WO2022067569A1 - 信号传输装置及电子设备 - Google Patents

信号传输装置及电子设备 Download PDF

Info

Publication number
WO2022067569A1
WO2022067569A1 PCT/CN2020/119033 CN2020119033W WO2022067569A1 WO 2022067569 A1 WO2022067569 A1 WO 2022067569A1 CN 2020119033 W CN2020119033 W CN 2020119033W WO 2022067569 A1 WO2022067569 A1 WO 2022067569A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal transmission
layer
signal line
transmission device
Prior art date
Application number
PCT/CN2020/119033
Other languages
English (en)
French (fr)
Inventor
冯辰辰
罗丛德
袁琦
吴伯平
吴加荣
陈涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080103207.5A priority Critical patent/CN115885588A/zh
Priority to PCT/CN2020/119033 priority patent/WO2022067569A1/zh
Publication of WO2022067569A1 publication Critical patent/WO2022067569A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the present application relates to the technical field of information transmission, and in particular, to a signal transmission device and electronic equipment.
  • the millimeter-wave frequency band has been used in 5G mobile communication; in the field of intelligent driving sensors, the technology of millimeter-wave radar (Millimeter-Wave Radar) is very mature, and its market shipments are considerable, and the millimeter-wave radar is in Europe. The penetration rate is already very high.
  • the development of wireless communication systems has promoted the miniaturization of front-end modules, that is, placing more and more components simultaneously in a limited space.
  • Insertion loss refers to the occurrence of component or device insertion somewhere in the transmission system.
  • the loss of load power the smaller the insertion loss, the better the signal transmission.
  • the signal needs to be transmitted vertically from one layer to another, and the transmission line needs low insertion loss.
  • a PCB board when the millimeter wave signal is transmitted from one surface of the PCB board to the other surface of the PCB board, it is usually necessary to carry out through-layer wiring in the PCB board, while the signal in the millimeter wave frequency band adopts conventional through-hole wiring.
  • the insertion loss of the through-layer design is too large, resulting in a significant decrease in the overall RF performance.
  • the present application provides a signal transmission device and electronic equipment, which are used to have lower insertion loss value and higher bandwidth when realizing vertical signal transmission.
  • the present application provides a signal transmission device, comprising a first signal layer, a second signal layer, and a plurality of connection layers between the first signal layer and the second signal layer, wherein the first signal layer includes a first signal line and the first dielectric layer, the first signal line is disposed farther from the connection layer than the first dielectric layer, the second signal layer includes a second signal line and a second dielectric layer, and the second signal line is farther away than the second dielectric layer
  • the connection layers are arranged, and the plurality of connection layers are provided with signal transmission cavities, the signal transmission cavities include oppositely arranged first openings and second openings, the first openings are arranged adjacent to the first medium layer, and the second openings are arranged adjacent to the second medium layer.
  • through holes penetrating through the plurality of connection layers are formed in the plurality of connection layers, the through holes are enclosed with the first signal layer and the second signal layer to form a signal transmission cavity, and the first opening refers to the area of the through hole adjacent to the first dielectric layer.
  • the second opening refers to the end of the through hole adjacent to the second dielectric layer.
  • the orthographic projection of one end of the first signal line on the connecting layer at least partially overlaps the orthographic projection of the first opening on the connecting layer, and the orthographic projection of one end of the second signal line on the connecting layer and the orthographic projection of the second opening on the connecting layer at least partially overlap overlapping.
  • the first signal line and the second signal line are not on the same horizontal plane, and there is a vertical distance between them.
  • the first signal line is used for receiving or transmitting signals
  • the second signal line is used for receiving or transmitting signals.
  • the signal wherein the signal may be a millimeter wave or a terahertz wave, the frequency range of the millimeter wave is 30-300 GHz, and the frequency range of the terahertz wave is 100-10000 GHz.
  • one end of the first signal line is the signal transmitting end
  • one end of the second signal line is the signal receiving end
  • the signal transmission device receives the signal through the first signal line and radiates from the signal transmitting end of the first signal line to the The first opening is radiated into the signal transmission cavity, and after output from the second opening, it is received by the signal receiving end of the second signal line, and is emitted through the second signal line.
  • one end of the first signal line is the signal receiving end
  • one end of the second signal line is the signal transmitting end
  • the signal transmission device receives the signal through the second signal line and radiates the signal from the signal transmitting end of the second signal line to the The second opening is radiated into the signal transmission cavity, and after output from the first opening, it is received by the signal receiving end of the first signal line, and is emitted through the first signal line.
  • the signal transmission process is described by taking the first signal line receiving the signal and the second signal line transmitting the signal as examples.
  • the first opening and the second opening are aligned in parallel, one end of the first signal line is located above the first opening, and the second signal line one end is below the second opening.
  • the first signal line may be attached or coated on the surface of the first dielectric layer away from the connection layer.
  • the first signal layer is first laminated on the surface of the connection layer, and then the first signal line is formed by patterning the metal sheet of the first signal layer away from the surface of the connection layer.
  • the preparation method of the second signal layer may be the same as that of the first signal layer.
  • the dielectric layer is an insulating dielectric layer, for example, the first dielectric layer and the second dielectric layer are insulating dielectric layers, so as to avoid signal interference between the layers.
  • the connection layer may be a pp layer or a core layer, and multiple connection layers include multiple pp layers and multiple core layers.
  • the number of pp layers and core layers is not limited in this application, and can be set according to actual needs.
