WO2022067961A1 - 一种低成本高性能q500桥梁钢及生产方法 - Google Patents

一种低成本高性能q500桥梁钢及生产方法 Download PDF

Info

Publication number
WO2022067961A1
WO2022067961A1 PCT/CN2020/126498 CN2020126498W WO2022067961A1 WO 2022067961 A1 WO2022067961 A1 WO 2022067961A1 CN 2020126498 W CN2020126498 W CN 2020126498W WO 2022067961 A1 WO2022067961 A1 WO 2022067961A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance
steel
low
steel plate
sent
Prior art date
Application number
PCT/CN2020/126498
Other languages
English (en)
French (fr)
Inventor
黄一新
翟冬雨
洪君
丁叶
李翔
高燕
张媛钰
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to JP2023519219A priority Critical patent/JP2023542427A/ja
Priority to KR1020237010904A priority patent/KR20230059825A/ko
Publication of WO2022067961A1 publication Critical patent/WO2022067961A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of steel production, in particular to a low-cost high-performance Q500 bridge steel and a production method.
  • High-performance bridge steel plate Q500 is widely used in highway bridges, railway bridges, and dual-use bridges. Since 2010, under the background of the country's vigorous development of transportation construction and the continuous increase of bridge steel, the large-span Q500 bridge steel is mainly used.
  • the normalized steel plate used, the smelting process cost of the normalizing heat treatment process is more than 200 yuan, not including the cost of transportation, and the steel plate will have unstable performance, low impact power of welded joints, delamination, or melting after normalizing. Quality problems such as lamellar tearing through fillet welding.
  • the present invention provides a low-cost high-performance Q500 bridge steel, whose chemical composition and mass percentage are as follows: C ⁇ 0.035%, Si: 0.31%-0.40%, Mn: 1.71%-1.80%, P ⁇ 0.015%, S ⁇ 0.0030%, Nb: 0.030% ⁇ 0.050%, V: 0.020% ⁇ 0.050%, Ti: 0.010% ⁇ 0.018%, Cr: 0.70% ⁇ 0.80%, Ni: 0.10% ⁇ 0.20%, residual Mo ⁇ 0.05%, Cu: 0.10% ⁇ 0.20%, B ⁇ 0.0005%, N ⁇ 0.0005%, Al: 0.020% ⁇ 0.050%, the balance is Fe and impurities.
  • the present invention obtains more ferrite structure through the unique low-carbon micro-niobium-titanium alloyed bridge composition design, which promotes the soft structure of the product. Formation, effectively increase the temperature of the second opening and the final rolling, appropriately change the grain size of the structure, and promote the structure transformation of carbides and chromium elements through the conditions of water cooling, reduce the yield strength and improve the tensile strength of the product, effectively reducing the The yield strength ratio of the product.
  • the aforementioned low-cost high-performance Q500 bridge steel its chemical composition and mass percentage are as follows: C ⁇ 0.030%, Si: 0.31%-0.38%, Mn: 1.71%-1.77%, P ⁇ 0.013%, S ⁇ 0.0020%, Nb: 0.030% to 0.040%, V: 0.020% to 0.030%, Ti: 0.010% to 0.016%, Cr: 0.70% to 0.75%, Ni: 0.10% to 0.15%, residual Mo ⁇ 0.05%, Cu : 0.10% ⁇ 0.15%, B ⁇ 0.0005%, N ⁇ 0.0005%, Al: 0.020% ⁇ 0.050%, the balance is Fe and impurities.
  • the aforementioned low-cost high-performance Q500 bridge steel its chemical composition and mass percentage are as follows: C ⁇ 0.025%, Si: 0.33%-0.40%, Mn: 1.73%-1.80%, P ⁇ 0.012%, S ⁇ 0.0020%, Nb: 0.040% to 0.050%, V: 0.030% to 0.040%, Ti: 0.012% to 0.018%, Cr: 0.75% to 0.80%, Ni: 0.15% to 0.20%, residual Mo ⁇ 0.05%, Cu : 0.15% ⁇ 0.20%, B ⁇ 0.0005%, N ⁇ 0.0005%, Al: 0.020% ⁇ 0.050%, the balance is Fe and impurities.
  • the aforementioned low-cost high-performance Q500 bridge steel has the following chemical composition and mass percentage: C ⁇ 0.035%, Si: 0.31%-0.40%, Mn: 1.71%-1.80%, P ⁇ 0.015%, S ⁇ 0.0030%, Nb: 0.035% to 0.045%, V: 0.040% to 0.050%, Ti: 0.010% to 0.018%, Cr: 0.73% to 0.78%, Ni: 0.13% to 0.18%, residual Mo ⁇ 0.05%, Cu : 0.13% ⁇ 0.18%, B ⁇ 0.0005%, N ⁇ 0.0005%, Al: 0.020% ⁇ 0.050%, the balance is Fe and impurities.
  • the thickness of the steel plate is 10-60mm
  • the microstructure of the steel plate includes polygonal ferrite and 20% to 30% of bainite.
  • Another object of the present invention is to provide a method for producing Q500 bridge steel with low cost and high performance, which does not require tempering treatment, including the following steps:
  • the pretreated molten iron slag is cleaned and then added to the converter, and smelted by top-bottom re-blowing;
  • the molten steel is sent to RH for vacuum decarburization, degassing and inclusion removal, and the vacuum time is 20-30min;
