WO2022068007A1 - 空调器控制电路、空调器控制方法、电路板及空调器 - Google Patents

空调器控制电路、空调器控制方法、电路板及空调器 Download PDF

Info

Publication number
WO2022068007A1
WO2022068007A1 PCT/CN2020/129436 CN2020129436W WO2022068007A1 WO 2022068007 A1 WO2022068007 A1 WO 2022068007A1 CN 2020129436 W CN2020129436 W CN 2020129436W WO 2022068007 A1 WO2022068007 A1 WO 2022068007A1
Authority
WO
WIPO (PCT)
Prior art keywords
input terminal
phase input
air conditioner
phase
module
Prior art date
Application number
PCT/CN2020/129436
Other languages
English (en)
French (fr)
Inventor
杨建宁
黄招彬
赵鸣
文先仕
徐锦清
Original Assignee
重庆美的制冷设备有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022223316.0U external-priority patent/CN212457336U/zh
Priority claimed from CN202011063332.6A external-priority patent/CN114322275A/zh
Application filed by 重庆美的制冷设备有限公司, 广东美的制冷设备有限公司 filed Critical 重庆美的制冷设备有限公司
Publication of WO2022068007A1 publication Critical patent/WO2022068007A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular, to an air conditioner control circuit, an air conditioner control method, a circuit board and an air conditioner.
  • a common rectifier topology in an air conditioner powered by a three-phase power supply is a three-phase uncontrollable rectifier bridge, which is generally composed of rectifier diodes, which can convert three-phase alternating current into direct current to supply power to the compressor. Since the diode is a nonlinear device, the on-current and the input voltage waveform are inconsistent, resulting in the rectifier injecting a large number of harmonics into the grid side, polluting the grid environment and failing to meet the electromagnetic compatibility standards.
  • Embodiments of the present disclosure provide an air conditioner control circuit, an air conditioner control method, a circuit board, and an air conditioner, which can improve the harmonic problem.
  • an air conditioner control circuit including:
  • the rectifier module includes a three-phase rectifier bridge and a two-way switch assembly, the three-phase rectifier bridge includes a first bridge arm, a second bridge arm and a third bridge arm that are connected in parallel;
  • the two-way switch assembly includes a first bridge arm, a second bridge arm and a third bridge arm A bidirectional switch, a second bidirectional switch and a third bidirectional switch, one end of the first bidirectional switch is connected to the midpoint of the first bridge arm, and one end of the second bidirectional switch is connected to the midpoint of the second bridge arm , one end of the third bidirectional switch is connected to the midpoint of the third bridge arm;
  • the energy storage module is connected in parallel with the three-phase rectifier bridge, the energy storage module includes a first capacitor and a second capacitor connected in series with each other, the other end of the first bidirectional switch, the second bidirectional switch The other end of the switch and the other end of the third bidirectional switch are both connected between the first capacitor and the second capacitor;
  • the DC output terminal is connected to the energy storage module
  • a compressor module the compressor module is connected to the DC output end.
  • the air conditioner control circuit provided by the embodiment of the present disclosure has at least the following beneficial effects: the air conditioner control circuit of the embodiment of the present disclosure uses the rectifier module to rectify the AC power input from the AC input end, and the energy storage module stores energy to the compressor module.
  • the rectifier module can control the bidirectional switch assembly by setting a three-phase rectifier bridge and a bidirectional switch assembly, so that the voltage input from the AC input terminal is consistent with the waveform phase of the input current, thereby solving the harmonic problem.
  • the bidirectional switch component of the rectifier module is connected between the first capacitor and the second capacitor, it is beneficial to reduce the loss of the bidirectional switch component and improve the efficiency of the circuit.
  • the air conditioner control circuit further includes:
  • the air conditioner control circuit further includes:
  • the auxiliary power supply module includes an auxiliary power supply input terminal, a two-phase rectifier bridge and a power supply assembly, the auxiliary power supply input terminal is respectively connected to the AC input terminal and the two-phase rectifier bridge, and the two-phase rectifier bridge connected in parallel with the power supply assembly.
  • the auxiliary power module can be used to supply power to other loads, and the auxiliary power module is connected to the AC input terminal, and can obtain power from the AC input terminal, which is beneficial to improve the equipment efficiency of the air conditioner.
  • the AC input terminal includes a first-phase input terminal, a second-phase input terminal, and a third-phase input terminal
  • the auxiliary power input terminal includes a fourth-phase input terminal and a fifth-phase input terminal end
  • the two-phase rectifier bridge includes a fourth bridge arm and a fifth bridge arm
  • the fourth phase input terminal is connected to any one of the first phase input terminal, the second phase input terminal and the third phase input terminal, and the fourth phase input terminal is also connected to the fourth bridge
  • the midpoint of the arm, the fifth phase input terminal is connected to the midpoint of the fifth bridge arm; or, the fourth phase input terminal and the fifth phase input terminal are correspondingly connected to the first phase input terminal, Any two of the second-phase input terminal and the third-phase input terminal, the fourth-phase input terminal is also connected to the midpoint of the fourth bridge arm, and the fifth-phase input terminal is also connected to the The midpoint of the fifth bridge arm.
  • the fourth-phase input terminal is connected to any one of the first-phase input terminal, the second-phase input terminal, and the third-phase input terminal, that is, the auxiliary power supply module takes the phase voltage Electric mode, with low voltage and high current, is conducive to reducing the specification requirements of components and reducing costs; and the fourth-phase input terminal and the fifth-phase input terminal are correspondingly connected to the first-phase input terminal and the second-phase input terminal.
  • Any two of the phase input terminal and the third phase input terminal, that is, the auxiliary power module is in the line voltage power taking mode, with high voltage and low current, high safety, and can avoid the occurrence of wrong wiring.
  • the air conditioner control circuit further includes:
  • a first fan module the first fan module includes a DC fan and a first drive assembly for driving the DC fan, the first drive assembly is connected in parallel with the two-phase rectifier bridge.
  • the air conditioner control circuit further includes a first fan module, and the first fan module takes power from the auxiliary power supply. Since the auxiliary power supply is provided with a two-phase rectifier bridge, it can output DC power, so that the first fan module can use DC power. Fan, easy to control the speed.
  • the air conditioner control circuit further includes:
  • a second fan module the second fan module includes an AC fan and a second drive assembly for driving the AC fan, and the second drive assembly is respectively connected to the AC input end and the AC fan.
  • the second fan module adopts an AC fan, which has the advantage of stable operation.
  • the AC input terminal includes a first-phase input terminal, a second-phase input terminal, and a third-phase input terminal;
  • the second driving component is connected to any one of the first phase input terminal, the second phase input terminal and the third phase input terminal; or, the second driving component is connected to the first phase input terminal respectively Any two of the input terminal, the second phase input terminal and the third phase input terminal.
  • the second drive assembly is connected to any one of the first phase input terminal, the second phase input terminal and the third phase input terminal, that is, the second fan module is a phase voltage taker Electric mode, low voltage and high current, which is conducive to reducing the specification requirements of components and reducing costs; the second driving component is respectively connected to the first phase input terminal, the second phase input terminal and the third phase input Any two of the terminals, that is, the second fan module, is a line voltage power taking mode, with high voltage and low current, high safety, and can avoid the occurrence of wrong wiring.
  • the air conditioner control circuit further includes:
  • the detection module is used for detecting at least one of the voltage value of the AC input terminal, the current value of the AC input terminal and the voltage value of the DC output terminal.
  • the detection module by setting the detection module to detect the voltage value of the AC input terminal, the current value of the AC input terminal and the voltage value of the DC output terminal, it is convenient to detect the voltage value of the AC input terminal, the AC voltage value according to the detection of the AC input terminal.
  • the current value of the input terminal and the voltage value of the DC output terminal control the bidirectional switch assembly, so as to better realize the control of the rectifier module.
  • an embodiment of the present disclosure further provides an air conditioner control method, which is applied to the air conditioner control circuit described in the first aspect, and the air conditioner control method includes:
  • a driving signal is sent to the bidirectional switch assembly, where the driving signal is used to control any one of the first bidirectional switch, the second bidirectional switch or the third bidirectional switch to be driven synchronously.
  • the air conditioner control method provided by the embodiment of the present disclosure has at least the following beneficial effects: the air conditioner control method of the embodiment of the present disclosure sends a drive signal to the two-way switch assembly, and the drive signal is used to control the first two-way switch, Any one of the second bidirectional switch or the third bidirectional switch is driven synchronously, so that the waveform phase of the voltage input from the AC input terminal is consistent with the waveform phase of the input current, thereby solving the harmonic problem.
  • an embodiment of the present disclosure further provides a circuit board, including the air conditioner control circuit described in the first aspect.
  • a circuit board including the air conditioner control circuit described in the first aspect.
  • the memory storing instructions executable by the at least one processor, the instructions being executed by the at least one processor , so that the at least one processor can execute the air conditioner control method of the second aspect.