  • the first dielectric layer is a pp layer, and the material of the pp layer is polypropylene; the second dielectric layer is also a pp layer.
  • the signal transmission device of the present application transmits the signal from the first signal line to one end of the first signal line
  • the end of the first signal line transmits the signal to the signal transmission cavity in the form of energy radiation, and then is coupled to the second signal transmission cavity through the signal transmission cavity
  • the signal line is then transmitted from the second signal line to other electronic components.
  • the signal transmission cavity is not directly connected to the first signal line and the second signal line.
  • the signal is on the first signal line and the second signal line. Circuit conduction, the signal is transmitted between the first signal line and the second signal line by coupling.
  • this transmission method has a lower insertion loss value when transmitting signals in the millimeter wave and above frequency bands, and has higher bandwidth.
  • a first pad is provided around one end of the via, the first signal line is directly connected to the first pad, and the first pad is connected to the copper layer on the inner wall of the via.
  • the other end of the via hole has a second pad, the second pad is connected to the second signal line, and the signal is transmitted from the first signal line, the first pad, the via hole, and the second pad to the second signal line.
  • the parasitic circuit of the signal via is very complicated. For example, factors such as the size of the first pad, the size of the via, and the size of the second pad all affect the impedance matching. When adjusting the impedance matching, the transmission performance of the signal is more sensitive to the above factors, so it is not easy to realize the impedance adjustment, the impedance matching is poor, and the transmission performance is seriously deteriorated.
  • the coupling method of the present application when used for transmission, when the signal emitted by the first signal line is transmitted through the signal transmission cavity, by adjusting the cavity size, the waveguide mode in a specific frequency band is excited, so that the signal transmission cavity can be used for the specific frequency band.
  • a waveguide for signal transmission; and adjusting the cavity size is not sensitive to the influence of transmission performance, so the signal transmission device of the present application can have the advantages of high bandwidth and low insertion loss.
  • the first signal line and the second signal line are arranged on both sides of the signal transmission cavity, the first signal line is used to transmit the signal output by other electronic components, and the signal is emitted from one end of the first signal line, After the signal is transmitted in the vertical direction, the signal is received by the second signal line, and the second signal line transmits the signal to other electronic components; in this application, signal lines are arranged on both sides of the signal transmission cavity for circuit transmission of signals In the vertical interconnection part, the signal transmission cavity is used for transmission to realize the signal transmission between the first signal line on the surface layer of the signal transmission device and the second signal line on the bottom layer, which can reduce the vertical transmission loss of the signal.
  • the first signal line when the signal transmission device is a chip package substrate, the first signal line may be disposed adjacent to the die compared to the second signal line. In some embodiments, the second signal line may be adjacent to the die compared to the first signal line set up.
  • a shielding layer is provided on the inner wall of the signal transmission cavity, and the signal transmission cavity is filled with a signal transmission medium.
  • the shielding layer is used to prevent the signal propagating in the signal transmission cavity from leaking out from the inner wall of the signal transmission cavity to ensure the signal transmission efficiency, and can also shield the external wireless signal radiation to the signal transmission cavity and interfere with the signal transmission in the signal transmission cavity.
  • the material of the shielding layer may be one of copper, aluminum or iron, and may also be other materials capable of shielding signals.
  • the signal transmission medium can be selected according to the actual product.
  • the signal transmission medium can be air, that is to say, the signal is transmitted through the air, and the air has a very low dielectric loss factor.
  • the signal transmission medium can also be a semi-solid or solid transmission medium, wherein the semi-solid transmission medium can be ink, other materials can be selected according to the characteristics of the signal and transmission requirements, and the parameters of the signal transmission medium can be based on actual It needs to be designed, and the material with the smaller dielectric loss factor is preferentially selected, so that the signal transmission loss of the signal transmission cavity is smaller.
  • the signal transmission cavity where the signal transmission medium is air
  • the signal transmission cavity where the signal transmission medium is air
  • the signal transmission cavity is easy to deform when the signal transmission device is squeezed by force, and when the signal transmission cavity is not filled with the signal transmission medium or is not fully filled, the first signal layer and the second signal layer will be in contact with each other.
  • the flow of the pp layer medium in the first dielectric layer and the second dielectric layer is uneven, resulting in delamination and affecting the interlayer adhesion; while the signal filled with semi-solid or solid transmission medium
  • the transmission cavity has stronger structural strength, is not easily deformed, and can avoid delamination problems.
  • the first signal layer is further provided with a plurality of first shields, and the plurality of first shields are horizontally arranged around the signal transmission cavity and one end of the first signal line close to the signal transmission cavity.
  • the horizontal surrounding means that the orthographic projection of the first shield on the connection layer surrounds the signal transmission cavity and the orthographic projection of one end of the first signal line close to the signal transmission cavity on the connection layer.
  • the first shield is used to prevent the signal emitted by the first signal line from radiating out from the plane where the first signal layer is located, so that the signal emitted by the first signal line can be radiated into the signal transmission cavity with greater efficiency.
  • the first shielding member can be a metal sheet, a metal post or a via hole, and the metal can be one of copper, aluminum or iron, or other materials that can shield signals.
  • the via hole includes a blind hole or a through hole. In the method, the first shielding member is a blind hole. When the first shielding member is a through hole, the first shielding member needs to be disposed away from the second signal line to avoid penetrating the second signal line.
  • the first shielding member is arranged in a sheet shape, and one surface of the first shielding member is arranged toward the signal transmission cavity and the first signal line, so as to increase the signal shielding area.