  • the molten steel after vacuum treatment is sent to LF for refining treatment and deoxidation alloying operation.
  • calcium treatment is performed to purify the molten steel, and the purity of the molten steel is improved by static stirring;
  • the refined molten steel is sent to the continuous casting machine for casting, using electromagnetic stirring and dynamic light reduction technology, and the pulling speed is 0.6-1.3m/min;
  • the cast billet After passing the surface inspection, the cast billet is sent to the heating furnace for heating, and the heating temperature is 1120-1140 °C;
  • the TMCP rolling process is used for rolling, the rough rolling temperature is 1000-1100 °C, the second opening temperature is controlled at 820-990 °C, the final rolling temperature is 820 ⁇ 20 °C, and the ultra-fast cooling is used to cool to 580-690 °C ;
  • the steel plate after stack cooling is cold straightened, the unevenness of the steel plate is controlled, and it is stored after shearing, marking, surface inspection, and flaw detection.
  • the present invention adopts low-carbon micro-niobium-titanium alloying to improve product flexibility according to Chinese national standard GB/T 714 structural bridge steel, adopts high manganese element to improve product tensile strength, and ensures that the product has a good yield-to-strength ratio , using Cu element to improve the welding performance of the product, using Ni element to improve the impact performance of high-grade products, based on the composition design, the TMCP rolling technology is used to replace the traditional TMCP + tempering process, which effectively reduces the product manufacturing cost. It greatly improves the competitiveness of enterprises;
  • the low-temperature austenitizing technology of the present invention reduces the grain size of the original austenite and ensures the stability of the low-temperature impact toughness of the product;
  • the microstructure and grain size are effectively refined by controlling the cooling control process, and the microstructure transformation is ensured by the two-opening temperature and the water inlet temperature, and the polygonal ferrite and 20-30% bainite are obtained as auxiliary microstructure types.
  • the internal stress of the steel plate is effectively removed, and the stability of the secondary processing performance of the product is improved;
  • the manufacturing cost is effectively reduced by the composition and process design, and the cost is 300-500 yuan/ton lower than the original steel manufacturing cost, and the market competitiveness is effectively improved.
  • FIG. 1 is a typical microstructure diagram of the steel sheet obtained in Example 1 under a metallographic microscope.
  • Example 1 0.030 0.33 1.73 0.010 0.001 0.033 0.030 element Ti Cr Ni Cu B N Al Example 1 0.013 0.71 0.15 0.12 0.0001 0.0032 0.033 element C Si Mn P S Nb V Example 2 0.029 0.36 1.75 0.012 0.002 0.039 0.033 element Ti Cr Ni Cu B N Al Example 2 0.16 0.76 0.18 0.13 0.0002 0.0032 0.029 element C Si Mn P S Nb V Example 2 0.023 0.39 1.79 0.008 0.002 0.046 0.026 element Ti Cr Ni Cu B N Al Example 2 0.017 0.78 0.19 0.17 0.0001 0.0041 0.031 .
  • the thickness of the steel plate is 20mm, and the production method does not require tempering, including the following steps:
  • the pretreated molten iron slag is cleaned and then added to the converter, and smelted by top-bottom re-blowing;
  • the molten steel is sent to RH for vacuum decarburization, degassing and inclusion removal, and the vacuum time is 22min;
  • the molten steel after vacuum treatment is sent to LF for refining treatment and deoxidation alloying operation.
  • calcium treatment is performed to purify the molten steel, and the purity of the molten steel is improved by static stirring;
  • the refined molten steel is sent to the continuous casting machine for casting. Electromagnetic stirring and dynamic light pressing are adopted, and the pulling speed is 1.1m/min;
  • the cast billet After passing the surface inspection, the cast billet is sent to the heating furnace for heating, and the heating temperature is 1126 °C;
  • the TMCP rolling process is used for rolling, the rough rolling temperature is 1098 °C, the second opening temperature is controlled at 960 °C, the final rolling temperature is 838 °C, and the ultra-fast cooling is used to cool to 680 °C;