  • the circuit board of the embodiment of the present disclosure uses the rectifier module to rectify the AC power input from the AC input terminal, and then supplies power to the compressor module after the energy storage module stores energy.
  • the component through the control of the bidirectional switch component, can make the input voltage from the AC input end consistent with the waveform phase of the input current, so as to solve the harmonic problem.
  • the bidirectional switch component of the rectifier module is connected between the first capacitor and the second capacitor, it is beneficial to reduce the loss of the bidirectional switch component and improve the efficiency of the circuit.
  • an embodiment of the present disclosure further provides an air conditioner, including the air conditioner control circuit of the first aspect. Therefore, the air conditioner of the embodiment of the present disclosure uses the rectifier module to rectify the AC power input from the AC input terminal, and then supplies power to the compressor module after the energy storage module stores energy. The component, through the control of the bidirectional switch component, can make the input voltage from the AC input end consistent with the waveform phase of the input current, so as to solve the harmonic problem. Moreover, since the bidirectional switch component of the rectifier module is connected between the first capacitor and the second capacitor, it is beneficial to reduce the loss of the bidirectional switch component and improve the efficiency of the circuit.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the second aspect.
  • Air conditioner control method Air conditioner control method.
  • FIG. 1 is a circuit schematic diagram of a three-phase uncontrollable rectifier bridge in the prior art provided by an embodiment of the present disclosure
  • FIG. 2 is a circuit schematic diagram of an air conditioner control circuit provided by an embodiment of the present disclosure
  • FIG. 3 is another circuit schematic diagram of the air conditioner control circuit provided by the embodiment of the present disclosure.
  • FIG. 4 is another circuit schematic diagram of the air conditioner control circuit provided by the embodiment of the present disclosure.
  • FIG. 5 is another circuit schematic diagram of the air conditioner control circuit provided by the embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the driving principle of the first switch tube to the sixth switch tube provided by an embodiment of the present disclosure
  • FIG. 7 is a flowchart of an air conditioner control method provided by an embodiment of the present disclosure.
  • FIG. 8 is an exemplary driving signal waveform diagram of a bidirectional switch assembly provided by an embodiment of the present disclosure (taking the first switch tube and the second switch tube as an example)
  • FIG. 9 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure.
  • multiple means two or more, greater than, less than, exceeding, etc. are understood as not including this number, and above, below, within, etc. are understood as including this number. If there is a description of "first”, “second”, etc., it is only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance, or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The sequence of technical characteristics.
  • FIG. 1 it is a three-phase uncontrollable rectifier bridge in the prior art.
  • the topology is generally composed of rectifier diodes, which can convert three-phase alternating current into direct current to supply power to the compressor. Since the diode is a nonlinear device, the on-current and the input voltage waveform are inconsistent, resulting in the rectifier injecting a large number of harmonics into the grid side, polluting the grid environment and failing to meet the electromagnetic compatibility standards.
  • an embodiment of the present disclosure provides an air conditioner control circuit, including a rectifier module 201 , an energy storage module 202 , an AC input end, a DC output end 203 , and a compressor module 204 , wherein the rectifier module 201 includes Three-phase rectifier bridge and bidirectional switch assembly, the three-phase rectifier bridge includes a first bridge arm 2011, a second bridge arm 2012 and a third bridge arm 2013 connected in parallel with each other; the bidirectional switch assembly includes a first bidirectional switch 2014, a second bidirectional switch 2015 and the third bidirectional switch 2016, one end of the first bidirectional switch 2014 is connected to the midpoint of the first bridge arm 2011, one end of the second bidirectional switch 2015 is connected to the midpoint of the second bridge arm 2012, and one end of the third bidirectional switch 2016 is connected to the first bridge arm 2012.
  • the energy storage module 202 is connected in parallel with the three-phase rectifier bridge, the energy storage module 202 includes a first capacitor C1 and a second capacitor C2 connected in series, the other end of the first bidirectional switch 2014, the second bidirectional switch The other end of 2015 and the other end of the third bidirectional switch 2016 are connected between the first capacitor C1 and the second capacitor C2; the AC input end is connected to the rectifier module 201, the DC output end 203 is connected to the energy storage module 202, and the compressor module 204 Connect to the DC output terminal 203 .
  • the AC input terminal includes a first phase input terminal 2051, a second phase input terminal 2052 and a third phase input terminal 2053
  • the first bridge arm 2011 includes a first diode D1 and a second diode D2 connected in series with each other
  • the second bridge arm 2012 includes a third diode D3 and a fourth diode D4 connected in series with each other
  • the third bridge arm 2013 includes a fifth diode D5 and a sixth diode D6 connected in series with each other
  • the first bidirectional One end of the switch 2014 is connected to the midpoint of the first bridge arm 2011, that is, one end of the first bidirectional switch 2014 is connected between the first diode D1 and the second diode D2; one end of the second bidirectional switch 2015 is connected to the second The midpoint of the bridge arm 2012, that is, one end of the second bidirectional switch 2015 is connected between the third diode D3 and the fourth diode D4; one end of the third bidirectional switch 2016 is connected to the midpoint of the third bridge
  • the AC input terminal is used to connect to the three-phase mains, that is, the first-phase input terminal 2051, the second-phase input terminal 2052 and the third-phase input terminal 2053 are correspondingly connected to the A, B, and C three-phase mains, and the first capacitor C1 and the second capacitor C2 are electrolytic capacitors, the positive electrodes of the first capacitor C1 are respectively connected to the negative electrodes of the first diode D1, the third diode D3 and the fifth diode D5, and the negative electrodes of the second capacitor C2 are respectively connected to the second The cathodes of the diode D2, the third diode D3 and the sixth diode D6, the three-phase commercial power is rectified by the rectifier module 201 and then outputs a DC signal to the compressor module 204, and the DC output terminal 203 can be the first capacitor C1 The positive pole, the common terminal of the first capacitor C1 and the second capacitor C2, the negative pole of the second capacitor C2, the common terminal of the first capacitor C1 and the second capacitor C
  • the compressor module 204 includes a compressor 2042 and a first IPM module 2031 , and the DC signal output by the DC output terminal 203 supplies power to the compressor 2042 through the first IPM module 2041 . It is understood that the number of compressor modules 204 may be one or more.
  • first two-way switch 2014, the second two-way switch 2015 and the third two-way switch 2016 may include two switch tubes, wherein the first two-way switch 2014 includes a first switch tube T1 and a second switch tube T2, wherein the first two-way switch T1 and the second switch tube T2.
  • the switch tube T1 is connected to the emitter of the second switch tube T2
  • the collector of the first switch tube T1 is connected to the common terminal of the first diode D1 and the second diode D2
  • the collector of the second switch tube T2 is connected to the first diode D1 and the second diode D2.
  • the collectors of the first switch tube T1 and the second switch tube T2 can also be connected, the emitter of the first switch tube T1 is connected to the common terminal of the first diode D1 and the second diode D2, and the second switch tube T1 The emitter of the switch tube T2 is connected to the common terminal of the first capacitor C1 and the second capacitor C2.
  • the first bidirectional switch 2014 can adopt insulated gate bipolar transistor IGBT, integrated gate commutated thyristor IGCT, metal oxide semiconductor field effect transistor MOSFET, etc.
  • first bidirectional switch 2014 adopts MOSFET
  • the emitters of the first switch tube T1 and the second switch tube T2 are connected, that is, the source electrodes of the first switch tube T1 and the second switch tube T2 are connected accordingly.
  • the collectors of the first switch transistor T1 and the second switch transistor T2 are connected, that is, the drains of the first switch transistor T1 and the second switch transistor T2 are connected accordingly.
  • the first bidirectional switch 2014 may also be implemented in parallel by using reverse resistance type switch tubes.
  • the second bidirectional switch 2015 includes a third switch transistor T3 and a fourth switch transistor T4, wherein the third switch transistor T3 is connected to the emitter of the fourth switch transistor T4, and the collector of the third switch transistor T3 is connected to the third diode D3 and the common terminal of the fourth diode D4, and the collector of the fourth switch tube T4 is connected to the common terminal of the first capacitor C1 and the second capacitor C2.
  • the collector of the third switch tube T3 and the fourth switch tube T4 may also be connected, the emitter of the third switch tube T3 may be connected to the common terminal of the third diode D3 and the fourth diode D4, and the fourth switch tube T3
  • the emitter of the switch tube T4 is connected to the common terminal of the first capacitor C1 and the second capacitor C2.
  • the second bidirectional switch 2015 can adopt insulated gate bipolar transistor IGBT, integrated gate commutated thyristor IGCT, metal oxide semiconductor field effect transistor MOSFET, etc.
  • the second bidirectional switch 2015 adopts MOSFET
  • the emitter electrodes of the third switch transistor T3 and the fourth switch transistor T4 are connected, that is, the source electrodes of the third switch transistor T3 and the fourth switch transistor T4 are connected accordingly.
  • the collectors of the third switch tube T3 and the fourth switch tube T4 are connected, that is, the drains of the third switch tube T3 and the fourth switch tube T4 are connected accordingly.
  • the second bidirectional switch 2015 may also be implemented in parallel by using reverse resistance type switch tubes.
