WO2022067741A1 - 信道传输方法及装置、存储介质 - Google Patents

信道传输方法及装置、存储介质 Download PDF

Info

Publication number
WO2022067741A1
WO2022067741A1 PCT/CN2020/119604 CN2020119604W WO2022067741A1 WO 2022067741 A1 WO2022067741 A1 WO 2022067741A1 CN 2020119604 W CN2020119604 W CN 2020119604W WO 2022067741 A1 WO2022067741 A1 WO 2022067741A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
occasions
indication information
actual
beam indication
Prior art date
Application number
PCT/CN2020/119604
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080002519.7A priority Critical patent/CN114586458A/zh
Priority to US18/044,753 priority patent/US20230361947A1/en
Priority to PCT/CN2020/119604 priority patent/WO2022067741A1/zh
Priority to EP20955764.4A priority patent/EP4224974A4/en
Publication of WO2022067741A1 publication Critical patent/WO2022067741A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a channel transmission method and device, and a storage medium.
  • each TRP Transmission and Receiving Points, sending and receiving points
  • the antenna array of each TRP can be divided into several relatively independent antenna panels, so the shape and number of ports of the entire array can be flexibly adjusted according to deployment scenarios and business needs.
  • the antenna panels or TRPs can also be connected by optical fibers for more flexible distributed deployment.
  • the cooperation between multiple TRPs or PANELs (panels) can also be used to transmit/receive multiple beams from multiple angles, thereby reducing the blocking effect. adverse effects.
  • the PDSCH PhysicalDownlink SharedChannel, physical downlink data channel
  • data transmission includes scheduling feedback of uplink and downlink channels
  • URLLC Ultra-relaible and Low Latency Communication
  • the downlink control channel PDCCH PhysicalDownlink Control Channel
  • the uplink control channel PUCCH PhysicalUplink Control Channel
  • data channel PUSCH are continued. (PhysicalUplink SharedChannel, physical downlink data channel) for enhancement.
  • PUSCH Taking PUSCH as an example, it can be enhanced by repeatedly transmitting PUSCH.
  • the current PUSCH transmission methods are all for a single TRP and cannot be applied in a multi-TRP scenario.
  • embodiments of the present disclosure provide a channel transmission method and device, and a storage medium.
  • a channel transmission method including:
  • the terminal maps different beam indication information corresponding to different transmission and reception points TRP of the corresponding base station to multiple alternative transmission opportunities according to a predetermined mapping manner; wherein, the beam indication information is used for uplink data channel PUSCH Information about the transmitted beam;
  • the transport blocks on the physical uplink data channel PUSCH are repeatedly transmitted or only the corresponding demodulation reference signal DMRS is separately transmitted.
  • the terminal maps different beam indication information received by different transmission and reception points TRPs of the corresponding base station to multiple alternative transmission opportunities, including:
  • the terminal maps the different beam indication information to K1 nominal transmission occasions respectively according to a predetermined mapping method; wherein, the K1 nominal transmission occasions are respectively located in different time slots, and the K1 nominal transmission occasions are in different time slots.
  • the position of the starting symbol in each time slot is the same, and the number of continuous symbols in each time slot is the same.
  • repeating the transmission of the transmission block on the physical uplink data channel PUSCH includes:
  • the first transmission opportunity Refers to the transmission opportunities that cannot perform uplink PUSCH transmission among the K1 nominal transmission opportunities, and the multiple second transmission opportunities refer to the K1 nominal transmission opportunities.
  • the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second transmission occasions.
  • Reference signal DMRS including:
  • the K1 nominal transmission occasions are used as the multiple target transmission occasions; wherein, the first transmission occasion refers to a situation where uplink PUSCH transmission cannot be performed. transmission timing;
  • the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second transmission occasions, and the transport blocks on the PUSCH are transmitted only separately on the first transmission occasions Corresponding demodulation reference signal DMRS; wherein, the plurality of second transmission occasions refer to a plurality of transmission occasions in which uplink PUSCH transmission can be performed among the K1 nominal transmission occasions.
  • only the corresponding demodulation reference signal DMRS is sent independently, including:
  • the beam indication information mapped to the first transmission occasion only the corresponding demodulation reference signal DMRS is separately sent on the first transmission occasion;
  • the beam indication information corresponding to the third transmission opportunity after determining the beam indication information corresponding to the first transmission opportunity, only the corresponding demodulation reference signal DMRS is separately sent on the first transmission opportunity; wherein, The third transmission occasion is a transmission occasion adjacent to the first transmission occasion among the K1 nominal transmission occasions.
  • the terminal maps different beam indication information corresponding to different transmission and reception points TRP of the corresponding base station to multiple alternative transmission opportunities, including:
  • the terminal maps the different beam indication information to K1' actual transmission occasions respectively according to a predetermined mapping manner; wherein, the K1' actual transmission occasions are transmission occasions in which uplink PUSCH transmission can be performed among the K1 nominal transmission occasions , the K1 nominal transmission opportunities are located in different time slots, the starting symbols of the K1 nominal transmission opportunities in each time slot are the same, and the number of continuous symbols in each time slot is the same.
  • repeating the transmission of the transmission block on the physical uplink data channel PUSCH includes:
  • the transmission block on the PUSCH is repeatedly transmitted.
  • the terminal maps different beam indication information received by different transmission and reception points TRPs of the corresponding base station to multiple alternative transmission opportunities, including:
  • the terminal maps the different beam indication information to K2 nominal transmission occasions respectively according to a predetermined mapping manner; wherein, the K2 nominal transmission occasions are transmission occasions that are continuously allocated back-to-back.
  • repeating the transmission of the transmission block on the physical uplink data channel PUSCH includes:
  • the first actual transmission opportunity is a transmission opportunity in which uplink PUSCH transmission cannot be performed among the K2' actual transmission opportunities, and the plurality of second actual transmission opportunities are among the K2' actual transmission opportunities Multiple transmission opportunities for uplink PUSCH transmission can be performed;
  • the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second actual transmission occasions.
  • Reference signal DMRS including:
  • the first actual transmission opportunity is an actual transmission opportunity in which uplink PUSCH transmission cannot be performed among the K2' actual transmission opportunities;
  • the transport blocks on the PUSCH are repeatedly transmitted, and on the first actual transmission occasions, only the A corresponding demodulation reference signal DMRS is sent; wherein, the plurality of second actual transmission occasions are a plurality of transmission occasions in which uplink PUSCH transmission can be performed among the K2' actual transmission occasions.
  • the terminal maps different beam indication information received by different transmission and reception points TRPs of the corresponding base station to multiple alternative transmission opportunities, including:
  • the terminal maps the different beam indication information to K2' actual transmission opportunities respectively according to the mapping method; wherein, the K2' actual transmission opportunities are a plurality of actual transmissions obtained by dividing the K2 nominal transmission opportunities Timings, the K2 nominal transmission occasions are consecutively allocated transmission occasions back-to-back.
  • the repeating transmission of the transmission blocks on the physical uplink data channel PUSCH on the multiple target transmission opportunities based on the beam indication information respectively corresponding to the multiple target transmission opportunities includes:
  • a plurality of second actual transmission opportunities are used as the plurality of target transmission opportunities; wherein, the first actual transmission opportunity is the K2' Among the actual transmission occasions, the transmission occasions in which uplink PUSCH transmission cannot be performed, and the plurality of second actual transmission occasions are a plurality of transmission occasions in which uplink PUSCH transmission can be performed among the K2' actual transmission occasions;
  • the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second actual transmission occasions.
  • Reference signal DMRS including:
  • the K2' actual transmission opportunities are used as the plurality of target transmission opportunities; wherein, the first actual transmission opportunity is the K2 ' a transmission opportunity in which uplink PUSCH transmission cannot be performed among the actual transmission opportunities;
  • the transport block on the PUSCH is repeatedly transmitted, and on the first actual transmission occasion, Only the corresponding demodulation reference signal DMRS is sent independently; wherein, the plurality of second actual transmission occasions are a plurality of actual transmission occasions in which uplink PUSCH transmission can be performed among the K2' actual transmission occasions.
  • the terminal maps different beam indication information received by different transmission and reception points TRPs of the corresponding base station to multiple alternative transmission opportunities, including:
  • the terminal maps the different beam indication information to K2" actual transmission opportunities respectively according to the mapping method; wherein, the K2" actual transmission opportunities are among the K2' actual transmission opportunities, which can perform uplink PUSCH transmission.
  • Transmission timing; the K2' actual transmission timings are actual transmission timings obtained by dividing the K2 nominal transmission timings; the K2 nominal transmission timings are continuous transmission timings allocated back-to-back.
  • the described beam indication information corresponding respectively based on multiple target transmission opportunities, on the multiple target transmission opportunities, repeat transmission of the transmission block on the physical uplink data channel PUSCH, including:
  • the transmission block on the PUSCH is repeatedly transmitted on the K2" actual transmission occasions.
  • Reference signal DMRS including:
  • the transmission block on the PUSCH is repeatedly transmitted, and on the first actual transmission occasion, only a single The corresponding demodulation reference signal DMRS is sent; wherein, the first actual transmission opportunity is a transmission opportunity in which uplink PUSCH transmission cannot be performed among the K2' actual transmission opportunities.
  • only the corresponding demodulation reference signal DMRS is sent independently, including:
  • the third transmission opportunity is an actual transmission opportunity adjacent to the first actual transmission opportunity among the K2' actual transmission opportunities.
  • the method further includes:
  • the mapping mode is determined according to predefined settings.
  • the terminal maps different beam indication information received by different transmission and reception points TRP of the corresponding base station to multiple alternative transmission opportunities, including any of the following:
  • the different beam indication information is evenly mapped to the multiple candidate transmission opportunities according to the preset number of PUSCH repeated transmissions; or
  • the different beam indication information is mapped to the different beam indication information according to the preset order. on the multiple alternative transmission occasions.
  • the terminal maps different beam indication information received by different transmission and reception points TRPs of the corresponding base station to multiple alternative transmission opportunities, including:
  • the different beam indication information is respectively mapped to all target transmission opportunities included in the multiple sequentially arranged time slots.
  • a channel transmission apparatus including:
  • the mapping module is configured for the terminal to map different beam indication information received by different transmission and reception points TRP of the corresponding base station to a plurality of alternative transmission opportunities according to a predetermined mapping manner; wherein, the beam indication information is used Beam related information for uplink data channel PUSCH transmission;
  • the transmission module is configured to transmit the transmission blocks on the physical uplink data channel PUSCH repeatedly or only send the corresponding demodulation separately on the multiple target transmission opportunities based on the beam indication information respectively corresponding to the multiple target transmission opportunities reference signal DMRS.
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is configured to execute the channel transmission method according to any one of the above-mentioned first aspect.
