WO2022068045A1 - 一种层绞式通信光缆缆芯智能制造方法 - Google Patents

一种层绞式通信光缆缆芯智能制造方法 Download PDF

Info

Publication number
WO2022068045A1
WO2022068045A1 PCT/CN2020/134156 CN2020134156W WO2022068045A1 WO 2022068045 A1 WO2022068045 A1 WO 2022068045A1 CN 2020134156 W CN2020134156 W CN 2020134156W WO 2022068045 A1 WO2022068045 A1 WO 2022068045A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
color
sleeve
cable
digits
Prior art date
Application number
PCT/CN2020/134156
Other languages
English (en)
French (fr)
Inventor
戴丽芬
Original Assignee
常熟高通智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟高通智能装备有限公司 filed Critical 常熟高通智能装备有限公司
Priority to CN202080016242.3A priority Critical patent/CN113490874B/zh
Publication of WO2022068045A1 publication Critical patent/WO2022068045A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Definitions

  • the invention belongs to the technical field of electric power and communication, and in particular relates to an intelligent manufacturing method of a layered stranded communication optical cable core.
  • the technical problem to be solved by this application is how to realize the intelligent manufacturing of the core of the layered stranded communication optical cable.
  • the purpose of the present invention is to disclose an intelligent manufacturing method for the core of a layered stranded communication optical cable, which is realized by the following technical solutions.
  • An intelligent manufacturing method for a layered stranded communication optical cable core which is characterized by comprising the following steps: Step 1: Obtain a finished product ITEM code, wherein the finished product ITEM code at least contains cable core chromatography, and the finished product ITEM code is selected by a sales website The product is automatically generated by the product, or manually entered.
  • Step 4 Send it to the cabling equipment, and convert the converted sleeve
  • the pipe arrangement diagram and table are sent to the cabling equipment.
  • the cabling equipment has a cabling procedure for the core of the stranded optical cable.
  • the cabling equipment is pre-stored with a color sequence database.
  • Step 5 Obtain the color of the casing, identify the color of the obtained casing, identify the color of the casing and send it to the cabling equipment for comparison and judgment.
  • the cabling equipment sends instructions according to the judgment information. If it is the commonly used color of the casing in the color sequence database, then judge whether it is the color in the casing arrangement diagram and the table.
  • Step 7 Guide the loose cannula, pass the cannula into the cavity of the surrounding tube and pass it to the front according to the prompt information, and go to the next step after finishing; Step 8: Whether it is the last One, according to the casing arrangement diagram and table to judge whether it is the last casing, if not, go to the fifth step, if so, send the signal to the cabling equipment, complete the automatic judgment and pipe thread
  • the above-mentioned intelligent manufacturing method for the core of a layered stranded communication optical cable is characterized in that in the obtained ITEM code of the finished product, the ITEM code representation method of the finished product is: 1 digit of process code+2 digits of type code+3 digits of number of cores+1 optical fiber type Position + Fiber Chromatography 1 digit + Cable Core Chromatography 1 digit + Sleeve Diameter 3 digits + Structure Code 2 digits + Sheath Code 2 digits + Water blocking method 1 digit + Special digits 3 digits, total length: 20 digits, P0103610019006100000 represents:
  • the outer sheath is GYTA-36B1.3, the optical fiber and the sleeve are all chromatographic, the diameter of the sleeve is 1.90mm, the structure is 1+6, the nominal thickness of the sheath is 1.6mm without color bars, and the water-blocking paste blocks water, no special requirements ;P0104810025006100000 represents: outer she
  • a method for intelligently manufacturing a layer-twisted communication optical cable core which is characterized by comprising the following steps: Step 1: Obtain a cabled ITEM code, and the cabled ITEM code is automatically generated by selecting a product from a sales website, or manually For input, enter the next step after obtaining the cabled ITEM code; the second step: convert it into a casing arrangement diagram and table, and convert it into a casing arrangement diagram and table according to the received cabled ITEM code, and then go to the next step; the third step: Send it to the cabling equipment, and send the converted casing arrangement diagram and table to the cabling equipment.
  • the cabling equipment has a cabling procedure for the core of the stranded optical cable.
  • the cabling equipment is pre-stored with a color sequence database.
  • the sequence database predefines the commonly used colors of the casing; the fourth step: obtain the color of the casing, identify the color of the obtained casing, identify the color of the casing and send it to the cabling equipment for comparison and judgment. Send the command according to the judgment information. If the color of the casing is the commonly used color of the casing in the color sequence database, then judge whether it is the color in the casing arrangement diagram and the table. The intelligent device outside the surrounding pipes; if the color of the casing is the commonly used color of the casing in the color sequence database and it is judged that it is not the color in the casing arrangement diagram and the table, the cabling equipment will alarm and prompt to use the wrong casing to obtain a new casing.
  • Step 5 output to the corresponding stranding head , at the corresponding twisting head, the voice or signal prompts to insert the casing;
  • the sixth step guide the loose casing, and pass the casing into the cavity of the surrounding pipe according to the prompt information and pass it to the front.
  • Step 7 Whether it is the last one, judge whether it is the last casing according to the casing arrangement diagram and table, if not, go to the fourth step, if so, send the signal to the cabling equipment to complete the casing Automatically judge and pipe work, instruct the cabling equipment to start the automatic program to automatically manufacture the core of the layered communication optical cable.
  • the above-mentioned intelligent manufacturing method for the core of a layered stranded communication optical cable is characterized in that in the cabled ITEM code, the cabled ITEM code representation method is: 2 digits of process code + 3 digits of core number + 1 digit of optical fiber type + optical fiber chromatography 1 bit + 1 bit of cable core chromatography + 3 bits of casing diameter + 2 bits of structure code + 1 bit of water blocking mode + 3 bits of special bit, total length: 16 bits, SP036100190060000 represents: ordinary 36-core stranded cable core, optical fiber is Type B1.3, optical fiber and sleeve are full chromatographic, sleeve diameter 1.90mm, 1+6 structure, water blocking paste, no special requirements.
  • the above-mentioned intelligent manufacturing method for the core of a layered stranded communication optical cable is characterized in that in the arrangement diagram and table of the sleeves, the ITEM code representation method of the sleeves is: 2 digits of process code + 3 digits of core number + 1 digit of optical fiber type +1 digit for optical fiber chromatography + 1 digit for sleeve chromatography + 3 digit for casing diameter + 1 digit for water blocking mode + 3 digit for special digit, total length: 15 digits, TS0061011900000 represents: ordinary 6-core stranded cable sleeve, optical fiber is Type B1.3, the optical fiber is full color spectrum, the sleeve is blue, the diameter of the sleeve is 1.90mm, the water-blocking paste is water-blocking, and there are no special requirements; TS0061021900000 represents: ordinary 6-core stranded cable sleeve, the fiber is B1.3 Type, the optical fiber is full spectrum, the sleeve is
  • the above-mentioned intelligent manufacturing method for the core of a layered stranded communication optical cable is characterized in that when the color sequence database is sent to the cable forming equipment, an exhaustive method is used to define the colors of the commonly used casings in sequence.
  • the colors are: blue, orange, green, brown, gray, white, red, black, pink, turquoise, natural, all defined by RGB, with at least the following definitions: blue (0,0,255), orange (255,165,0), green (0,255,0), Brown(165,42,42), Gray(128,128,128), White(255,255,255), Red(255,0,0), Black(0,0,0), Yellow(255,255,0), Purple (128,0,128), Pink (255,192,203), Cyan (0,255,255).
  • the above-mentioned intelligent manufacturing method for the core of a layered stranded communication optical cable is characterized in that in acquiring the color of the sleeve, the color of the sleeve is obtained in one of the following ways: (1) The outside of the sleeve is captured by a camera, and an image is obtained.
  • the casing color bit is 1 in front of 190, that is blue, compiled into RGB as (0, 0, 255), such as barcode gun and other equipment read casing
  • the barcode TS0061031900000 the color of the casing is 3 in front of 190, that is, green, compiled into RGB as (0, 255, 0), and so on;
  • the outside of the casing is captured by the camera, and the image is automatically sent to Microsoft Call the color recognition program in Word of the office to extract the RGB values in the color selection area.
  • the above-mentioned intelligent manufacturing method of a layered type communication optical cable core is characterized in that the output is sent to a corresponding twisting head, and the twisting head is located on a cable-forming and twisting device, and the cable-forming and twisting device comprises: Motor, transmission belt, stranding head, two supporting devices.
  • the surrounding hoop is composed of a follower wheel, the central hoop is located in the center, and a plurality of surrounding hoops are symmetrically distributed outside the central hoop.