  • the rolled steel plate is sent to the slow cooling pit for slow cooling for 24 hours.
  • the harmful gas in the steel plate is effectively removed by stack cooling, the internal stress of the steel plate is reduced, and the secondary processing performance of the steel plate is improved;
  • the steel plate after stack cooling is cold straightened, the unevenness of the steel plate is controlled, and it is stored after shearing, marking, surface inspection, and flaw detection.
  • the thickness of the steel plate is 33mm, and the production method does not require tempering, including the following steps:
  • the pretreated molten iron slag is cleaned and then added to the converter, and smelted by top-bottom re-blowing;
  • the molten steel is sent to RH for vacuum decarburization, degassing and removal of inclusions, and the vacuum time is 26min;
  • the molten steel after vacuum treatment is sent to LF for refining treatment and deoxidation alloying operation.
  • calcium treatment is performed to purify the molten steel, and the purity of the molten steel is improved by static stirring;
  • the refined molten steel is sent to the continuous casting machine for casting, using electromagnetic stirring and dynamic light reduction technology, and the pulling speed is 0.9m/min;
  • the cast billet After passing the surface inspection, the cast billet is sent to the heating furnace for heating, and the heating temperature is 1133 °C;
  • the TMCP rolling process is used for rolling, the rough rolling temperature is 1055 °C, the second opening temperature is controlled at 855 °C, the final rolling temperature is 820 °C, and the ultra-fast cooling is used to cool to 630 °C;
  • the rolled steel plate is sent to the slow cooling pit for slow cooling for 24 hours, and the harmful gas in the steel plate is effectively removed by stack cooling, the internal stress of the steel plate is reduced, and the secondary processing performance of the steel plate is improved;
  • the steel plate after stack cooling is cold straightened, the unevenness of the steel plate is controlled, and it is stored after shearing, marking, surface inspection, and flaw detection.
  • the thickness of the steel plate is 50mm, and the production method does not require tempering, including the following steps:
  • the pretreated molten iron slag is cleaned and then added to the converter, and smelted by top-bottom re-blowing;
  • the molten steel after vacuum treatment is sent to LF for refining treatment and deoxidation alloying operation.
  • calcium treatment is performed to purify the molten steel, and the purity of the molten steel is improved by static stirring;
  • the refined molten steel is sent to the continuous casting machine for casting, using electromagnetic stirring and dynamic light pressing technology, and the pulling speed is 0.7m/min;
  • the cast billet After passing the surface inspection, the cast billet is sent to the heating furnace for heating, and the heating temperature is 1139 °C;
  • the TMCP rolling process is used for rolling, the rough rolling temperature is 1020 °C, the second opening temperature is controlled at 828 °C, the final rolling temperature is 819 °C, and the ultra-fast cooling is used to cool to 596 °C;
  • the rolled steel plate is sent to the slow cooling pit for slow cooling for 24 hours.
  • the harmful gas in the steel plate is effectively removed by stack cooling, the internal stress of the steel plate is reduced, and the secondary processing performance of the steel plate is improved;
  • the steel plate after stack cooling is cold straightened, the unevenness of the steel plate is controlled, and it is stored after shearing, marking, surface inspection, and flaw detection.
  • Example 1 530 665 twenty three 80
  • Example 2 536 646 twenty three
  • Example 3 555 679 26 82
  • Example Shock temperature/°C Average shock absorption energy/J 180° bending test Bending result Example 1 -60 130 3a No cracks
  • the present invention adopts the TMCP rolling technology and applies the short process and low-cost manufacturing method, which effectively eliminates the internal stress of the steel plate and satisfies the requirements of the bridge factory for high-performance bridge steel plates with easy welding, high toughness and stable quality.
  • cost optimization the cost of product manufacturing is effectively reduced, the competitiveness of enterprises is improved, and the profit margin of enterprise manufacturing is improved.