  • the number of the first shielding members is not limited and can be set according to actual needs. The smaller the gap between the two adjacent first shields, the better, and the smaller the gap, the better the shielding effect. In a possible implementation manner, the gap between two adjacent first shields is less than 1/4 of the signal wavelength, so as to reduce radiation loss.
  • the plurality of first shields may be arranged only horizontally around the signal transmission cavity, that is, the orthographic projection of the first shields on the connection layer is arranged around the orthographic projection of the signal transmission cavity on the connection layer.
  • there may be one first shield and the first shield is horizontally arranged around the signal transmission cavity and one end of the first signal line close to the signal transmission cavity, that is, in this embodiment, the first shield It is a whole structure without gaps.
  • the first signal layer is further provided with a first conductive layer, the first conductive layer and the first signal line are disposed on the same side of the first dielectric layer, and the first conductive layer and the first signal line are disposed on the same side of the first dielectric layer.
  • the first shielding member penetrates through the first conductive layer and the first dielectric layer.
  • the first conductive layer is grounded.
  • the first conductive layer and the first signal layer can be formed on the same side of the first dielectric layer at the same time.
  • a metal layer can be formed on one side of the first dielectric layer, and then the metal layer can be patterned to form the first signal line and the first signal line.
  • a conductive layer In some embodiments, the first shield also penetrates to the connection layer.
  • a plurality of second shields are provided in the second signal layer, and the plurality of second shields are horizontally arranged around the signal transmission cavity and one end of the second signal line close to the signal transmission cavity.
  • the orthographic projection of the second shield on the connection layer surrounds the signal transmission cavity and the orthographic projection of one end of the second signal line close to the signal transmission cavity on the connection layer.
  • the second shield is used to prevent the signal radiated from the signal transmission cavity from being radiated from the second signal layer, so that the signal radiated from the signal transmission cavity can be radiated to the second signal line with a high efficiency and received by the second signal line .
  • the second shielding member can be a metal sheet, a metal post or a via hole, the metal can be one of copper, aluminum or iron, or other materials that can shield signals, and the via hole includes a blind hole or a through hole. In this way, the second shield is a blind hole. When the second shielding member is a through hole, the second shielding member needs to be disposed away from the first signal line to avoid penetrating the first signal line.
  • the second shielding member is arranged in a sheet shape, and one surface of the second shielding member is arranged toward the signal transmission cavity and the second signal line, so as to increase the signal shielding area.
  • the number of the second shielding elements is not limited and can be set according to actual needs. The smaller the gap between two adjacent second shields, the better, and the smaller the gap, the better the shielding effect. In a possible implementation manner, the gap between two adjacent second shields is less than 1/4 of the signal wavelength, so as to reduce radiation loss.
  • the plurality of second shields may be arranged only horizontally around the signal transmission cavity, that is, the orthographic projection of the second shields on the connection layer is arranged around the orthographic projection of the signal transmission cavity on the connection layer.
  • there may be one second shield and the second shield is horizontally arranged around the signal transmission cavity and one end of the second signal line close to the signal transmission cavity, that is, in this embodiment, the second shield It is a whole structure without gaps.
  • the second signal layer is further provided with a second conductive layer, the second conductive layer and the second signal line are disposed on the same side of the second dielectric layer, and the second conductive layer and the second signal line are disposed on the same side of the second dielectric layer.
  • the second shielding member penetrates through the second conductive layer and the second dielectric layer.
  • the second conductive layer is grounded.
  • the second conductive layer and the second signal line can be formed on the same side of the second dielectric layer at the same time, for example, a metal layer can be formed on one side of the second dielectric layer, and then the metal layer can be patterned to form the second signal line and the second dielectric layer.
  • the second shield also penetrates to the connection layer.
  • the signal transmission device further includes a first shielding cover, the first shielding cover is disposed on the side of the first signal line away from the signal transmission cavity and is insulated from the first signal line, and the first shielding cover is The orthographic projection on the connection layer covers at least the first opening of the signal transmission cavity.
  • the first shield can prevent the signal emitted by the first signal line from being radiated from the side of the first signal line far from the signal transmission cavity to reduce the loss, and on the other hand, it is used to prevent external wireless signals from being incident into the signal transmission cavity. Interfere with signal transmission in the signal transmission cavity.
  • the first shielding cover includes a top wall and a peripheral wall, and a gap is provided on the peripheral wall, and the first signal line passes through the gap to prevent the first signal line from being electrically connected to the first shielding cover.
  • an insulating layer is provided between the first shield and the first signal line to insulate the two.
  • the first shield can be a copper layer.
  • the signal transmission device further includes a second shielding cover, the second shielding cover is disposed on the side of the second signal line away from the signal transmission cavity and is insulated from the second signal line, and the second shielding cover is The orthographic projection on the connection layer covers at least the second opening of the signal transmission cavity.
  • the second shield can prevent the signal radiated from the signal transmission cavity from radiating from the side of the second signal line far from the signal transmission cavity, so that the signal can be effectively radiated to the second signal line, improve the signal coupling efficiency and reduce the signal loss
  • it is used to prevent external wireless signals from being incident into the signal transmission cavity and interfere with the signal transmission in the signal transmission cavity.
  • the second shield can also be provided with a notch in the peripheral wall, and the second signal line can be passed through the notch to prevent the second signal line from being electrically connected to the second shield.
  • an insulating layer is provided between the second shield and the second signal line to insulate the two.