  • the third bidirectional switch 2016 includes a fifth switch transistor T5 and a sixth switch transistor T6, wherein the emitter of the fifth switch transistor T5 and the sixth switch transistor T6 are connected, and the collector of the fifth switch transistor T5 is connected to the fifth diode D5 and the common terminal of the sixth diode D6, and the collector of the sixth switch tube T6 is connected to the common terminal of the first capacitor C1 and the second capacitor C2.
  • the collectors of the fifth switch tube T5 and the sixth switch tube T6 may also be connected, the emitter of the fifth switch tube T5 is connected to the common terminal of the fifth diode D5 and the sixth diode D6, and the sixth switch tube T5 The emitter of the switch tube T6 is connected to the common terminal of the first capacitor C1 and the second capacitor C2.
  • the third bidirectional switch 2016 can adopt insulated gate bipolar transistor IGBT, integrated gate commutated thyristor IGCT, metal oxide semiconductor field effect transistor MOSFET, etc.
  • the third bidirectional switch 2016 adopts MOSFET
  • the emitter electrodes of the fifth switch transistor T5 and the sixth switch transistor T6 are connected, that is, the source electrodes of the fifth switch transistor T5 and the sixth switch transistor T6 are connected accordingly.
  • the collectors of the fifth switch T5 and the sixth switch T6 are connected, that is, the drains of the fifth switch T5 and the sixth switch T6 are connected accordingly.
  • the third bidirectional switch 2016 may also be implemented in parallel by using reverse resistance type switch tubes.
  • first switch transistor T1 the second switch transistor T2 , the third switch transistor T3 , the fourth switch transistor T4 , the fifth switch transistor T5 , and the sixth switch transistor T6 all have diodes in antiparallel.
  • the AC input end is connected to the rectifier module 201 through the inductance device 206 , and the inductance device 206 is arranged between the AC input end and the rectifier module 201 , which is beneficial to filter out harmonics and further improve the harmonic problem.
  • the inductance device 206 includes a first inductance L1, a second inductance L2 and a third inductance L3, the first inductance L1 is connected to the first phase input terminal 2051, the second inductance L2 is connected to the second phase input terminal 2052, and the third inductance L3 Connect the third phase input terminal 2053.
  • the above air conditioner control circuit may also include an auxiliary power supply module and a first fan module 209.
  • the auxiliary power supply module includes an auxiliary power supply input terminal, a two-phase rectifier bridge and a power supply assembly 208.
  • the auxiliary power supply input terminal is respectively connected to the AC input terminal and the two A phase rectifier bridge, a two-phase rectifier bridge is connected in parallel with the power supply assembly 208 .
  • the auxiliary power supply module can be used to supply power to other loads, and the auxiliary power supply module is connected to the AC input terminal, and the power can be obtained from the AC input terminal, which is beneficial to improve the equipment efficiency of the air conditioner.
  • the power supply component 208 is a common power supply circuit in the prior art, for example, including a power supply chip, a voltage regulator chip, and the like, which will not be repeated here.
  • the auxiliary power input terminal includes a fourth-phase input terminal 2101 and a fifth-phase input terminal 2102
  • the two-phase rectifier bridge includes a fourth bridge arm 2071 and a fifth bridge arm 2072
  • the fourth bridge arm 2071 includes a The seventh diode D7 and the eighth diode D8,
  • the fifth bridge arm 2072 includes the ninth diode D9 and the tenth diode D10 connected in series with each other
  • the fourth phase input terminal 2101 is respectively connected to the third phase input terminal 2053 and the midpoint of the fourth bridge arm 2071
  • the fourth phase input terminal 2101 is connected to the midpoint of the fourth bridge arm 2071, that is, the fourth phase input terminal 2101 is connected between the seventh diode D7 and the eighth diode D8
  • the fifth-phase input terminal 2102 is connected to the midpoint of the fifth bridge arm 2072, that is, the fifth-phase input terminal 2102 is connected between the ninth diode D9 and the tenth diode D10.
  • the fourth-phase input terminal 2101 is connected to any one of the first-phase input terminal 2051, the second-phase input terminal 2052 and the third-phase input terminal 2053, and the fifth-phase input terminal 2102 is used to connect the neutral line, that is, the auxiliary power module It is the phase voltage power taking mode, the voltage is low and the current is large, which is conducive to reducing the specification requirements of the components and reducing the cost. It should be added that, in FIG. 2 , the fourth-phase input terminal 2101 is connected to the third-phase input terminal 2053 (ie, the C-phase of the commercial power) as an example for description.
  • the first fan module 209 includes a DC fan 2092 and a first drive assembly for driving the DC fan 2092, and the first drive assembly is connected in parallel with the two-phase rectifier bridge.
  • the air conditioner control circuit also includes the first fan module 209, and the first fan module 209 takes power from the auxiliary power supply. Since the auxiliary power supply is provided with a two-phase rectifier bridge, it can output DC power, so that the first fan module 209 can use the DC fan 2092, It is convenient to control the speed.
  • the first driving component may be the second IPM module 2091 . It can be understood that the number of the first fan modules 209 may be one or more.
  • the auxiliary power supply module can also be a line voltage power supply mode.
  • the auxiliary power supply input terminal includes a fourth phase input terminal 2101 and a fifth phase input terminal 2102, and a two-phase rectifier bridge It includes a fourth bridge arm 2071 and a fifth bridge arm 2072, wherein the fourth bridge arm 2071 includes a seventh diode D7 and an eighth diode D8 connected in series with each other, and the fifth bridge arm 2072 includes a ninth and second diode connected in series with each other.
  • the fourth phase input terminal 2101 is respectively connected to the midpoint of the third phase input terminal 2053 and the fourth bridge arm 2071, and the fourth phase input terminal 2101 is connected to the midpoint of the fourth bridge arm 2071 That is, the fourth-phase input terminal 2101 is connected between the seventh diode D7 and the eighth diode D8; the fifth-phase input terminal 2102 is connected to the midpoint of the fifth bridge arm 2072, that is, the fifth-phase input terminal 2102 is connected to between the ninth diode D9 and the tenth diode D10.
  • the fourth phase input terminal 2101 and the fifth phase input terminal 2102 are correspondingly connected to any two of the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053, that is, the auxiliary power module is a line voltage In the power taking mode, the voltage is high and the current is small, the safety is high, and the situation of wrong wiring can be avoided.
  • the fourth-phase input terminal 2101 and the fifth-phase input terminal 2102 are correspondingly connected to any two of the first-phase input terminal 2051 , the second-phase input terminal 2052 and the third-phase input terminal 2053 , for example, the fourth-phase input terminal 2101 Connect the first-phase input terminal 2051 (ie, mains phase A), and the fifth-phase input terminal 2102 is connected to the second-phase input terminal 2052 (ie, mains phase B); or the fourth-phase input terminal 2101 can be connected to the second-phase input terminal 2052 (that is, phase B of the mains), the fifth-phase input terminal 2102 is connected to the third-phase input terminal 2053 (that is, phase C of the mains); or the fourth-phase input terminal 2101 can be connected to the first-phase input terminal 2051 (that is, the mains Electric A-phase), the fifth-phase input terminal 2102 is connected to the third-phase input terminal 2053 (ie, the mains C-phase).
  • the fourth-phase input terminal 2101 Connect the first-phase input
  • the fourth phase input terminal 2101 is connected to the first phase input terminal 2051 (ie, the commercial power phase A), and the fifth phase input terminal 2102 is connected to the third phase input terminal 2053 (ie, the commercial power phase C phase). ) as an example.
  • the above-mentioned first fan module 209 can also be replaced with a second fan module 401.
  • the second fan module 401 includes an AC fan 4011 and a second drive assembly for driving the AC fan 4011.
  • the second drive The components are respectively connected to the AC input end and the AC fan 4011 .
  • the second driving component may be a startup capacitor and an adapter wire.
  • the second fan module 401 adopts an AC fan 4011, which has the advantage of stable operation.
  • the second fan module 401 can take electricity from the mains alone, and the second drive assembly is connected to any one of the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053, namely the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053.
  • the second fan module 401 is in the phase voltage power taking mode, and the voltage is low and the current is large, which is beneficial to reduce the specification requirements of the components and reduce the cost.
  • the second driving component is connected to the third-phase input terminal 2053 (ie, the C-phase of the commercial power) as an example for description. It can be understood that the number of the second fan modules 401 may also be one or more.
  • the second fan module 401 may be a line voltage power taking mode in addition to the phase voltage power taking mode.
  • the second fan module 401 includes an AC fan 4011 and a second driving component for driving the AC fan 4011 , the second drive assembly is respectively connected to the AC input end and the AC fan 4011 .
  • the second driving component may be a startup capacitor and an adapter wire.
  • the second fan module 401 adopts an AC fan 4011, which has the advantage of stable operation.
  • the second fan module 401 can draw power from the mains alone, and the second drive assembly is connected to any two of the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053, respectively, That is, the second fan module 401 is in the line voltage power taking mode, the voltage is high and the current is small, the safety is high, and the occurrence of wrong wiring can be avoided.
  • the second driving component is respectively connected to any two of the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053.
  • the second driving component may be connected to the first phase input terminal 2051 (ie the city Electric A-phase) and the second-phase input 2052 (that is, the B-phase of the mains); or the second drive component can be connected to the second-phase input 2052 (that is, the B-phase of the mains) and the third-phase input 2053 (that is, the B-phase of the mains), respectively.
  • Mains C-phase or the second drive assembly may be connected to the first-phase input terminal 2051 (ie, the mains phase A) and the third-phase input terminal 2053 (ie, the mains phase C), respectively.