  • a channel transmission apparatus including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the channel transmission method described in any one of the first aspect above.
  • the terminal may map the beam indication information received by different TRPs corresponding to the base station to a plurality of candidate transmission opportunities respectively according to a predetermined mapping manner. Further, the beam indication information corresponding to the multiple target transmission occasions respectively, on the multiple target transmission occasions, the transmission block on the physical uplink data channel PUSCH is repeatedly transmitted or only the corresponding demodulation reference signal DMRS is sent separately. The purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the reliability of data transmission is improved.
  • FIGS. 1A to 1D are schematic diagrams illustrating a manner of repeated PUSCH transmission according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram of a channel transmission scenario according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram illustrating a mapping between beam indication information and transmission timing according to an exemplary embodiment.
  • FIG. 4 is a schematic diagram illustrating another channel transmission scenario according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram illustrating another channel transmission scenario according to an exemplary embodiment.
  • FIG. 6 is a schematic diagram illustrating another mapping between beam indication information and transmission timing according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram showing another channel transmission scenario according to an exemplary embodiment.
  • FIG. 8 is a schematic diagram illustrating another mapping between beam indication information and transmission timing according to an exemplary embodiment.
  • Fig. 9 is a schematic diagram illustrating another channel transmission scenario according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram showing another channel transmission scenario according to an exemplary embodiment.
  • FIG. 11 is a schematic diagram illustrating another mapping between beam indication information and transmission timing according to an exemplary embodiment.
  • Fig. 12 is a schematic diagram illustrating another channel transmission scenario according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram showing another channel transmission scenario according to an exemplary embodiment.
  • FIG. 14 is a schematic diagram illustrating another mapping between beam indication information and transmission timing according to an exemplary embodiment.
  • Fig. 15 is a schematic diagram illustrating another channel transmission scenario according to an exemplary embodiment.
  • Fig. 16 is a schematic diagram illustrating another channel transmission scenario according to an exemplary embodiment.
  • FIG. 17 is a schematic diagram illustrating another mapping between beam indication information and transmission timing according to an exemplary embodiment.
  • Fig. 18 is a block diagram of a channel transmission apparatus according to an exemplary embodiment.
  • FIG. 19 is a schematic structural diagram of a channel transmission apparatus according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the first enhancement method is the repetition type A transmission method adopted in R15.
  • the repetition type A transmission mode is for the slot level, Slot Aggregation (slot aggregation) PUSCH transmission mode.
  • a PUSCH is repeatedly transmitted on consecutive K transmission occasions (nominal repetitions), and the value of K in FIG. 1A is 2. Transmission starts from the S-th symbol of the initial time slot, and each transmission opportunity lasts for L symbols, and the value of L in FIG. 1A is 4.
  • (S+L) does not exceed the slot boundary, eg a slot includes 14 time symbols, then (S+L) does not exceed 14.
  • the repetition type A transmission mode is not suitable for services with low delay requirements and high reliability requirements.
  • the second enhancement method is the repetition type B transmission method adopted in R16.
  • R16 proposes a PUSCH repeated transmission mode with mini-slot (mini timeslot) as the unit, that is, the repeated type B transmission mode, which allows the repeated transmission of PUSCH across time slots to further reduce the delay.
  • mini-slot mini timeslot
  • a PUSCH starts transmission on the S-th symbol of the initial time slot, and continuously sends K transmission opportunities, each of which occupies L symbols continuously, as shown in FIG. 1B .
  • (S+L) can cross the time slot boundary.
  • the transmission opportunity crosses the time slot boundary, the transmission opportunity is re-divided, corresponding to the actual transmission opportunity (actural repetition) K' .
  • Figure 1C and Figure 1D For example, as shown in Figure 1C and Figure 1D.
  • the third transmission opportunity is divided into two actual transmission opportunities by the time slot boundary because it crosses the time slot boundary. That is, in FIG. 1C , the transmission opportunity K of the PUSCH is 4, but the actual transmission opportunity K' is 5.
  • FIG. 1D there is only one transmission opportunity. Since this transmission opportunity crosses the time slot boundary, it is divided into two actual transmission opportunities by the time slot boundary. That is, in FIG. 1D , the transmission opportunity K of PUSCH is 1, but the actual The transmission opportunity K' is 2.
  • the base station can use SFI (Slot Format Indicator, slot format indicator) to indicate that the semi-static Flexible time symbol is a dynamic uplink symbol or a dynamic downlink symbol, so the semi-static Flexible time symbol may be an available symbol for PUSCH (ie Flexible The time symbol is an uplink signal and can be used for PUSCH transmission), or it may be an unavailable symbol (that is, the Flexible time symbol is a downlink signal and cannot be used for PUSCH transmission). When there are unavailable time symbols, the unavailable time symbols need to be dropped (discarded), and the PUSCH is transmitted on the remaining available symbols. That is, for the entire transmission, the time slot L ⁇ K can represent the time window size of PUSCH transmission. If a certain time symbol cannot be used for uplink transmission in this time window, then the time symbol cannot transmit PUSCH, and it is necessary to The transmission opportunity is dropped, and the PUSCH is transmitted on other transmission opportunities.
  • SFI Slot Format Indicator, slot format indicator
  • repetition type A transmission mode and repetition type B transmission mode are applicable to a single RTP scenario, and do not support the terminal to repeatedly transmit PUSCH using the multi-TRP technology to improve data transmission reliability.
  • the present disclosure provides a channel transmission scheme, which can transmit PUSCH repeatedly based on multiple TRP scenarios, thereby improving the reliability of data transmission.
  • FIG. 2 is a flowchart of a channel transmission method according to an embodiment, and the method may include the following steps:
  • the terminal maps different beam indication information received by different transmission and reception points TRP corresponding to the base station to multiple candidate transmission opportunities respectively according to a predetermined mapping manner.
  • the beam indication information is beam-related information used for transmitting the uplink data channel PUSCH.
  • the beam indication information may include spatial Relation Info (spatial relationship information), or include UL (UpLink, uplink) TCI (Transmission Configuration Indicator, transmission configuration indication) state (state) information.
  • step 202 based on the beam indication information respectively corresponding to the multiple target transmission occasions, on the multiple target transmission occasions, the transport blocks on the physical uplink data channel PUSCH are repeatedly transmitted or only the corresponding demodulation reference is transmitted separately.
  • Signal DMRS Signal DMRS.
  • the terminal may map the beam indication information received by different TRPs corresponding to the base station to multiple candidate transmission opportunities respectively according to a predetermined mapping manner. Further, the beam indication information corresponding to the multiple target transmission occasions respectively, on the multiple target transmission occasions, the transmission block on the physical uplink data channel PUSCH is repeatedly transmitted or only the corresponding demodulation reference signal DMRS is sent separately. The purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the reliability of data transmission is improved.
  • the above step 201 may use the following methods to map different beam indication information to multiple candidate transmission opportunities:
  • the terminal maps the different beam indication information to K1 nominal transmission opportunities respectively according to a predetermined mapping manner.
  • the K1 nominal transmission opportunities are respectively located in different time slots, the K1 nominal transmission opportunities have the same starting symbol position in each time slot, and the same number of continuous symbols in each time slot.
  • different beam indication information can be mapped to K1 nominal transmission opportunities respectively.
  • different TCIs are respectively mapped to four nominal transmission occasions Rep#1 to Rep#4, and TCI-1 and TCI-2 are different beam indication information.
  • FIG. 4 is another channel transmission method shown according to the embodiment shown in FIG. 2 .
  • Flow chart, step 202 may include:
  • step 202-11 in response to determining that a first transmission opportunity exists in the K1 nominal transmission opportunities, a plurality of second transmission opportunities in the K1 nominal transmission opportunities are used as the plurality of target transmission opportunities.
  • the first transmission opportunity refers to a transmission opportunity in which uplink PUSCH transmission cannot be performed among the K1 nominal transmission opportunities
  • the plurality of second transmission opportunities means that among the K1 nominal transmission opportunities can be performed Multiple transmission occasions for uplink PUSCH transmission.
  • the first transmission opportunity may refer to the repetition type A transmission mode in which a certain symbol in the transmission opportunity is configured as a downlink symbol due to resource allocation, or the first actual transmission opportunity may also refer to the inability to perform uplink PUSCH transmission due to other circumstances transmission timing. Therefore, the transmission timing for uplink PUSCH transmission cannot be performed.
  • the multiple second transmission occasions are multiple transmission occasions in which there is no symbol configuration conflict among the K1 nominal transmission occasions in the repetition type A transmission mode.
  • multiple second transmission opportunities may be used as the multiple target transmission opportunities.
  • step 202-12 based on the beam indication information corresponding to the plurality of second transmission occasions, the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second transmission occasions.
  • the terminal repeats the transmission on the PUSCH based on the corresponding beam indication information at the first, second, and fourth transmission opportunities, respectively. transmission is fast.
  • the terminal can repeatedly transmit the transmission block on the PUSCH on multiple second transmission occasions other than the first transmission occasion, thereby realizing the The purpose of enhancing the PUSCH in a multi-TRP scenario improves the reliability of data transmission.
  • FIG. 5 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2 , and step 202 may include:
  • step 202-21 in response to determining that a first transmission opportunity exists among the K1 nominal transmission occasions, the K1 nominal transmission occasions are used as the plurality of target transmission occasions.
  • the terminal may still use all the K1 nominal transmission occasions as multiple target transmission occasions.
  • steps 202-22 based on the beam indication information respectively corresponding to the plurality of second transmission occasions, on the plurality of second transmission occasions, the transport block on the PUSCH is repeatedly transmitted, and the transmission block on the PUSCH is repeatedly transmitted on the plurality of second transmission occasions, and the At the transmission opportunity, only the corresponding demodulation reference signal DMRS is sent independently.
  • the terminal may repeatedly transmit the transport blocks on the PUSCH on multiple second transmission occasions, and on the first transmission occasion, only send the corresponding DMRS (Demodulation Reference Signal, demodulation reference signal), so that the base station can perform better channel estimation according to the DMRS.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the data blocks on the PUSCH may be repeatedly transmitted at the first, second, and fourth transmission occasions, and the DMRS may be transmitted at the third transmission occasion.
  • the transport block on the PUSCH is repeatedly transmitted on the transmission occasion. It also achieves the purpose of enhancing the PUSCH in a multi-TRP scenario, improving the reliability of data transmission, and improving the quality of channel estimation.
  • only the corresponding demodulation reference signal DMRS may be separately sent on the first transmission opportunity.
  • the first transmission occasion since different beam indication information is previously mapped to K1 nominal transmission occasions, and the first transmission occasion also has corresponding beam indication information, it can be directly For the beam indication information, only the corresponding demodulation reference signal DMRS is sent independently at the first transmission opportunity.
