • the noise of the compressor is also high.
  • the influence of noise can be effectively reduced by increasing the number of stator slots.
  • the number of stator slots is designed If too much, it will increase the difficulty of manufacturing. Therefore, in the present application, the size range of the stator iron core and the rotor iron core of the motor with the above-mentioned slot-pole matching is limited, that is, the outer diameter of the stator iron core and the outer diameter of the rotor iron core are controlled to be between Within a certain size range, it can improve the output capacity of the motor and improve the energy efficiency of the motor while improving the noise, so that the motor with this structure can meet the requirements of high-power compressors.
  • the outer diameter D1 of the stator iron core satisfies: 145mm ⁇ D1 ⁇ 250mm.
  • the size of the motor is further limited, and the value of the size of the stator core can ensure that the number of stator slots can be accommodated, that is, the size of the stator core can further ensure the number of stator slots. Limiting the number of stator slots can improve the noise in high-power compressor applications and improve the output capability of the motor.
  • the thickness of the stator iron core is T, and the outer diameter D1 of the stator iron core and the thickness T of the stator iron core satisfy
  • the ratio of the outer diameter of the stator core to the thickness of the stator core is limited. , which can further improve the output capacity and efficiency of the motor on the basis of improving the noise of the motor, thereby meeting the application of high-power compressors.
  • the thickness T of the stator core satisfies: 70mm ⁇ T ⁇ 160mm.
  • the thickness of the stator core is further limited, that is, the size range of the motor is further limited, that is, the value of the size of the stator core can further ensure the number of stator slots. It can improve the noise in high-power compressor applications and improve the output capacity of the motor.
  • the output capacity and efficiency of the motor can be improved on the basis of improving the noise of the motor, thereby meeting the use requirements of high-power compressors.
  • the stator core further includes stator teeth, which are arranged between two adjacent stator slots in the plurality of stator slots, the width of the stator teeth is d, and the outer diameter of the rotor core is equal to d.
  • the width of the stator teeth satisfies:
  • stator teeth are arranged between two adjacent stator slots in the plurality of stator slots, wherein the number of stator teeth is the same as the number of stator slots.
  • the relationship between the stator slots is limited, that is, when the number of stator slots is 36 ⁇ Z ⁇ 48, and the number of poles of the motor is 6 to 8 poles, the width of the stator teeth and the size of the rotor outer diameter are further limited, and then The range of the magnetic force generated by the motor can be limited. Specifically, if the magnetic force generated by the motor is too small, the power density of the motor is not enough, that is, the output capacity of the motor is not enough, the problem of motor tripping or burning of the motor is likely to occur, and materials are wasted.
  • the magnetic force generated by the motor is too large , that is, the magnetic force of the motor is too saturated. On the one hand, it cannot reflect the large magnetic force. On the other hand, it may also have a reaction, that is, it is prone to noise problems.
  • the magnetic force generated by the motor is determined by limiting the width of the stator teeth and the outer diameter of the rotor. On the basis of improving the noise of the motor, the output capacity and noise of the motor can be guaranteed to be at the best level.
  • the motor further includes stator windings arranged on the stator teeth, wherein the stator windings are arranged on the stator teeth in a winding or embedded manner.
  • the motor further includes stator windings, and the stator windings are arranged on the stator teeth, wherein the stator windings are arranged on the stator teeth in a winding or embedded manner, that is, the arrangement position of the stator windings is defined.
  • the stator windings are arranged on the stator teeth in an embedded manner, so that the stator windings can be arranged in the stator iron core more stably, thereby improving the stability of the motor operation.
  • the inner diameter of the rotor iron core is d2
  • the outer diameter of the rotor iron core and the inner diameter of the rotor iron core satisfy:
  • the value range of the ratio of the outer diameter to the inner diameter of the rotor core is limited, that is, the size of the motor power is limited.
  • a shaft hole is formed in the middle of the rotor iron core, and the motor shaft passes through the shaft hole to match the rotor iron core. If the shaft hole of a conventional motor is small, the motor shaft matched with it is small, and the output power of the motor is further increased. If the motor shaft hole is larger, the motor shaft matched with it will be larger, and the output power of the motor will be larger.
  • the stator core includes a body, and a plurality of stator slots are distributed at intervals along the circumferential direction of the body.
  • the stator core includes a body and a plurality of stator slots, wherein the stator slots are distributed at intervals along the circumferential direction of the body, and the number of stator slots defined in this application is 36 ⁇ Z ⁇ 48.
  • a compressor including the motor provided by any of the above technical solutions.
  • the compressor provided by the present application includes the motor described in any of the above technical solutions, and therefore has all the beneficial effects of the motor, which will not be repeated here.
  • the compressor further includes a casing, the casing is configured to have a cavity, and the motor is disposed in the cavity.
  • a refrigeration device including the compressor provided by any of the above technical solutions.
  • the refrigeration equipment provided by the present application includes the compressor described in any of the above technical solutions, and therefore has all the beneficial effects of the compressor, which will not be repeated here.
  • FIG. 1 shows a schematic structural diagram of a motor according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the relationship between the value of the ratio of the rotor core outer diameter D2 to the stator core outer diameter D1 and the motor efficiency according to an embodiment of the present application;
  • FIG. 3 shows a schematic diagram of the relationship between the value of the ratio of the rotor core outer diameter D2 to the stator core outer diameter D1 and the maximum power of the motor according to an embodiment of the present application;
  • FIG. 4 shows a schematic diagram of the relationship between the value of the ratio of the stator core outer diameter D1 to the stator core thickness T and the motor efficiency according to an embodiment of the present application;
  • FIG. 5 shows a schematic structural diagram of a motor according to another embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a compressor according to an embodiment of the present application.
  • stator cores 100 motors, 110 stator cores, 112 stator slots, 114 stator teeth, 120 stator windings, 130 rotor cores.
  • a motor 100, a compressor and a refrigeration apparatus will be described below with reference to FIGS. 1 to 6 .