  • the signal transmission device further includes a first signal element, the first signal element is connected to one end of the first signal line, and the orthographic projection on the signal transmission cavity is located in the signal transmission cavity.
  • the first signal element is used to increase the area of the first signal line for transmitting or receiving signals, so as to improve the transmission efficiency of signals between the first signal line and the second signal line.
  • the first signal element is a copper layer, and in some embodiments, the material of the first signal element may also be aluminum or iron.
  • the shape and specific size of the first signal element can be set according to the signal transmission efficiency and actual requirements of the product, which are not limited in this application.
  • the first signal element may be formed by printing together with the first signal line, or a copper sheet may be attached to one end of the first signal line adjacent to the signal transmission cavity as the first signal element.
  • the signal transmission device further includes a first signal element, the first signal element is located between the first signal line and the second signal line, and the orthographic projection on the signal transmission cavity is located in the signal transmission cavity .
  • the first signal element is located on the surface of the first dielectric layer away from the first signal line, and the first signal element is disposed adjacent to the first opening, for increasing the signal between the first signal line and the second signal line transmission efficiency.
  • the first signal element may be located at any position between the first signal line and the second signal line, and may be located in the cavity of the signal transmission cavity.
  • the signal transmission cavity The signal transmission medium is semi-solid or solid, so that the first signal element is fixed in the signal transmission medium.
  • the first signal element is located on the surface of the second dielectric layer away from the second signal line, so as to improve the transmission efficiency of the signal between the first signal line and the second signal line.
  • the first signal layer further includes a third conductive layer and a third dielectric layer, the third conductive layer is disposed on the side of the first dielectric layer away from the first signal line, and the third dielectric layer is disposed on the plurality of connection layers and the third conductive layer, the orthographic projection of the third conductive layer on the connection layer does not overlap with the orthographic projection of the signal transmission cavity on the connection layer.
  • the first signal layer includes a core layer and a pp layer
  • the core layer is disposed farther from the connection layer than the pp layer
  • the first signal line and the first conductive layer are patterns on one surface of the core layer
  • the patterned metal sheet, the third conductive layer and the first signal element are patterned metal sheets on the other surface of the core layer, wherein the pp layer is the third dielectric layer.
  • the second signal layer includes a core layer and a pp layer.
  • the first signal element may be disposed on the side of the first dielectric layer away from the connection layer, or may be disposed between the first dielectric layer and the third dielectric layer.
  • the first signal element is arranged between the first dielectric layer and the third dielectric layer, the first signal element and the third conductive layer are arranged at intervals, and the orthographic projection on the signal transmission cavity is located in the signal transmission cavity .
  • the signal transmission device further includes a second signal element, the second signal element is connected to one end of the second signal line, and the orthographic projection on the signal transmission cavity is located in the signal transmission cavity.
  • the second signal element is used to increase the area of the second signal line for transmitting signals or receiving signals, so as to improve the transmission efficiency of signals between the first signal line and the second signal line.
  • the signal transmission device includes a first signal element and a second signal element at the same time, so as to increase the signal transmission area of the first signal line and the second signal line respectively, so that the signal transmission between the first signal line and the second signal line can be improved. Transmission efficiency between lines, reducing loss.
  • the signal transmission device is further provided with a ground hole penetrating the first signal layer, the second signal layer and the multiple connection layers; the ground hole horizontally surrounds the first shield and away from the signal transmission cavity, the first The signal line and one side of the second signal line are arranged.
  • the number of grounding holes is not limited and can be set according to actual needs.
  • first connection sublayer there is also at least one layer of a first connection sublayer between the first signal layer and the connection layer.
  • the first connection sublayer can be a core layer or a pp layer.
  • the first connection sublayer can cover the first opening of the signal transmission cavity.
  • the first connection sublayer is a core layer
  • the orthographic projection of the metal sheet in the core layer on the connection layer does not overlap with the orthographic projection of the first opening on the connection layer, so as to prevent the signal radiated from the first signal line from being shielded by the metal sheet in the first connection sub-layer. Cannot radiate into the signal transmission cavity.
  • the plurality of first connection sub-layers include multiple layers of core layers and multiple layers of pp layers arranged in an alternate stack.
  • the second connection sublayer there is at least one second connection sublayer between the second signal layer and the connection layer.
  • the second connection sublayer can be a core layer or a pp layer.
  • the second connection sublayer can cover the second opening of the signal transmission cavity.
  • the second connection sublayer is a core layer,
  • the orthographic projection of the metal sheet in the core layer on the connecting layer does not overlap with the orthographic projection of the second opening on the connecting layer, so as to avoid the signal radiated from the signal transmission cavity being shielded by the metal sheet in the second connecting sub-layer and unable to Radiated to the second signal line.
  • the plurality of second connecting sub-layers include multiple layers of core layers and multiple layers of pp layers arranged in an alternate stack.
  • At least one layer of a first cover layer is further provided on the side of the first signal layer away from the connection layer.
  • the first cover layer may be a core layer or a pp layer.
  • other electronic devices or functional circuits may be disposed on the surface of the first cover layer away from the first signal layer, but electronic devices that will not affect the signal transmission between the first signal line and the second signal line are preferentially disposed or functional circuits.
  • At least one second cover layer is further provided on the side of the second signal layer away from the connection layer.
  • the second cover layer may be a core layer or a pp layer.