  • the third transmission opportunity is a transmission opportunity adjacent to the first transmission opportunity among the K1 nominal transmission opportunities.
  • the subsequent third transmission occasion may be a transmission occasion before the first transmission occasion or a transmission occasion after the first transmission occasion.
  • the beam indication information corresponding to the first transmission occasion may be the same as or different from the beam indication information corresponding to the third transmission occasion, which is not limited in the present disclosure.
  • the corresponding demodulation reference signal DMRS is sent separately.
  • the purpose of only sending the corresponding demodulation reference signal DMRS alone at the first transmission opportunity where uplink PUSCH transmission cannot be performed is achieved, the channel estimation quality is improved, and the usability is high.
  • the above step 201 may also use the following methods to map different beam indication information to multiple candidate transmission opportunities:
  • the terminal maps the different beam indication information to K1' actual transmission occasions respectively according to a predetermined mapping manner.
  • the K1 ' actual transmission opportunities are transmission opportunities that can perform uplink PUSCH transmission among the K1 nominal transmission opportunities, the K1 nominal transmission opportunities are located in different time slots, and the K1 nominal transmission opportunities are respectively located in different time slots.
  • the timing starts at the same position in each slot and has the same number of continuous symbols in each slot.
  • the 1st, 2nd, and 4th transmission opportunities in Fig. 3 can be used as K1' actual transmission opportunities, and the mapping method thereof can be as shown in Fig. 6, for example.
  • FIG. 7 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2 .
  • Step 202 may include:
  • the K1' actual transmission occasions are used as the multiple target transmission occasions.
  • K1' actual transmission occasions may be directly used as the multiple target transmission occasions.
  • steps 202-31 based on the beam indication information corresponding to the K1' actual transmission occasions, the transmission blocks on the PUSCH are repeatedly transmitted on the K1' actual transmission occasions.
  • different beam indication directions can be directly mapped to K1' actual transmission opportunities, and K1' actual transmission opportunities are used as multiple target transmission opportunities, and the transmission blocks on the PUSCH are repeatedly transmitted.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the purpose of improving the reliability of data transmission is achieved.
  • the above step 201 may use the following methods to map different beam indication information to multiple candidate transmission opportunities:
  • the terminal maps the different beam indication information to K2 nominal transmission opportunities respectively according to a predetermined mapping manner.
  • the K2 nominal transmission opportunities are transmission opportunities that are continuously allocated back-to-back, and the mapping method thereof is shown in FIG. 8 , for example.
  • FIG. 9 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2, and step 202 may include:
  • step 202-41 in response to the K2 nominal transmission occasions being divided into K2' actual transmission occasions, and a first actual transmission occasion exists in the K2' actual transmission occasions, a plurality of second actual transmission occasions are divided into The opportunity serves as the plurality of target transmission opportunities.
  • the K2 nominal transmission opportunities may span time slots, there may be K2' actual transmission opportunities divided by the time slot boundary. Or a certain nominal transmission occasion is divided into two actual transmission occasions by the downlink symbols included in itself.
  • the d-th symbol in the m-th nominal transmission opportunity among the K2 nominal transmission opportunities is configured as a downlink symbol, then the symbol before the d-th symbol belongs to an actual transmission opportunity, and the symbol after the d-th symbol belongs to another Actual transmission timing.
  • the first actual transmission opportunity is a transmission opportunity in which uplink PUSCH transmission cannot be performed among the K2' actual transmission opportunities
  • the plurality of second actual transmission opportunities are among the K2' actual transmission opportunities where uplink PUSCH transmission can be performed Multiple transmission opportunities for transmission.
  • the first actual transmission opportunity may refer to the K2' actual transmission opportunities, because any symbol is configured as a downlink symbol, resulting in an inability to perform uplink PUSCH transmission opportunity.
  • the first actual transmission opportunity may refer to K2' actual transmission opportunities, because the number of symbols included after being divided by (time slot or downlink signal) is too small, so that the effective coding rate is too high, even if the base station side receives this opportunity.
  • the information sent by the transmission opportunity also cannot be successfully decoded at the transmission opportunity.
  • the first actual transmission occasion may also refer to a transmission occasion where uplink PUSCH transmission cannot be performed due to other circumstances.
  • the multiple second actual transmission occasions are multiple transmission occasions in which uplink PUSCH transmission can be performed.
  • multiple second actual transmission occasions may be used as the multiple target transmission occasions.
  • steps 202-42 based on the beam indication information corresponding to the plurality of second actual transmission occasions, the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second actual transmission occasions.
  • the terminal can use beams on Rep#1, Rep#2, Rep#3 and Rep#4-2 respectively according to the Indication information TCI-1, TCI-2, TCI-1, TCI-2, repeat transmission of the transport block on the PUSCH.
  • the transport block on the PUSCH may be repeatedly transmitted only on multiple second actual transmission occasions.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the purpose of improving the reliability of data transmission is achieved.
  • FIG. 10 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2 , and step 202 may include:
  • step 202-51 in response to the K2 nominal transmission occasions being divided into K2' actual transmission occasions, and a first actual transmission occasion exists in the K2', the K2' actual transmission occasions are used as all the actual transmission occasions Describe multiple target transmission occasions.
  • the K2 nominal transmission opportunities are divided into K2' actual transmission opportunities, and there is a first actual transmission opportunity that cannot perform uplink PUSCH transmission in the K2', then the K2' actual transmission opportunities can still be A transmission occasion is used as the plurality of target transmission occasions.
  • steps 202-52 based on the beam indication information corresponding to the plurality of second actual transmission occasions, on the plurality of second actual transmission occasions, the transport block on the PUSCH is repeatedly transmitted, and the transmission block on the PUSCH is repeatedly transmitted on the second actual transmission occasions.
  • the corresponding demodulation reference signal DMRS is sent independently.
  • the multiple second actual transmission opportunities are multiple transmission opportunities that can perform uplink PUSCH transmission among the K2' actual transmission opportunities.
  • the terminal can use the corresponding beam indication information on Rep#1, Rep#2, Rep#3, and Rep#4-2 to repeatedly transmit the transport blocks on the PUSCH, and use the corresponding beam indication information on Rep#4-1.
  • the corresponding demodulation reference signal DMRS is sent separately on the above.
  • the transmission blocks on the PUSCH may be repeatedly transmitted at multiple second actual transmission occasions, and only the corresponding demodulation reference signal DMRS may be sent separately at the first actual transmission occasion, thereby. While achieving the purpose of enhancing the PUSCH in a multi-TRP scenario and improving the reliability of data transmission, the channel estimation quality is also improved.
  • the above step 201 may use the following methods to map different beam indication information to multiple candidate transmission opportunities:
  • the terminal maps the different beam indication information to K2' actual transmission opportunities respectively according to a predetermined mapping manner.
  • the K2' actual transmission opportunities are a plurality of actual transmission opportunities obtained by dividing the K2 nominal transmission opportunities, and the K2 nominal transmission opportunities are the transmission opportunities that are continuously allocated back-to-back.
  • This mapping method is shown in Fig. 11, for example.
  • FIG. 12 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2.
  • Step 202 may include:
  • step 202-61 in response to determining that a first actual transmission opportunity exists among the K2' actual transmission occasions, a plurality of second actual transmission occasions are used as the plurality of target transmission occasions.
  • the first actual transmission occasions are transmission occasions in which the uplink PUSCH transmission cannot be performed among the K2' actual transmission occasions
  • the plurality of second actual transmission occasions are the K2' actual transmission occasions Among the opportunities, multiple transmission opportunities for uplink PUSCH transmission can be performed.
  • multiple second actual transmission opportunities are directly used as the multiple target transmission opportunities.
  • step 202-62 based on the beam indication information corresponding to the plurality of second actual transmission occasions, the transport blocks on the PUSCH are repeatedly transmitted on the plurality of second actual transmission occasions.
  • the terminal may repeat the transmission on Rep#1, Rep#2, Rep#3, and Rep#4-2 according to the beam indication information TCI-1, TCI-2, TCI-1, and TCI-1, respectively.
  • Transport block on PUSCH For example, as shown in FIG. 11 , the terminal may repeat the transmission on Rep#1, Rep#2, Rep#3, and Rep#4-2 according to the beam indication information TCI-1, TCI-2, TCI-1, and TCI-1, respectively.
  • Transport block on PUSCH Transport block on PUSCH.
  • the transport blocks on the PUSCH are repeatedly transmitted.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the purpose of improving the reliability of data transmission is achieved.
  • FIG. 13 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2 .
  • Step 202 may include:
  • step 202-71 in response to determining that a first actual transmission opportunity exists among the K2' actual transmission opportunities, the K2' actual transmission opportunities are used as the plurality of target transmission opportunities.
  • the K2' actual transmission opportunities may be used as the multiple target transmission opportunities.
  • steps 202-72 based on the beam indication information corresponding to the plurality of second actual transmission occasions, repeat the transmission of the transport block on the PUSCH on the plurality of second actual transmission occasions, and repeat the transmission of the transport block on the PUSCH on the second actual transmission occasions.
  • DMRS demodulation reference signal
  • the multiple second actual transmission occasions are multiple transmission occasions in which uplink PUSCH transmission can be performed among the K2' actual transmission occasions.
  • the terminal may repeatedly transmit PUSCH on Rep#1, Rep#2, Rep#3 and Rep#4-2 according to the beam indication information TCI-1, TCI-2, TCI-1 and TCI-1 For the transport block on Rep#4-1, only the corresponding demodulation reference signal DMRS is sent separately.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, the purpose of improving the reliability of data transmission, and at the same time the quality of channel estimation is improved.
  • the above step 201 may use the following methods to map different beam indication information to multiple candidate transmission opportunities:
  • the terminal maps the different beam indication information to K2" actual transmission opportunities respectively according to the mapping manner.
  • the K2" actual transmission opportunities are among the K2' actual transmission opportunities that can perform uplink PUSCH transmission; the K2' actual transmission opportunities are actual transmission opportunities obtained by dividing the K2 nominal transmission opportunities ; The K2 nominal transmission opportunities are continuous transmission opportunities allocated back-to-back.
  • the mapping mode is shown in Figure 14, for example.
  • FIG. 15 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2 .
  • Step 202 may include:
  • step 202-81 the K2" actual transmission occasions are used as multiple target transmission occasions.
  • steps 202-82 based on the beam indication information corresponding to the K2" actual transmission occasions, the transmission block on the PUSCH is repeatedly transmitted on the K2" actual transmission occasions.
  • the terminal repeatedly transmits the PUSCH on Rep#1, Rep#2, Rep#3 and Rep#4-2 according to the beam indication information TCI-1, TCI-2, TCI-1 and TCI-2 transmission block.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the purpose of improving the reliability of data transmission is achieved.