Abstract

本发明公开了一种低成本高性能Q500桥梁钢,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C≤0.035%,Si:0.31%~0.40%,Mn:1.71%~1.80%,P≤0.015%,S≤0.0030%,Nb:0.030%~0.050%,V:0.020%~0.050%,Ti:0.010%~0.018%,Cr:0.70%~0.80%,Ni:0.10%~0.20%,残余Mo≤0.05%,Cu:0.10%~0.20%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%。降低屈服强度的同时提升产品的抗拉强度,有效降低了产品的屈强比。

Description

一种低成本高性能Q500桥梁钢及生产方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种低成本高性能Q500桥梁钢及生产方法。
背景技术
高性能桥梁钢板Q500广泛用于公路桥、铁路桥、公铁两用桥,自从2010年后,在国家大力发展交通建设,桥梁用钢不断增加的背景下,大跨度的Q500级别桥梁用钢主要采用的正火钢板,正火热处理工艺冶炼工序成本在200元以上,还不包括转运的成本,且钢板在正火后会出现性能不稳定、焊接接头冲击功偏低、分层现象,或熔透角焊接层状撕裂等质量问题。
发明内容
为了解决以上技术问题,本发明提供一种低成本高性能Q500桥梁钢,其化学成分及质量百分比如下:C≤0.035%,Si:0.31%~0.40%,Mn:1.71%~1.80%,P≤0.015%,S≤0.0030%,Nb:0.030%~0.050%,V:0.020%~0.050%,Ti:0.010%~0.018%,Cr:0.70%~0.80%,Ni:0.10%~0.20%,残余Mo≤0.05%,Cu:0.10%~0.20%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
技术效果:本发明在精心研究国家桥梁结构钢GB/T 714标准后,通过独特的低碳微铌钛合金化桥梁成分设计,得到铁素体更多的组织结构,促进了产品软向组织的形成,有效提高二开及终轧温度,适当改判组织的晶粒度,通过水冷的条件,促进了碳化物及铬元素的组织转变,降低屈服强度的同时提升产品的抗拉强度,有效降低了产品的屈强比。
本发明进一步限定的技术方案是:
前所述的一种低成本高性能Q500桥梁钢,其化学成分及质量百分比如下:C≤0.030%,Si:0.31%~0.38%,Mn:1.71%~1.77%,P≤0.013%,S≤0.0020%,Nb:0.030%~0.040%,V:0.020%~0.030%,Ti:0.010%~0.016%,Cr:0.70%~ 0.75%,Ni:0.10%~0.15%,残余Mo≤0.05%,Cu:0.10%~0.15%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
前所述的一种低成本高性能Q500桥梁钢,其化学成分及质量百分比如下:C≤0.025%,Si:0.33%~0.40%,Mn:1.73%~1.80%,P≤0.012%,S≤0.0020%,Nb:0.040%~0.050%,V:0.030%~0.040%,Ti:0.012%~0.018%,Cr:0.75%~0.80%,Ni:0.15%~0.20%,残余Mo≤0.05%,Cu:0.15%~0.20%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
前所述的一种低成本高性能Q500桥梁钢,其化学成分及质量百分比如下:C≤0.035%,Si:0.31%~0.40%,Mn:1.71%~1.80%,P≤0.015%,S≤0.0030%,Nb:0.035%~0.045%,V:0.040%~0.050%,Ti:0.010%~0.018%,Cr:0.73%~0.78%,Ni:0.13%~0.18%,残余Mo≤0.05%,Cu:0.13%~0.18%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