  • the axes of all the surrounding hoop are on the same cylindrical surface and the central axis of the cylindrical surface coincides with the central axis of the central hoop.
  • the follower wheel is outside the surrounding hoop, and the outer edge of the follower wheel has grooves.
  • each stranding device is a one-piece structure;
  • the central tube is installed in the central cavity of the stranding device,
  • the surrounding tube is installed in the surrounding cavity of the stranding device, and the central tube is Hard pipe
  • the surrounding pipe is a hose;
  • the supporting device is composed of a fixed sleeve and a connecting column, the lower end of the connecting column is fixed on the base, the upper end of the connecting column is connected with the fixed sleeve, and a supporting device is supported at the center of the front end surface extending out of a twisting device
  • another support device is supported on the central tube extending from the rear end face of the other stranding device;
  • the central tube can rotate in the fixed sleeve; one end of the transmission belt is sleeved in the groove, and one end of the transmission belt is sleeved
  • the intelligent device obtains the color of the casing in one of the following ways: (1) The outside of the casing is captured by a camera, and the image is automatically sent to photoshop after being obtained. , use the color picker to click on any point in the middle, and extract the RGB values in the color picking area; (2) Capture the outside of the casing through the camera, and automatically send the image to Microsoft Call the color recognition program in Word of the office to extract the RGB values in the color selection area.
  • the invention has the following main beneficial effects: defective products or potential waste products of the sleeve color are discovered as soon as possible to reduce losses; accurate and reliable chromatographic arrangement is achieved, generation of waste products is reduced, and production is intelligent and automated.
  • FIG. 1 is a schematic diagram of a partially dissected three-dimensional structure of a cable-forming and twisting device in the application.
  • FIG. 2 is an enlarged front view of FIG. 1 .
  • FIG. 3 is a schematic diagram of FIG. 2 after removing the fixing sleeve, the connecting column and the base.
  • FIG. 4 is a schematic diagram of a partially dissected three-dimensional structure of another embodiment of the cable-forming and twisting device in the present application.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a cable core in the application.
  • FIG. 6 is a bar code diagram of a finished product ITEM code exemplified in the embodiment of the present application.
  • FIG. 7 is a bar code diagram of the cabled ITEM codes exemplified in the embodiments of the present application.
  • FIG. 8 is a bar code diagram of the blue sleeve ITEM code exemplified in the embodiments of the present application.
  • FIG. 9 is a bar code diagram of the orange sleeve ITEM code exemplified in the embodiment of the application.
  • FIG. 10 is a bar code diagram of the green sleeve ITEM code exemplified in the embodiment of the application.
  • FIG. 11 is a bar code diagram of the brown sleeve ITEM code exemplified in the embodiment of the application.
  • FIG. 12 is a bar code diagram of the gray casing ITEM code exemplified in the embodiment of the application.
  • FIG. 13 is a bar code diagram of the white casing ITEM code exemplified in the embodiment of the application.
  • FIG. 14 is a schematic diagram of a part of the appearance of the sleeve corresponding to FIG. 8 photographed.
  • FIG. 15 is an interface diagram of calling PS for color picking in FIG. 14 .
  • FIG. 16 is a flow chart of the manufacturing method of the present application.
  • Embodiment 1 see Figs. 1 to 3 and Fig. 5 to Fig. 16, a method for the intelligent manufacture of a layered stranded communication optical cable core, which is characterized in that comprising the following steps: S10: Obtain a finished product ITEM code, wherein in the finished product ITEM code It contains at least cable core chromatography, and the ITEM code of the finished product is automatically generated by selecting the product from the sales website, or manually entered.
  • S20 Convert into a cable ITEM code, according to the received ITEM code
  • the finished product ITEM code is converted into the cabled ITEM code, and goes to the next step
  • S30 Converted into the casing arrangement diagram and table, and the cabled ITEM code is converted into the casing arrangement diagram and table according to the received cabled ITEM code, and then goes to the next step
  • S40 Send to The cabling equipment sends the converted casing arrangement diagram and table to the cabling equipment.
  • the cabling equipment has a cabling program for layered optical cable cores, and the cabling equipment is pre-stored with a color sequence database and a color sequence database.
  • the commonly used colors of the casing are predefined; S50: Obtain the color of the casing, identify the color of the obtained casing, identify the color of the casing, and send it to the cabling equipment for comparison and judgment. Send the command. If the color of the casing is the commonly used color of the casing in the color sequence database, then judge whether it is the color in the casing arrangement diagram and the table.
  • the cabling equipment will alarm and prompt to use the wrong casing to obtain a new color of the casing; If the color of the casing is not the commonly used color of the casing in the color sequence database, the cabling equipment will alarm and prompt to use the wrong casing to obtain a new color of the casing; S60: output to the corresponding stranding head, in the corresponding stranding The voice or signal at the head prompts the cannula to be inserted; S70: Guide the loosening of the cannula, and thread the cannula into the cavity of the surrounding tube according to the prompt information and pierce it to the front, and then go to the next step after piercing; S80: Whether or not The last one, according to the casing arrangement diagram and table, judge whether it is the last casing, if not, go to step S50, if
  • the cabling machine can be used by any one of Shanghai Yupin Communication Technology Co., Ltd., Hefei Tongding Optoelectronics Technology Co., Ltd., Shenzhen Keminray Communication Equipment Co., Ltd., etc., which all have cabling programs and interfaces, which are dependent on single-chip microcomputer and WINDOWS operating system; in this example, the outer sheath GYTA-36B1.3 is produced, the optical fiber and the sleeve are all chromatographic, the diameter of the sleeve is 1.90mm, the structure is 1+6, and the nominal thickness of the sheath is 1.6mm. Take the layered stranded optical cable core with color bars, water blocking paste, and no special requirements as an example. In fact, this cable core can also be used in other types of optical cables.
  • the ITEM code representation method is as follows: 1 digit of process code + 2 digits of type code + 3 digits of core number + 1 digit of optical fiber type + 1 digit of optical fiber chromatography + 1 digit of cable core chromatography + 3 digits of casing diameter + 2 digits of structure code + sheath Code 2 digits + water blocking mode 1 digit + special 3 digits, total length: 20 digits, such as: P0103610019006100000 representative: outer sheath GYTA-36B1.3, optical fiber and sleeve are full chromatographic, sleeve diameter 1.90mm, 1+6 structure, the nominal thickness of the sheath is 1.6mm without color bars,
  • the ITEM code representation method of the cable is: 2 digits of process code + 3 digits of core number + 1 digit of fiber type + 1 digit of optical fiber chromatography + 1 digit of cable core color spectrum + 3 digits of casing diameter + structure
  • S30 Convert to casing arrangement diagram and table, according to the received ITEM code for cabling into casing arrangement diagram and table, and then enter Step; casing ITEM code representation method such as: process code 2 digits + core number 3 digits + fiber type 1 digit + fiber chromatography 1 digit + casing chromatography 1 digit + casing diameter 3 digit
  • TS0061051900000 represents: ordinary 6-core stranded cable casing
  • the optical fiber is B1.3 type, the optical fiber is full color, the sleeve is gray, the diameter of the sleeve is 1.90mm, Water blocking paste, no special requirements; such as: TS0061061900000 represents: ordinary 6-core stranded cable casing, optical fiber is B1.3 type, optical fiber is full color spectrum, casing is white, casing diameter is 1.90mm, water blocking
  • the arrangement of the casing is shown in Figure 5, where the cable core C is clockwise, and the colors of the loose casing 20, also called the casing 20, are: blue, orange, green, brown, gray, and white.
  • the casing arrangement list is: TS0061011900000, TS0061021900000, TS0061031900000, TS0061041900000, TS0061051900000, TS0061061900000;
  • S40 Send to the cabling equipment, send the converted casing arrangement diagram and table to the cabling equipment
  • the cabling equipment has a cabling procedure for the core of a layered stranded optical cable.
  • the cabling equipment is pre-stored with a color sequence database, and the color sequence database predefines the commonly used colors of the casing; the color sequence database adopts an exhaustive method,
  • the commonly used casing colors are defined in turn.
  • the commonly used colors are: blue, orange, green, brown, gray, white, red, black, pink, cyan, and natural colors, all of which are defined by RGB, such as blue color, the corresponding value of RGB Not only (0,0,255), (0,1,255), (0,2,255), (0,3,255), (0,4,255), (1,0,255), (2 , 0, 255), etc., can be considered as blue, and are defined as blue, and so on;
  • S50 Obtain the color of the casing, identify the color of the obtained casing, identify the color of the casing and send it to the The cabling equipment is compared and judged.