  • the second driving component is used as an example to connect the first-phase input terminal 2051 (ie, the mains phase A) and the third-phase input terminal 2053 (ie, the mains phase C).
  • the auxiliary power module has two modes of taking power from wired voltage and phase voltage.
  • the second fan module 401 also has two modes of taking power from wire voltage and phase voltage.
  • the auxiliary power module and the second fan module 401 can take power.
  • the modes are independent of each other, that is, the auxiliary power module may use the line voltage power supply mode, and the second fan module 401 may use the phase voltage power supply mode; or, the auxiliary power module may use the phase voltage power supply mode, and the second fan module 401 may use the phase voltage power supply mode.
  • the power taking port of the second fan module 401 and the power taking port of the auxiliary power supply can be the same, that is, the second drive component is connected to the input end of the auxiliary power supply.
  • the wiring efficiency of the circuit can be the same, that is, the second drive component is connected to the input end of the auxiliary power supply.
  • the above air conditioner control circuit may further include a detection module (not shown in the drawings) for detecting the voltage value of the AC input terminal, the current value of the AC input terminal and the voltage value of the DC output terminal 203 .
  • a detection module for detecting the voltage value of the AC input terminal, the current value of the AC input terminal and the voltage value of the DC output terminal 203 .
  • the detection module can use a voltage sensor or a current sensor, and the voltage value or current value detected by the detection module can be sent to the controller. After processing, the controller sends a corresponding control pulse signal to the bidirectional switch component to control the bidirectional switch.
  • the controller sends a corresponding control pulse signal to the bidirectional switch component to control the bidirectional switch.
  • the action of each switch in the assembly Exemplarily, taking the first bidirectional switch 2014 as an example, the first switch transistor T1 and the second switch transistor T2 can be controlled to be synchronously turned on, complementarily turned on, etc., so as to realize the control of the rectifier module 201 .
  • the voltage value of the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053 when the voltage values of the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053 are sampled by the voltage sensor, only the first phase input terminal 2051, the second phase input terminal 2052 and the third phase input terminal 2053 may be sampled.
  • the voltage value at any two ends of the three-phase input terminal 2053 can be obtained through the voltage value at any two ends to obtain the voltage value of the third terminal, thereby saving a voltage sensor and reducing the circuit cost.
  • the first phase input terminal 2051, the second phase input terminal 2051, the second phase input terminal 2052 and the third-phase input terminal 2053 can be obtained by inverting the sum of the voltage values at any two ends, and then the voltage value at the remaining one end can be obtained.
  • the current values of the first-phase input terminal 2051 , the second-phase input terminal 2052 and the third-phase input terminal 2053 may be sampled.
  • the current value at any two ends of the third-phase input terminal 2053 can be obtained from the current value at any two ends to obtain the current value of the third terminal, thereby saving a current sensor and reducing the circuit cost.
  • the vector sum of the current values of the first-phase input terminal 2051 , the second-phase input terminal 2052 and the third-phase input terminal 2053 is zero, the first-phase input terminal 2051 , the second-phase input terminal 2051 , the second-phase input terminal 2052 and the third-phase input terminal 2053, the sum of the current values at any two ends is reversed, and the current value at the remaining one end can be obtained.
  • the above-mentioned detection module can also use a voltage sampling circuit, a current sampling circuit, etc., which is not limited in the embodiment of the present disclosure, as long as the voltage value of the AC input terminal and the voltage value of the AC input terminal can be obtained.
  • the current value and the voltage value of the DC output terminal 203 are sufficient.
  • the air conditioner control circuit of the embodiment of the present disclosure uses the rectifier module 201 to rectify the AC power input from the AC input terminal, and then supplies power to the compressor module 204 after the energy storage module 202 stores energy.
  • the bridge and the bidirectional switch assembly can control the bidirectional switch assembly to make the voltage input from the AC input end consistent with the waveform phase of the input current, thereby solving the harmonic problem.
  • the bidirectional switch component of the rectifier module 201 is connected between the first capacitor C1 and the second capacitor C2, it is beneficial to reduce the loss of the bidirectional switch component and improve the efficiency of the circuit.
  • an embodiment of the present disclosure further provides an air conditioner control method, which is exemplarily applied to any one of the air conditioner control circuits in FIGS. 2 to 5 , and the air conditioner control method includes the following step 701 :
  • Step 701 Send a driving signal to the bidirectional switch component, where the driving signal is used to control any one of the first bidirectional switch, the second bidirectional switch or the third bidirectional switch to be driven synchronously.
  • controlling any one of the first bidirectional switch, the second bidirectional switch or the third bidirectional switch to drive synchronously may be to control the synchronous driving of the first switch tube and the second switch tube in the first bidirectional switch , the third switch tube and the fourth switch tube in the second bidirectional switch may be controlled to be driven synchronously, or the fifth switch tube and the sixth switch tube of the third bidirectional switch may be controlled to be driven synchronously.
  • the above-mentioned driving signal can be sent to the first bidirectional switch, the second bidirectional switch and the third bidirectional switch at the same time. Referring to FIG. 8 , a waveform diagram of the above driving signal is exemplarily shown by taking the first switch transistor and the second switch transistor as examples.
  • the driving signal is used to control any one of the first bidirectional switch, the second bidirectional switch or the third bidirectional switch to be driven synchronously, so that the voltage input from the AC input terminal is in phase with the waveform of the input current Consistent, thus solving the harmonic problem.
  • an embodiment of the present disclosure further provides a circuit board, including the air conditioner control circuit in the above embodiment. Therefore, the circuit board in the embodiment of the present disclosure uses the rectifier module 201 to rectify the AC power input from the AC input terminal, and then supplies power to the compressor module 204 after the energy storage module 202 stores energy.
  • the bridge and the bidirectional switch assembly can control the bidirectional switch assembly to make the voltage input from the AC input end consistent with the waveform phase of the input current, thereby solving the harmonic problem.
  • the bidirectional switch component of the rectifier module 201 is connected between the first capacitor C1 and the second capacitor C2, it is beneficial to reduce the loss of the bidirectional switch component and improve the efficiency of the circuit.
  • an embodiment of the present disclosure further provides an air conditioner, including the air conditioner control circuit in the above embodiment. Therefore, the air conditioner in the embodiment of the present disclosure uses the rectifier module 201 to rectify the AC power input from the AC input terminal, and then supplies power to the compressor module 204 after the energy storage module 202 stores energy.
  • the bridge and the bidirectional switch assembly can control the bidirectional switch assembly to make the voltage input from the AC input end consistent with the waveform phase of the input current, thereby solving the harmonic problem.
  • the bidirectional switch component of the rectifier module 201 is connected between the first capacitor C1 and the second capacitor C2, it is beneficial to reduce the loss of the bidirectional switch component and improve the efficiency of the circuit.
  • FIG. 9 shows an air conditioner 900 provided by an embodiment of the present disclosure.
  • the air conditioner 900 includes: a memory 901, a processor 902, and a computer program stored in the memory 901 and executable on the processor 902, and the computer program is used to execute the above-mentioned air conditioner control method when running.
  • the processor 902 and the memory 901 may be connected by a bus or other means.
  • the memory 901 can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the air conditioner control method described in the embodiments of the present disclosure.
  • the processor 902 implements the above air conditioner control method by running the non-transitory software programs and instructions stored in the memory 901 .
  • the memory 901 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required by at least one function; the storage data area may store and execute the above-mentioned air conditioner control method. Additionally, memory 901 may include high-speed random access memory 901, and may also include non-transitory memory 901, such as at least one piece of storage device memory 901, a flash memory device, or other non-transitory solid state storage device. In some embodiments, the memory 901 may optionally include memory 901 located remotely from the processor 902, and these remote memories 901 may be connected to the air conditioner 900 through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the above air conditioner control method are stored in the memory 901. When executed by one or more processors 902, the above air conditioner control method is executed. Method step 701 .
  • Embodiments of the present disclosure further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the above air conditioner control method.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, by a processor 902 in the above-mentioned air conditioner 900, so that the above-mentioned processing
  • the controller 902 executes the above-mentioned air conditioner control method, for example, executes the method step 701 in FIG. 7 .
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, storage device storage or other magnetic storage devices, or Any other medium that can be used to store the desired information and that can be accessed by a computer.
  • communication media typically include computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Abstract