  • a motor 100 including a stator iron core 110 and a rotor iron core 130 , wherein the stator iron core 110 has an inner cavity, and the stator iron core 110 It includes a plurality of stator slots 112, the number of stator slots 112 is Z, the outer diameter of the stator core 110 is D1, the rotor core 130 is set in the inner cavity of the stator core 110, the outer diameter of the rotor core 130 is D2, The number of poles P of the motor 100 satisfies 6 ⁇ P ⁇ 8, the number Z of the stator slots 112 satisfies 36 ⁇ Z ⁇ 48, and the outer diameter D1 of the stator core 110 and the outer diameter D2 of the rotor core 130 satisfy
  • the motor 100 provided by the present application includes a stator iron core 110 and a rotor iron core 130 , wherein the rotor iron core 130 is set in the inner cavity of the stator iron core 110 , and the stator iron core 110 includes a plurality of stator slots 112 .
  • the number Z of the slots 112 satisfies 36 ⁇ Z ⁇ 48, and the number of poles of the motor 100 is 6 ⁇ P ⁇ 8.
  • the value range of the outer diameter ratio is limited, so that the size of the motor 100 can meet the requirements of the specific number of stator slots 112 and the number of poles, so that by increasing the number of stator slots 112, the magnetic field distribution of the motor 100 can be more uniform, thereby reducing the The generation of harmonics can effectively reduce the impact of noise.
  • the coil ends wound by the stator winding 120 can be placed at a relatively high position in the axial direction of the stator core 110 .
  • the low position that is, the coils are wound in the stator core 110 with a large number of stator slots 112 at the position where the coil ends are located, than in the stator core 110 with a relatively small number of stator slots 112 where the coil ends are located.
  • the position of the stator core 110 is lower in the axial direction of the stator core 110 , so that the loss at the coil end of the stator winding 120 can be reduced, thereby improving the energy efficiency of the motor 100 .
  • stator slots 112 Excessive design of the number of the stator cores 110 and rotor cores 130 of the motor 100 with slots and poles in the present application limits the structure of the stator core 110 and the rotor core 130, that is, the outer diameter of the stator core 110 and the rotor are controlled.
  • the outer diameter of the iron core 130 is within a certain size range, which can improve the output capacity of the motor 100 and the energy efficiency of the motor 100 while improving noise, so that the motor 100 with this structure can meet the requirements of high-power compressors.
  • the size of the outer diameter of the stator iron core 110 is specifically limited. Further, the outer diameter D1 of the stator iron core 110 satisfies: 145mm ⁇ D1 ⁇ 250mm.
  • the size of the motor 100 is further limited, and the value of the size of the stator core 110 can ensure that the number of the stator slots 112 can be accommodated, that is, the size of the stator core 110 can further ensure the value of the stator slots The number of 112, and further by limiting the number of stator slots 112, it is possible to improve the noise in the application of high-power compressors and enhance the output capability of the motor 100.
  • stator iron core 110 is too small, the requirement for the number of stator slots 112 cannot be satisfied, and if the stator iron core 110 is too large, the motor 100 will occupy a large space and waste materials.
  • the thickness of the stator iron core 110 is T, and the outer diameter D1 of the stator iron core 110 and the thickness T of the stator iron core satisfy
  • the value of the ratio of the outer diameter of the stator iron core 110 to the thickness of the stator iron core 110 is defined, that is, the number of the stator slots 112 is 36 ⁇ Z ⁇ 48, and the number of poles of the motor 100
  • the ratio of the outer diameter of the stator iron core 110 to the thickness of the stator iron core 110 it is possible to improve the noise of the motor 100 and further improve the output capability and The efficiency of the motor 100 further satisfies the application of high-power compressors.
  • the efficiency of the motor 100 first increases and then decreases, and when the latter is in the magnetic saturation state, the efficiency of the motor 100 decreases, that is, when the Within the range of , the efficiency of the motor is relatively high.
  • the efficiency and maximum power of the motor 100 can be guaranteed to be in the best state.
  • the overall copper consumption of the motor 100 is reduced, and the increase in the iron consumption is reduced, thereby improving the energy efficiency of the motor 100 .
  • the efficiency of the motor is further improved, that is to say, when the ratio of the outer diameter of the stator iron core 110 to the thickness of the stator iron core 110 can further satisfy between 1.3 and 2.5, the efficiency of the motor 100 can be above 95%, further ensuring that The efficiency and maximum power of the motor 100 are at optimum levels.
  • the efficiency of the motor 100 can be about 95%, and the efficiency of the motor 100 is also higher than It can also keep the efficiency and maximum power of the motor 100 in a better state.
  • stator core 110 is formed by stacking a certain number of stator punches, and each stator punch has a certain thickness, that is, a certain number of stator punches are stacked to form the stator core 110 of a certain thickness, and the stator
  • the iron core 110 is formed by stacking and punching a certain number of stator punching sheets with a prescribed shape.
  • the stator punching sheets can be silicon steel sheets, which can reduce eddy current loss and hysteresis loss, thereby reducing
  • the iron core generates heat
  • the multiple silicon steel sheets are insulated from each other, which can reduce the overcurrent area and further reduce the heat generation.
  • the thickness T of the stator core satisfies: 70mm ⁇ T ⁇ 160mm.
  • the thickness of the stator iron core 110 is further limited, that is, the size range of the motor 100 is further limited, that is, the value of the size of the stator iron core 110 can further ensure the number of stator slots 112, and then pass Limiting the number of stator slots 112 can improve the noise in high-power compressor applications and improve the output capability of the motor 100 .
  • the ratio of the rotor outer diameter to the stator outer diameter of the motor 100 in this size range it is possible to improve the output capacity of the motor 100 and the efficiency of the motor 100 on the basis of improving the noise of the motor 100, thereby satisfying the use of high-power compressors Require.
  • the stator core 110 further includes stator teeth 114 , which are disposed between two adjacent stator slots 112 in the plurality of stator slots 112 .
  • the stator teeth 114 The width of d is d, and the outer diameter of the rotor core 130 and the width of the stator teeth 114 satisfy:
  • stator teeth 114 are disposed between two adjacent stator slots 112 in the plurality of stator slots 112 , wherein the number of stator teeth 114 is the same as the number of stator slots 112 .
  • the relationship between the outer diameter, the number of poles of the motor 100 and the stator slots 112 is limited, that is, when the number of stator slots 112 is 36 ⁇ Z ⁇ 48, and the number of poles of the motor 100 is 6 to 8 poles, the stator teeth are matched with the slots and poles.