  • the cabling equipment sends instructions according to the judgment information. If the color of the casing is the commonly used color of the casing in the color sequence database, then judge whether it is the color in the casing arrangement diagram and the table, and if so, then Send the command to the intelligent device initially installed outside the surrounding pipe at the front end of the twisting head; if the color of the casing is the commonly used color of the casing in the color sequence database and it is judged that it is not the color in the casing arrangement diagram and table, the cable forming equipment
  • the alarm prompts to use the wrong casing to obtain the color of the new casing; if the casing color is not the commonly used color of the casing in the color sequence database, the cabling equipment alarm prompts to use the wrong casing to obtain the new casing color;
  • the acquisition methods are not limited to the following: (1) The outside of the casing as shown in Figure 14 is captured by the camera.
  • Figure 14 is because the patent application requires black and white processing.
  • the actual color is shown in Figure 15.
  • the casing barcode TS0061011900000 the casing color bit is 1 in front of 190, that is, blue, and compiled into RGB as (0, 0, 255), such as a barcode gun and other equipment to read the casing barcode TS0061031900000, the casing color bit is The 3 in front of 190, that is, green, is compiled into RGB as (0, 255, 0); (3)
  • the outside of the casing as shown in Figure 14 is captured by the camera.
  • Figure 14 is because the patent application requires black and white processing, and the actual color is the same as above, After the image is acquired, it is automatically sent to Word of Microsoft Office, and the color recognition program is called to extract the RGB value in the color picking area 23; S60: output to the corresponding twisting head, and voice or signal prompts to penetrate the casing at the corresponding twisting head
  • the stranding head is located on the cable-forming stranding device, and the cable-forming stranding device includes a motor, a transmission belt, a stranding head, and two supporting devices, and the stranding head is composed of two parallel and spaced stranding devices.
  • Each stranding device consists of a central hoop 1, a plurality of surrounding hoop 2, and a follower wheel 3, the central hoop 1 is located in the center, and the multiple surrounding hoop 2 are symmetrically distributed on the Outside the central hoop 1, the central hoop 1 and each surrounding hoop 2 are connected by inner connecting bars 12, and the adjacent surrounding hoop 2 are connected by outer connecting bars 22, and the axes of all surrounding hoop 2 are on the same cylindrical surface And the central axis of the cylindrical surface coincides with the central axis of the central hoop 1, the follower wheel 3 is outside the surrounding hoop 2, the outer edge of the follower wheel 3 has a groove 31, the center hoop 1 has a central cavity, and the surrounding hoop 2.
  • each stranding device is an integral structure;
  • the central tube 18 is installed in the central cavity of the stranding device,
  • the peripheral tube 28 is installed in the peripheral cavity of the stranding device, and the central tube 18 is a hard tube,
  • the surrounding pipe 28 is a hose;
  • the supporting device is composed of a fixed sleeve 41 and a connecting column 42, the lower end of the connecting column 42 is fixed on the base 6, the upper end of the connecting column 42 is connected to the fixed sleeve 41, and a supporting device is supported on the extension of a twisting device.
  • the central tube 18 On the central tube 18 on the front end face, another support device is supported on the central tube 18 protruding from the rear end face of the other stranding device; the central tube 18 can rotate in the fixed sleeve 41; one end of the transmission belt is sleeved in the groove 31, One end of the transmission belt is sleeved on the rotating part of the motor; the intelligent device 5 is sleeved outside the surrounding pipe 28 extending from the front end face of a twisting device.
  • step S50 Whether it is the last one, judge whether it is the last casing according to the casing arrangement diagram and table, if not, go to the next step. Entering step S50, if so, the signal is sent to the cabling equipment to complete the automatic judgment of the casing and the pipe threading work, and the cabling equipment is instructed to start the automatic program to automatically manufacture the core of the layered communication optical cable.
  • the smart device can be an improved wireless camera, camera, etc., which sends the captured image to the cabling machine and accepts the instructions of the cabling machine, so that the image of the casing can be captured in real time, and then the similar
  • the color picking step of S50 and save the image and data in one-to-one correspondence, each casing is collected at intervals, and this advantage now realizes the real-time recording of the casing color.
  • the motor rotates forward for a period of time, stops for a period of time, reverses for a period of time, and stops for a period of time.
  • the twisting head is driven to rotate, and at the same time, the central reinforcing member 10 and the loose tube 20 are continuously pulled at the rear end to make a straight line.
  • the movement realizes the SZ twisting; of course, if the motor rotates in one direction, it will be a one-way helical twisting method.
  • Embodiment 2 please refer to Fig. 2 to Fig. 16, and with reference to Fig. 1, an intelligent manufacturing method of a layered stranded communication optical cable core, which is basically the same as that of Embodiment 1, the difference is that the surrounding pipe 28 is discontinuous, and the middle is Intermittent, in this way, because the casing is continuous, it can still achieve continuous production when it is worn in the surrounding cavity, but the load of the motor is smaller and more power-saving.
  • the transmission between the two can be achieved with less effort and less wear.
  • the ITEM code of the finished product such as directly obtaining the ITEM code of the cable.
  • the company also sells the cable core, it can also be obtained from the website or entered by the staff; it may also be stocked according to the company, etc. Staff entry is required.
  • the initial definitions of various colors are (colors and corresponding RGB values): blue (0,0,255), orange (255,165,0), green (0,255,0), brown (165,42,42), Gray(128,128,128), White(255,255,255), Red(255,0,0), Black(0,0,0), Yellow(255,255,0), Purple(128,0,128), Pink(255,192,203), Cyan(0,255,255 );
  • the color sequence database can be classified and defined according to the prior art, for example, blue can be expanded within a certain range, such as (0, 0, 150-250) and others can be expressed as blue, etc., other colors and so on, so expand Set the tolerance range, but make sure that the blue is still blue, just the difference between light blue and dark blue, etc., and so on for other colors.
  • the robot achieves the capabilities of intelligent loading, unloading, and intelligent pipe threading, the production of layer-stranded communication optical cable cores can be completely automated without manual production, and there will be no color sequential threading when threading the casing. Wrong, causing the problem of waste; and the color of the casing is complete and can be queried, and the intermediate color difference can be alarmed; when the robot fails to reach the corresponding intelligence level, manual work is used, and there will be no error when threading the casing, because the wrong thread is worn. The alarm will not let you enter the next step; and every time the casing is worn, the smart device will guide you through voice and signal. It emits blue light at the corresponding smart device, so that there will be no error.
  • the smart device After penetration, due to the action of the smart device, it will further judge to completely prevent the different colors of casings from being threaded incorrectly; other colors are analogous; of course, if the robot is working, it will emit light.
  • the signal is a code that the robot can recognize, this way is simpler.
  • the images captured by the smart device can be captured continuously or at intervals, and the interval can be used to obtain one photo within 3 consecutive minutes, which fully meets the requirements and does not make the storage occupation too large.
  • the present application not only realizes the fool-proofing of the arrangement of the sleeves in the production of the stranded optical cable core, but also enables the defects of the sleeves to be recorded and restored; used in large quantities.
  • the device for obtaining the color of the casing can be installed on the transport or loading robot, so that the color can be obtained during transportation, and can be directly transmitted to the cable-forming machine when the cable is formed, which is more efficient.
  • the method of scanning barcodes is often used.
  • the card of the red sleeve is placed on the green sleeve, and only relying on scanning the barcode can easily cause errors.
  • the actual proofreading is actually carried out to verify the consistency with the actual color; if this application is not used, if it is wrongly placed, it will be wrong at least two discs, and it is necessary to Searching for misplaced casing stacks, which is not required in the present application, reduces the occurrence of errors and saves a lot of time.
  • the present application can not only be used in the cabling of layered stranded optical cables, but also in the cabling of cables.
  • the invention has the following main beneficial effects: defective products or potential waste products of the sleeve color are discovered as soon as possible to reduce losses; accurate and reliable chromatographic arrangement is achieved, generation of waste products is reduced, and production is intelligent and automated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种层绞式通信光缆缆芯智能制造方法,获取成品ITEM代码(S10)、转成成缆ITEM代码(S20)、转成套管排列图及表(S30)、发送到成缆设备(S40)、获取套管颜色(S50)、输出到对应的绞合头(S60)、引导穿松套管(S70)、判断是否最后一根及自动制造的步骤(S80)。主要有益效果如下:套管颜色的缺陷产品或潜在废品被尽早发现,减少了损失;起到了色谱排列准确、可靠,减少了废品的产生,生产智能化、自动化。