一种空调器控制电路、空调器控制方法、电路板及空调器。空调器控制电路包括:整流模块(201),其包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一、第二、第三桥臂(2011、2012、2013);所述双向开关组件包括第一、第二、第三双向开关(2014、2015、2016);储能模块(202),其与所述三相整流桥并联,包括相互串联的第一电容(C1)和第二电容(C2),所述第一、第二、第三双向开关(2014、2015、2016)的各自另一端分别连接于所述第一电容(C1)和所述第二电容(C2)之间;交流输入端,其连接所述整流模块(201);直流输出端(203),其连接所述储能模块(202);压缩机模块(204),其连接所述直流输出端(203)。

Description

空调器控制电路、空调器控制方法、电路板及空调器
相关申请的交叉引用
本申请要求于2020年9月30日提交的申请号为202011063332.6、名称为“空调器控制电路、空调器控制方法、电路板及空调器”,以及于2020年9月30日提交的申请号为202022223316.0、名称为“空调器控制电路、电路板及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调技术领域,特别是涉及一种空调器控制电路、空调器控制方法、电路板及空调器。
背景技术
目前,三相电源供电的空调器中常见的整流器拓扑是采用三相不可控整流桥,该拓扑一般由整流二极管构成,可以将三相交流电转化成直流电给压缩机供电。由于二极管为非线性器件,导通电流和输入电压波形不一致,导致整流器会向电网一侧注入大量谐波,污染电网环境,无法满足电磁兼容标准。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种空调器控制电路、空调器控制方法、电路板及空调器,能够改善谐波问题。
第一方面,本公开实施例提供了一种空调器控制电路,包括:
整流模块,所述整流模块包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
储能模块,所述储能模块与所述三相整流桥并联,所述储能模块包括相互串联的第一电容和第二电容,所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间;
交流输入端,所述交流输入端连接所述整流模块;
直流输出端,所述直流输出端连接所述储能模块;
压缩机模块,所述压缩机模块连接所述直流输出端。
本公开实施例提供的空调器控制电路至少具有以下有益效果:本公开实施例的空调器控制电路利用整流模块对从交流输入端输入的交流电进行整流,通过储能模块储能后向压缩机模块进行供电,其中,整流模块通过设置三相整流桥和双向开关组件,可以通过对双向开关组件的控制,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解 决谐波问题。并且,由于整流模块的双向开关组件连接于第一电容和第二电容之间,有利于降低双向开关组件的损耗,提高电路的效率。
在本公开的一些实施例中,所述空调器控制电路还包括:
电感器件,所述交流输入端通过所述电感器件连接所述整流模块。
在上述技术方案中,通过在交流输入端和整流模块之间设置电感器件,有利于滤除谐波,进一步改善谐波问题。
在本公开的一些实施例中,所述空调器控制电路还包括:
辅助电源模块,所述辅助电源模块包括辅助电源输入端、两相整流桥和电源组件,所述辅助电源输入端分别连接所述交流输入端和所述两相整流桥,所述两相整流桥与所述电源组件并联。
在上述技术方案中,通过设置辅助电源模块,可以利用辅助电源模块为其他负载供电,并且辅助电源模块连接交流输入端,可以从交流输入端中取电,有利于提升空调器的设备效率。
在本公开的一些实施例中,所述交流输入端包括第一相输入端、第二相输入端和第三相输入端,所述辅助电源输入端包括第四相输入端和第五相输入端,所述两相整流桥包括第四桥臂和第五桥臂;
所述第四相输入端连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意一个,所述第四相输入端还连接所述第四桥臂的中点,所述第五相输入端连接所述第五桥臂的中点;或者,所述第四相输入端和所述第五相输入端对应连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意两个,所述第四相输入端还连接所述第四桥臂的中点,所述第五相输入端还连接所述第五桥臂的中点。
在上述技术方案中,所述第四相输入端连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意一个,即辅助电源模块为相电压取电模式,电压低电流大,有利于降低元器件的规格要求,降低成本;而所述第四相输入端和所述第五相输入端对应连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意两个,即辅助电源模块为线电压取电模式,电压高电流小,安全性高,并且可以避免接错线的情况出现。
在本公开的一些实施例中,所述空调器控制电路还包括:
第一风机模块,所述第一风机模块包括直流风机和用于驱动所述直流风机的第一驱动组件,所述第一驱动组件与所述两相整流桥并联。
在上述技术方案中,空调器控制电路还包括第一风机模块,并且第一风机模块从辅助电源取电,由于辅助电源设置有两相整流桥,可以输出直流电,使得第一风机模块可以采用直流风机,便于对转速的控制。
在本公开的一些实施例中,所述空调器控制电路还包括:
第二风机模块,所述第二风机模块包括交流风机和用于驱动所述交流风机的第二驱动组件,所述第二驱动组件分别连接所述交流输入端和所述交流风机。
在上述技术方案中,第二风机模块采用交流风机,具有运行稳定的优点。
在本公开的一些实施例中,所述交流输入端包括第一相输入端、第二相输入端和第三相输入端;
所述第二驱动组件连接所述第一相输入端、所述第二相输入端和所述第三相输入端中 的任意一个;或者,所述第二驱动组件分别连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意两个。
在上述技术方案中,所述第二驱动组件连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意一个,即第二风机模块为相电压取电模式,电压低电流大,有利于降低元器件的规格要求,降低成本;所述第二驱动组件分别连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意两个,即第二风机模块为线电压取电模式,电压高电流小,安全性高,并且可以避免接错线的情况出现。
在本公开的一些实施例中,所述空调器控制电路还包括:
检测模块,用于检测所述交流输入端的电压值、所述交流输入端的电流值以及所述直流输出端的电压值之中的至少一个。
在上述技术方案中,通过设置检测模块检测所述交流输入端的电压值、所述交流输入端的电流值以及所述直流输出端的电压值,可以便于根据检测所述交流输入端的电压值、所述交流输入端的电流值以及所述直流输出端的电压值对双向开关组件进行控制,从而更好地实现对整流模块的控制。
第二方面,本公开实施例还提供了一种空调器控制方法,应用于第一方面所述的空调器控制电路所述空调器控制方法包括:
向所述双向开关组件发送驱动信号,所述驱动信号用于控制所述第一双向开关、所述第二双向开关或者所述第三双向开关中的任意一个同步驱动。
本公开实施例提供的空调器控制方法至少具有以下有益效果:本公开实施例的空调器控制方法通过向所述双向开关组件发送驱动信号,所述驱动信号用于控制所述第一双向开关、所述第二双向开关或者所述第三双向开关中的任意一个同步驱动,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。
第三方面,本公开实施例还提供了一种电路板,包括第一方面所述的空调器控制电路。或者,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行第二方面所述的空调器控制方法。
因此,本公开实施例的电路板利用整流模块对从交流输入端输入的交流电进行整流,通过储能模块储能后向压缩机模块进行供电,其中,整流模块通过设置三相整流桥和双向开关组件,可以通过对双向开关组件的控制,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。并且,由于整流模块的双向开关组件连接于第一电容和第二电容之间,有利于降低双向开关组件的损耗,提高电路的效率。
第四方面,本公开实施例还提供了一种空调器,包括第一方面的空调器控制电路。因此,本公开实施例的空调器利用整流模块对从交流输入端输入的交流电进行整流,通过储能模块储能后向压缩机模块进行供电,其中,整流模块通过设置三相整流桥和双向开关组件,可以通过对双向开关组件的控制,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。并且,由于整流模块的双向开关组件连接于第一电容和第二电容之间,有利于降低双向开关组件的损耗,提高电路的效率。
第五方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行第二方面所述的空 调器控制方法。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本公开实施例提供的现有技术中的三相不可控整流桥的电路原理图;
图2是本公开实施例提供的空调器控制电路的电路原理图;
图3是本公开实施例提供的空调器控制电路的另一种电路原理图;
图4是本公开实施例提供的空调器控制电路的另一种电路原理图;
图5是本公开实施例提供的空调器控制电路的另一种电路原理图;
图6是本公开实施例提供的第一开关管至第六开关管的驱动原理示意图;
图7是本公开实施例提供的空调器控制方法的流程图;
图8是本公开实施例提供的双向开关组件一种示例性的驱动信号波形图(以第一开关管和第二开关管为例)
图9是本公开实施例提供的空调器的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
应了解,在本公开实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