  • the size of the width of the 114 and the outer diameter of the rotor are further limited, which in turn can limit the range of the magnetic force generated by the motor.
  • the magnetic force generated by the motor 100 is too small, the power density of the motor 100 is not enough, that is, the output capacity of the motor 100 is not enough, the problem of the motor 100 tripping or burning of the motor 100 is likely to occur, and materials are wasted.
  • the magnetic force generated by the motor 100 is too large, that is, the magnetic force of the motor 100 is too saturated.
  • the magnetic force generated by the motor 100 is determined by limiting the width of the stator teeth and the outer diameter of the rotor. For the limitation, on the basis of improving the noise of the motor 100, the output capability and noise of the motor 100 can be guaranteed to be at an optimum level.
  • the conventional motor 100 can output 30KW, and the motor 100 can output 40KW through the above-mentioned limitation of the size of the motor 100 .
  • the motor 100 further includes stator windings 120 , which are arranged on the stator teeth 114 , wherein the stator windings 120 are wound or embedded in the stator teeth. 114 on.
  • the motor 100 further includes a stator winding 120 .
  • the stator winding 120 is arranged on the stator teeth 114 , wherein the stator winding 120 is wound or embedded on the stator teeth 114 , that is, the stator winding 120 is defined.
  • the stator windings 120 are set on the stator teeth 114 by winding or embedding, so that the stator windings 120 can be arranged in the stator core 110 more stably, thereby improving the stability of the motor 100.
  • stator winding may include multiple coils, which are specifically set according to actual needs.
  • the inner diameter of the rotor iron core 130 is d2
  • the outer diameter of the rotor iron core 130 and the inner diameter of the rotor iron core 130 satisfy:
  • the value range of the ratio of the outer diameter to the inner diameter of the rotor core 130 is defined, that is, the power of the motor 100 is defined.
  • a shaft hole is formed in the middle of the rotor iron core 130, and the shaft of the motor 100 is matched with the rotor iron core 130 through the shaft hole. If the shaft hole of the conventional motor 100 is small, the shaft of the motor 100 matched with it is small. In addition, the output power of the motor 100 is relatively small. If the shaft hole of the motor 100 is large, the shaft of the motor 100 matched with the motor 100 is relatively large, and thus the output power of the motor 100 is relatively large.
  • the value range of the ratio of the outer diameter to the inner diameter of the rotor core 130 that is, the output power of the motor 100 is limited, so that the motor 100 can meet high-power applications.
  • the rotor includes a rotor iron core 130 and a permanent magnet, and the rotor iron core 130 is punched from a plurality of rotor punching sheets according to a predetermined shape, and the rotor punching sheets may be silicon steel sheets.
  • the rotor punching sheet can be a silicon steel sheet.
  • the silicon steel sheet can reduce eddy current loss and hysteresis loss, thereby reducing the heat generation of the iron core, and multiple silicon steel sheets are insulated from each other, which can reduce the overcurrent area and further reduce heat generation.
  • Each rotor punching piece is provided with a plurality of magnet slots along the circumferential direction, and the plurality of magnet slots are evenly distributed along the circumferential direction of the rotor punching piece.
  • a slot is formed, and a permanent magnet is inserted into the slot.
  • the magnetism of the permanent magnets inserted in two adjacent slots is opposite, that is, one slot is inserted into the N pole, and one slot is inserted into the S pole, thereby forming The magnetic poles of the rotor core 130 whose polarities are alternately changed in the circumferential direction.
  • the number of motor poles defined in this application is 6 to 8 poles, as shown in FIG. 1 , that is, the motor structure with the number of poles is 8 poles.
  • the magnetism is opposite, therefore, for the 8-pole motor structure, there are 4 N poles and 4 S poles, wherein the N poles and the S poles are alternately inserted into the slots, thereby forming magnetic poles with alternating polarities in the circumferential direction of the rotor core 130 .
  • the stator core 110 includes a body, and a plurality of stator slots 112 are distributed at intervals along the circumferential direction of the body.
  • the stator core 110 includes a body and a plurality of stator slots 112, wherein the stator slots 112 are distributed at intervals along the circumferential direction of the body, and the number of stator slots defined in this application is 36 ⁇ Z ⁇ 48, through Providing a plurality of stator slots spaced apart in the circumferential direction of the body can make the magnetic field of the motor 100 more uniform.
  • the plurality of stator slots 112 may be distributed at equal intervals, but the distribution of the plurality of stator slots 112 at equal intervals is an ideal state. It can be understood that the distance between adjacent stator slots 112 may exist A certain error range has no effect on the uniformity of the magnetic field of the motor 100 .
  • a compressor including the motor 100 provided in any of the above embodiments.
  • the compressor provided by the present application includes the motor 100 described in any of the above embodiments, and therefore has all the beneficial effects of the motor 100, which will not be repeated here.
  • the compressor further includes a casing and a lead wire, the casing is constructed to have a cavity structure, the motor 100 is arranged in the cavity, one end of the lead wire is connected to the stator winding, and the other end passes through the junction box Connect to an external power source to power the motor.
  • the junction box includes a plurality of terminals and a plurality of terminals, wherein the two terminals correspond to one terminal. Specifically, the two terminals are respectively welded to one end of the terminal, and the other end of the terminal is connected through the wiring unit.
  • the number of lead wires of the motor can be at least two, so that the current can be shunted through multiple lead wires, which can reduce the wire length of the lead wire, reduce the hardness and stress of the lead wire, and improve the stability of the motor.
  • Multiple lead wires Each lead wire is connected to the terminal block separately, thus forming a complete circuit.
  • the noise of the compressor is also high.
  • the magnetic field distribution of the motor 100 is more uniform, and the generation of harmonics is also relatively low.
  • the manufacturing difficulty will be increased. Therefore, the present application designs the stator and rotor structures of the motor 100 by matching the above-mentioned slots and poles, that is, Controlling the outer diameter of the stator iron core 110 and the outer diameter of the rotor iron core 130 within a certain size range can improve the output capability of the motor 100 and the energy efficiency of the motor 100 while improving the noise, so that the motor 100 with this structure can meet the requirements of large power compressor requirements.
  • the coil ends wound by the stator winding 120 can be at a relatively low position in the axial direction of the stator core 110 .