  • FIG. 16 is a flowchart of another channel transmission method according to the embodiment shown in FIG. 2 , and step 202 may include:
  • step 202-91 the K2' actual transmission occasions are used as multiple target transmission occasions.
  • steps 202-92 according to the beam indication information corresponding to the K2" actual transmission occasions, the transmission blocks on the PUSCH are repeatedly transmitted on the K2" actual transmission occasions, and the first At the actual transmission opportunity, only the corresponding demodulation reference signal DMRS is sent separately.
  • the terminal repeatedly transmits the PUSCH on Rep#1, Rep#2, Rep#3 and Rep#4-2 according to the beam indication information TCI-1, TCI-2, TCI-1 and TCI-2 , and on Rep#4-1, only the corresponding demodulation reference signal DMRS is sent separately.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, the purpose of improving the reliability of data transmission, and at the same time the quality of channel estimation is improved.
  • the process of only sending the corresponding demodulation reference signal DMRS separately at the first actual transmission opportunity may adopt the following scheme: .
  • only the corresponding demodulation reference signal DMRS may be sent separately on the first actual transmission occasion.
  • the demodulation reference signal DMRS is sufficient.
  • the third actual transmission opportunity is an actual transmission opportunity adjacent to the first actual transmission opportunity among the K2' actual transmission opportunities.
  • the third actual transmission occasion may be a previous or subsequent transmission occasion of the first actual transmission occasion.
  • the beam indication information corresponding to the first actual transmission opportunity may be the same as or different from the beam indication information corresponding to the third actual transmission opportunity.
  • the purpose of only sending the corresponding demodulation reference signal DMRS alone at the first actual transmission opportunity where uplink PUSCH transmission cannot be performed is achieved, the channel estimation quality is improved, and the availability is high.
  • the above-mentioned mapping mode may be configured by the base station through first signaling, wherein the first signaling may include but not limited to high-level RRC (Radio Resource Control, Radio Resource Control) signaling, or MAC (Media Access Control Address, media range control address) signaling.
  • first signaling may include but not limited to high-level RRC (Radio Resource Control, Radio Resource Control) signaling, or MAC (Media Access Control Address, media range control address) signaling.
  • the base station may configure the association information corresponding to the mapping manner through the second signaling.
  • the second signaling may be the same as or different from the first signaling.
  • mapping can be set directly in the protocol.
  • step 201 may include any of the following:
  • the different beam indication information is cyclically mapped to the multiple candidate transmission opportunities according to a preset sequence.
  • the terminal cyclically maps the different beam indication information to the K1 nominal transmission opportunities in a preset order, and the mapping result obtained at this time is shown in FIG. 3 , for example. If there is a first transmission opportunity, the terminal may repeatedly transmit the data blocks on the PUSCH on Rep#1, Rep#2, and Rep#4 according to the information indicated by TCI-1, TCI-2, and TCI-2, respectively.
  • the terminal cyclically maps the different beam indication information to K1' nominal transmission opportunities in a preset order, and the obtained mapping result is shown in Fig. 6, for example.
  • the terminal may repeatedly transmit the data blocks on the PUSCH on Rep#1, Rep#2, and Rep#4 according to the information indicated by TCI-1, TCI-2, and TCI-1, respectively.
  • TCI1 can be repeated twice
  • TCI2 can be repeated twice before mapping.
  • TCI-2 Information indicated by TCI-2 and TCI-2, repeating the transmission of data blocks on the PUSCH.
  • the processing may be performed with reference to the cyclic mapping method of the first manner, which will not be repeated here.
  • the different beam indication information is evenly mapped to the multiple candidate transmission opportunities according to the preset number of PUSCH repeated transmissions.
  • the preset number of times of repeated PUSCH transmission is 8, and the terminal may repeatedly transmit the data blocks on the PUSCH according to the information indicated by TCI-1 in the first 4 transmission occasions. On the last four transmission occasions, the data blocks on the PUSCH are repeatedly transmitted according to the information indicated by TCI-1.
  • the processing may be performed with reference to the cyclic mapping method of the first manner, which will not be repeated here.
  • the different beam indication information indicated by the association information is determined according to the preset order.
  • the beam indication information is mapped to the plurality of candidate transmission occasions.
  • the associated information may be identified in the form of a bitmap.
  • the associated information includes 1001.
  • the mapping sequence is TCI2, TCI1, TCI1, TCI2.
  • the terminal may repeatedly transmit the data blocks on the PUSCH on Rep#1, Rep#2, Rep#3, and Rep#4 according to the information indicated by TCI-2, TCI-1, TCI-1, and TCI-2, respectively.
  • the processing may be performed with reference to the cyclic mapping method of the first manner, which will not be repeated here.
  • the above-mentioned first manner to fourth manner can also be applied to the repetition type B transmission manner, and details are not repeated here.
  • step 201 may further include:
  • the terminal maps the different beam indication information to all target transmission opportunities included in the multiple sequentially arranged time slots according to the mapping manner.
  • the transmission timing is not distinguished, but the mapping is performed according to the time slot.
  • the mapping mode is shown in Fig. 17, for example, the terminal can be on Rep#1, Rep#2, Rep#3, and Rep#4-2 according to TCI-1, TCI-2, TCI respectively -2.
  • the information indicated by TCI-1 repeats the transmission of data blocks on the PUSCH.
  • the purpose of enhancing the PUSCH in a multi-TRP scenario is achieved, and the reliability of data transmission is improved.
  • the present disclosure further provides an application function implementation device embodiment.
  • FIG. 18 is a block diagram of a channel transmission apparatus according to an exemplary embodiment, including:
  • the mapping module 310 is configured for the terminal to map different beam indication information received by different transmission and reception points TRP corresponding to the base station to multiple alternative transmission opportunities according to a predetermined mapping manner; wherein, the beam indication information is Beam related information used for uplink data channel PUSCH transmission;
  • the transmission module 320 is configured to, based on the beam indication information respectively corresponding to the multiple target transmission occasions, repeat the transmission of the transport blocks on the physical uplink data channel PUSCH or only send the corresponding solution on the multiple target transmission occasions.
  • Tuning reference signal DMRS tuning reference signal
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the channel transmission methods described above.
  • a channel transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the channel transmission methods described above.
  • FIG. 19 is a block diagram of an electronic device 1900 according to an exemplary embodiment.
  • the electronic device 1900 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia player, a wearable device, a vehicle-mounted terminal, an ipad, and a smart TV.
  • an electronic device 1900 may include one or more of the following components: a processing component 1902, a memory 1904, a power supply component 1906, a multimedia component 1908, an audio component 1910, an input/output (I/O) interface 1912, a sensor component 1916, and communication component 1918.
  • a processing component 1902 may include one or more of the following components: a processing component 1902, a memory 1904, a power supply component 1906, a multimedia component 1908, an audio component 1910, an input/output (I/O) interface 1912, a sensor component 1916, and communication component 1918.
  • the processing component 1902 generally controls the overall operation of the electronic device 1900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1902 may include one or more processors 1920 to execute instructions to perform all or part of the steps of the channel transmission method described above.
  • processing component 1902 may include one or more modules that facilitate interaction between processing component 1902 and other components.
  • processing component 1902 may include a multimedia module to facilitate interaction between multimedia component 1908 and processing component 1902.
  • the processing component 1902 may read executable instructions from the memory to implement the steps of a channel transmission method provided by the foregoing embodiments.
  • Memory 1904 is configured to store various types of data to support operation at electronic device 1900 . Examples of such data include instructions for any application or method operating on the electronic device 1900, contact data, phonebook data, messages, pictures, videos, and the like. Memory 1904 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 1906 provides power to various components of electronic device 1900.
  • Power supply components 1906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 1900 .
  • Multimedia component 1908 includes a display screen that provides an output interface between the electronic device 1900 and the user.
  • the multimedia component 1908 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 1910 is configured to output and/or input audio signals.
  • audio component 1910 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 1900 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 1904 or transmitted via communication component 1918.
  • audio component 1910 also includes a speaker for outputting audio signals.
  • I/O interface 1912 provides an interface between processing component 1902 and peripheral interface modules, which may be keyboards, click wheels, buttons, and the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 1916 includes one or more sensors for providing status assessment of various aspects of electronic device 1900 .
  • the sensor assembly 1916 can detect the open/closed state of the electronic device 1900, the relative positioning of the components, such as the display and the keypad of the electronic device 1900, the sensor assembly 1916 can also detect the electronic device 1900 or one of the electronic device 1900 The location of components changes, the presence or absence of user contact with the electronic device 1900, the orientation or acceleration/deceleration of the electronic device 1900, and the temperature of the electronic device 1900 changes.
  • Sensor assembly 1916 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1916 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1916 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1918 is configured to facilitate wired or wireless communication between electronic device 1900 and other devices.
  • the electronic device 1900 may access wireless networks based on communication standards, such as Wi-Fi, 2G, 3G, 4G, 19G or 6G, or a combination thereof.
  • the communication component 1918 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1918 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 1900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmed gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for performing the above channel transmission method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmed gate array
  • controller a microcontroller, a microprocessor or other electronic components are implemented for performing the above channel transmission method.