参照图1,为现有技术中的三相不可控整流桥,该拓扑一般由整流二极管构成,可以将三相交流电转化成直流电给压缩机供电。由于二极管为非线性器件,导通电流和输入电压波形不一致,导致整流器会向电网一侧注入大量谐波,污染电网环境,无法满足电磁兼容标准。
基于此,参照图2,本公开实施例提供了一种空调器控制电路,包括整流模块201、储能模块202、交流输入端、直流输出端203以及压缩机模块204,其中,整流模块201包括三相整流桥和双向开关组件,三相整流桥包括相互并联的第一桥臂2011、第二桥臂2012和第三桥臂2013;双向开关组件包括第一双向开关2014、第二双向开关2015和第三双向开关2016,第一双向开关2014的一端连接第一桥臂2011的中点,第二双向开关2015的一端连接第二桥臂2012的中点,第三双向开关2016的一端连接第三桥臂2013的中点;储能模块202与三相整流桥并联,储能模块202包括相互串联的第一电容C1和第二电容C2,第一双向开关2014的另一端、第二双向开关2015的另一端、第三双向开关2016的 另一端均连接于第一电容C1和第二电容C2之间;交流输入端连接整流模块201,直流输出端203连接储能模块202,压缩机模块204连接直流输出端203。
可以理解,交流输入端包括第一相输入端2051、第二相输入端2052和第三相输入端2053,第一桥臂2011包括相互串联的第一二极管D1和第二二极管D2,第二桥臂2012包括相互串联的第三二极管D3和第四二极管D4,第三桥臂2013包括相互串联的第五二极管D5和第六二极管D6,第一双向开关2014的一端连接第一桥臂2011的中点,即第一双向开关2014的一端连接于第一二极管D1和第二二极管D2之间;第二双向开关2015的一端连接第二桥臂2012的中点,即第二双向开关2015的一端连接于第三二极管D3和第四二极管D4之间;第三双向开关2016的一端连接第三桥臂2013的中点,即第三双向开关2016的一端连接于第五二极管D5和第六二极管D6之间;第一双向开关2014的一端连接于第一二极管D1和第二二极管D2之间,第二双向开关2015的一端连接于第三二极管D3和第四二极管D4之间,第三双向开关2016的一端连接于第五二极管D5和第六二极管D6之间。交流输入端用于接入三相市电,即第一相输入端2051、第二相输入端2052和第三相输入端2053对应接入A、B、C三相市电,第一电容C1和第二电容C2为电解电容,第一电容C1的正极分别连接第一二极管D1、第三二极管D3和第五二极管D5的负极,第二电容C2的负极分别连接第二二极管D2、第三二极管D3和第六二极管D6的负极,三相市电经整流模块201整流后输出直流电信号供给压缩机模块204,直流输出端203可以为第一电容C1的正极、第一电容C1和第二电容C2的公共端、第二电容C2的负极,第一电容C1和第二电容C2的公共端可以与零线相连,也可以不与零线相连,视实际需求而定。压缩机模块204包括压缩机2042以及第一IPM模块2031,直流输出端203输出的直流电信号通过第一IPM模块2041向压缩机2042供电。可以理解的是,压缩机模块204的数量可以为一个或者多个。
可以理解,第一双向开关2014、第二双向开关2015和第三双向开关2016可以包括两个开关管,其中,第一双向开关2014包括第一开关管T1和第二开关管T2,其中第一开关管T1和第二开关管T2的发射极相连,第一开关管T1的集电极连接第一二极管D1和第二二极管D2的公共端,第二开关管T2的集电极连接第一电容C1和第二电容C2的公共端。可以理解,也可以是第一开关管T1和第二开关管T2的集电极相连,第一开关管T1的发射极连接第一二极管D1和第二二极管D2的公共端,第二开关管T2的发射极连接第一电容C1和第二电容C2的公共端。其中,第一双向开关2014可以采用绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT、金属氧化物半导体场效应晶体管MOSFET等,可以理解的是,当第一双向开关2014采用MOSFET时,第一开关管T1和第二开关管T2的发射极相连即相应地改为第一开关管T1和第二开关管T2的源极相连。或者,第一开关管T1和第二开关管T2的集电极相连即相应地改为第一开关管T1和第二开关管T2的漏极相连。另外,第一双向开关2014也可以采用逆阻型开关管并联实现。
第二双向开关2015包括第三开关管T3和第四开关管T4,其中第三开关管T3和第四开关管T4的发射极相连,第三开关管T3的集电极连接第三二极管D3和第四二极管D4的公共端,第四开关管T4的集电极连接第一电容C1和第二电容C2的公共端。可以理解,也可以是第三开关管T3和第四开关管T4的集电极相连,第三开关管T3的发射极连接第三二极管D3和第四二极管D4的公共端,第四开关管T4的发射极连接第一电容C1和第二 电容C2的公共端。其中,第二双向开关2015可以采用绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT、金属氧化物半导体场效应晶体管MOSFET等,可以理解的是,当第二双向开关2015采用MOSFET时,第三开关管T3和第四开关管T4的发射极相连即相应地改为第三开关管T3和第四开关管T4的源极相连。或者,第三开关管T3和第四开关管T4的集电极相连即相应地改为第三开关管T3和第四开关管T4的漏极相连。另外,第二双向开关2015也可以采用逆阻型开关管并联实现。
第三双向开关2016包括第五开关管T5和第六开关管T6,其中第五开关管T5和第六开关管T6的发射极相连,第五开关管T5的集电极连接第五二极管D5和第六二极管D6的公共端,第六开关管T6的集电极连接第一电容C1和第二电容C2的公共端。可以理解,也可以是第五开关管T5和第六开关管T6的集电极相连,第五开关管T5的发射极连接第五二极管D5和第六二极管D6的公共端,第六开关管T6的发射极连接第一电容C1和第二电容C2的公共端。其中,第三双向开关2016可以采用绝缘栅双极型晶体管IGBT、集成门极换流晶闸管IGCT、金属氧化物半导体场效应晶体管MOSFET等,可以理解的是,当第三双向开关2016采用MOSFET时,第五开关管T5和第六开关管T6的发射极相连即相应地改为第五开关管T5和第六开关管T6的源极相连。或者,第五开关管T5和第六开关管T6的集电极相连即相应地改为第五开关管T5和第六开关管T6的漏极相连。另外,第三双向开关2016也可以采用逆阻型开关管并联实现。
需要补充说明的是,上述第一开关管T1、第二开关管T2、第三开关管T3、第四开关管T4、第五开关管T5、第六开关管T6均反并联有二极管。
可以理解,交流输入端通过电感器件206连接整流模块201,通过在交流输入端和整流模块201之间设置电感器件206,有利于滤除谐波,进一步改善谐波问题。具体地,电感器件206包括第一电感L1、第二电感L2和第三电感L3,第一电感L1连接第一相输入端2051,第二电感L2连接第二相输入端2052,第三电感L3连接第三相输入端2053。
可以理解,上述空调器控制电路还可以包括辅助电源模块和第一风机模块209,辅助电源模块包括辅助电源输入端、两相整流桥和电源组件208,辅助电源输入端分别连接交流输入端和两相整流桥,两相整流桥与电源组件208并联。通过设置辅助电源模块,可以利用辅助电源模块为其他负载供电,并且辅助电源模块连接交流输入端,可以从交流输入端中取电,有利于提升空调器的设备效率。其中,电源组件208为现有技术中普通的电源电路,例如包括电源芯片、稳压芯片等,在此不再赘述。
可以理解,辅助电源输入端包括第四相输入端2101和第五相输入端2102,两相整流桥包括第四桥臂2071和第五桥臂2072,其中,第四桥臂2071包括相互串联的第七二极管D7和第八二极管D8,第五桥臂2072包括相互串联的第九二极管D9和第十二极管D10,第四相输入端2101分别连接第三相输入端2053和第四桥臂2071的中点,第四相输入端2101连接第四桥臂2071的中点即第四相输入端2101连接于第七二极管D7和第八二极管D8之间;第五相输入端2102连接第五桥臂2072的中点,即第五相输入端2102连接于第九二极管D9和第十二极管D10之间。其中,第四相输入端2101连接第一相输入端2051、第二相输入端2052和第三相输入端2053中的任意一个,第五相输入端2102用于连接零线,即辅助电源模块为相电压取电模式,电压低电流大,有利于降低元器件的规格要求,降低成本。需要补充说明的是,图2中以第四相输入端2101连接第三相输入端2053(即市电 C相)为例进行说明。
可以理解,第一风机模块209包括直流风机2092和用于驱动直流风机2092的第一驱动组件,第一驱动组件与两相整流桥并联。空调器控制电路还包括第一风机模块209,并且第一风机模块209从辅助电源取电,由于辅助电源设置有两相整流桥,可以输出直流电,使得第一风机模块209可以采用直流风机2092,便于对转速的控制。其中,第一驱动组件可以为第二IPM模块2091。可以理解的是,第一风机模块209的数量可以为一个或者多个。
另外,辅助电源模块除了为相电压取电模式以外,还可以是线电压取电模式,参照图3,辅助电源输入端包括第四相输入端2101和第五相输入端2102,两相整流桥包括第四桥臂2071和第五桥臂2072,其中,第四桥臂2071包括相互串联的第七二极管D7和第八二极管D8,第五桥臂2072包括相互串联的第九二极管D9和第十二极管D10,第四相输入端2101分别连接第三相输入端2053和第四桥臂2071的中点,第四相输入端2101连接第四桥臂2071的中点即第四相输入端2101连接于第七二极管D7和第八二极管D8之间;第五相输入端2102连接第五桥臂2072的中点,即第五相输入端2102连接于第九二极管D9和第十二极管D10之间。其中,第四相输入端2101和第五相输入端2102对应连接第一相输入端2051、第二相输入端2052和第三相输入端2053中的任意两个,即辅助电源模块为线电压取电模式,电压高电流小,安全性高,并且可以避免接错线的情况出现。第四相输入端2101和第五相输入端2102对应连接第一相输入端2051、第二相输入端2052和第三相输入端2053中的任意两个,例如可以是第四相输入端2101连接第一相输入端2051(即市电A相),第五相输入端2102连接第二相输入端2052(即市电B相);或者可以是第四相输入端2101连接第二相输入端2052(即市电B相),第五相输入端2102连接第三相输入端2053(即市电C相);或者可以是第四相输入端2101连接第一相输入端2051(即市电A相),第五相输入端2102连接第三相输入端2053(即市电C相)。要补充说明的是,图3中以第四相输入端2101连接第一相输入端2051(即市电A相),第五相输入端2102连接第三相输入端2053(即市电C相)为例进行说明。