前所述的一种低成本高性能Q500桥梁钢,钢板厚度为10~60mm
前所述的一种低成本高性能Q500桥梁钢,钢板显微组织包括多边形铁素体和20%~30%的贝氏体。
本发明的另一目的在于提供一种低成本高性能Q500桥梁钢的生产方法,不需要进行回火处理,包括以下步骤:
S1、采用KR法进行铁水预处理,入转炉铁水的S<0.010%;
S2、预处理后的铁水扒渣干净后加入转炉,采用顶底复吹方式冶炼;
S3、钢水出钢结束后送至RH进行真空脱碳、去气去夹杂,真空时间20~30min;
S4、真空处理后的钢水送至LF进行精炼处理和脱氧合金化操作,合金化结束后进行钙处理净化钢水,通过静搅提升钢水纯净度;
S5、精炼后的钢水送至连铸机进行浇铸,采用电磁搅拌及动态轻压下工艺,拉速0.6~1.3m/min;
S6、经过表检次合格后铸坯送至加热炉加热,加热温度1120~1140℃;
S7、采用TMCP轧制工艺进行轧制,粗轧制开轧温度1000~1100℃,二开温度控制820~990℃,终轧温度为820±20℃,采用超快冷冷却至580~690℃;
S8、轧制后的钢板送至缓冷坑进行缓冷24小时;
S9、堆冷后的钢板进行冷矫直,控制钢板不平度,剪切、标识、表检、探伤后入库。
本发明的有益效果是:
(1)本发明依据中国国家标准GB/T 714结构用桥梁钢,采用了低碳微铌钛合金化提高了产品柔韧性,采用高锰元素提高产品抗拉强度,保证产品具有良好屈强比,采用Cu元素提高产品的焊接性能,采用Ni元素提高高等级产品的冲击性能,以成分设计为基础,采用了TMCP轧制技术替代了传统的TMCP+回火工艺,有效降低了产品制造成本,大幅度了提高了企业竞争力;
(2)本发明中低温奥氏体化技术,降低了原始奥氏体晶粒度,保证了产品低温冲击韧性的稳定;
(3)本发明中通过控制二开温度及终轧温度,配合水冷工艺,有效降低了产品屈服强度保证了抗拉强度的稳定,稳定了产品屈强比的稳定;
(4)本发明中通过控制控冷工艺有效细化组织晶粒度,通过二开温度、入水温度保证组织转变,获得以多边形铁素体、20~30%的贝氏体为辅组织类型,通过钢板堆冷及冷矫直工艺,有效去除了钢板内应力,提高了产品二次加工性能稳定性;
(5)本发明中通过成分及工艺设计,有效降低了制造成本,成本比原始钢 种制造成本降低300~500元/吨,有效提高了市场竞争力。
附图说明
图1为实施例1得到的钢板在金相显微镜下典型的组织形貌图。
具体实施方式
以下实施例提供的一种低成本高性能Q500桥梁钢,其化学成分及质量百分比如表1所示,
表1各实施例钢板化学成分(wt%)
元素 C Si Mn P S Nb V
实施例1 0.030 0.33 1.73 0.010 0.001 0.033 0.030
元素 Ti Cr Ni Cu B N Al
实施例1 0.013 0.71 0.15 0.12 0.0001 0.0032 0.033
元素 C Si Mn P S Nb V
实施例2 0.029 0.36 1.75 0.012 0.002 0.039 0.033
元素 Ti Cr Ni Cu B N Al
实施例2 0.16 0.76 0.18 0.13 0.0002 0.0032 0.029
元素 C Si Mn P S Nb V
实施例2 0.023 0.39 1.79 0.008 0.002 0.046 0.026
元素 Ti Cr Ni Cu B N Al
实施例2 0.017 0.78 0.19 0.17 0.0001 0.0041 0.031
实施例1
钢板厚度为20mm,生产方法不需要进行回火处理,包括以下步骤:
S1、采用KR法进行铁水预处理,入转炉铁水的S<0.010%;
S2、预处理后的铁水扒渣干净后加入转炉,采用顶底复吹方式冶炼;