  • the position where the coil is wound in the stator core 110 with a larger number of stator slots 112 at the position where the coil end is located can be compared with the position where the coil end is located in the stator core 110 with a relatively small number of stator slots 112 wound.
  • the position is lower in the axial direction of the stator iron core 110 , so that the loss at the coil end of the stator winding 120 can be reduced, thereby improving the energy efficiency of the motor 100 .
  • a refrigeration apparatus including the compressor provided in any of the above embodiments.
  • the refrigeration equipment provided by the present application includes the compressor described in any of the above embodiments, and therefore has all the beneficial effects of the compressor, which will not be repeated here.
  • the term “plurality” refers to two or more, unless expressly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be It is directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)

Abstract

一种电机(100)、压缩机和制冷设备,电机(100)包括:定子铁芯(110),定子铁芯(110)具有内腔,定子铁芯(110)包括多个定子槽(112),定子槽(112)的数量为Z,定子铁芯(110)的外径为D1;转子铁芯(130),设于内腔中,转子铁芯(130)的外径为D2;其中,电机(100)的极数P满足6≤P≤8,定子槽的数量Z满足36≤Z≤48,定子铁芯(110)的外径D1与转子铁芯(130)的外径D2满足(aa),通过将上述槽极配合的电机(100)的定子铁芯(110)和转子铁芯(130)的尺寸范围进行限定,能够在改善噪音的同时,提高电机(100)的输出能力,提升电机的能效,使得具有该结构的电机(100)能够满足大功率压缩机的要求。

Description

电机、压缩机和制冷设备
本申请要求于2020年09月29日提交到中国国家知识产权局、申请号为“202011051293.8”、发明名称为“电机、压缩机和制冷设备”、申请号为“202022188662.X”、发明名称为“电机、压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种电机、一种压缩机和一种制冷设备。
背景技术
目前,大功率压缩机的排量增加,若电机输出能力较差,会出现高负荷工况不能运行,甚至出现跳停或烧电机的问题,尤其对于分布卷电机来说,由于其电机的定子绕组端部较高,在电机运行过程中损耗较大,导致电机的能效无法满足大功率压缩机的要求。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于,提出一种电机。
本申请的第二个方面在于,提出一种压缩机。
本申请的第三个方面在于,提出一种制冷设备。
有鉴于此,根据本申请的第一个方面,提供了一种电机,包括定子铁芯和转子铁芯,其中,定子铁芯具有内腔,定子铁芯包括多个定子槽,定子槽的数量为Z,定子铁芯的外径为D1,转子铁芯设于定子铁芯的内腔中,转子铁芯的外径为D2,其中,电机的极数P满足6≤P≤8,定子槽的数量Z满足36≤Z≤48,定子铁芯的外径D1与转子铁芯的外径D2满足
Figure PCTCN2020134781-appb-000001
Figure PCTCN2020134781-appb-000002
本申请提供的电机包括定子铁芯和转子铁芯,其中,转子铁芯设于定 子铁芯的内腔中,定子铁芯包括多个定子槽,具体而言,定子槽的数量Z满足36≤Z≤48,电机的极数为6≤P≤8,也就是说,对于上述槽极配合的电机,通过对转子铁芯外径与定子铁芯外径比值的取值范围的限定,使得电机的大小能够满足特定的定子槽数量和极数的要求,从而能够通过增加定子槽的数量,使得电机的磁场分布更加均匀,进而降低谐波的产生,能够有效降低噪音的影响。同时,对于相同长度的线圈来说,由于将定子槽的数量限定在较多的范围,能够使得定子绕组绕制后的线圈端部在定子铁芯的轴向方向上能够处于相对较低的位置,即线圈绕制在定子槽数量较多的定子铁芯中线圈端部所在的位置,能够比绕制在定子槽数量相对较少的定子铁芯中线圈端部所在的位置,在定子铁芯的轴向方向上较低,从而能够降低定子绕组线圈端部的损耗,进而提升电机的能效。
具体而言,对于大功率压缩机的应用场合,由于电机的转速较高,因此压缩机的噪音也较高,通过增加定子槽的数量可以有效降低噪音的影响,然而,若定子槽的数量设计的过多,则会增加制造难度,因此,本申请通过将上述槽极配合的电机的定子铁芯和转子铁芯的尺寸范围进行限定,即控制定子铁芯外径与转子铁芯外径在一定尺寸范围内,能够在改善噪音的同时,提高电机的输出能力,提升电机的能效,使得具有该结构的电机能够满足大功率压缩机的要求。
另外,根据本申请提供的上述技术方案中的电机,还可以具有如下附加技术特征:
在一种有可能的设计中,进一步地,定子铁芯的外径D1满足:145mm≤D1≤250mm。
在该设计中,进一步对电机的尺寸进行限定,且该定子铁芯的尺寸取值能够保证容纳上述定子槽的数量,即该定子铁芯的尺寸取值能够进一步保证定子槽的数量,进而通过对定子槽的数量的限定,能够改善大功率压缩机应用场合下的噪音,提升电机的输出能力。
在一种有可能的设计中,进一步地,定子铁芯的厚度为T,定子铁芯的外径D1与定子铁芯的厚度T满足
Figure PCTCN2020134781-appb-000003