Description

一种层绞式通信光缆缆芯智能制造方法 技术领域
本发明属于电力及通信技术领域,尤其是涉及一种层绞式通信光缆缆芯智能制造方法。
背景技术
随着人口红利的消失,智能、无人、黑灯生产设备的需求量日益增加;光缆及电缆的生产中也具有了相应的要求。另一方面,层绞式光缆由于具有多根松套管,且颜色不同,排列不同,操作工很易出错,而出错后往往造成产品的报废;目前没有较好的办法了实现层绞式缆芯套管颜色排列的防呆,一直以来困扰着该行业,另外,智能化生产来说,层绞式缆芯套管颜色排列的防呆是必需要克服的,为此,本公司进行了研究,并取得了满意的效果。
技术问题
本申请要解决的技术问题是如何实现层绞式通信光缆缆芯的智能制造。
技术解决方案
为了解决上述问题,本发明的目的是揭示一种层绞式通信光缆缆芯智能制造方法,它是采用以下技术方案实现的。
一种层绞式通信光缆缆芯智能制造方法,其特征在于包含有以下步骤:第一步:获取成品ITEM代码,其中成品ITEM代码中至少包含有缆芯色谱,成品ITEM代码是由销售网站选择产品而自动生成的,或者是由人工录入的,获取成品ITEM代码后进入下一步;第二步:转成成缆ITEM代码,根据接收到的成品ITEM代码转成成缆ITEM代码,并进入一下步;第三步:转成套管排列图及表,根据接收到的成缆ITEM代码转成套管排列图及表,然后进入一下步;第四步:发送到成缆设备,将转成的套管排列图及表发送到成缆设备,成缆设备中具有层绞式光缆缆芯成缆程序,所述成缆设备中预存有颜色序列数据库,颜色序列数据库将套管常用的颜色进行了预定义;第五步:获取套管颜色,将获取的套管进行颜色识别,识别出套管颜色后送入成缆设备并进行比较判断,成缆设备根据判断信息进行指令发送,若套管颜色为颜色序列数据库中的套管常用的颜色则再判断是否是套管排列图及表中的颜色,若是则发送指令至初装在绞合头前端的周围管外的智能装置;若套管颜色为颜色序列数据库中的套管常用的颜色且判断不是套管排列图及表中的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;若套管颜色不是颜色序列数据库中的套管常用的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;第六步:输出到对应的绞合头,在对应的绞合头处语音或信号提示穿入套管;第七步:引导穿松套管,按提示的信息将套管穿入周围管的空腔内并穿到最前方,穿完后进入下一步;第八步:是否最后一根,根据套管排列图及表判断是否是最后一根套管,若否则进入第五步,若是则将信号发送至成缆设备,完成套管自动判断及穿管工作,指令成缆设备启用自动程序进行层绞式通信光缆缆芯的自动制造。
上述一种层绞式通信光缆缆芯智能制造方法,其特征在于所述获取成品ITEM代码中,成品ITEM代码表示方法为:工序代号1位+型式代号2位+芯数3位+光纤类型1位+光纤色谱1位+缆芯色谱1位+套管直径3位+结构代号2位+护套代号2位+阻水方式1位+特殊位3位,合计长度:20位,P0103610019006100000代表:外护套GYTA-36B1.3,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求;P0104810025006100000代表:外护套GYTA-48B1.3,光纤及套管都为全色谱,套管直径2.50mm,1+5结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求。
一种层绞式通信光缆缆芯智能制造方法,其特征在于包含有以下步骤:第一步:获取成缆ITEM代码,成缆ITEM代码是由销售网站选择产品而自动生成的,或者是由人工录入的,获取成缆ITEM代码后进入下一步;第二步:转成套管排列图及表,根据接收到的成缆ITEM代码转成套管排列图及表,然后进入一下步;第三步:发送到成缆设备,将转成的套管排列图及表发送到成缆设备,成缆设备中具有层绞式光缆缆芯成缆程序,所述成缆设备中预存有颜色序列数据库,颜色序列数据库将套管常用的颜色进行了预定义;第四步:获取套管颜色,将获取的套管进行颜色识别,识别出套管颜色后送入成缆设备并进行比较判断,成缆设备根据判断信息进行指令发送,若套管颜色为颜色序列数据库中的套管常用的颜色则再判断是否是套管排列图及表中的颜色,若是则发送指令至初装在绞合头前端的周围管外的智能装置;若套管颜色为颜色序列数据库中的套管常用的颜色且判断不是套管排列图及表中的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;若套管颜色不是颜色序列数据库中的套管常用的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;第五步:输出到对应的绞合头,在对应的绞合头处语音或信号提示穿入套管;第六步:引导穿松套管,按提示的信息将套管穿入周围管的空腔内并穿到最前方,穿完后进入下一步;第七步:是否最后一根,根据套管排列图及表判断是否是最后一根套管,若否则进入第四步,若是则将信号发送至成缆设备,完成套管自动判断及穿管工作,指令成缆设备启用自动程序进行层绞式通信光缆缆芯的自动制造。
上述一种层绞式通信光缆缆芯智能制造方法,其特征在于所述成缆ITEM代码中,成缆ITEM代码表示方法为:工序代号2位+芯数3位+光纤类型1位+光纤色谱1位+缆芯色谱1位+套管直径3位+结构代号2位+阻水方式1位+特殊位3位,合计长度:16位,SP036100190060000代表:普通36芯层绞缆芯,光纤为B1.3类型,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,阻水膏阻水,无特殊要求。
上述一种层绞式通信光缆缆芯智能制造方法,其特征在于所述转成套管排列图及表中,套管ITEM代码表示方法为:工序代号2位+芯数3位+光纤类型1位+光纤色谱1位+套管色谱1位+套管直径3位+阻水方式1位+特殊位3位,合计长度:15位,TS0061011900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为蓝色,套管直径1.90mm,阻水膏阻水,无特殊要求;TS0061021900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为橙色,套管直径1.90mm,阻水膏阻水,无特殊要求; TS0061031900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为绿色,套管直径1.90mm,阻水膏阻水,无特殊要求; TS0061041900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为棕色,套管直径1.90mm,阻水膏阻水,无特殊要求; TS0061051900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为灰色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061061900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为白色,套管直径1.90mm,阻水膏阻水,无特殊要求;套管的颜色分别为:蓝、橙、绿、棕、灰、白,所有套管的最外缘都在同一圆柱面形状的缆芯外边缘上,中心加强件是预先穿入到中心管的内部孔内的;套管排列表即依次分别为:TS0061011900000、TS0061021900000、TS0061031900000、TS0061041900000、TS0061051900000、TS0061061900000。
上述一种层绞式通信光缆缆芯智能制造方法,其特征在于所述发送到成缆设备中,颜色序列数据库中采用穷举法,对常用的套管颜色依次进行了定义,常用的套管颜色为:蓝、橙、绿、棕、灰、白、红、黑、粉红、青绿、本色,都采用RGB定义,至少具有以下定义:蓝(0,0,255)、橙(255,165,0)、绿(0,255,0)、棕(165,42,42)、灰(128,128,128)、白(255,255,255)、红(255,0,0)、黑(0,0,0)、黄(255,255,0)、紫(128,0,128)、粉红(255,192,203)、青色(0,255,255)。
上述一种层绞式通信光缆缆芯智能制造方法,其特征在于所述获取套管颜色中,套管的颜色获取的方式为以下的一种:(1)通过摄像头摄取套管外部,获取图像后自动送入photoshop中,采用拾色器点击中间任一点,并提取取色区中的RGB值;(2)采用条码枪等设备读取套管条码并提取其中的套管颜色位并编译成颜色,如条码枪等设备读取套管条码TS0061011900000,得套管颜色位为190前面的1,即蓝色,编译成RGB为(0,0,255),如条码枪等设备读取套管条码TS0061031900000,得套管颜色位为190前面的3,即绿色,编译成RGB为(0,255,0),依次类推;(3)通过摄像头摄取套管外部,获取图像后自动送入microsoft office的Word中调用颜色识别程序提取取色区中的RGB值。