S3、钢水出钢结束后送至RH进行真空脱碳、去气去夹杂,真空时间22min;
S4、真空处理后的钢水送至LF进行精炼处理和脱氧合金化操作,合金化结束后进行钙处理净化钢水,通过静搅提升钢水纯净度;
S5、精炼后的钢水送至连铸机进行浇铸,采用电磁搅拌及动态轻压下工艺,拉速1.1m/min;
S6、经过表检次合格后铸坯送至加热炉加热,加热温度1126℃;
S7、采用TMCP轧制工艺进行轧制,粗轧制开轧温度1098℃,二开温度控制960℃,终轧温度为838℃,采用超快冷冷却至680℃;
S8、轧制后的钢板送至缓冷坑进行缓冷24小时,通过堆冷有效去除钢板内有害气体,减少钢板内应力,提高钢板二次加工性能;
S9、堆冷后的钢板进行冷矫直,控制钢板不平度,剪切、标识、表检、探伤后入库。
实施例2
钢板厚度为33mm,生产方法不需要进行回火处理,包括以下步骤:
S1、采用KR法进行铁水预处理,入转炉铁水的S<0.010%;
S2、预处理后的铁水扒渣干净后加入转炉,采用顶底复吹方式冶炼;
S3、钢水出钢结束后送至RH进行真空脱碳、去气去夹杂,真空时间26min;
S4、真空处理后的钢水送至LF进行精炼处理和脱氧合金化操作,合金化结束后进行钙处理净化钢水,通过静搅提升钢水纯净度;
S5、精炼后的钢水送至连铸机进行浇铸,采用电磁搅拌及动态轻压下工艺,拉速0.9m/min;
S6、经过表检次合格后铸坯送至加热炉加热,加热温度1133℃;
S7、采用TMCP轧制工艺进行轧制,粗轧制开轧温度1055℃,二开温度控制855℃,终轧温度为820℃,采用超快冷冷却至630℃;
S8、轧制后的钢板送至缓冷坑进行缓冷24小时,通过堆冷有效去除钢板内 有害气体,减少钢板内应力,提高钢板二次加工性能;
S9、堆冷后的钢板进行冷矫直,控制钢板不平度,剪切、标识、表检、探伤后入库。
实施例3
钢板厚度为50mm,生产方法不需要进行回火处理,包括以下步骤:
S1、采用KR法进行铁水预处理,入转炉铁水的S<0.010%;
S2、预处理后的铁水扒渣干净后加入转炉,采用顶底复吹方式冶炼;
S3、钢水出钢结束后送至RH进行真空脱碳、去气去夹杂,真空时间28min;
S4、真空处理后的钢水送至LF进行精炼处理和脱氧合金化操作,合金化结束后进行钙处理净化钢水,通过静搅提升钢水纯净度;
S5、精炼后的钢水送至连铸机进行浇铸,采用电磁搅拌及动态轻压下工艺,拉速0.7m/min;
S6、经过表检次合格后铸坯送至加热炉加热,加热温度1139℃;
S7、采用TMCP轧制工艺进行轧制,粗轧制开轧温度1020℃,二开温度控制828℃,终轧温度为819℃,采用超快冷冷却至596℃;
S8、轧制后的钢板送至缓冷坑进行缓冷24小时,通过堆冷有效去除钢板内有害气体,减少钢板内应力,提高钢板二次加工性能;
S9、堆冷后的钢板进行冷矫直,控制钢板不平度,剪切、标识、表检、探伤后入库。
各实施例力学性能如表2所示,
表2各实施例钢板力学性能
实施例 屈服强度R El/MPa 抗拉强度R m/MPa 断后伸长率A/% 屈强比
实施例1 530 665 23 80
实施例2 536 646 23 83
实施例3 555 679 26 82
实施例 冲击温度/℃ 平均冲击吸收能/J 180°弯曲试验 弯曲结果
实施例1 -60 130 3a 无裂纹
实施例2 -60 119 3a 无裂纹
实施例3 -60 160 3a 无裂纹
由图1可见,钢板组织以块状铁素体为主,含有少量的贝氏体,组织均匀细小并且致密,有利于产品高强度、低屈强比、高韧性、易焊接、抗疲劳等性能。
综上,本发明采用TMCP轧制技术,应用短流程、低成本的制造方法,有效消除了钢板的内应力,满足了桥梁厂易焊接、高韧性、质量稳定的高性能桥梁钢板要求。通过成本优化,有效降低了产品制造成本,提高了企业的竞争能力,提高了企业制造利润率。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (7)