在该设计中,在定子槽的数量为36≤Z≤48,电机的极数为6极至8 极的槽极配合下,通过对定子铁芯的外径与定子铁芯厚度的比值的限定,能够在改善电机噪音的基础上,进一步提升电机的输出能力和电机的效率,进而满足大功率压缩机的应用场合。
在一种有可能的设计中,进一步地,定子铁芯的厚度T满足:70mm≤T≤160mm。
在该设计中,对定子铁芯的厚度做了进一步限定,也即进一步限定了电机的尺寸范围,即该定子铁芯的尺寸取值能够进一步保证定子槽的数量,进而通过对定子槽的数量的限定,能够改善大功率压缩机应用场合下的噪音,提升电机的输出能力。通过对该尺寸范围电机的转子外径与定子外径比值的进一步限定,能够在改善电机噪音的基础上,提升电机的输出能力和电机的效率,进而满足大功率压缩机的使用要求。
在一种有可能的设计中,进一步地,定子铁芯还包括定子齿,设置在多个定子槽中相邻两个定子槽之间,定子齿的宽度为d,转子铁芯的外径与定子齿的宽度之间满足:
Figure PCTCN2020134781-appb-000004
在该设计中,多个定子槽中相邻两个定子槽之间设置有定子齿,其中,定子齿的数量与定子槽的数量相同,通过对定子齿宽度、转子外径、电机极数和定子槽的关系进行限定,即在定子槽的数量36≤Z≤48,电机的极数为6极至8极的槽极配合下,通过对定子齿宽度与转子外径的尺寸进一步限定,进而能够限定电机产生的磁力的范围。具体而言,若电机产生的磁力过小,则电机的功率密度不够,也即电机的输出能力不够,则容易出现电机跳停或烧电机的问题,且浪费材料,若电机产生的磁力过大,即电机的磁力过饱和,一方面体现不出来较大的磁力,另一方面还可能出现反作用,即容易出现噪音问题。对于定子槽112的数量36≤Z≤48,电机100的极数为6极至8极的槽极配合的电机,通过对定子齿宽度与转子外径尺寸的限定,对电机产生的磁力进行了限定,能够在改善电机噪音的基础上,使得电机的输出能力和噪音保证在最佳水平。
在一种有可能的设计中,进一步地,电机还包括定子绕组,设于定子齿上,其中,定子绕组以绕制或嵌入的方式设置在定子齿上。
在该设计中,电机还包括定子绕组,定子绕组设置在定子齿上,其中, 定子绕组是以绕制或嵌入的方式设在定子齿上,即限定了定子绕组的设置位置,通过绕制或嵌入的方式将定子绕组设在定子齿上,能够使得定子绕组更加稳定地设置在定子铁芯内,进而提升电机运行的稳定性。
在一种有可能的设计中,进一步地,转子铁芯的内径为d2,转子铁芯的外径与转子铁芯的内径满足:
Figure PCTCN2020134781-appb-000005
在该设计中,通过转子铁芯的外径与内径的比值的取值范围进行限定,也就是限定了电机功率的大小。具体而言,转子铁芯的中部开设有轴孔,电机轴穿过轴孔与转子铁芯相配合,常规电机若轴孔较小,则与之配合的电机轴较小,进而电机的输出功率较小,若电机轴孔较大,则与之配合的电机轴较大,进而电机的输出功率较大。通过对转子铁芯的外径与内径的比值的取值范围的限定,即对电机的输出功率进行了限定,从而使得电机能够满足大功率的应用场合。
在一种有可能的设计中,进一步地,定子铁芯包括本体,多个定子槽沿本体的周向方向上间隔分布。
在该设计中,定子铁芯包括本体和多个定子槽,其中,定子槽沿本体的周向方向上间隔分布,本申请限定的定子槽的数量为36≤Z≤48,通过设置多个定子槽在本体的周向上间隔分别,能够使得电机的磁场更加均匀。
根据本申请的第二个方面,提供了一种压缩机,包括上述任一技术方案所提供的电机。
本申请提供的压缩机,包括上述任一技术方案所述的电机,因此具有该电机的全部有益效果,在此不再赘述。
进一步地,压缩机还包括壳体,壳体被构造被具有腔体的结构,电机设置在腔体内。
根据本申请的第三个方面,提供了一种制冷设备,包括上述任一技术方案所提供的压缩机。
本申请提供的制冷设备,包括上述任一技术方案所述的压缩机,因此具有该压缩机的全部有益效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的电机的结构示意图;
图2示出了根据本申请的一个实施例的转子铁芯外径D2与定子铁芯外径D1的比值的取值与电机效率的关系的示意图;
图3示出了根据本申请的一个实施例的转子铁芯外径D2与定子铁芯外径D1的比值的取值与电机最大功率的关系的示意图;
图4示出了根据本申请的一个实施例的定子铁芯外径D1与定子铁芯厚度T的比值的取值与电机效率的关系的示意图;
图5示出了根据本申请的另一个实施例的电机的结构示意图;
图6示出了根据本申请的一个实施例的压缩机的结构示意图。
其中,图1至图6中附图标记与部件名称之间的对应关系为:
100电机,110定子铁芯,112定子槽,114定子齿,120定子绕组,130转子铁芯。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图6描述根据本申请一些实施例的电机100、压缩机和制冷设备。
实施例一
根据本申请的第一个方面的实施例,如图1所示,提供了一种电机100,包括定子铁芯110和转子铁芯130,其中,定子铁芯110具有内腔,定子 铁芯110包括多个定子槽112,定子槽112的数量为Z,定子铁芯110的外径为D1,转子铁芯130设于定子铁芯110的内腔中,转子铁芯130的外径为D2,其中,电机100的极数P满足6≤P≤8,定子槽112的数量Z满足36≤Z≤48,定子铁芯110的外径D1与转子铁芯130的外径D2满足
Figure PCTCN2020134781-appb-000006
Figure PCTCN2020134781-appb-000007
本申请提供的电机100包括定子铁芯110和转子铁芯130,其中,转子铁芯130设于定子铁芯110的内腔中,定子铁芯110包括多个定子槽112,具体而言,定子槽112的数量Z满足36≤Z≤48,电机100的极数为6≤P≤8,也就是说,对于上述槽极配合的电机100,通过对转子铁芯130外径与定子铁芯110外径比值的取值范围的限定,使得电机100的大小能够满足特定的定子槽112数量和极数的要求,从而能够通过增加定子槽112的数量,使得电机100的磁场分布更加均匀,进而降低谐波的产生,能够有效降低噪音的影响。同时,对于相同长度的线圈来说,由于将定子槽112的数量限定在较多的范围,能够使得定子绕组120绕制后的线圈端部在定子铁芯110的轴向方向上能够处于相对较低的位置,即线圈绕制在定子槽112数量较多的定子铁芯110中线圈端部所在的位置,能够比绕制在定子槽112数量相对较少的定子铁芯110中线圈端部所在的位置,在定子铁芯110的轴向方向上较低,从而能够降低定子绕组120线圈端部的损耗,进而提升电机100的能效。
具体而言,对于大功率压缩机的应用场合,由于电机100的转速较高,因此压缩机的噪音也较高,通过增加定子槽112的数量可以有效降低噪音的影响,然而,若定子槽112的数量设计的过多,则会增加制造难度,因此,本申请通过将上述槽极配合的电机100的定子铁芯110和转子铁芯130结构进行限定,即控制定子铁芯110外径与转子铁芯130外径在一定尺寸范围内,能够在改善噪音的同时,提高电机100的输出能力,提升电机100的能效,使得具有该结构的电机100能够满足大功率压缩机的要求。