  • other electronic devices or functional circuits may be disposed on the surface of the second cover layer away from the second signal layer, but electronic devices that will not affect the signal transmission between the first signal line and the second signal line are preferentially disposed or functional circuits.
  • the signal transmission device further includes a first signal element, the first signal element is arranged at one end of the first signal line, the first covering layer is located on the first signal line and the first signal element is far from the connection layer on the surface.
  • the signal transmission device further includes a second signal element, the second signal element is arranged at one end of the second signal line, and the second cover layer is located on the second signal line and the surface of the second signal element away from the connection layer .
  • the signal transmission device further includes a first shielding cover, and the first covering layer is located on the side of the first signal layer away from the connection layer and covers the first shielding cover.
  • the signal transmission device further includes a second shield, and the second cover layer is located on a side of the second signal layer away from the connection layer and covers the second shield.
  • the signal transmission device is a circuit board.
  • the signal transmission device is a chip packaging substrate.
  • the present application provides an electronic device, the electronic device includes a middle frame, a back cover, a chip located between the middle frame and the back cover, and the above-mentioned signal transmission device, the chip is arranged on the signal transmission device, and is connected to the signal transmission device.
  • the transmission device is electrically connected.
  • the present application provides an electronic device, the electronic device includes a middle frame, a back cover, a main board and a chip located between the middle frame and the back cover, the chip is arranged on the main board, and the chip includes a bare chip and the above-mentioned signal transmission The device, the bare chip is arranged on one side of the signal transmission device, and is electrically connected with the signal transmission device.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a PCB provided with a chip according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • FIG. 4a is a top view of a signal transmission device provided by an embodiment of the present application.
  • Figure 4b is a cross-sectional view taken along line A-A of Figure 4a;
  • 4c is a top view of a plurality of connection layers in a signal transmission device provided by an embodiment of the present application.
  • Figure 4d is a cross-sectional view of Figure 4b along line B-B;
  • 5a is a top view of a signal transmission device provided by an embodiment of the present application.
  • 5b is a bottom view of a signal transmission device provided by an embodiment of the present application.
  • 6a is a schematic structural diagram of an orthographic projection of a first signal line and a second signal line on a connection layer in a signal transmission device provided by an embodiment of the present application;
  • 6b is a schematic structural diagram of an orthographic projection of a first signal line and a second signal line on a connection layer in a signal transmission device provided by an embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a signal transmission device with vias provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present application.
  • FIG. 10 is a top view of a signal transmission device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 13 is a top view of a signal transmission device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a first shielding cover in a signal transmission device provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 16 is a bottom view of a signal transmission device provided by an embodiment of the present application.
  • 17 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present application.
  • FIG. 18 is a top view of a signal transmission device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 21 is a bottom view of a signal transmission device provided by an embodiment of the present application.
  • 22 is a top view of a signal transmission device provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 26 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 28 is a transmission performance distribution curve diagram of signal transmission performed by a signal transmission device provided by an embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 30 is a transmission performance distribution curve diagram of signal transmission performed by a signal transmission device provided by an embodiment of the present application.
  • FIG. 31 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 32 is a bottom view of a signal transmission device provided by an embodiment of the present application.
  • FIG. 33 is a transmission performance distribution curve diagram of signal transmission performed by a signal transmission device provided by an embodiment of the present application.
  • 34 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 35 is a transmission performance distribution curve diagram of signal transmission performed by a signal transmission device provided by an embodiment of the present application.
  • FIG. 36 is a transmission performance distribution curve diagram of signal transmission performed by a signal transmission device with vias provided by an embodiment of the present application.
  • first, second, etc. are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of this application, unless stated otherwise, “plurality” means two or more.
  • orientation terms such as “upper” and “lower” are defined relative to the orientation in which the structures in the accompanying drawings are schematically placed, and it should be understood that these directional terms are relative concepts, and they are used relative to descriptions and clarifications, which can vary accordingly depending on the orientation in which the structure is placed.
  • the core layer includes a dielectric layer and metal sheets arranged on opposite surfaces of the dielectric layer, and is a solid-state structure;
  • the pp layer is a dielectric layer, which is a prepreg before lamination, and the dielectric layer is an insulating medium layer.
  • Waveguide WAVEGUIDE, a structure used to directionally guide electromagnetic waves.
  • Bandwidth The operating frequency range of a signal.
  • Blind hole refers to the hole that connects the surface layer and the inner layer without penetrating the whole board.
  • Through hole refers to a hole that runs through the entire board.
  • Impedance matching The internal resistance of the signal source is equal in magnitude and phase to the characteristic impedance of the connected transmission line, or the characteristic impedance of the transmission line is equal in magnitude and phase with the connected load impedance, respectively called the input end or output end of the transmission line in an impedance matching state .
  • the present application provides a signal transmission device and an electronic device.
  • the signal transmission device can be a chip or PCB and other signal transmission devices that need to transmit signals vertically.
  • the chip and PCB can be used in wireless communication, fixed network communication, IT high-performance computing and interconnection, radio frequency terminals, drones and vehicle-mounted electronic equipment.
  • electronic devices can be mobile phones, tablet computers, notebooks, wearable products and smart home terminal products.
  • the signal transmission device includes a first signal layer, a second signal layer and a plurality of connection layers located therebetween, the first signal layer includes a first signal line and a first dielectric layer disposed adjacent to the connection layer, and the second signal layer includes The second signal line is adjacent to the second dielectric layer disposed on the connection layer, and signal transmission cavities are arranged in the multiple connection layers. Signals are coupled and transmitted between the first signal line and the second signal line, which can achieve high bandwidth and low insertion loss. vertical transmission of the signal.