上述一种层绞式通信光缆缆芯智能制造方法,其特征在于所述输出到对应的绞合头中,所述绞合头位于成缆绞合装置上,所述成缆绞合装置包含有电机、传动带、绞合头、两个支撑装置,绞合头由两个相互平行且具有间隔设置的绞合装置、中心管、多根周围管构成,每个绞合装置由中心箍、多个周围箍、随动轮构成,中心箍位于中央,多个周围箍对称地分布在中心箍之外,中心箍与每个周围箍之间通过内连接条连接,相邻的周围箍之间通过外连接条连接,所有周围箍的轴线在同一圆柱面上且该圆柱面的中心轴线与中心箍的中心轴线相重合,随动轮外接于周围箍之外,随动轮的外缘上具有凹槽,中心箍内部具有中心腔,周围箍内部具有周围腔,每个绞合装置都为一体式结构;中心管安装在绞合装置的中心腔内,周围管安装在绞合装置的周围腔内,中心管为硬管,周围管为软管;支撑装置由固定套与连接柱构成,连接柱下端固定在底座上,连接柱上端连接固定套,一个支撑装置支撑在伸出一个绞合装置的前端面的中心管上,另一个支撑装置支撑在伸出另一个绞合装置的后端面的中心管上;中心管能在固定套内转动;传动带一端套在凹槽内,传动带一端套在电机的转动部件上;智能装置套装在伸出一个绞合装置的前端面的周围管外,智能装置中心具有过孔,智能装置对于伸入过孔的物体具有彩色高清摄像功能、将所拍图像以无线形式发送的功能、接收信号指令的功能、发光及语音报警的功能;所述智能装置获取套管的颜色获取的方式为以下的一种:(1)通过摄像头摄取套管外部,获取图像后自动送入photoshop中,采用拾色器点击中间任一点,并提取取色区中的RGB值;(2)通过摄像头摄取套管外部,获取图像后自动送入microsoft office的Word中调用颜色识别程序提取取色区中的RGB值。
有益效果
本发明具有以下主要有益效果:套管颜色的缺陷产品或潜在废品被尽早发现,减少了损失;起到了色谱排列准确、可靠,减少了废品的产生,生产智能化、自动化。
附图说明
图1为本申请中的成缆绞合装置的一段局部解剖后的立体结构示意图。
图2为图1放大的主视图。
图3为图2去除固定套、连接柱、底座后的示意图。
图4为本申请中的成缆绞合装置又一种实施方式的一段局部解剖后的立体结构示意图。
图5为本申请中一种缆芯的横截面结构示意图。
图6为本申请实施例中示例的成品ITEM代码的条形码图。
图7为本申请实施例中示例的成缆ITEM代码的条形码图。
图8为本申请实施例中示例的蓝套管ITEM代码的条形码图。
图9为本申请实施例中示例的橙套管ITEM代码的条形码图。
图10为本申请实施例中示例的绿套管ITEM代码的条形码图。
图11为本申请实施例中示例的棕套管ITEM代码的条形码图。
图12为本申请实施例中示例的灰套管ITEM代码的条形码图。
图13为本申请实施例中示例的白套管ITEM代码的条形码图。
图14为图8对应的套管拍摄的外表一部分示意图。
图15为图14调用PS取色的界面图。
图16为本申请制造方法的流程框图。
为了使所在技术领域人员能更准确、清楚地理解及实施本申请,下面结合说明书附图对于附图标记作进一步说明,图中:1—中心箍、2—周围箍、3—随动轮、5—智能装置、6—底座、10—中心加强件、12—内连接条、18—中心管、20—松套管、21—光导纤维、22—外连接条、23—取色区、28—周围管、31—凹槽、41—固定套、42—连接柱、A—缆芯外边缘、C—缆芯。
本发明的最佳实施方式
实施实例 1,请见图1至3及图5至图16,一种层绞式通信光缆缆芯智能制造方法,其特征在于包含有以下步骤:S10:获取成品ITEM代码,其中成品ITEM代码中至少包含有缆芯色谱,成品ITEM代码是由销售网站选择产品而自动生成的,或者是由人工录入的,获取成品ITEM代码后进入下一步;S20:转成成缆ITEM代码,根据接收到的成品ITEM代码转成成缆ITEM代码,并进入一下步;S30:转成套管排列图及表,根据接收到的成缆ITEM代码转成套管排列图及表,然后进入一下步;S40:发送到成缆设备,将转成的套管排列图及表发送到成缆设备,成缆设备中具有层绞式光缆缆芯成缆程序,所述成缆设备中预存有颜色序列数据库,颜色序列数据库将套管常用的颜色进行了预定义;S50:获取套管颜色,将获取的套管进行颜色识别,识别出套管颜色后送入成缆设备并进行比较判断,成缆设备根据判断信息进行指令发送,若套管颜色为颜色序列数据库中的套管常用的颜色则再判断是否是套管排列图及表中的颜色,若是则发送指令至初装在绞合头前端的周围管外的智能装置;若套管颜色为颜色序列数据库中的套管常用的颜色且判断不是套管排列图及表中的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;若套管颜色不是颜色序列数据库中的套管常用的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;S60:输出到对应的绞合头,在对应的绞合头处语音或信号提示穿入套管;S70:引导穿松套管,按提示的信息将套管穿入周围管的空腔内并穿到最前方,穿完后进入下一步;S80:是否最后一根,根据套管排列图及表判断是否是最后一根套管,若否则进入S50步,若是则将信号发送至成缆设备,完成套管自动判断及穿管工作,指令成缆设备启用自动程序进行层绞式通信光缆缆芯的自动制造。
  为清楚地说明本申请的原理,使所在技术领域人员能够完整地实施,现举例陈述如下。
成缆机可用上海昱品通信科技有限公司、合肥通鼎光电科技有限公司、深圳市科迈瑞通讯设备有限公司等公司的任意一种,其中都有成缆程序及接口,其是依赖于单片机及WINDOWS操作系统运行的;本实施实例中,以生产外护套GYTA-36B1.3,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求的层绞式光缆缆芯为例,实际上,该缆芯也可用于其它型号的光缆中。
S10:获取成品ITEM代码,其中成品ITEM代码中至少包含有缆芯色谱,成品ITEM代码是由销售网站选择产品而自动生成的,或者是由人工录入的,获取成品ITEM代码后进入下一步;成品ITEM代码表示方法如:工序代号1位+型式代号2位+芯数3位+光纤类型1位+光纤色谱1位+缆芯色谱1位+套管直径3位+结构代号2位+护套代号2位+阻水方式1位+特殊位3位,合计长度:20位,如:P0103610019006100000代表:外护套GYTA-36B1.3,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求;P0104810025006100000代表:外护套GYTA-48B1.3,光纤及套管都为全色谱,套管直径2.50mm,1+5结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求;S20:转成成缆ITEM代码,根据接收到的成品ITEM代码转成成缆ITEM代码,并进入一下步;成缆ITEM代码表示方法如:工序代号2位+芯数3位+光纤类型1位+光纤色谱1位+缆芯色谱1位+套管直径3位+结构代号2位+阻水方式1位+特殊位3位,合计长度:16位,如:SP036100190060000代表:普通36芯层绞缆芯,光纤为B1.3类型,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,阻水膏阻水,无特殊要求;S30:转成套管排列图及表,根据接收到的成缆ITEM代码转成套管排列图及表,然后进入一下步;套管ITEM代码表示方法如:工序代号2位+芯数3位+光纤类型1位+光纤色谱1位+套管色谱1位+套管直径3位+阻水方式1位+特殊位3位,合计长度:15位,如:TS0061011900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为蓝色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061021900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为橙色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061031900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为绿色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061041900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为棕色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061051900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为灰色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061061900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为白色,套管直径1.90mm,阻水膏阻水,无特殊要求;套管排列图见图5,其中,缆芯C顺时针方向,松套管20也叫做套管20的颜色分别为:蓝、橙、绿、棕、灰、白,每根松套管20内都具有6根光导纤维21,所有套管的最外缘都在同一圆柱面形状的缆芯外边缘A上,中心加强件10是预先穿入到中心