其中,由图2和图3可以明显看出,随着D2/D1比值的增加,电机100的效率和最大功率先增大后减小,且到后面处于磁饱和状态时,电机100的输出功率减小,即在0.58的附近能够保证电机100的效率和最大功率在 最佳状态,此时,电机100整体的铜耗减小,铁耗的增加幅度减小,进而实现电机100能效的提升。
实施例二
在上述实施例一的基础上,对定子铁芯110的外径的尺寸做具体限定,进一步地,定子铁芯110的外径D1满足:145mm≤D1≤250mm。
在该实施例中,进一步对电机100的尺寸进行限定,且该定子铁芯110的尺寸取值能够保证容纳上述定子槽112的数量,即该定子铁芯110的尺寸取值能够进一步保证定子槽112的数量,进而通过对定子槽112的数量的限定,能够改善大功率压缩机应用场合下的噪音,提升电机100的输出能力。
其中,需要说明的是,若定子铁芯110过小,则无法满足定子槽112数量的要求,若定子铁芯110过大,则会使电机100占用空间较大,且浪费材料。
实施例三
在上述实施例的基础上,如图4和图5所示,进一步地,定子铁芯110的厚度为T,定子铁芯110的外径D1与定子铁芯的厚度T满足
Figure PCTCN2020134781-appb-000008
Figure PCTCN2020134781-appb-000009
在该实施例中,通过对定子铁芯110外径与定子铁芯110厚度的比值的取值进行限定,也就是说,在定子槽112的数量为36≤Z≤48,电机100的极数为6极至8极的槽极配合下,通过对定子铁芯110的外径与定子铁芯110厚度的比值的限定,能够在改善电机100噪音的基础上,进一步提升电机100的输出能力和电机100的效率,进而满足大功率压缩机的应用场合。
其中,随着
Figure PCTCN2020134781-appb-000010
比值的增加,电机100的效率的先增大后减小,且到后面处于磁饱和状态时,电机100的效率减小,即在
Figure PCTCN2020134781-appb-000011
的范围内,电机的效率较高,通过进一步限定定子铁芯110外径D1与定子铁芯110的厚度T之间比值的取值范围,能够保证电机100的效率和最大功率在最佳状态,进而使得电机100整体的铜耗减小,铁耗的增加幅度减小,进而实现电机100能效的提升。
在一个具体的实施例中,如图4所示,进一步地,定子铁芯110的外径与定子铁芯110的厚度之间,
Figure PCTCN2020134781-appb-000012
电机的效率进一步提高,也就是说,当定子铁芯110的外径与定子铁芯110的厚度的比值能够进一步满足1.3至2.5之间时,电机100的效率均可在95%以上,进一步保证电机100的效率和最大功率处于最佳水平。
当然,能够理解的是,定子铁芯110的外径与定子铁芯110的厚度的比值处于1.1至1.3,或2.5至2.71时,电机100的效率能够处于95%左右,电机100的效率也较高,进而也能够使电机100的效率和最大功率在较佳的状态。
其中,需要说明的是,定子铁芯110由一定数量的定子冲片堆叠而成,每个定子冲片具有一定厚度,也即一定数量的定子冲片堆叠成一定厚度的定子铁芯110,定子铁芯110是通过将一定片数的具有规定形状的定子冲片堆叠并冲压而成的,具体而言,定子冲片可以是硅钢片,硅钢片能够减小涡流损耗和磁滞损耗,进而降低铁芯发热,且多个硅钢片彼此绝缘,能够减小过流面积,进一步降低发热。
进一步地,定子铁芯的厚度T满足:70mm≤T≤160mm。
在该实施例中,对定子铁芯110的厚度做了进一步限定,也即进一步限定了电机100的尺寸范围,即该定子铁芯110的尺寸取值能够进一步保证定子槽112的数量,进而通过对定子槽112的数量的限定,能够改善大功率压缩机应用场合下的噪音,提升电机100的输出能力。通过对该尺寸范围电机100的转子外径与定子外径比值的进一步限定,能够在改善电机100噪音的基础上,提升电机100的输出能力和电机100的效率,进而满足大功率压缩机的使用要求。
实施例四
在上述任一实施例的基础上,如图1所示,进一步地,定子铁芯110还包括定子齿114,设置在多个定子槽112中相邻两个定子槽112之间,定子齿114的宽度为d,转子铁芯130的外径与定子齿114的宽度之间满足:
Figure PCTCN2020134781-appb-000013
在该实施例中,多个定子槽112中相邻两个定子槽112之间设置有定子齿114,其中,定子齿114的数量与定子槽112的数量相同,通过对定子齿114宽度、转子外径、电机100极数和定子槽112的关系进行限定,即在定子槽112的数量36≤Z≤48,电机100的极数为6极至8极的槽极配合下,通过对定子齿114宽度与转子外径的尺寸进一步限定,进而能够限定电机产生的磁力的范围。具体而言,若电机100产生的磁力过小,则电机100的功率密度不够,也即电机100的输出能力不够,则容易出现电机100跳停或烧电机100的问题,且浪费材料,若电机100产生的磁力过大,即电机100的磁力过饱和,一方面体现不出来较大的磁力,另一方面还可能出现反作用,即容易出现噪音问题。对于定子槽112的数量36≤Z≤48,电机100的极数为6极至8极的槽极配合的电机,通过对定子齿宽度与转子外径尺寸的限定,对电机100产生的磁力进行了限定,能够在改善电机100噪音的基础上,使得电机100的输出能力和噪音保证在最佳水平。
例如,常规电机100能输出30KW,通过上述电机100尺寸的限定,使得电机100能够输出40KW。
实施例五
在上述任一实施例的基础上,如图1所示,进一步地,电机100还包括定子绕组120,设于定子齿114上,其中,定子绕组120以绕制或嵌入的方式设置在定子齿114上。
在该实施例中,电机100还包括定子绕组120,定子绕组120设置在定子齿114上,其中,定子绕组120是以绕制或嵌入的方式设在定子齿114上,即限定了定子绕组120的设置位置,通过绕制或嵌入的方式将定子绕组120设在定子齿114上,能够使得定子绕组120更加稳定地设置在定子铁芯110内,进而提升电机100运行的稳定性。
其中,需要说明的是,定子绕组可以包括多个线圈,具体根据实际需要进行设置。
实施例六
在上述任一实施例的基础上,如图1所示,进一步地,转子铁芯130的 内径为d2,转子铁芯130的外径与转子铁芯130的内径满足:
Figure PCTCN2020134781-appb-000014
Figure PCTCN2020134781-appb-000015