  • a non-transitory machine-readable storage medium including instructions is also provided, such as a memory 1904 including instructions executable by the processor 1920 of the electronic device 1900 to accomplish the wireless charging method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种信道传输方法及装置、存储介质,其中,所述信道传输方法包括:终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。本公开实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性。

Description

信道传输方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及信道传输方法及装置、存储介质。
背景技术
为了改善小区边缘的覆盖,在服务小区内提供更为均衡的服务质量,多点协作在NR(New Radio,新空口)系统中仍然是一种重要的技术手段。
从网络形态角度考虑,以大量的分布式接入点结合基带集中处理的方式来进行的网络部署,将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。随着频段的升高,从保证网络覆盖的角度出发,也需要相对密集的接入点部署。而在高频段,随着有源天线设备集成度的提高,将更加倾向于采用模块化的有源天线阵列。每个TRP(Transmission and Receiving Points,发送和接收点)的天线阵可以被分为若干相对独立的天线面板,因此整个阵面的形态和端口数都可以随部署场景与业务需求进行灵活的调整。而天线面板或TRP之间也可以由光纤连接,进行更为灵活的分布式部署。在毫米波波段,随着波长的减小,人体或车辆等障碍物所产生的阻挡效应将更为显著。这种情况下,从保障链路连接鲁棒性的角度出发,也可以利用多个TRP或PANEL(面板)之间的协作,从多个角度的多个波束进行传输/接收,从而降低阻挡效应带来的不利影响。
在R16研究阶段,基于下行多TRP或PANEL间的多点协作传输技术的应用,对PDSCH(PhysicalDownlink SharedChannel,物理下行数据信道)进行了传输增强。由于数据传输包括上下行信道的调度反馈,因此在URLLC(Ultra-relaible and Low Latency Communication,极可靠低时延通信)的研究中,只对下行数据信道增强不能保证业务性能。因此在R17(Release 17,版本17)的研究中,继续对下行控制信道PDCCH(PhysicalDownlink Control Channel,物理下行控制信道)以及上行的控制 信道PUCCH(PhysicalUplink Control Channel,物理上行控制信道)和数据信道PUSCH(PhysicalUplink SharedChannel,物理下行数据信道)进行增强。
以PUSCH为例,可以采用重复传输PUSCH的方式来进行增强,目前的PUSCH传输方式都是针对单一的TRP而言的,在多TRP场景下无法适用。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种信道传输方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种信道传输方法,包括:
终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K1个名义传输时机上;其中,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
响应于确定所述K1个名义传输时机中存在第一传输时机,将所述K1个名义传输时机中的多个第二传输时机作为所述多个目标传输时机;其中,所述第一传输时机是指所述K1个名义传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二传输时机是指所述K1个名义传输时机中可以进行上行PUSCH传输的多个传输时机;
基于所述多个第二传输时机分别对应的所述波束指示信息,在所述多个第二传输时机上,重复传输所述PUSCH上的传输块。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
响应于确定所述K1个名义传输时机中存在第一传输时机,将所述K1个名义传输时机作为所述多个目标传输时机;其中,所述第一传输时机是指无法进行上行PUSCH传输的传输时机;
基于多个第二传输时机分别对应的所述波束指示信息,在所述多个第二传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述多个第二传输时机是指所述K1个名义传输时机中可以进行上行PUSCH传输的多个传输时机。
可选地,所述在所述第一传输时机上,只单独发送对应的解调参考信号DMRS,包括:
根据映射到所述第一传输时机上的所述波束指示信息,在所述第一传输时机上只单独发送对应的解调参考信号DMRS;或
根据第三传输时机对应的所述波束指示信息,确定所述第一传输时机对应的所述波束指示信息后,在所述第一传输时机上只单独发送对应的解调参考信号DMRS;其中,所述第三传输时机是所述K1个名义传输时机中与所述第一传输时机相邻的传输时机。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和 接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K1’个实际传输时机;其中,所述K1’个实际传输时机是K1个名义传输时机中可以进行上行PUSCH传输的传输时机,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
将所述K1’个实际传输时机作为所述多个目标传输时机;
基于所述K1’个实际传输时机分别对应的所述波束指示信息,在所述K1’个实际传输时机上,重复传输所述PUSCH上的传输块。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K2个名义传输时机上;其中,所述K2个名义传输时机是背对背连续分配的传输时机。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
响应于所述K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’个实际传输时机中存在第一实际传输时机,将多个第二实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多 个传输时机;
基于所述多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
响应于所述K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’中存在第一实际传输时机,将所述K2’个实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的实际传输时机;
基于多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一实际传输时机,只单独发送对应的解调参考信号DMRS;其中,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
终端按照所述映射方式,将所述不同波束指示信息分别映射到K2’个实际传输时机上;其中,所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的多个实际传输时机,所述K2个名义传输时机是背对背连续分配的传输时机。
可选地,所述述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
响应于确定所述K2’个实际传输时机中存在第一实际传输时机,将多个第二实际传输时机作为所述多个目标传输时机;其中,所述第一实际传 输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机;
基于所述多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
响应于确定所述K2’个实际传输时机中存在第一实际传输时机,将所述K2’个实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机;
基于多个第二实际传输时机分别对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个实际传输时机。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
终端按照所述映射方式,将所述不同波束指示信息分别映射到K2”个实际传输时机上;其中,所述K2”个实际传输时机是K2’个实际传输时机中,可以进行上行PUSCH传输的传输时机;所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的实际传输时机;所述K2个名义传输时机是背对背分配的连续传输时机。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传 输块,包括:
将所述K2”个实际传输时机作为多个目标传输时机;
基于所述K2”个实际传输时机分别对应的所述波束指示信息,在所述K2”个实际传输时机上,重复传输所述PUSCH上的传输块。
可选地,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
将所述K2’个实际传输时机作为多个目标传输时机;
根据所述K2”个实际传输时机分别对应的所述波束指示信息,在所述K2”个实际传输时机上,重复传输所述PUSCH上的传输块,以及在第一实际传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机。
可选地,所述在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS,包括:
根据映射到所述第一实际传输时机上的所述波束指示信息,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS;或
根据第三实际传输时机对应的所述波束指示信息,确定所述第一实际传输时机对应的波束指示信息后,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述第三时机传输时机是所述K2’个实际传输时机中与所述第一实际传输时机相邻的实际传输时机。
可选地,所述方法还包括:
获取基站通过第一信令发送的所述映射方式;或
根据基站通过第二信令发送的用于指示所述映射方式的关联信息,确定所述映射方式;或
根据预定义的设置,确定所述映射方式。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和 接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括以下任一项:
将所述不同波束指示信息按照预设顺序循环映射到所述多个备选传输时机上;或
将所述不同波束指示信息重复指定次数后,按照预设顺序映射到所述多个备选传输时机上;或
将所述不同波束指示信息按照预设PUSCH重复传输次数平均映射到所述多个备选传输时机上;或
根据预先确定的关联信息和不同波束指示信息之间的对应关系,确定所述关联信息所指示的不同波束指示信息对应的映射顺序后,按照所述预设顺序将所述不同波束指示信息映射到所述多个备选传输时机上。
可选地,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
按照所述映射方式,将所述不同波束指示信息分别映射到多个顺序排列的时隙上的所包含的所有目标传输时机上。
根据本公开实施例的第二方面,提供一种信道传输装置,包括:
映射模块,被配置为终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
传输模块,被配置为基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。
根据本公开实施例的第三方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面任一项所述的信道传输方法。
根据本公开实施例的第四方面,提供一种信道传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第一方面任一项所述的信道传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,终端可以按照预先确定的映射方式,将对应基站不同TRP接收的波束指示信息,分别映射到多个备选传输时机上。进一步地,多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A至1D是根据一示例性实施例示出的PUSCH重复传输方式示意图。
图2是根据一示例性实施例示出的一种信道传输场景示意图。
图3是根据一示例性实施例示出的一种波束指示信息与传输时机的映射示意图。
图4是根据一示例性实施例示出的另一种信道传输场景示意图。
图5是根据一示例性实施例示出的另一种信道传输场景示意图。
图6是根据一示例性实施例示出的另一种波束指示信息与传输时机的映射示意图。
图7是根据一示例性实施例示出的另一种信道传输场景示意图。
图8是根据一示例性实施例示出的另一种波束指示信息与传输时机的映射示意图。
图9是根据一示例性实施例示出的另一种信道传输场景示意图。
图10是根据一示例性实施例示出的另一种信道传输场景示意图。
图11是根据一示例性实施例示出的另一种波束指示信息与传输时机的映射示意图。
图12是根据一示例性实施例示出的另一种信道传输场景示意图。
图13是根据一示例性实施例示出的另一种信道传输场景示意图。
图14是根据一示例性实施例示出的另一种波束指示信息与传输时机的映射示意图。
图15是根据一示例性实施例示出的另一种信道传输场景示意图。
图16是根据一示例性实施例示出的另一种信道传输场景示意图。
图17是根据一示例性实施例示出的另一种波束指示信息与传输时机的映射示意图。
图18是根据一示例性实施例示出的一种信道传输装置框图。
图19是本公开根据一示例性实施例示出的一种信道传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所 述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在介绍本公开提供的信道传输方案之前,先介绍一下R15和R16中的两种PUSCH增强方式。
第一种增强方式,R15中所采用的重复类型A传输方式。
该重复类型A传输方式是针对时隙级别而言的,Slot Aggregation(时隙聚合)PUSCH传输方式。例如图1A所示,一个PUSCH在连续的K个传输时机(nominal repetition)上重复传输,图1A中K的取值为2。从起始时隙的第S个符号上开始传输,每个传输时机会持续L个符号,图1A中L的取值为4。
需要主要的是(S+L)不超过时隙边界,例如一个时隙包括14个时间符号,那么(S+L)不超过14。
该重复类型A传输方式不适用于时延要求低且可靠性要求高的业务。
第二种增强方式,R16中所采用的重复类型B传输方式。
为了适用于时延要求低且可靠性要求高的业务,R16提出了以mini-slot(迷你时隙)为单位的PUSCH重复传输方式,即重复类型B传输方式,允许PUSCH的重复传输跨时隙进行,从而进一步降低时延。
在时域上,一个PUSCH在起始时隙的第S个符号上开始传输,连续不间断的发送K个传输时机,每个传输时机都连续占用L个符号,例如图1B所示。
同时,在重复类型B传输方式中,(S+L)可以跨越时隙边界,在传输时机出现跨时隙边界的情况下,传输时机被重新分割,对应得到实际传输时机(actural repetition)K’。例如图1C和图1D所示。
在图1C中,第3个传输时机由于跨越了时隙边界,被时隙边界再次划分为2个实际传输时机,即在图1C中,PUSCH的传输时机K为4,但实际传输时机K’为5。