管1的内部孔内的;套管排列表即依次分别为:TS0061011900000、TS0061021900000、TS0061031900000、TS0061041900000、TS0061051900000、TS0061061900000;S40:发送到成缆设备,将转成的套管排列图及表发送到成缆设备,成缆设备中具有层绞式光缆缆芯成缆程序,所述成缆设备中预存有颜色序列数据库,颜色序列数据库将套管常用的颜色进行了预定义;颜色序列数据库中采用穷举法,对常用的套管颜色依次进行了定义,常用的为:蓝、橙、绿、棕、灰、白、红、黑、粉红、青绿、本色,都采用RGB定义,如蓝颜色,RGB对应的值不仅有(0,0,255),(0,1,255)、(0,2,255)、(0,3,255)、(0,4,255)、(1,0,255)、(2,0,255)等等,都可被认为是蓝色的,都定义为蓝色,依次类推;S50:获取套管颜色,将获取的套管进行颜色识别,识别出套管颜色后送入成缆设备并进行比较判断,成缆设备根据判断信息进行指令发送,若套管颜色为颜色序列数据库中的套管常用的颜色则再判断是否是套管排列图及表中的颜色,若是则发送指令至初装在绞合头前端的周围管外的智能装置;若套管颜色为颜色序列数据库中的套管常用的颜色且判断不是套管排列图及表中的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;若套管颜色不是颜色序列数据库中的套管常用的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;获取的方式不局限于以下几种:(1)通过摄像头摄取如图14的套管外部,图14是因为专利申请要求进行了黑白处理,实际颜色见图15,获取图像后自动送入photoshop中,采用拾色器点击中间任一点,并提取取色区23中的RGB值;(2)采用条码枪等设备读取套管条码并提取其中的套管颜色位并编译成颜色,如条码枪等设备读取套管条码TS0061011900000,得套管颜色位为190前面的1,即蓝色,编译成RGB为(0,0,255),如条码枪等设备读取套管条码TS0061031900000,得套管颜色位为190前面的3,即绿色,编译成RGB为(0,255,0);(3)通过摄像头摄取如图14的套管外部,图14是因为专利申请要求进行了黑白处理,实际颜色同上,获取图像后自动送入microsoft office的Word中调用颜色识别程序提取取色区23中的RGB值;S60:输出到对应的绞合头,在对应的绞合头处语音或信号提示穿入套管;所述绞合头位于成缆绞合装置上,所述成缆绞合装置包含有电机、传动带、绞合头、两个支撑装置,绞合头由两个相互平行且具有间隔设置的绞合装置、中心管18、多根周围管28构成,每个绞合装置由中心箍1、多个周围箍2、随动轮3构成,中心箍1位于中央,多个周围箍2对称地分布在中心箍1之外,中心箍1与每个周围箍2之间通过内连接条12连接,相邻的周围箍2之间通过外连接条22连接,所有周围箍2的轴线在同一圆柱面上且该圆柱面的中心轴线与中心箍1的中心轴线相重合,随动轮3外接于周围箍2之外,随动轮3的外缘上具有凹槽31,中心箍1内部具有中心腔,周围箍2内部具有周围腔,每个绞合装置都为一体式结构;中心管18安装在绞合装置的中心腔内,周围管28安装在绞合装置的周围腔内,中心管18为硬管,周围管28为软管;支撑装置由固定套41与连接柱42构成,连接柱42下端固定在底座6上,连接柱42上端连接固定套41,一个支撑装置支撑在伸出一个绞合装置的前端面的中心管18上,另一个支撑装置支撑在伸出另一个绞合装置的后端面的中心管18上;中心管18能在固定套41内转动;传动带一端套在凹槽31内,传动带一端套在电机的转动部件上;智能装置5套装在伸出一个绞合装置的前端面的周围管28外,智能装置中心具有过孔,智能装置对于伸入过孔的物体具有彩色高清摄像功能、将所拍图像以无线形式发送的功能、接收信号指令的功能、发光及语音报警的功能;S70:引导穿松套管,按提示的信息将套管穿入周围管的空腔内并穿到最前方,穿完后进入下一步;S80:是否最后一根,根据套管排列图及表判断是否是最后一根套管,若否则进入S50步,若是则将信号发送至成缆设备,完成套管自动判断及穿管工作,指令成缆设备启用自动程序进行层绞式通信光缆缆芯的自动制造。
   本申请中,智能装置可以是改进的无线摄像头、相机等等,其发送拍摄的图像到成缆机器中,并接受成缆机品的指令,这样可以实时地拍摄套管的图像、进而采用类似S50的取色步骤,并将图像和数据一一对应地保存,每根套管都进行间隔采集,这样的好处现时实现了套管颜色的实时记录,当出现缺陷时,报警或完成后总报警,所述缺陷如色差等,因为套管的生产速度达到250-1000m/min,人眼一般是无法判断其颜色的一致性的,且由于其快速盘绕,很难发现色差,即色的不一致,如本来要做成蓝色的,开始时的确是蓝色,但由于各种原因,如后面做成了橙色,或挤塑时未及时加入蓝色色母,导致后面做成了本色或白色,当操作工发现后立即纠正,后面又做成了蓝色,中间不同的颜色,由于绕在盘具的中央,故在未退盘或放管时是看不到的,即使检验人员也无法发现,而在只有数十米每分钟生产速度的成缆工序来说,若有操作人员及认真盯看的话,这其中的缺陷在成缆生产中会发现,当然,碰到不太负责或分心的成缆操作工也不一定能发现,而这种缺陷会使得同一根缆中具有相同颜色的套管,不易区分及接续,客户也难以接受,而若在套管工序发现的话,损失最小,当然,由于过快的速度,目前的技术还不能在套管工序就解决;而若不在成缆工序发现相关缺陷,那么,做成护套成品后的损失更大;因此,本申请中的智能装置解决了上述问题,使缺陷产品或潜在废品被尽早发现,减少了损失。
   本申请中,电机正转一段时间、停一段时间、反转段时间、停一段时间,如此反复,带动绞合头转动,同时,在后端不断牵引中心加强件10及松套管20作直线运动,实现了SZ绞合;当然,若电机单向旋转的话就成单向螺旋绞合的方式。
本发明的实施方式
实施实例 2,请见图2至图16,并参考图1,一种层绞式通信光缆缆芯智能制造方法,基本同实施实例1,不同之处在于周围管28是不连续的,中间是间断的,这种方式时,由于套管是连续的,故穿在周围腔内,仍可实现连续生产,但是使电机的负荷更小、更省电。
本申请中,若固定套41内部为轴承座、相应处的中心管外安装轴承,能使两者之间实现更省力、磨损更少的传动。
本申请中,仅有一个凹槽31中放传动带也是可以的,这样只不过机器的抗扭性稍差些;当然两个凹槽31中都放传动带的话,要保证速度的同步。
本申请中,获取成品ITEM代码也可不存在,比如直接获取成缆ITEM代码,这种情况如公司也卖成缆芯芯,那也可从网站获得或工作人员录入;也可能据于公司备货等需要工作人员录入。
本申请中,各种颜色的初定义为(颜色及对应的RGB值):蓝(0,0,255)、橙(255,165,0)、绿(0,255,0)、棕(165,42,42)、灰(128,128,128)、白(255,255,255)、红(255,0,0)、黑(0,0,0)、黄(255,255,0)、紫(128,0,128)、粉红(255,192,203)、青色(0,255,255);颜色序列数据库可根据现有技术中的进行分类定义,比如蓝可在一定范围内扩展,如(0,0,150-250)及其它都可表示为蓝,等,其它颜色依次类推,这样扩大了容差的范围,但是确保蓝色仍是蓝,只不过淡蓝到深蓝的区别,等,其它颜色依次类推。
本申请中,若机器人达到了智能装盘、智能下盘、智能穿管的能力,生产层绞式通信光缆缆芯时完全可以实现无人工的自动生产,不会出现穿套管时颜色顺序穿错、造成废品的问题;且套管颜色记录完整、可查询、中间出色差可报警;在机器人达不到相应的智能水平时,采用人工,穿套管时也不会出错,因为穿错了会报警不让进入一下步;而且每次穿套管时,智能装置通过语音、信号进行引导,语音可提示穿这,然后闪光等,也可以也相应颜色的光,如穿蓝套管时,在对应的智能装置处发蓝光,这样不会出错,穿入后由于智能装置的动作,还会进一步判断,彻底杜绝不同颜色套管穿错;其它颜色依次类推;当然,若是机器人工作时,发出的信号是机器人可识别的代码即可,这种方式更简单。
本申请中,智能装置拍摄图像可以连续成摄像的方式,也可以间隔拍照,采用间隔使得连续的3妙内获得一张照片即可,这样完全能满足要求,且不会使存储占用过大。
本申请不仅实现了层绞式光缆缆芯生产中套管排列的防呆,而且使套管的缺陷被记录、复原;本申请的构思及方法必然会在以后的无人工厂、光缆的智能制造中大量使用。
本申请中,获取套管颜色装置可装在运输或装盘机器人上,这样运输时即实现了颜色获取,成缆时可直接传送到成缆机,这样效率更高。
现有技术中,常采用扫条形码的方式,然而在多根套管时,极易放错,如红色套管的卡片放在了绿色套管上,而只依赖于扫条形码极易造成错误,而采用本申请后,实际上还进行了实际的校对,核实了与实际颜色的一致性;若不采用本申请的话,若放错了,那一错就会错至少两盘,且还需要在套管堆中寻找放错的,而本申请不需要,故减少了错误的发生,节省了大量的时间。
本申请不仅可用于层绞式光缆成缆,也可用于电缆的成缆中。
本发明具有以下主要有益效果:套管颜色的缺陷产品或潜在废品被尽早发现,减少了损失;起到了色谱排列准确、可靠,减少了废品的产生,生产智能化、自动化。
工业实用性
本申请已实施,故具工业实用性。