在该实施例中,通过转子铁芯130的外径与内径的比值的取值范围进行限定,也就是限定了电机100功率的大小。具体而言,转子铁芯130的中部开设有轴孔,电机100轴穿过轴孔与转子铁芯130相配合,常规电机100若轴孔较小,则与之配合的电机100轴较小,进而电机100的输出功率较小,若电机100轴孔较大,则与之配合的电机100轴较大,进而电机100的输出功率较大。通过对转子铁芯130的外径与内径的比值的取值范围的限定,即对电机100的输出功率进行了限定,从而使得电机100能够满足大功率的应用场合。
其中,需要说明的是,转子包括转子铁芯130和永磁体,转子铁芯130由多个转子冲片按照规定的形状冲压而成,转子冲片可以为硅钢片。具体而言,转子冲片可以是硅钢片,硅钢片能够减小涡流损耗和磁滞损耗,进而降低铁芯发热,且多个硅钢片彼此绝缘,能够减小过流面积,进一步降低发热。
每一片转子冲片上沿周向方向上设有多个磁体槽,多个磁体槽沿转子冲片的周向上均匀分布,多个转子铁芯130的磁体槽沿转子铁芯130的轴向贯通以形成插槽,永磁体插入插槽中,具体地,相邻两个插槽中插入的永磁体的磁性相反,即一个插槽插入的是N极,一个插槽插入的是S极,从而形成转子铁芯130周向上极性交替变化的磁极。
其中,本申请限定的电机极数为6极至8极,如图1所示,即是极数为8极的电机结构,具体而言,由于相邻两个插槽中插入的永磁体的磁性相反,因此,对于8极的电机结构,具有4个N极和4个S极,其中,N极和S极交替插入插槽中,从而形成转子铁芯130周向上极性交替变化的磁极。
在一个具体的实施例,进一步地,定子铁芯110包括本体,多个定子槽112沿本体的周向方向上间隔分布。
在该实施例中,定子铁芯110包括本体和多个定子槽112,其中,定子槽112沿本体的周向方向上间隔分布,本申请限定的定子槽的数量为 36≤Z≤48,通过设置多个定子槽在本体的周向上间隔分别,能够使得电机100的磁场更加均匀。其中,需要说明的是,多个定子槽112之间可以是等间距分布,然而多个定子槽112等间距分布属于较理想状态,能够理解的是,相邻定子槽112之间的间距可以存在一定的误差范围,其对电机100的磁场均匀性没有影响。
实施例七
根据本申请的第二个方面,提供了一种压缩机,包括上述任一实施例所提供的电机100。
本申请提供的压缩机,包括上述任一实施例所述的电机100,因此具有该电机100的全部有益效果,在此不再赘述。
如图6所示,进一步地,压缩机还包括壳体和引出线,壳体被构造被具有腔体的结构,电机100设置在腔体内,引出线的一端连接定子绕组,另一端通过接线盒连接至外部电源,进而为电机供电。其中,接线盒包括多个接线柱和多个接线端子,其中,两个接线端子对应一个接线柱,具体地,两个接线端子分别焊接至接线柱的一端,接线柱的另一端通过接线单元连接至外部单元,电机的引出线可以为至少两根,从而可以通过多根引出线进行分流,能够降低引出线的线经,并减小引出线的硬度和应力,提高电机的稳定性,多根引出线中的每根引出线分别连接至接线端子,从而形成完整了回路。
对于大功率压缩机的应用场合,由于电机100的转速较高,因此压缩机的噪音也较高,通过增加定子槽112的数量,使得电机100的磁场分布更加均匀,进而谐波的产生也较少,能够有效降低噪音的影响,然而,若定子槽112的数量设计的过多,则会增加制造难度,因此,本申请通过将上述槽极配合的电机100的定子和转子结构进行设计,即控制定子铁芯110外径与转子铁芯130外径在一定尺寸范围内,能够在改善噪音的同时,提高电机100的输出能力,提升电机100的能效,使得具有该结构的电机100能够满足大功率压缩机的要求。同时,对于相同长度的线圈来说,由于将定子槽112的数量限定在较多的范围,使得定子绕组120绕制后的线圈端部在定子铁芯110的轴向方向上能够处于相对较低的位置,即线圈绕制在 定子槽112数量较多的定子铁芯110中线圈端部所在的位置,能够比绕制在定子槽112数量相对较少的定子铁芯110中线圈端部所在的位置,在定子铁芯110的轴向方向上较低,从而能够降低定子绕组120线圈端部的损耗,进而提升电机100的能效。
实施例八
根据本申请的第三个方面,提供了一种制冷设备,包括上述任一实施例所提供的压缩机。
本申请提供的制冷设备,包括上述任一实施例所述的压缩机,因此具有该压缩机的全部有益效果,在此不再赘述。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电机,其中,所述电机包括:
    定子铁芯,所述定子铁芯具有内腔,所述定子铁芯包括多个定子槽,所述定子槽的数量为Z,所述定子铁芯的外径为D1;
    转子铁芯,设于所述内腔中,所述转子铁芯的外径为D2;
    其中,所述电机的极数P满足6≤P≤8,所述定子槽的数量Z满足36≤Z≤48,所述定子铁芯的外径D1与所述转子铁芯的外径D2满足
    Figure PCTCN2020134781-appb-100001
    Figure PCTCN2020134781-appb-100002
  2. 根据权利要求1所述的电机,其中,
    所述定子铁芯的外径D1满足:145mm≤D1≤250mm。
  3. 根据权利要求1所述的电机,其中,
    所述定子铁芯的厚度为T,
    其中,所述定子铁芯的外径D1与所述定子铁芯的厚度T满足
    Figure PCTCN2020134781-appb-100003
    Figure PCTCN2020134781-appb-100004
  4. 根据权利要求3所述的电机,其中,
    所述定子铁芯的厚度T满足:70mm≤T≤160mm。
  5. 根据权利要求1至4中任一项所述的电机,其中,所述定子铁芯还包括:
    定子齿,设置在所述多个定子槽中相邻两个定子槽之间,所述定子齿的宽度为d,所述转子铁芯的外径与所述定子齿的宽度之间满足:
    Figure PCTCN2020134781-appb-100005
    Figure PCTCN2020134781-appb-100006
  6. 根据权利要求5所述的电机,其中,所述电机还包括:
    定子绕组,设于所述定子齿上,
    其中,所述定子绕组以绕制或嵌入的方式设置在所述定子齿上。
  7. 根据权利要求1至4中任一项所述的电机,其中,
    所述转子铁芯的内径为d2,所述转子铁芯的外径与所述转子铁芯的内 径满足:
    Figure PCTCN2020134781-appb-100007
  8. 根据权利要求1至4中任一项所述的电机,其中,所述定子铁芯包括:
    本体,所述多个定子槽沿所述本体的周向方向上间隔分布。
  9. 一种压缩机,其中,包括:
    壳体,所述壳体具有腔体;
    如权利要求1至8中任一项所述的电机,所述电机设置于所述腔体内。
  10. 一种制冷设备,其中,包括如权利要求9所述的压缩机。