  • FIG. 1 is a schematic structural diagram of an electronic device 20 according to an embodiment.
  • the electronic device 20 is a mobile phone.
  • the electronic device 20 includes a display screen 11, a middle frame 12 and a back cover 13.
  • the middle frame 12 and the rear cover 13 are provided with a PCB 101, a chip 102 and other components.
  • the chip 102 is arranged on the PCB 101 and is electrically connected to the PCB 101.
  • other components include mobile phone functional components such as camera, memory, input device, sensor, power supply, etc.
  • the structure of the mobile phone shown in FIG. 1 does not constitute a limitation on the mobile phone, and may include more or less components, or combining some components, or splitting some components, or different component arrangements.
  • the PCB 101 is the signal transmission device 10 described above. Please refer to FIG. 2 .
  • FIG. 2 is a schematic structural diagram of the PCB 101 and the chip 102 disposed on the PCB 101 .
  • the chip 102 includes a chip package substrate 21 and a bare chip 22 .
  • the package shell 23, the chip package substrate 21 is located on one side of the PCB 101, the bare chip 22 is arranged on the side of the chip package substrate 21 away from the PCB 101, the package shell 23 covers the bare chip 22 and the chip package substrate 21, and is shared with the PCB 101
  • the bare chip 22 and the chip package substrate 21 are wrapped.
  • One end of the PCB 101 is electrically connected to the pins of the chip 102, so that the signal can be transmitted between the chip 102 and the PCB 101, and the other end of the PCB 101 can also be electrically connected to the underlying device, so that the PCB 101 can transmit the signal between the chip 102 and the underlying device.
  • the bare chip 22 can be set as different functional devices or functional circuits according to actual needs.
  • the chip packaging substrate 21 is the signal transmission device 10 described above. Please refer to FIG. 3 .
  • FIG. 3 is a schematic structural diagram of the chip 102 provided by an embodiment without the packaging shell 23 .
  • the bare chip 22 is disposed on one side of the chip packaging substrate 21 , and the chip packaging substrate 21 is electrically connected to the bare chip 22 for realizing signal transmission between the bare chip 22 and external devices on the other side of the chip packaging substrate 21 .
  • the signal transmission device 10 may also be a flexible circuit board.
  • a flexible integrated circuit is provided on the flexible circuit board, and the flexible integrated circuit is electrically connected with the flexible circuit board, so as to realize the vertical interconnection of signals in the flexible circuit board.
  • FIG. 4a is a top view of the signal transmission device 10 provided by an embodiment of the present application
  • FIG. 4b is a cross-sectional view of FIG. 4a along the line A-A
  • FIG. FIG. 4d is a cross-sectional view of FIG. 4c along the line B-B
  • FIG. 5a is a top view of the signal transmission device 10 provided by an embodiment and has the first signal line 110
  • FIG. 5b is provided by an embodiment. Bottom view of the signal transmission device 10 .
  • An embodiment of the present application provides a signal transmission device 10 , which includes a first signal layer 100 , a second signal layer 200 , and a plurality of connection layers 300 located between the first signal layer 100 and the second signal layer 200 .
  • the layer 100 includes a first signal line 110 and a first dielectric layer 120.
  • the first signal line 110 is disposed farther from the connection layer 300 than the first dielectric layer 120.
  • the second signal layer 200 includes a second signal line 210 and a second dielectric layer. 220. Compared with the second dielectric layer 220, the second signal line 210 is disposed away from the connection layer 300.
  • the plurality of connection layers 300 are provided with a signal transmission cavity 400, and the signal transmission cavity 400 includes a first opening 410 and a second opening oppositely arranged.
  • the first opening 410 is disposed adjacent to the first dielectric layer 120
  • the second opening 420 is disposed adjacent to the second dielectric layer 220
  • through holes 330 are formed in the plurality of connection layers 300 penetrating the plurality of connection layers 300 , and the through holes 330 are connected to the first signal layer 100 and the second signal layer 200 .
  • the signal transmission cavity 400 is formed by enclosing, the first opening 410 refers to an end of the through hole 330 adjacent to the first dielectric layer 120 , and the second opening 420 refers to an end of the through hole 330 adjacent to the second dielectric layer 220 . Wherein, when the cross-section of the signal transmission cavity 400 is rectangular or circular, the areas of the first opening 410 and the second opening 420 are equal to the cross-sectional area of the signal transmission cavity 400 .
  • the orthographic projection of one end of the first signal line 110 on the connection layer 300 at least partially overlaps with the orthographic projection of the first opening 410 on the connection layer 300
  • the orthographic projection of one end of the second signal line 210 on the connection layer 300 overlaps with the second opening 320 .
  • the orthographic projections of the connection layers 300 overlap at least partially.
  • the first signal line 110 and the second signal line 210 are not on the same horizontal plane, and there is a vertical distance between them.
  • the first signal line 110 is used for receiving or transmitting signals
  • the second signal line 210 is used for A signal is received or a signal is transmitted, wherein the signal may be a millimeter wave or a terahertz wave, the frequency range of the millimeter wave is 30-300 GHz, and the frequency range of the terahertz wave is 100-10000 GHz.
  • the first signal line 110 and the second signal line 210 are arranged in parallel.
  • the orthographic projections of the first signal line 110 and the second signal line 210 on the connection layer 300 may overlap or mutually Parallel, and can also be set at an angle.