Claims (10)

  1. 一种层绞式通信光缆缆芯智能制造方法,其特征在于包含有以下步骤:
    第一步:获取成品ITEM代码,其中成品ITEM代码中至少包含有缆芯色谱,成品ITEM代码是由销售网站选择产品而自动生成的,或者是由人工录入的,获取成品ITEM代码后进入下一步;
    第二步:转成成缆ITEM代码,根据接收到的成品ITEM代码转成成缆ITEM代码,并进入一下步;
    第三步:转成套管排列图及表,根据接收到的成缆ITEM代码转成套管排列图及表,然后进入一下步;
    第四步:发送到成缆设备,将转成的套管排列图及表发送到成缆设备,成缆设备中具有层绞式光缆缆芯成缆程序,所述成缆设备中预存有颜色序列数据库,颜色序列数据库将套管常用的颜色进行了预定义;
    第五步:获取套管颜色,将获取的套管进行颜色识别,识别出套管颜色后送入成缆设备并进行比较判断,成缆设备根据判断信息进行指令发送,若套管颜色为颜色序列数据库中的套管常用的颜色则再判断是否是套管排列图及表中的颜色,若是则发送指令至初装在绞合头前端的周围管外的智能装置;若套管颜色为颜色序列数据库中的套管常用的颜色且判断不是套管排列图及表中的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;若套管颜色不是颜色序列数据库中的套管常用的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;
    第六步:输出到对应的绞合头,在对应的绞合头处语音或信号提示穿入套管;
    第七步:引导穿松套管,按提示的信息将套管穿入周围管的空腔内并穿到最前方,穿完后进入下一步;
    第八步:是否最后一根,根据套管排列图及表判断是否是最后一根套管,若否则进入第五步,若是则将信号发送至成缆设备,完成套管自动判断及穿管工作,指令成缆设备启用自动程序进行层绞式通信光缆缆芯的自动制造。
  2. 根据权利要求1所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述获取成品ITEM代码中,成品ITEM代码表示方法为:工序代号1位+型式代号2位+芯数3位+光纤类型1位+光纤色谱1位+缆芯色谱1位+套管直径3位+结构代号2位+护套代号2位+阻水方式1位+特殊位3位,合计长度:20位,P0103610019006100000代表:外护套GYTA-36B1.3,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求;P0104810025006100000代表:外护套GYTA-48B1.3,光纤及套管都为全色谱,套管直径2.50mm,1+5结构,护套标称厚度1.6mm不带彩条,阻水膏阻水,无特殊要求。
  3. 一种层绞式通信光缆缆芯智能制造方法,其特征在于包含有以下步骤:
    第一步:获取成缆ITEM代码,成缆ITEM代码是由销售网站选择产品而自动生成的,或者是由人工录入的,获取成缆ITEM代码后进入下一步;
    第二步:转成套管排列图及表,根据接收到的成缆ITEM代码转成套管排列图及表,然后进入一下步;
    第三步:发送到成缆设备,将转成的套管排列图及表发送到成缆设备,成缆设备中具有层绞式光缆缆芯成缆程序,所述成缆设备中预存有颜色序列数据库,颜色序列数据库将套管常用的颜色进行了预定义;
    第四步:获取套管颜色,将获取的套管进行颜色识别,识别出套管颜色后送入成缆设备并进行比较判断,成缆设备根据判断信息进行指令发送,若套管颜色为颜色序列数据库中的套管常用的颜色则再判断是否是套管排列图及表中的颜色,若是则发送指令至初装在绞合头前端的周围管外的智能装置;若套管颜色为颜色序列数据库中的套管常用的颜色且判断不是套管排列图及表中的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;若套管颜色不是颜色序列数据库中的套管常用的颜色,则成缆设备报警提示用错套管重新获取新的套管的颜色;
    第五步:输出到对应的绞合头,在对应的绞合头处语音或信号提示穿入套管;
    第六步:引导穿松套管,按提示的信息将套管穿入周围管的空腔内并穿到最前方,穿完后进入下一步;
    第七步:是否最后一根,根据套管排列图及表判断是否是最后一根套管,若否则进入第四步,若是则将信号发送至成缆设备,完成套管自动判断及穿管工作,指令成缆设备启用自动程序进行层绞式通信光缆缆芯的自动制造。
  4. 根据权利要求1至权利要求3任意一项所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述成缆ITEM代码中,成缆ITEM代码表示方法为:工序代号2位+芯数3位+光纤类型1位+光纤色谱1位+缆芯色谱1位+套管直径3位+结构代号2位+阻水方式1位+特殊位3位,合计长度:16位,SP036100190060000代表:普通36芯层绞缆芯,光纤为B1.3类型,光纤及套管都为全色谱,套管直径1.90mm,1+6结构,阻水膏阻水,无特殊要求。
  5. 根据权利要求4所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述转成套管排列图及表中,套管ITEM代码表示方法为:工序代号2位+芯数3位+光纤类型1位+光纤色谱1位+套管色谱1位+套管直径3位+阻水方式1位+特殊位3位,合计长度:15位,TS0061011900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为蓝色,套管直径1.90mm,阻水膏阻水,无特殊要求;TS0061021900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为橙色,套管直径1.90mm,阻水膏阻水,无特殊要求; TS0061031900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为绿色,套管直径1.90mm,阻水膏阻水,无特殊要求; TS0061041900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为棕色,套管直径1.90mm,阻水膏阻水,无特殊要求; TS0061051900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为灰色,套管直径1.90mm,阻水膏阻水,无特殊要求;如:TS0061061900000代表:普通6芯层绞缆用套管,光纤为B1.3类型,光纤为全色谱,套管为白色,套管直径1.90mm,阻水膏阻水,无特殊要求;套管的颜色分别为:蓝、橙、绿、棕、灰、白,所有套管的最外缘都在同一圆柱面形状的缆芯外边缘上,中心加强件是预先穿入到中心管的内部孔内的;套管排列表即依次分别为:TS0061011900000、TS0061021900000、TS0061031900000、TS0061041900000、TS0061051900000、TS0061061900000。
  6. 根据权利要求5所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述发送到成缆设备中,颜色序列数据库中采用穷举法,对常用的套管颜色依次进行了定义,常用的套管颜色为:蓝、橙、绿、棕、灰、白、红、黑、粉红、青绿、本色,都采用RGB定义,至少具有以下定义:蓝(0,0,255)、橙(255,165,0)、绿(0,255,0)、棕(165,42,42)、灰(128,128,128)、白(255,255,255)、红(255,0,0)、黑(0,0,0)、黄(255,255,0)、紫(128,0,128)、粉红(255,192,203)、青色(0,255,255)。
  7. 根据权利要求6所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述获取套管颜色中,套管的颜色获取的方式为以下的一种:(1)通过摄像头摄取套管外部,获取图像后自动送入photoshop中,采用拾色器点击中间任一点,并提取取色区中的RGB值;(2)采用条码枪等设备读取套管条码并提取其中的套管颜色位并编译成颜色,如条码枪等设备读取套管条码TS0061011900000,得套管颜色位为190前面的1,即蓝色,编译成RGB为(0,0,255),如条码枪等设备读取套管条码TS0061031900000,得套管颜色位为190前面的3,即绿色,编译成RGB为(0,255,0),依次类推;(3)通过摄像头摄取套管外部,获取图像后自动送入microsoft office的Word中调用颜色识别程序提取取色区中的RGB值。
  8. 根据权利要求7所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述输出到对应的绞合头中,所述绞合头位于成缆绞合装置上,所述成缆绞合装置包含有电机、传动带、绞合头、两个支撑装置,绞合头由两个相互平行且具有间隔设置的绞合装置、中心管、多根周围管构成,每个绞合装置由中心箍、多个周围箍、随动轮构成,中心箍位于中央,多个周围箍对称地分布在中心箍之外,中心箍与每个周围箍之间通过内连接条连接,相邻的周围箍之间通过外连接条连接,所有周围箍的轴线在同一圆柱面上且该圆柱面的中心轴线与中心箍的中心轴线相重合,随动轮外接于周围箍之外,随动轮的外缘上具有凹槽,中心箍内部具有中心腔,周围箍内部具有周围腔,每个绞合装置都为一体式结构;中心管安装在绞合装置的中心腔内,周围管安装在绞合装置的周围腔内,中心管为硬管,周围管为软管;支撑装置由固定套与连接柱构成,连接柱下端固定在底座上,连接柱上端连接固定套,一个支撑装置支撑在伸出一个绞合装置的前端面的中心管上,另一个支撑装置支撑在伸出另一个绞合装置的后端面的中心管上;中心管能在固定套内转动;传动带一端套在凹槽内,传动带一端套在电机的转动部件上;智能装置套装在伸出一个绞合装置的前端面的周围管外,智能装置中心具有过孔,智能装置对于伸入过孔的物体具有彩色高清摄像功能、将所拍图像以无线形式发送的功能、接收信号指令的功能、发光及语音报警的功能;所述智能装置获取套管的颜色获取的方式为以下的一种:(1)通过摄像头摄取套管外部,获取图像后自动送入photoshop中,采用拾色器点击中间任一点,并提取取色区中的RGB值;(2)通过摄像头摄取套管外部,获取图像后自动送入microsoft office的Word中调用颜色识别程序提取取色区中的RGB值。
  9. 根据权利要求8所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于所述智能装置是改进的无线摄像头或无线相机。
  10. 根据权利要求8所述的一种层绞式通信光缆缆芯智能制造方法,其特征在于两个绞合装置之间的周围管是不连续的。
PCT/CN2020/134156 2020-10-04 2020-12-07 一种层绞式通信光缆缆芯智能制造方法 WO2022068045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080016242.3A CN113490874B (zh) 2020-10-04 2020-12-07 一种层绞式通信光缆缆芯智能制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011066971.8 2020-10-04
CN202011066971.8A CN112180526B (zh) 2020-10-04 2020-10-04 一种层绞式通信光缆缆芯智能制造方法