另外,可以理解,上述第一风机模块209也可以替换成第二风机模块401,参照图4,第二风机模块401包括交流风机4011和用于驱动交流风机4011的第二驱动组件,第二驱动组件分别连接交流输入端和交流风机4011。其中,第二驱动组件可以是启动电容和转接线。第二风机模块401采用交流风机4011,具有运行稳定的优点。在此基础上,第二风机模块401可以单独从市电取电,第二驱动组件连接第一相输入端2051、第二相输入端2052和第三相输入端2053中的任意一个,即第二风机模块401为相电压取电模式,电压低电流大,有利于降低元器件的规格要求,降低成本。需要补充说明的是,图4中以第二驱动组件连接第三相输入端2053(即市电C相)为例进行说明。可以理解的是,第二风机模块401的数量也可以为一个或者多个。
另外,第二风机模块401除了为相电压取电模式以外,还可以是线电压取电模式,参照图5,第二风机模块401包括交流风机4011和用于驱动交流风机4011的第二驱动组件,第二驱动组件分别连接交流输入端和交流风机4011。其中,第二驱动组件可以是启动电容和转接线。第二风机模块401采用交流风机4011,具有运行稳定的优点。在此基础上,第二风机模块401可以单独从市电取电,第二驱动组件分别连接第一相输入端2051、第二相输入端2052和第三相输入端2053中的任意两个,即第二风机模块401为线电压取电模式, 电压高电流小,安全性高,并且可以避免接错线的情况出现。第二驱动组件分别连接第一相输入端2051、第二相输入端2052和第三相输入端2053中的任意两个,例如可以是第二驱动组件分别连接第一相输入端2051(即市电A相)和第二相输入端2052(即市电B相);或者可以是第二驱动组件分别连接第二相输入端2052(即市电B相)和第三相输入端2053(即市电C相);或者可以是第二驱动组件分别连接第一相输入端2051(即市电A相)和第三相输入端2053(即市电C相)。要补充说明的是,图5中以第二驱动组件连接第一相输入端2051(即市电A相)和第三相输入端2053(即市电C相)为例进行说明。
综上,辅助电源模块有线电压取电和相电压取电两种模式,第二风机模块401也有线电压取电和相电压取电两种模式,辅助电源模块和第二风机模块401的取电模式相互独立,即可以是辅助电源模块采用线电压取电模式,第二风机模块401采用相电压取电模式;或者,也可以是辅助电源模块采用相电压取电模式,第二风机模块401采用线电压取电模式;或者,也可以是辅助电源模块和第二风机模块401均采用相电压取电模式;或者,也可以是辅助电源模块和第二风机模块401均采用线电压取电模式。
可以理解,第二风机模块401的取电端口与辅助电源的取电端口可以为同一个,即第二驱动组件与辅助电源输入端连接,这种方式的好处在于可以减少电路的接线端口,提高电路的接线效率。
可以理解,上述空调器控制电路还可以包括检测模块(附图未展示),用于检测交流输入端的电压值、交流输入端的电流值以及直流输出端203的电压值。通过设置检测模块检测交流输入端的电压值、交流输入端的电流值以及直流输出端203的电压值,可以便于根据检测交流输入端的电压值、交流输入端的电流值以及直流输出端203的电压值对双向开关组件进行控制,从而更好地实现对整流模块201的控制。参照图6,检测模块可以采用电压传感器或者电流传感器,检测模块检测到的电压值或者电流值可以发送至控制器,控制器经过处理后向双向开关组件发送相应的控制脉冲信号,以控制双向开关组件中各个开关管的动作。示例性地,以第一双向开关2014为例,可以控制第一开关管T1和第二开关管T2同步导通、互补导通等,从而实现对整流模块201的控制。
其中,在通过电压传感器采样第一相输入端2051、第二相输入端2052和第三相输入端2053的电压值时,可以只采样第一相输入端2051、第二相输入端2052和第三相输入端2053中任意两端的电压值,通过任意两端的电压值得到第三端的电压值,从而可以节省一个电压传感器,降低电路成本。具体地,可以基于第一相输入端2051、第二相输入端2052和第三相输入端2053的电压值的矢量和为零的原理,通过将第一相输入端2051、第二相输入端2052和第三相输入端2053中任意两端的电压值之和取反,即可得到剩余一端的电压值。类似地,在通过电流传感器采样第一相输入端2051、第二相输入端2052和第三相输入端2053的电流值时,可以只采样第一相输入端2051、第二相输入端2052和第三相输入端2053中任意两端的电流值,通过任意两端的电流值得到第三端的电流值,从而可以节省一个电流传感器,降低电路成本。具体地,可以基于第一相输入端2051、第二相输入端2052和第三相输入端2053的电流值的矢量和为零的原理,通过将第一相输入端2051、第二相输入端2052和第三相输入端2053中任意两端的电流值之和取反,即可得到剩余一端的电流值。
可以理解的是,上述检测模块除了采用电压传感器或者电流传感器以外,还可以采用 电压采样电路、电流采样电路等,本公开实施例并不作出限定,只要能够获取交流输入端的电压值、交流输入端的电流值以及直流输出端203的电压值即可。
本公开实施例的空调器控制电路利用整流模块201对从交流输入端输入的交流电进行整流,通过储能模块202储能后向压缩机模块204进行供电,其中,整流模块201通过设置三相整流桥和双向开关组件,可以通过对双向开关组件的控制,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。并且,由于整流模块201的双向开关组件连接于第一电容C1和第二电容C2之间,有利于降低双向开关组件的损耗,提高电路的效率。
参照图7,本公开实施例还提供了一种空调器控制方法,示例性地应用于图2至图5中任意一个空调器控制电路,该空调器控制方法包括以下步骤701:
步骤701:向双向开关组件发送驱动信号,驱动信号用于控制第一双向开关、第二双向开关或者第三双向开关中的任意一个同步驱动。
其中,在上述步骤701中,控制第一双向开关、第二双向开关或者第三双向开关中的任意一个同步驱动,可以是控制第一双向开关中的第一开关管和第二开关管同步驱动,也可以是控制第二双向开关中的第三开关管和第四开关管同步驱动,也可以是控制第三双向开关中的第五开关管和第六开关管同步驱动。可以理解的是,上述驱动信号可以同时发送至第一双向开关、第二双向开关和第三双向开关。参照图8,以第一开关管和第二开关管为例示例性地展示上述驱动信号的波形图。
通过向双向开关组件发送驱动信号,驱动信号用于控制第一双向开关、第二双向开关或者第三双向开关中的任意一个同步驱动,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。
另外,本公开实施例还提供了一种电路板,包括上述实施例中的空调器控制电路。因此,本公开实施例的电路板利用整流模块201对从交流输入端输入的交流电进行整流,通过储能模块202储能后向压缩机模块204进行供电,其中,整流模块201通过设置三相整流桥和双向开关组件,可以通过对双向开关组件的控制,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。并且,由于整流模块201的双向开关组件连接于第一电容C1和第二电容C2之间,有利于降低双向开关组件的损耗,提高电路的效率。
另外,本公开实施例还提供了一种空调器,包括上述实施例中的空调器控制电路。因此,本公开实施例的空调器利用整流模块201对从交流输入端输入的交流电进行整流,通过储能模块202储能后向压缩机模块204进行供电,其中,整流模块201通过设置三相整流桥和双向开关组件,可以通过对双向开关组件的控制,使得从交流输入端输入的电压与输入的电流的波形相位一致,从而解决谐波问题。并且,由于整流模块201的双向开关组件连接于第一电容C1和第二电容C2之间,有利于降低双向开关组件的损耗,提高电路的效率。
还应了解,本公开实施例提供的各种实施方式可以任意进行组合,以实现不同的技术效果。
图9示出了本公开实施例提供的空调器900。空调器900包括:存储器901、处理器902及存储在存储器901上并可在处理器902上运行的计算机程序,计算机程序运行时用 于执行上述的空调器控制方法。
处理器902和存储器901可以通过总线或者其他方式连接。
存储器901作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本公开实施例描述的空调器控制方法。处理器902通过运行存储在存储器901中的非暂态软件程序以及指令,从而实现上述的空调器控制方法。
存储器901可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的空调器控制方法。此外,存储器901可以包括高速随机存取存储器901,还可以包括非暂态存储器901,例如至少一个储存设备存储器901件、闪存器件或其他非暂态固态存储器件。在一些实施方式中,存储器901可选包括相对于处理器902远程设置的存储器901,这些远程存储器901可以通过网络连接至该空调器900。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的空调器控制方法所需的非暂态软件程序以及指令存储在存储器901中,当被一个或者多个处理器902执行时,执行上述的空调器控制方法,例如,执行图7中的方法步骤701。
本公开实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的空调器控制方法。
可以理解,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被上述空调器900中的一个处理器902执行,可使得上述处理器902执行上述的空调器控制方法,例如,执行图7中的方法步骤701。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、储存设备存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本公开的较佳实施进行了具体说明,但本公开并不局限于上述实施方式,熟悉本领域的技术人员在不违背本公开精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本公开权利要求所限定的范围内。