  1. 一种低成本高性能Q500桥梁钢,其特征在于:其化学成分及质量百分比如下:C≤0.035%,Si:0.31%~0.40%,Mn:1.71%~1.80%,P≤0.015%,S≤0.0030%,Nb:0.030%~0.050%,V:0.020%~0.050%,Ti:0.010%~0.018%,Cr:0.70%~0.80%,Ni:0.10%~0.20%,残余Mo≤0.05%,Cu:0.10%~0.20%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
  2. 根据权利要求1所述的一种低成本高性能Q500桥梁钢,其特征在于:其化学成分及质量百分比如下:C≤0.030%,Si:0.31%~0.38%,Mn:1.71%~1.77%,P≤0.013%,S≤0.0020%,Nb:0.030%~0.040%,V:0.020%~0.030%,Ti:0.010%~0.016%,Cr:0.70%~0.75%,Ni:0.10%~0.15%,残余Mo≤0.05%,Cu:0.10%~0.15%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
  3. 根据权利要求1所述的一种低成本高性能Q500桥梁钢,其特征在于:其化学成分及质量百分比如下:C≤0.025%,Si:0.33%~0.40%,Mn:1.73%~1.80%,P≤0.012%,S≤0.0020%,Nb:0.040%~0.050%,V:0.030%~0.040%,Ti:0.012%~0.018%,Cr:0.75%~0.80%,Ni:0.15%~0.20%,残余Mo≤0.05%,Cu:0.15%~0.20%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
  4. 根据权利要求1所述的一种低成本高性能Q500桥梁钢,其特征在于:其化学成分及质量百分比如下:C≤0.035%,Si:0.31%~0.40%,Mn:1.71%~1.80%,P≤0.015%,S≤0.0030%,Nb:0.035%~0.045%,V:0.040%~0.050%,Ti:0.010%~0.018%,Cr:0.73%~0.78%,Ni:0.13%~0.18%,残余Mo≤0.05%,Cu:0.13%~0.18%,B≤0.0005%,N≤0.0005%,Al:0.020%~0.050%,余量为Fe和杂质。
  5. 根据权利要求1所述的一种低成本高性能Q500桥梁钢,其特征在于:钢板厚度为10~60mm。
  6. 根据权利要求1所述的一种低成本高性能Q500桥梁钢,其特征在于:钢板显微组织包括多边形铁素体和20%~30%的贝氏体。
  7. 一种低成本高性能Q500桥梁钢的生产方法,其特征在于:应用于权利要 求1-6任意一项,不需要进行回火处理,包括以下步骤:
    S1、采用KR法进行铁水预处理,入转炉铁水的S<0.010%;
    S2、预处理后的铁水扒渣干净后加入转炉,采用顶底复吹方式冶炼;
    S3、钢水出钢结束后送至RH进行真空脱碳、去气去夹杂,真空时间20~30min;
    S4、真空处理后的钢水送至LF进行精炼处理和脱氧合金化操作,合金化结束后进行钙处理净化钢水,通过静搅提升钢水纯净度;
    S5、精炼后的钢水送至连铸机进行浇铸,采用电磁搅拌及动态轻压下工艺,拉速0.6~1.3m/min;
    S6、经过表检次合格后铸坯送至加热炉加热,加热温度1120~1140℃;
    S7、采用TMCP轧制工艺进行轧制,粗轧制开轧温度1000~1100℃,二开温度控制820~990℃,终轧温度为820±20℃,采用超快冷冷却至580~690℃;
    S8、轧制后的钢板送至缓冷坑进行缓冷24小时;
    S9、堆冷后的钢板进行冷矫直,控制钢板不平度,剪切、标识、表检、探伤后入库。
PCT/CN2020/126498 2020-09-29 2020-11-04 一种低成本高性能q500桥梁钢及生产方法 WO2022067961A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023519219A JP2023542427A (ja) 2020-09-29 2020-11-04 低コスト高性能q500橋梁用鋼および生産方法
KR1020237010904A KR20230059825A (ko) 2020-09-29 2020-11-04 저원가 고성능 q500 교량강 및 생산 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011046299.6 2020-09-29
CN202011046299.6A CN112210719A (zh) 2020-09-29 2020-09-29 一种低成本高性能q500桥梁钢及生产方法