在图1D中,只有1个传输时机,该传输时机由于跨越了时隙边界,被时隙边界再次划分为2个实际传输时机,即在图1D中,PUSCH的传输时机K为1,但实际传输时机K’为2。
基站可以通过SFI(Slot Format Indicator,时隙格式指示符)指示半静态的Flexible(灵活)时间符号为动态的上行符号或动态下行符号,因此半静态Flexible时间符号对PUSCH可能是可用符号(即Flexible时间符号为上行信号,可以用于进行PUSCH传输),也可能是不可用符号(即Flexible时间符号为下行信号,不可以用于进行PUSCH传输)。其中有不可用的时间符号时,需要drop(丢弃)不可用的时间符号,在剩余的可用符号上传输PUSCH。即对于整个传输而言,时隙L×K可以表示PUSCH传输的时间窗口大小,如果在该时间窗口中出现某个时间符号无法进行上行传输,那么该时间符号是不能够传输PUSCH的,需要将该传输时机drop(丢弃)掉,在其他的传输时机上传输PUSCH。
上述的重复类型A传输方式和重复类型B传输方式对应的取值如表1所示:
表1
Figure PCTCN2020119604-appb-000001
Figure PCTCN2020119604-appb-000002
在上述的重复类型A传输方式和重复类型B传输方式中,其适用于单个RTP场景,不支持终端利用多TRP技术重复传输PUSCH来提高数据传输可靠性。
为了解决上述问题,本公开提供了一种信道传输方案,可以基于多TRP场景重复传输PUSCH,提高了数据传输的可靠性。
本公开实施例提供了一种信道传输方法,可以用于终端,参照图2所示,图2是根据一实施例示出的一种信道传输方法流程图,该方法可以包括以下步骤:
在步骤201中,终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上。
在本公开实施例中,波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息。其中,波束指示信息可以包括spatial Relation Info(空间关系信息),或者包括UL(UpLink,上行)TCI(Transmission Configuration Indicator,传输配置指示)state(状态)信息。
在步骤202中,基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。
上述实施例中,终端可以按照预先确定的映射方式,将对应基站不同 TRP接收的波束指示信息,分别映射到多个备选传输时机上。进一步地,多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性。
在一可选实施例中,对应上述的重复类型A传输方式,上述步骤201可以采用以下方式将不同波束指示信息映射到多个备选传时机上:
第一种方式,终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K1个名义传输时机上。
其中,K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
即在采用上述的重复类型A传输方式进行PUSCH增强的情况下,可以将不同波束指示信息分别映射到K1个名义传输时机上。例如图3所示,将不同的TCI分别映射到4个名义传输时机Rep#1至Rep#4上,TCI-1、TCI-2是不同的波束指示信息。
对应于此种方式,如果K1个名义传输时机中存在无法进行上行PUSCH传输的第一传输时机,那么参照图4所示,图4是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-11中,响应于确定所述K1个名义传输时机中存在第一传输时机,将所述K1个名义传输时机中的多个第二传输时机作为所述多个目标传输时机。
在本公开实施例中,第一传输时机是指所述K1个名义传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二传输时机是指所述K1个名义传输时机中可以进行上行PUSCH传输的多个传输时机。
其中,第一传输时机可以指重复类型A传输方式中,由于资源分配导致该传输时机中某个符号被配置为下行符号,或者第一实际传输时机还可 以指由于其他情况导致无法进行上行PUSCH传输的传输时机。从而无法进行上行PUSCH传输的传输时机。多个第二传输时机则是重复类型A传输方式下,K1个名义传输时机中不存在符号配置冲突的多个传输时机。
在本公开实施例中,如果K1个名义传输时机中存在上述的第一传输时机,那么可以将多个第二传输时机作为所述多个目标传输时机。
在步骤202-12中,基于所述多个第二传输时机分别对应的所述波束指示信息,在所述多个第二传输时机上,重复传输所述PUSCH上的传输块。
在本公开实施例中,可以根据多个第二传输时机分别对应的所述波束指示信息,确定至少包括波束方向的波束相关信息后,在多个第二传输时机上,重复传输所述PUSCH上的传输块。
例如图3所示,如果第三个名义传输时机为无法进行上行PUSCH传输的第一传输时机,则终端是在第1、2、4个传输时机上分别基于对应的波束指示信息重复传输PUSCH上的传输快。
上述实施例中,K1个名义传输时机中如果存在无法进行上行PUSCH传输的第一传输时机,终端可以在除了第一传输时机的多个第二传输时机上重复传输PUSCH上的传输块,实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性。
或者对应上述方式一,参照图5所示,图5是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-21中,响应于确定所述K1个名义传输时机中存在第一传输时机,将所述K1个名义传输时机作为所述多个目标传输时机。
在本公开实施例中,如果K1个名义传输时机中存在无法进行上行PUSCH传输的第一传输时机,那么终端仍可以将所有的K1个名义传输时机作为多个目标传输时机。
在步骤202-22中,基于多个第二传输时机分别对应的所述波束指示信息,在所述多个第二传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一传输时机上,只单独发送对应的解调参考信号DMRS。
在本公开实施例中,终端可以在多个第二传输时机上,重复传输PUSCH上的传输块,并且在第一传输时机上,只通过第一个符号单独发送对应的DMRS(Demodulation Reference Signal,解调参考信号),以便基站可以根据DMRS,更好的进行信道估计。
同样例如图3所示,可以在第1、2、4个传输时机上重复传输PUSCH上的数据块,在第3个传输时机上传输DMRS。
上述实施例中,如果K1个名义传输时机中存在无法进行上行PUSCH传输的第一传输时机,那么可以在第一传输时机上只单独发送DMRS,在除了第一传输时机之外的多个第二传输时机上重复传输PUSCH上的传输块。同样实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的,且提高了信道估计质量。
在一可选实施例中,针对上述步骤202-22中的在第一传输时机上,只通过第一个符号单独发送对应的解调参考信号DMRS的过程,可以采用以下方案:
在一个示例中,可以根据映射到所述第一传输时机上的所述波束指示信息,在所述第一传输时机上只单独发送对应的解调参考信号DMRS。
在本公开实施例中,由于之前将不同波束指示信息映射到了K1个名义传输时机上,第一传输时机也存在对应的波束指示信息,那么可以直接根据映射到所述第一传输时机上的所述波束指示信息,在所述第一传输时机上只单独发送对应的解调参考信号DMRS。
在另一个示例中,根据第三传输时机对应的所述波束指示信息,确定所述第一传输时机对应的所述波束指示信息后,在所述第一传输时机上只单独发送对应的解调参考信号DMRS。
在本公开实施例中,第三传输时机是所述K1个名义传输时机中与所述第一传输时机相邻的传输时机。继第三传输时机可以是第一传输时机之前的一个传输时机或之后的一个传输时机。第一传输时机对应的所述波束指示信息可以与第三传输时机对应的波束指示信息相同或不同,本公开对 此不作限定。
在根据第三传输时机对应的所述波束指示信息,确定所述第一传输时机对应的所述波束指示信息后,按照第一传输时机对应的波束指示信息,在所述第一传输时机上只单独发送对应的解调参考信号DMRS。
上述实施例中,实现了在无法进行上行PUSCH传输的第一传输时机上只单独发送对应的解调参考信号DMRS的目的,提高了信道估计质量,可用性高。
在一可选实施例中,对应上述的重复类型A传输方式,上述步骤201还可以采用以下方式将不同波束指示信息映射到多个备选传时机上:
第二种方式,终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K1’个实际传输时机。
在本公开实施例中,K1’个实际传输时机是K1个名义传输时机中可以进行上行PUSCH传输的传输时机,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
图3中的第1、2、4个传输时机可以作为K1’个实际传输时机,其映射方式可以例如图6所示。
对应上述第二种方式,参照图7所示,图7是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-31中,将所述K1’个实际传输时机作为所述多个目标传输时机。
在本公开实施例中,可以直接将K1’个实际传输时机作为所述多个目标传输时机。
在步骤202-31中,基于所述K1’个实际传输时机分别对应的所述波束指示信息,在所述K1’个实际传输时机上,重复传输所述PUSCH上的传输块。
上述实施例中,可以将不同波束指示方向直接映射到K1’个实际传输 时机上,并将K1’个实际传输时机作为多个目标传输时机,重复传输所述PUSCH上的传输块。实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的。
在一可选实施例中,对应上述的重复类型B传输方式,上述步骤201可以采用以下方式将不同波束指示信息映射到多个备选传时机上:
第三种方式,终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K2个名义传输时机上。
其中,K2个名义传输时机是背对背连续分配的传输时机,其映射方式例如图8所示。
对应于上述第三种方式,参照图9所示,图9是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-41中,响应于所述K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’个实际传输时机中存在第一实际传输时机,将多个第二实际传输时机作为所述多个目标传输时机。
在本公开实施例中,由于K2个名义传输时机可以跨时隙,因此可能存在被时隙边界划分出的K2’个实际传输时机。或者某个名义传输时机被自身所包括的下行符号划分为两个实际传输时机。例如K2个名义传输时机中的第m个名义传输时机中的第d个符号被配置为了下行符号,那么第d个符号之前的符号属于一个实际传输时机,第d个符号之后的符号属于另一个实际传输时机。
其中,所述第一实际传输时机是上述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
需要说明的是,第一实际传输时机可以指K2’个实际传输时机中,由于任一符号被配置为下行符号,导致无法进行上行PUSCH的传输时机。或者第一实际传输时机可以指K2’个实际传输时机中,由于被(时隙或下行信号)划分后导致所包括的符号数目太少,使得有效编码率过高,基站 侧即使接收到该时机传输时机发送的信息也无法成功解码的传输时机。或者第一实际传输时机还可以指由于其他情况导致无法进行上行PUSCH传输的传输时机。而多个第二实际传输时机则是可以进行上行PUSCH传输的多个传输时机。
在本公开实施例中,可以将多个第二实际传输时机作为所述多个目标传输时机。
在步骤202-42中,基于所述多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块。
例如图8所示,如果Rep#4-1属于无法进行上行PUSCH传输的第一实际传输时机,那么终端可以在Rep#1、Rep#2、Rep#3和Rep#4-2上分别根据波束指示信息TCI-1、TCI-2、TCI-1、TCI-2,重复传输PUSCH上的传输块。
上述实施例中,在K2’个实际传输时机中存在无法进行上行PUSCH传输的第一实际传输时机的情况下,可以只在多个第二实际传输时机上重复传输所述PUSCH上的传输块。实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的。
或者对应于上述第三种方式,参照图10所示,图10是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-51中,响应于所述K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’中存在第一实际传输时机,将所述K2’个实际传输时机作为所述多个目标传输时机。
在本公开实施例中,如果K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’中存在无法进行上行PUSCH传输的第一实际传输时机,那么仍然可以将K2’个实际传输时机作为所述多个目标传输时机。
在步骤202-52中,基于多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块, 以及在所述第一实际传输时机,只单独发送对应的解调参考信号DMRS。
在本公开实施例中,多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
同样例如图8所示,终端可以在Rep#1、Rep#2、Rep#3和Rep#4-2上采用对应的波束指示信息,重复传输PUSCH上的传输块,以及在Rep#4-1上单独发送对应的解调参考信号DMRS。
上述实施例中,可以在多个多个第二实际传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一实际传输时机,只单独发送对应的解调参考信号DMRS,从而在实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的的同时,提高了信道估计质量。
在一可选实施例中,对应上述的重复类型B传输方式,上述步骤201可以采用以下方式将不同波束指示信息映射到多个备选传时机上:
第四种方式,终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K2’个实际传输时机上。
其中,K2’个实际传输时机是对K2个名义传输时机进行划分得到的多个实际传输时机,所述K2个名义传输时机是背对背连续分配的传输时机。该映射方式例如图11所示。
对应上述第四种方式,参照图12所示,图12是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-61中,响应于确定所述K2’个实际传输时机中存在第一实际传输时机,将多个第二实际传输时机作为所述多个目标传输时机。
在本公开实施例中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。在本公开实施例中,直接将多个第二实际传输时机作为所述多个目标传输时机。
在步骤202-62中,基于所述多个第二实际传输时机对应的所述波束指 示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块。
例如图11所示,终端可以在Rep#1、Rep#2、Rep#3和Rep#4-2上分别根据波束指示信息TCI-1、TCI-2、TCI-1、TCI-1,重复传输PUSCH上的传输块。
上述实施例中,可以在将不同波束指示信息映射到K2’个实际传输实际上的情况下,在确定所述K2’个实际传输时机中存在无法进行上行PUSCH传输的第一实际传输时机时,在可以进行上行PUSCH传输的多个第二实际传输时机上,重复传输所述PUSCH上的传输块。实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的。
对应上述第四种方式,参照图13所示,图13是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-71中,响应于确定所述K2’个实际传输时机中存在第一实际传输时机,将所述K2’个实际传输时机作为所述多个目标传输时机。