Claims (12)

  1. 一种空调器控制电路,包括:
    整流模块,所述整流模块包括三相整流桥和双向开关组件,所述三相整流桥包括相互并联的第一桥臂、第二桥臂和第三桥臂;所述双向开关组件包括第一双向开关、第二双向开关和第三双向开关,所述第一双向开关的一端连接所述第一桥臂的中点,所述第二双向开关的一端连接所述第二桥臂的中点,所述第三双向开关的一端连接所述第三桥臂的中点;
    储能模块,所述储能模块与所述三相整流桥并联,所述储能模块包括相互串联的第一电容和第二电容,所述第一双向开关的另一端、所述第二双向开关的另一端、所述第三双向开关的另一端均连接于所述第一电容和所述第二电容之间;
    交流输入端,所述交流输入端连接所述整流模块;
    直流输出端,所述直流输出端连接所述储能模块;
    压缩机模块,所述压缩机模块连接所述直流输出端。
  2. 根据权利要求1所述的空调器控制电路,还包括:
    电感器件,所述交流输入端通过所述电感器件连接所述整流模块。
  3. 根据权利要求1所述的空调器控制电路,其中,所述空调器控制电路还包括:
    辅助电源模块,所述辅助电源模块包括辅助电源输入端、两相整流桥和电源组件,所述辅助电源输入端分别连接所述交流输入端和所述两相整流桥,所述两相整流桥与所述电源组件并联。
  4. 根据权利要求3所述的空调器控制电路,其中:
    所述交流输入端包括第一相输入端、第二相输入端和第三相输入端,所述辅助电源输入端包括第四相输入端和第五相输入端,所述两相整流桥包括第四桥臂和第五桥臂;
    所述第四相输入端连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意一个,所述第四相输入端还连接所述第四桥臂的中点,所述第五相输入端连接所述第五桥臂的中点;或者,所述第四相输入端和所述第五相输入端对应连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意两个,所述第四相输入端还连接所述第四桥臂的中点,所述第五相输入端还连接所述第五桥臂的中点。
  5. 根据权利要求3所述的空调器控制电路,还包括:
    第一风机模块,所述第一风机模块包括直流风机和用于驱动所述直流风机的第一驱动组件,所述第一驱动组件与所述两相整流桥并联。
  6. 根据权利要求1至4任意一项所述的空调器控制电路,还包括:
    第二风机模块,所述第二风机模块包括交流风机和用于驱动所述交流风机的第二驱动组件,所述第二驱动组件分别连接所述交流输入端和所述交流风机。
  7. 根据权利要求6所述的空调器控制电路,其中:
    所述交流输入端包括第一相输入端、第二相输入端和第三相输入端;
    所述第二驱动组件连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意一个;或者,所述第二驱动组件分别连接所述第一相输入端、所述第二相输入端和所述第三相输入端中的任意两个。
  8. 根据权利要求1所述的空调器控制电路,还包括:
    检测模块,用于检测所述交流输入端的电压值、所述交流输入端的电流值以及所述直流输出端的电压值之中的至少一个。
  9. 一种空调器控制方法,应用于权利要求1至8任意一项所述的空调器控制电路,包括:
    向所述双向开关组件发送驱动信号,所述驱动信号用于控制所述第一双向开关、所述第二双向开关或者所述第三双向开关中的任意一个同步驱动。
  10. 一种电路板,包括权利要求1至8任意一项所述的空调器控制电路。
  11. 一种空调器,包括权利要求1至8任意一项所述的空调器控制电路;或者,包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求9所述的空调器控制方法。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于使计算机执行如权利要求9所述的空调器控制方法。
PCT/CN2020/129436 2020-09-30 2020-11-17 空调器控制电路、空调器控制方法、电路板及空调器 WO2022068007A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022223316.0U CN212457336U (zh) 2020-09-30 2020-09-30 空调器控制电路、电路板及空调器
CN202022223316.0 2020-09-30
CN202011063332.6 2020-09-30
CN202011063332.6A CN114322275A (zh) 2020-09-30 2020-09-30 空调器控制电路、空调器控制方法、电路板及空调器

Publications (1)

Publication Number Publication Date
WO2022068007A1 true WO2022068007A1 (zh) 2022-04-07

Family

ID=80949431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129436 WO2022068007A1 (zh) 2020-09-30 2020-11-17 空调器控制电路、空调器控制方法、电路板及空调器

Country Status (1)

Country Link
WO (1) WO2022068007A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497094A (zh) * 2011-12-01 2012-06-13 武汉永力电源技术有限公司 一种工频三相三开关三电平功率因数校正电路及其控制方法
CN103166489A (zh) * 2013-04-11 2013-06-19 安徽工业大学 一种三相高功率因数整流器的控制电路
CN203151389U (zh) * 2013-04-11 2013-08-21 安徽工业大学 一种三相高功率因数整流器的控制电路
CN107332449A (zh) * 2016-04-28 2017-11-07 中兴通讯股份有限公司 一种三相电路装置及其实现整流的方法
CN109104108A (zh) * 2018-09-19 2018-12-28 南京航空航天大学 一种带有有源箝位的软开关型单级式高频隔离整流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497094A (zh) * 2011-12-01 2012-06-13 武汉永力电源技术有限公司 一种工频三相三开关三电平功率因数校正电路及其控制方法
CN103166489A (zh) * 2013-04-11 2013-06-19 安徽工业大学 一种三相高功率因数整流器的控制电路
CN203151389U (zh) * 2013-04-11 2013-08-21 安徽工业大学 一种三相高功率因数整流器的控制电路
CN107332449A (zh) * 2016-04-28 2017-11-07 中兴通讯股份有限公司 一种三相电路装置及其实现整流的方法
CN109104108A (zh) * 2018-09-19 2018-12-28 南京航空航天大学 一种带有有源箝位的软开关型单级式高频隔离整流器

Similar Documents

Publication Publication Date Title
CN110417251B (zh) Pfc电路及空调器
CN105099249A (zh) 高可靠性双输入逆变器
CN104110778B (zh) 一种基于z源变换器的变频空调系统
WO2022068565A1 (zh) 三相电源变换电路、电路控制方法、线路板及空调器
CN107104589B (zh) Pfc电路及变频空调器
WO2022142310A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN202997986U (zh) 一种直流无刷电机驱动装置
WO2022068007A1 (zh) 空调器控制电路、空调器控制方法、电路板及空调器
CN105099248A (zh) 双输入单相逆变器
CN114322275A (zh) 空调器控制电路、空调器控制方法、电路板及空调器
CN212457336U (zh) 空调器控制电路、电路板及空调器
CN114337199B (zh) 驱动控制电路、驱动控制方法、电路板及空调器
CN208369467U (zh) 图腾柱pfc电路及空调器
CN207098949U (zh) 一种永磁同步电机无电解电容功率变换器
WO2022017330A1 (zh) 图腾柱pfc电路及其控制方法、线路板、空调器、存储介质
CN110311547B (zh) Pfc电路及空调器
CN110620499B (zh) 基于三相维也纳pfc拓扑的单相电输入电路和控制方法
CN213367653U (zh) 一种变换电路及ups电源
CN205245462U (zh) 一种变频空调压缩机控制装置
CN209767411U (zh) 一种变流电路
CN208820711U (zh) 一种变频器
CN205828172U (zh) 有源交流电容器
CN204597803U (zh) 具有新型保护电路的逆变器
CN217087788U (zh) 一种基于双反星形电路的保护电路
CN109861573A (zh) 一种低开关损耗功率逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956026

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20956026

Country of ref document: EP

Kind code of ref document: A1