Publications (1)

Publication Number Publication Date
WO2022067961A1 true WO2022067961A1 (zh) 2022-04-07

Family

ID=74051375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126498 WO2022067961A1 (zh) 2020-09-29 2020-11-04 一种低成本高性能q500桥梁钢及生产方法

Country Status (4)

Country Link
JP (1) JP2023542427A (zh)
KR (1) KR20230059825A (zh)
CN (1) CN112210719A (zh)
WO (1) WO2022067961A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627415A (zh) * 2022-09-28 2023-01-20 山东钢铁集团日照有限公司 一种低成本厚规格高强度管桩用热轧带钢及其制备方法
CN115717222A (zh) * 2022-11-16 2023-02-28 包头钢铁(集团)有限责任公司 一种v-n合金化a350lf6法兰用钢生产方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025879B (zh) * 2021-02-01 2022-03-01 南京钢铁股份有限公司 一种耐候桥梁钢及其冶炼方法
CN116516250A (zh) * 2023-04-26 2023-08-01 南京钢铁股份有限公司 一种低成本桥梁钢及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169591A (ja) * 2004-12-16 2006-06-29 Kobe Steel Ltd 高降伏強度を有する非調質鋼板
JP2009024228A (ja) * 2007-07-20 2009-02-05 Nippon Steel Corp 高温強度と低温靭性に優れる溶接構造用鋼の製造方法
CN102828117A (zh) * 2012-09-03 2012-12-19 南京钢铁股份有限公司 一种低屈强比高强度热轧双相钢板及其生产方法
CN106282789A (zh) * 2016-08-15 2017-01-04 山东钢铁股份有限公司 一种低碳特厚TMCP型Q420qE桥梁钢及其制造方法
CN106811704A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 屈服强度500MPa级低屈强比桥梁钢及其制造方法
KR20180073007A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 강도 및 저온 충격인성이 우수한 강재 및 그 제조방법
CN108624744A (zh) * 2018-05-11 2018-10-09 鞍钢股份有限公司 一种Q500qE桥梁钢板及其生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619423A (zh) * 2008-06-30 2010-01-06 鞍钢股份有限公司 一种高强韧低屈强比易焊接结构钢板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169591A (ja) * 2004-12-16 2006-06-29 Kobe Steel Ltd 高降伏強度を有する非調質鋼板
JP2009024228A (ja) * 2007-07-20 2009-02-05 Nippon Steel Corp 高温強度と低温靭性に優れる溶接構造用鋼の製造方法
CN102828117A (zh) * 2012-09-03 2012-12-19 南京钢铁股份有限公司 一种低屈强比高强度热轧双相钢板及其生产方法
CN106811704A (zh) * 2015-12-02 2017-06-09 鞍钢股份有限公司 屈服强度500MPa级低屈强比桥梁钢及其制造方法
CN106282789A (zh) * 2016-08-15 2017-01-04 山东钢铁股份有限公司 一种低碳特厚TMCP型Q420qE桥梁钢及其制造方法
KR20180073007A (ko) * 2016-12-22 2018-07-02 주식회사 포스코 강도 및 저온 충격인성이 우수한 강재 및 그 제조방법
CN108624744A (zh) * 2018-05-11 2018-10-09 鞍钢股份有限公司 一种Q500qE桥梁钢板及其生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115627415A (zh) * 2022-09-28 2023-01-20 山东钢铁集团日照有限公司 一种低成本厚规格高强度管桩用热轧带钢及其制备方法
CN115627415B (zh) * 2022-09-28 2024-04-16 山东钢铁集团日照有限公司 一种低成本厚规格高强度管桩用热轧带钢及其制备方法
CN115717222A (zh) * 2022-11-16 2023-02-28 包头钢铁(集团)有限责任公司 一种v-n合金化a350lf6法兰用钢生产方法

Also Published As

Publication number Publication date
KR20230059825A (ko) 2023-05-03
CN112210719A (zh) 2021-01-12
JP2023542427A (ja) 2023-10-06

Similar Documents

Publication Publication Date Title
CN110318008B (zh) 一种大厚度抗层状撕裂屈服强度960MPa级高强钢板及其生产方法
WO2022067961A1 (zh) 一种低成本高性能q500桥梁钢及生产方法
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN110079740B (zh) 一种高韧性热轧530MPa级汽车冷冲压桥壳钢板及其制造方法
CN104694822A (zh) 一种屈服强度700MPa级高强度热轧钢板及其制造方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
WO2022227396A1 (zh) 一种高效焊接桥梁钢及其制造方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN108070789B (zh) 屈服强度不小于480MPa级超细晶特厚钢及制备方法
WO2022183522A1 (zh) 一种热轧无缝钢管及其形变相变一体化组织调控方法
CN110629114A (zh) 一种低成本高强高韧桥梁钢及其制备方法
CN109628828B (zh) 一种低屈强比超厚水电高强度钢板及其制造方法
WO2018040859A1 (zh) 一种大厚度q960e超高强钢生产方法
WO2020098288A1 (zh) 一种超快冷工艺生产q690d厚板及制造方法
CN115181911B (zh) 特厚Q500qE桥梁钢板及其生产方法
CN113528936A (zh) 一种采用异型坯生产dh36海洋工程结构用热轧h型钢的方法
CN115011878A (zh) 一种高耐硫酸露点腐蚀圆钢及其制备方法
CN115011869A (zh) 一种海洋工程结构用超高强度热轧h型钢及其生产方法
CN115141969A (zh) 一种800MPa级水电用钢的生产方法
WO2019222988A1 (zh) 一种屈服强度1100MPa级超细晶高强钢板及其制造方法
CN115261746B (zh) 特厚Q420qE桥梁钢板及其生产方法
CN111270151A (zh) 一种q345e钢板及其生产方法
CN114908292B (zh) 一种先进核电机组蒸发器用钢板及其制造方法
CN114231826B (zh) 一种Q420qE桥梁结构钢板的生产方法
CN114381662A (zh) 一种低成本压力容器用钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010904

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955980

Country of ref document: EP

Kind code of ref document: A1