在本公开实施例中,即使K2’个实际传输时机中存在无法进行上行PUSCH传输的第一实际传输时机,也可以将K2’个实际传输时机作为所述多个目标传输时机。
在步骤202-72中,基于多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一实际传输时机,只单独发送对应的解调参考信号DMRS。
其中,多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
例如图11所示,终端可以在Rep#1、Rep#2、Rep#3和Rep#4-2上根据波束指示信息TCI-1、TCI-2、TCI-1、TCI-1,重复传输PUSCH上的传输块,在Rep#4-1上,只单独发送对应的解调参考信号DMRS。
上述实施例中,在实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的的同时,提高了信道估计质量。
在一可选实施例中,对应上述的重复类型B传输方式,上述步骤201可以采用以下方式将不同波束指示信息映射到多个备选传时机上:
第五种方式,终端按照所述映射方式,将所述不同波束指示信息分别映射到K2”个实际传输时机上。
其中,所述K2”个实际传输时机是K2’个实际传输时机中,可以进行上行PUSCH传输的传输时机;所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的实际传输时机;所述K2个名义传输时机是背对背分配的连续传输时机。其映射方式例如图14所示。
对应上述第五种方式,参照图15所示,图15是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-81中,将所述K2”个实际传输时机作为多个目标传输时机。
在步骤202-82中,基于所述K2”个实际传输时机分别对应的所述波束指示信息,在所述K2”个实际传输时机上,重复传输所述PUSCH上的传输块。
例如图14所示,终端在Rep#1、Rep#2、Rep#3和Rep#4-2上根据波束指示信息TCI-1、TCI-2、TCI-1、TCI-2,重复传输PUSCH上的传输块。
上述实施例中,实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的。
或者对应上述第五种方式,参照图16所示,图16是根据图2所示实施例示出的另一种信道传输方法流程图,步骤202可以包括:
在步骤202-91中,将所述K2’个实际传输时机作为多个目标传输时机。
在步骤202-92中,根据所述K2”个实际传输时机分别对应的所述波束指示信息,在所述K2”个实际传输时机上,重复传输所述PUSCH上的传输块,以及在第一实际传输时机上,只单独发送对应的解调参考信号DMRS。
例如图14所示,终端在Rep#1、Rep#2、Rep#3和Rep#4-2上根据波束指示信息TCI-1、TCI-2、TCI-1、TCI-2,重复传输PUSCH上的传输块,以及在Rep#4-1上,只单独发送对应的解调参考信号DMRS。
上述实施例中,在实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性的目的的同时,提高了信道估计质量。
在一可选实施例中,针对上述第三、第四和第五种方式,所述在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS的过程,可以采用以下方案。
在一个示例中,可以根据映射到所述第一实际传输时机上的所述波束指示信息,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS。
其中,如果第一实际传输时机存在对应的波束指示信息,则直接按照映射到所述第一实际传输时机上的所述波束指示信息,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS即可。
在另一个示例中,根据第三实际传输时机对应的所述波束指示信息,确定所述第一实际传输时机对应的波束指示信息后,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS。
其中,第三实际传输时机是所述K2’个实际传输时机中与所述第一实际传输时机相邻的实际传输时机。例如第三实际传输时机可以是第一实际传输时机的前一个或后一个传输时机。第一实际传输时机对应的波束指示信息可以与第三实际传输时机对应的所述波束指示信息相同或不同。
上述实施例中,实现了在无法进行上行PUSCH传输的第一实际传输时机上只单独发送对应的解调参考信号DMRS的目的,提高了信道估计质量,可用性高。
在一可选实施例中,上述的映射方式可以由基站通过第一信令进行配置,其中第一信令可以包括但不限于高层的RRC(Radio Resource Control,无线资源控制)信令,或者MAC(Media Access Control Address,媒体范围控制地址)信令。
在另一个示例中,基站可以通过第二信令配置与映射方式对应的关联信息。其中,第二信令可以与第一信令相同或不同。
在另一个示例中,可以直接在协议中设置该映射方式。
具体地,步骤201可以包括以下任意一项:
第一种方式,将所述不同波束指示信息按照预设顺序循环映射到所述多个备选传输时机上。
终端按照映射方式,将所述不同波束指示信息按照预设顺序循环映射到K1个名义传输时机上,此时得到的映射结果例如图3所示。如果存在第一传输时机,则终端可以在Rep#1、Rep#2和Rep#4上,分别按照TCI-1、TCI-2、TCI-2指示的信息,重复传输PUSCH上的数据块。
或者终端按照映射方式,将所述不同波束指示信息按照预设顺序循环映射到K1’个名义传输时机上,得到的映射结果例如图6所示。终端可以在Rep#1、Rep#2和Rep#4上,分别按照TCI-1、TCI-2、TCI-1指示的信息,重复传输PUSCH上的数据块。
第二种方式,将所述不同波束指示信息重复指定次数后,按照预设顺序映射到所述多个备选传输时机上。
例如,指定次数为2,则可以将TCI1重复2次,TCI2重复两次后进行映射,终端可以在Rep#1、Rep#2、Rep#3和Rep#4上,分别按照TCI-1、TCI-1、TCI-2、TCI-2指示的信息,重复传输PUSCH上的数据块。
此种方式中,如果K1个名义传输时机中存在第一传输时机,则可以参照第一种方式的循环映射方式进行处理,在此不再赘述。
第三种方式,将所述不同波束指示信息按照预设PUSCH重复传输次数平均映射到所述多个备选传输时机上。
例如预设PUSCH重复传输次数为8,终端可以在前4个传输时机上,按照TCI-1指示的信息,重复传输PUSCH上的数据块。在后4个传输时机上,按照TCI-1指示的信息,重复传输PUSCH上的数据块。
此种方式中,如果K1个名义传输时机中存在第一传输时机,则可以参照第一种方式的循环映射方式进行处理,在此不再赘述。
第四种方式,根据预先确定的关联信息和不同波束指示信息之间的对 应关系,确定所述关联信息所指示的不同波束指示信息对应的映射顺序后,按照所述预设顺序将所述不同波束指示信息映射到所述多个备选传输时机上。
在一个示例中,关联信息可以采用比特位图的方式来标识。
例如K1=4的情况下,关联信息包括1001,假设上述对应关系为1对应TCI2,0对应TCI1,则映射顺序为TCI2、TCI1、TCI1、TCI2。终端可以在Rep#1、Rep#2、Rep#3和Rep#4上,分别按照TCI-2、TCI-1、TCI-1、TCI-2指示的信息,重复传输PUSCH上的数据块。
此种方式中,如果K1个名义传输时机中存在第一传输时机,则可以参照第一种方式的循环映射方式进行处理,在此不再赘述。
上述的第一种方式至第四种方式,也可以应用于重复类型B传输方式,具体不再赘述。
在一可选实施例中,步骤201还可以包括:
第五种方式,终端按照所述映射方式,将所述不同波束指示信息分别映射到多个顺序排列的时隙上的所包含的所有目标传输时机上
在此种方式下,不区分传输时机,而是根据时隙进行映射。假设针对重复类型B传输方式,其映射方式例如图17所示,终端可以在Rep#1、Rep#2、Rep#3、Rep#4-2上,分别按照TCI-1、TCI-2、TCI-2、TCI-1指示的信息,重复传输PUSCH上的数据块。
上述实施例中,实现了在多TRP场景下对PUSCH进行增强的目的,提高了数据传输的可靠性。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图18,图18是根据一示例性实施例示出的一种信道传输装置框图,包括:
映射模块310,被配置为终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传 输时机上;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
传输模块320,被配置为基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一所述的信道传输方法。
相应地,本公开还提供了一种信道传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述任一所述的信道传输方法。
图19是根据一示例性实施例示出的一种电子设备1900的框图。例如电子设备1900可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载终端、ipad、智能电视等终端。
参照图19,电子设备1900可以包括以下一个或多个组件:处理组件1902,存储器1904,电源组件1906,多媒体组件1908,音频组件1910,输入/输出(I/O)接口1912,传感器组件1916,以及通信组件1918。
处理组件1902通常控制电子设备1900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1902可以包括一个或多个处理器1920来执行指令,以完成上述的信道传输方法 的全部或部分步骤。此外,处理组件1902可以包括一个或多个模块,便于处理组件1902和其他组件之间的交互。例如,处理组件1902可以包括多媒体模块,以方便多媒体组件1908和处理组件1902之间的交互。又如,处理组件1902可以从存储器读取可执行指令,以实现上述各实施例提供的一种信道传输方法的步骤。
存储器1904被配置为存储各种类型的数据以支持在电子设备1900的操作。这些数据的示例包括用于在电子设备1900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1906为电子设备1900的各种组件提供电力。电源组件1906可以包括电源管理系统,一个或多个电源,及其他与为电子设备1900生成、管理和分配电力相关联的组件。
多媒体组件1908包括在所述电子设备1900和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1908包括一个前置摄像头和/或后置摄像头。当电子设备1900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1910被配置为输出和/或输入音频信号。例如,音频组件1910包括一个麦克风(MIC),当电子设备1900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1904或经由通信组件1918发送。在一些实施例中,音频组件1910还包括一个扬声器,用于输出音频信号。
I/O接口1912为处理组件1902和外围接口模块之间提供接口,上述 外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1916包括一个或多个传感器,用于为电子设备1900提供各个方面的状态评估。例如,传感器组件1916可以检测到电子设备1900的打开/关闭状态,组件的相对定位,例如所述组件为电子设备1900的显示器和小键盘,传感器组件1916还可以检测电子设备1900或电子设备1900一个组件的位置改变,用户与电子设备1900接触的存在或不存在,电子设备1900方位或加速/减速和电子设备1900的温度变化。传感器组件1916可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1916还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1916还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1918被配置为便于电子设备1900和其他设备之间有线或无线方式的通信。电子设备1900可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,19G或6G,或它们的组合。在一个示例性实施例中,通信组件1918经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1918还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备1900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述信道传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1904,上述指令可由电子设备1900的处理 器1920执行以完成上述无线充电方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种信道传输方法,其特征在于,包括:
    终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
    基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。
  2. 根据权利要求1所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
    终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K1个名义传输时机上;其中,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
  3. 根据权利要求2所述的方法,其特征在于,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
    响应于确定所述K1个名义传输时机中存在第一传输时机,将所述K1个名义传输时机中的多个第二传输时机作为所述多个目标传输时机;其中,所述第一传输时机是指所述K1个名义传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二传输时机是指所述K1个名义传输时机中可以进行上行PUSCH传输的多个传输时机;
    基于所述多个第二传输时机分别对应的所述波束指示信息,在所述多个第二传输时机上,重复传输所述PUSCH上的传输块。
  4. 根据权利要求2所述的方法,其特征在于,所述基于多个目标传输 时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
    响应于确定所述K1个名义传输时机中存在第一传输时机,将所述K1个名义传输时机作为所述多个目标传输时机;其中,所述第一传输时机是指无法进行上行PUSCH传输的传输时机;
    基于多个第二传输时机分别对应的所述波束指示信息,在所述多个第二传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述多个第二传输时机是指所述K1个名义传输时机中可以进行上行PUSCH传输的多个传输时机。
  5. 根据权利要求4所述的方法,其特征在于,所述在所述第一传输时机上,只单独发送对应的解调参考信号DMRS,包括:
    根据映射到所述第一传输时机上的所述波束指示信息,在所述第一传输时机上只单独发送对应的解调参考信号DMRS;或
    根据第三传输时机对应的所述波束指示信息,确定所述第一传输时机对应的所述波束指示信息后,在所述第一传输时机上只单独发送对应的解调参考信号DMRS;其中,所述第三传输时机是所述K1个名义传输时机中与所述第一传输时机相邻的传输时机。
  6. 根据权利要求1所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