  • FIG. 6a is a schematic structural diagram of an orthographic projection of the first signal line 110 and the second signal line 210 on the connection layer 300 in the signal transmission device provided by an embodiment of the present application
  • FIG. 6b is the present application.
  • one end of the first signal line 110 is the signal transmitting end 111 (as shown in FIG. 4 b ), and one end of the second signal line 210 is the signal receiving end 211 .
  • the signal transmission device 10 receives the signal of the chip 102 (as shown in FIG. 2 ) through the first signal line 110 , and then radiates the signal from the signal transmitting end 111 of the first signal line 110 to the first opening 410 and then to the signal transmission cavity 400 , and then output from the second opening 420 and then received by the signal receiving end 211 of the second signal line 210 , and transmitted to the underlying device through the second signal line 210 .
  • one end of the first signal line 110 is a signal receiving end
  • one end of the second signal line 210 is a signal transmitting end.
  • the signal transmitting end radiates to the second opening 420 and radiates into the signal transmission cavity 400 , and then is output from the first opening 410 and is received by the signal receiving end of the first signal line 110 and transmitted through the first signal line 110 .
  • the signal transmission process is described by taking the first signal line 110 receiving the signal and the second signal line 210 transmitting the signal as examples.
  • the first opening 410 and the second opening 420 are aligned in parallel, and one end of the first signal line 110 is located at the first opening Above 410 , one end of the second signal line 210 is located below the second opening 420 .
  • the first signal line 110 may be attached or coated on the surface of the first dielectric layer 120 away from the connection layer 300 .
  • the first signal layer 100 is first pressed on the surface of the connection layer 300 , and then the first signal line 110 is formed by patterning the metal sheet of the first signal layer 100 away from the surface of the connection layer 300 .
  • the fabrication method of the second signal layer 200 may be the same as that of the first signal layer 100 .
  • the dielectric layer is an insulating dielectric layer, for example, the first dielectric layer 120 and the second dielectric layer 220 are insulating dielectric layers, so as to avoid signal interference between the layers.
  • the connection layer 300 may be a pp layer or a core layer, and the plurality of connection layers 300 include a plurality of pp layers and a plurality of core layers.
  • the number of the pp layers and the core layers is not limited in this application, and can be determined according to actual needs.
  • the connection layer 300 shown in FIG. 27 is three core layers 310 and two pp layers 320 stacked alternately.
  • the first dielectric layer 120 is a pp layer, and the material of the pp layer is polypropylene; the second dielectric layer 220 is also a pp layer.
  • the signal transmission device 10 of the present application transmits the signal from the first signal line 110 to one end of the first signal line 110 , one end of the first signal line 110 transmits the signal to the signal transmission cavity 400 in the form of energy radiation, and then transmits the signal through the signal transmission cavity 400 .
  • the cavity 400 is coupled to the second signal line 210, and then transmitted from the second signal line 210 to other electronic components.
  • the signal transmission cavity 400 is not directly connected to the first signal line 110 and the second signal line 120, respectively.
  • the first signal line 110 and the second signal line 210 are circuit conduction, and are transmitted by coupling between the first signal line 110 and the second signal line 210. Compared with the via method, this transmission method can transmit millimeter waves and Signals in the above frequency bands have lower insertion loss and higher bandwidth.
  • FIG. 7 is a schematic structural diagram of a signal transmission device provided with a via hole 40 according to an embodiment of the present application.
  • One end of the via hole 40 is provided with a first Pad 41
  • the first signal line 110 is directly connected to the first pad 41
  • the first pad 41 is connected to the copper layer 43 on the inner wall of the via hole 40
  • the other end of the via hole 40 has a second pad 42
  • the second solder pad The pad 42 is connected to the second signal line 210, and the signal is transmitted from the first signal line 110, the first pad 41, the via hole 40, and the second pad 42 to the second signal line 210.
  • the parasitic circuit of the signal via is very complicated. For example, factors such as the size of the first pad 41, the size of the via 40, and the size of the second pad 42 all affect the impedance matching.
  • factors such as the size of the first pad 41, the size of the via 40, and the size of the second pad 42 all affect the impedance matching.
  • the impedance matching is adjusted by adjusting the above factors , the transmission performance of the signal is more sensitive to the above factors, so it is not easy to achieve impedance adjustment, the impedance matching is poor, and the transmission performance is seriously deteriorated.
  • the waveguide mode in a specific frequency band is excited by adjusting the cavity size, so that the signal transmission cavity 400 can be used for the transmission of the signal transmission cavity 400. It is a waveguide for signal transmission in a specific frequency band; and adjusting the cavity size is not sensitive to the influence of transmission performance, so the signal transmission device 10 of the present application can have the advantages of high bandwidth and low insertion loss.
  • the shape and size of the signal transmission cavity 400 can be set according to the characteristics of the millimeter wave, wherein the cross section of the signal transmission cavity 400 can be set as a rectangle, a circle or a regular polygon, The more sides of a regular polygon, the closer it is to a circle, the better the signal transmission effect. In this embodiment, it is set as a rectangle, so that the signal transmission cavity 400 becomes a rectangular waveguide; when the signal frequency is other frequencies, the signal can be adapted by adjusting the structure and size of the signal transmission cavity 400, so that the signal transmission cavity 400 becomes the waveguide structure adapted to the signal.
  • the first signal line 110 and the second signal line 210 are arranged on both sides of the signal transmission cavity 400 , the first signal line 110 is used to transmit the signals output by other electronic components, and the signal output from the first signal line 110 is transmitted from the first signal line 110 .