PCT/CN2020/134781 2020-09-29 2020-12-09 电机、压缩机和制冷设备 WO2022068052A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022188662.XU CN212304904U (zh) 2020-09-29 2020-09-29 电机、压缩机和制冷设备
CN202011051293.8 2020-09-29
CN202022188662.X 2020-09-29
CN202011051293.8A CN112217298A (zh) 2020-09-29 2020-09-29 电机、压缩机和制冷设备

Publications (1)

Publication Number Publication Date
WO2022068052A1 true WO2022068052A1 (zh) 2022-04-07

Family

ID=80949532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134781 WO2022068052A1 (zh) 2020-09-29 2020-12-09 电机、压缩机和制冷设备

Country Status (1)

Country Link
WO (1) WO2022068052A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300718A (zh) * 2016-08-30 2017-01-04 珠海凯邦电机制造有限公司 电机及其定子冲片
CN206180712U (zh) * 2016-08-30 2017-05-17 珠海凯邦电机制造有限公司 电机及其定子冲片
CN107147224A (zh) * 2017-06-30 2017-09-08 广东美芝制冷设备有限公司 定子铁芯以及具有该定子铁芯的定子、电机和压缩机
CN108683275A (zh) * 2018-05-29 2018-10-19 杭州精导智能科技有限公司 直驱电机
CN208190368U (zh) * 2018-05-30 2018-12-04 广东美芝制冷设备有限公司 电机、压缩机及制冷设备
CN208461553U (zh) * 2018-08-31 2019-02-01 广东美芝制冷设备有限公司 单相异步电机及具有其的压缩机
US20190068036A1 (en) * 2017-08-22 2019-02-28 Abb Schweiz Ag Electric motor with low torque ripple
CN111555478A (zh) * 2020-05-26 2020-08-18 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106300718A (zh) * 2016-08-30 2017-01-04 珠海凯邦电机制造有限公司 电机及其定子冲片
CN206180712U (zh) * 2016-08-30 2017-05-17 珠海凯邦电机制造有限公司 电机及其定子冲片
CN107147224A (zh) * 2017-06-30 2017-09-08 广东美芝制冷设备有限公司 定子铁芯以及具有该定子铁芯的定子、电机和压缩机
US20190068036A1 (en) * 2017-08-22 2019-02-28 Abb Schweiz Ag Electric motor with low torque ripple
CN108683275A (zh) * 2018-05-29 2018-10-19 杭州精导智能科技有限公司 直驱电机
CN208190368U (zh) * 2018-05-30 2018-12-04 广东美芝制冷设备有限公司 电机、压缩机及制冷设备
CN208461553U (zh) * 2018-08-31 2019-02-01 广东美芝制冷设备有限公司 单相异步电机及具有其的压缩机
CN111555478A (zh) * 2020-05-26 2020-08-18 安徽美芝精密制造有限公司 电机、压缩机和制冷设备

Similar Documents

Publication Publication Date Title
JP4672083B2 (ja) 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機
CN103715945B (zh) 一种12/14无轴承永磁偏置开关磁阻电机
US20070145851A1 (en) Permanent magnet synchronous motor and compressor using the same
US10277100B2 (en) Rotating electric machine
CN105553135B (zh) 压缩机用电机和具有其的压缩机
US10312776B2 (en) Synchronous motor with permanent magnets
CN106981966A (zh) 一种永磁偏置无轴承开关磁阻起动/发电机
JP2013046566A (ja) スイッチドリラクタンスモータ
CN106026448B (zh) 一种eps用无刷电机
CN101771317B (zh) 永磁式旋转电机
CN107240970A (zh) 一种12/10永磁辅助励磁开关磁阻电机
WO2022068052A1 (zh) 电机、压缩机和制冷设备
JP2014087143A (ja) 永久磁石同期電動機
CN108028563A (zh) 永磁体电动机
CN212304904U (zh) 电机、压缩机和制冷设备
CN110768423B (zh) 压缩机的永磁电机及压缩机
CN212258558U (zh) 电机、压缩机和制冷设备
EP3309931B1 (en) Permanent magnet-embedded motor and compressor
JP2010045872A (ja) 永久磁石式回転機
CN112003401A (zh) 转子、电机、压缩机及空调器、车辆
CN212850012U (zh) 一种单相串激电机定转子冲片
CN112217298A (zh) 电机、压缩机和制冷设备
JP2015130774A (ja) 永久磁石式回転電機
CN214850664U (zh) 电机、压缩机和制冷设备
CN218498893U (zh) 电机、压缩机和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956069

Country of ref document: EP

Kind code of ref document: A1