Publications (1)

Publication Number Publication Date
WO2022068045A1 true WO2022068045A1 (zh) 2022-04-07

Family

ID=73948848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134156 WO2022068045A1 (zh) 2020-10-04 2020-12-07 一种层绞式通信光缆缆芯智能制造方法

Country Status (2)

Country Link
CN (1) CN112180526B (zh)
WO (1) WO2022068045A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644803A (zh) * 2009-05-21 2010-02-10 蒋菊生 光缆色谱分配的方法
CN202929253U (zh) * 2012-08-13 2013-05-08 住电光纤光缆(深圳)有限公司 一种光缆
CN204332241U (zh) * 2014-05-16 2015-05-13 国家电网公司 一种光缆标示签
US20160139356A1 (en) * 2013-10-30 2016-05-19 Kristopher Garcia Reference System for Fiber Optic Cables
CN108303775A (zh) * 2018-04-09 2018-07-20 江苏中利集团股份有限公司 一种具有夜光标识的光缆及其制造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293081B1 (en) * 1997-06-12 2001-09-25 Siecor Operations, Llc Fiber optic cable marking process and a sensor device use therewith
US20040037521A1 (en) * 2002-08-22 2004-02-26 Shunhe Xiong Methods and apparatus for coloring optical fibers during draw
CN100472260C (zh) * 2006-04-30 2009-03-25 上海光纤有限公司 光纤鉴别方法及装置
CN201028984Y (zh) * 2006-08-01 2008-02-27 浙江大学 一种颜色自动识别系统
JP4640381B2 (ja) * 2007-06-21 2011-03-02 住友電気工業株式会社 着色トレーサ異常検出装置および異常検出方法
CN105628711B (zh) * 2015-12-25 2019-01-29 长飞光纤光缆股份有限公司 一种彩条套管在线检测方法及装置
CN206039176U (zh) * 2016-07-14 2017-03-22 苏州古河电力光缆有限公司 一种着色光纤色环监控报警系统
CN109661603A (zh) * 2016-08-30 2019-04-19 康宁股份有限公司 使用护套颜色的多光纤识别
JP2019142200A (ja) * 2018-02-23 2019-08-29 日立金属株式会社 樹脂層の色判別方法
CN210323470U (zh) * 2019-07-30 2020-04-14 桐庐精锐医疗器械有限公司 一种可自动识别不同型号光纤接头的系统
CN110954295B (zh) * 2019-11-29 2021-08-03 烽火通信科技股份有限公司 一种检测光纤着色质量的装置及其检测方法
CN111646315A (zh) * 2020-04-21 2020-09-11 平原恒丰纺织科技有限公司 一种基于计算机视觉的纺纱管颜色识别方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101644803A (zh) * 2009-05-21 2010-02-10 蒋菊生 光缆色谱分配的方法
CN202929253U (zh) * 2012-08-13 2013-05-08 住电光纤光缆(深圳)有限公司 一种光缆
US20160139356A1 (en) * 2013-10-30 2016-05-19 Kristopher Garcia Reference System for Fiber Optic Cables
CN204332241U (zh) * 2014-05-16 2015-05-13 国家电网公司 一种光缆标示签
CN108303775A (zh) * 2018-04-09 2018-07-20 江苏中利集团股份有限公司 一种具有夜光标识的光缆及其制造

Also Published As

Publication number Publication date
CN112180526A (zh) 2021-01-05
CN112180526B (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN1608273A (zh) 使用图像模式识别的卷曲管道检测系统
CN106357942A (zh) 基于上下文对话语义识别的智能应答方法及系统
CN107688802A (zh) 一种基于图像识别的简易编程方法及装置
CN110646425B (zh) 一种烟叶在线辅助定级方法及系统
CN110689148A (zh) 一种基于ar技术的计量设备故障检测方法
CN109559054B (zh) 一种电力工程施工信息处理系统
WO2022068045A1 (zh) 一种层绞式通信光缆缆芯智能制造方法
CN113490874B (zh) 一种层绞式通信光缆缆芯智能制造方法
CN108520147B (zh) 航天器电缆安装工艺设计及可视化展示系统
CN214221166U (zh) 一种单芯电缆测井数据传输的自动增益调节装置及系统
CN114742241A (zh) 一种运用mr眼镜诊断设备故障的巡检平台
CN115080641A (zh) 一种基于深度学习的大数据类型分类与挖掘方法、系统及装置
CN109346160B (zh) 一种数据格式的处理方法
CN113552138A (zh) 一种基于计算机视觉的电缆盘具质量检测系统
CN106055229A (zh) 一种基于读屏的显示界面调整方法及显示界面调整模块
CN106094707A (zh) 一种光纤生产数据获取的方法、相关设备及系统
CN207650447U (zh) 一种sc光纤连接器用的可弯曲尾套
CN113792401B (zh) 一种基于vb编程的带传动系统设计数字化方法
CN111507316A (zh) 一种光交箱智能识别方法及系统
CN210038274U (zh) 纤序识别热缩管
CN101697178A (zh) 一种材料耗用计算装置
CN220686380U (zh) 一种电机生产用新型噪音房
CN212278625U (zh) 一种用于智能工业自动化可控制化界面平台智能系统
CN101359466B (zh) 显示装置、显示系统及色彩模式设定方法
CN108809409A (zh) 一种基于衰耗图形特征点的光缆衰耗类型诊断系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956062

Country of ref document: EP

Kind code of ref document: A1