    终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K1’个实际传输时机;其中,所述K1’个实际传输时机是K1个名义传输时机中可以进行上行PUSCH传输的传输时机,所述K1个名义传输时机分别位于不同的时隙内,所述K1个名义传输时机在各时隙内的起始符号位置相同,且在各时隙内的持续符号数目相同。
  7. 根据权利要求6所述的方法,其特征在于,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
    将所述K1’个实际传输时机作为所述多个目标传输时机;
    基于所述K1’个实际传输时机分别对应的所述波束指示信息,在所述K1’个实际传输时机上,重复传输所述PUSCH上的传输块。
  8. 根据权利要求1所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
    终端按照预先确定的映射方式,将所述不同波束指示信息分别映射到K2个名义传输时机上;其中,所述K2个名义传输时机是背对背连续分配的传输时机。
  9. 根据权利要求8所述的方法,其特征在于,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
    响应于所述K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’个实际传输时机中存在第一实际传输时机,将多个第二实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机;
    基于所述多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块。
  10. 根据权利要求8所述的方法,其特征在于,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
    响应于所述K2个名义传输时机被划分为K2’个实际传输时机,且所述K2’中存在第一实际传输时机,将所述K2’个实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的实际传输时机;
    基于多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一实际传输时机,只单独发送对应的解调参考信号DMRS;其中,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机。
  11. 根据权利要求1所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
    终端按照所述映射方式,将所述不同波束指示信息分别映射到K2’个实际传输时机上;其中,所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的多个实际传输时机,所述K2个名义传输时机是背对背连续分配的传输时机。
  12. 根据权利要求11所述的方法,其特征在于,所述述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
    响应于确定所述K2’个实际传输时机中存在第一实际传输时机,将多个第二实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个传输时机;
    基于所述多个第二实际传输时机对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块。
  13. 根据权利要求11所述的方法,其特征在于,所述述基于多个目标 传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
    响应于确定所述K2’个实际传输时机中存在第一实际传输时机,将所述K2’个实际传输时机作为所述多个目标传输时机;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机;
    基于多个第二实际传输时机分别对应的所述波束指示信息,在所述多个第二实际传输时机上,重复传输所述PUSCH上的传输块,以及在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述多个第二实际传输时机是所述K2’个实际传输时机中可以进行上行PUSCH传输的多个实际传输时机。
  14. 根据权利要求1所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
    终端按照所述映射方式,将所述不同波束指示信息分别映射到K2”个实际传输时机上;其中,所述K2”个实际传输时机是K2’个实际传输时机中,可以进行上行PUSCH传输的传输时机;所述K2’个实际传输时机是对K2个名义传输时机进行划分得到的实际传输时机;所述K2个名义传输时机是背对背分配的连续传输时机。
  15. 根据权利要求14所述的方法,其特征在于,所述基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块,包括:
    将所述K2”个实际传输时机作为多个目标传输时机;
    基于所述K2”个实际传输时机分别对应的所述波束指示信息,在所述K2”个实际传输时机上,重复传输所述PUSCH上的传输块。
  16. 根据权利要求14所述的方法,其特征在于,所述基于多个目标传 输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS,包括:
    将所述K2’个实际传输时机作为多个目标传输时机;
    根据所述K2”个实际传输时机分别对应的所述波束指示信息,在所述K2”个实际传输时机上,重复传输所述PUSCH上的传输块,以及在第一实际传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述第一实际传输时机是所述K2’个实际传输时机中无法进行上行PUSCH传输的传输时机。
  17. 根据权利要求10、13或16所述的方法,其特征在于,所述在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS,包括:
    根据映射到所述第一实际传输时机上的所述波束指示信息,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS;或
    根据第三实际传输时机对应的所述波束指示信息,确定所述第一实际传输时机对应的波束指示信息后,在所述第一实际传输时机上,只单独发送对应的解调参考信号DMRS;其中,所述第三时机传输时机是所述K2’个实际传输时机中与所述第一实际传输时机相邻的实际传输时机。
  18. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取基站通过第一信令发送的所述映射方式;或
    根据基站通过第二信令发送的用于指示所述映射方式的关联信息,确定所述映射方式;或
    根据预定义的设置,确定所述映射方式。
  19. 根据权利要求18所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括以下任一项:
    将所述不同波束指示信息按照预设顺序循环映射到所述多个备选传输时机上;或
    将所述不同波束指示信息重复指定次数后,按照预设顺序映射到所述多个备选传输时机上;或
    将所述不同波束指示信息按照预设PUSCH重复传输次数平均映射到所述多个备选传输时机上;或
    根据预先确定的关联信息和不同波束指示信息之间的对应关系,确定所述关联信息所指示的不同波束指示信息对应的映射顺序后,按照所述预设顺序将所述不同波束指示信息映射到所述多个备选传输时机上。
  20. 根据权利要求1所述的方法,其特征在于,所述终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上,包括:
    终端按照所述映射方式,将所述不同波束指示信息分别映射到多个顺序排列的时隙上的所包含的所有目标传输时机上。
  21. 一种信道传输装置,其特征在于,包括:
    映射模块,被配置为终端按照预先确定的映射方式,将对应基站不同发送和接收点TRP接收的不同波束指示信息,分别映射到多个备选传输时机上;其中,所述波束指示信息是用于进行上行数据信道PUSCH发送的波束相关信息;
    传输模块,被配置为基于多个目标传输时机分别对应的所述波束指示信息,在所述多个目标传输时机上,重复传输物理上行数据信道PUSCH上的传输块或只单独发送对应的解调参考信号DMRS。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-20任一项所述的信道传输方法。
  23. 一种信道传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-20任一项所述的 信道传输方法。
PCT/CN2020/119604 2020-09-30 2020-09-30 信道传输方法及装置、存储介质 WO2022067741A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080002519.7A CN114586458A (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质
US18/044,753 US20230361947A1 (en) 2020-09-30 2020-09-30 Channel transmission method and apparatus, and storage medium
PCT/CN2020/119604 WO2022067741A1 (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质
EP20955764.4A EP4224974A4 (en) 2020-09-30 2020-09-30 CHANNEL TRANSMISSION METHOD AND APPARATUS, AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119604 WO2022067741A1 (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2022067741A1 true WO2022067741A1 (zh) 2022-04-07

Family

ID=80951142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119604 WO2022067741A1 (zh) 2020-09-30 2020-09-30 信道传输方法及装置、存储介质

Country Status (4)

Country Link
US (1) US20230361947A1 (zh)
EP (1) EP4224974A4 (zh)
CN (1) CN114586458A (zh)
WO (1) WO2022067741A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279374A1 (en) * 2017-03-24 2018-09-27 Qualcomm Incorporated Mobility enhancement with channel state information reference signals (csi-rs)
CN111278110A (zh) * 2018-12-04 2020-06-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044409A1 (ja) * 2018-08-27 2020-03-05 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279374A1 (en) * 2017-03-24 2018-09-27 Qualcomm Incorporated Mobility enhancement with channel state information reference signals (csi-rs)
CN111278110A (zh) * 2018-12-04 2020-06-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1910073, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051788880 *
See also references of EP4224974A4 *
SPREADTRUM COMMUNICATIONS: "Discussion on enhancements on Multi-TRP for PDCCH, PUCCH and PUSCH", 3GPP DRAFT; R1-2006258, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917939 *

Also Published As

Publication number Publication date
US20230361947A1 (en) 2023-11-09
EP4224974A1 (en) 2023-08-09
EP4224974A4 (en) 2023-11-22
CN114586458A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2020132885A1 (zh) 数据传输方法、基站、用户设备及存储介质
CN108401501B (zh) 数据传输方法、装置及无人机
WO2022141074A1 (zh) 波束指示方法、波束指示装置及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2022027496A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2019090723A1 (zh) 数据传输方法及装置
WO2022067740A1 (zh) 信道传输方法及装置、存储介质
WO2022067741A1 (zh) 信道传输方法及装置、存储介质
WO2023206029A1 (zh) 信道传输方法及装置、存储介质
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2020206640A1 (zh) 资源指示方法及装置
WO2024065219A1 (zh) 跳频处理方法及装置
WO2024065220A1 (zh) 跳频处理方法及装置
RU2806449C1 (ru) Способ и устройство для передачи канала и носитель данных
WO2022205233A1 (zh) 用于pusch的通信方法、用于pusch的通信装置及存储介质
WO2024059978A1 (zh) 信息传输方法及装置
WO2022006758A1 (zh) 确定harq反馈时延的方法及装置、存储介质
CN111294229A (zh) 端口配置方法及装置
WO2022178787A1 (zh) 信道传输方法及装置、存储介质
WO2023226032A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2023115429A1 (zh) 重复传输方法及装置、存储介质
WO2024031690A1 (zh) 随机接入方法及装置、存储介质
EP4366407A1 (en) Communication method and apparatus for uplink non-scheduled pusch, and storage medium
WO2022120830A1 (zh) 数据传输方法及装置、存储介质
WO2022134118A1 (zh) 信息传输方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955764

Country of ref document: EP

Effective date: 20230502