  • One end transmits the signal, and after the signal is transmitted in the vertical direction, the signal is received by the second signal line 210, and the second signal line 210 transmits the signal to other electronic components;
  • a signal line is arranged on the side for circuit transmission of signals, and the signal transmission cavity 400 is used for transmission in the vertical interconnection part to realize the signal transmission between the first signal line 110 on the surface layer of the signal transmission device 10 and the second signal line 210 on the bottom layer, which can reduce the signal vertical transmission loss.
  • the first signal line 110 may be disposed adjacent to the die 22 compared with the second signal line 210.
  • the second signal line 210 may be compared with the second signal line 210.
  • a signal line 110 is disposed adjacent to the die 22 .
  • FIG. 8 is a schematic structural diagram of a signal transmission device 10 according to an embodiment of the present application.
  • a shielding layer 430 is provided on the inner wall of the signal transmission cavity 400 , and the signal transmission cavity 400 is filled with signal transmission Medium 440.
  • the shielding layer 430 is used to prevent the signal propagating in the signal transmission cavity 400 from leaking out from the inner wall of the signal transmission cavity 400 to ensure the signal transmission efficiency, and can also shield the external wireless signal radiation to the signal transmission cavity 400 and interfere with the signal transmission cavity 400 in signal transmission.
  • the material of the shielding layer 430 may be one of copper, aluminum or iron, and may also be other materials capable of shielding signals.
  • the signal transmission medium 440 can be selected according to the actual product.
  • the signal transmission medium 440 can be air, that is to say, the signal is transmitted through the air, and the air has a very low dielectric loss factor.
  • the signal transmission medium 440 may also be a semi-solid or solid transmission medium, wherein the semi-solid transmission medium may be ink, etc.
  • Other materials may be selected according to the characteristics of the signal and transmission requirements, and the parameters of the signal transmission medium 440 It can be designed according to actual needs, and the material with the smaller dielectric loss factor is preferably selected, so that the signal transmission loss of the signal transmission cavity 400 is smaller.
  • the signal transmission cavity 400 in which the signal transmission medium 440 is air it is easy to deform when the signal transmission device 10 is squeezed by force, and the first signal layer 100 may be caused when the signal transmission cavity 400 is not filled with the signal transmission medium 440 or is not fully filled.
  • the medium flow of the pp layer in the first dielectric layer 120 and the second dielectric layer 220 is uneven, which leads to delamination and affects the interlayer adhesion; and
  • the signal transmission cavity 400 filled with semi-solid or solid transmission medium has stronger structural strength, is not easily deformed, and can avoid delamination problems.
  • FIG. 9 is a schematic structural diagram of a signal transmission device 10 provided by an embodiment of the present application
  • FIG. 10 is a top view of the signal transmission device 10 provided by an embodiment.
  • the first signal layer 100 is further provided with a plurality of first shields 130, and the plurality of first shields 130 are horizontally arranged around the signal transmission cavity 400 and one end of the first signal line 110 close to the signal transmission cavity 400 .
  • the horizontal surrounding means that the orthographic projection of the first shield 130 on the connection layer 300 surrounds the signal transmission cavity 400 and the orthographic projection of one end of the first signal line 110 close to the signal transmission cavity 400 on the connection layer 300 .
  • the first shielding member 130 is used to prevent the signal emitted by the first signal line 110 from being radiated from the plane where the first signal layer 100 is located, so that the signal emitted by the first signal line 110 can be radiated into the signal transmission cavity 400 with greater efficiency.
  • the first shielding member 130 can be a metal sheet, a metal post or a via hole, and the metal can be one of copper, aluminum or iron, or other materials that can shield signals.
  • the via hole includes a blind hole or a through hole. In an embodiment, the first shielding member 130 is a blind hole 140 . When the first shielding member 130 is a through hole, the first shielding member 130 should be disposed away from the second signal line 210 to avoid penetrating the second signal line 210 .
  • the first shielding member 130 is provided in a sheet shape, and one surface of the first shielding member 130 is disposed toward the signal transmission cavity 400 and the first signal line 110 to increase the signal shielding area.
  • the number of the first shielding members 130 is not limited, and can be set according to actual needs. The smaller the gap between two adjacent first shielding members 130, the better, and the smaller the gap, the better the shielding effect. In a possible implementation manner, the gap between two adjacent first shields 130 is less than 1/4 of the signal wavelength, so as to reduce radiation loss.
  • the plurality of first shields 130 may only be disposed horizontally around the signal transmission cavity 400 , that is, the orthographic projection of the first shields 130 on the connection layer 300 surrounds the projection of the signal transmission cavity 400 on the connection layer 300 Orthographic settings.
  • there may be one first shield 130 and the first shield 130 is horizontally disposed around the signal transmission cavity 400 and one end of the first signal line 110 close to the signal transmission cavity 400, that is, in this embodiment , the first shielding member 130 is an integral structural member without gaps.
  • the first signal layer 100 is further provided with a first conductive layer 150 (as shown in FIG. 9 ).
  • the first conductive layer 150 and the first signal line 110 are disposed at intervals, and the first shielding member 130 penetrates through the first conductive layer 150 and the first dielectric layer 120 .
  • the first conductive layer 150 is grounded.
  • the first conductive layer 150 and the first signal layer 100 can be formed on the same side of the first dielectric layer 120 at the same time, for example, a metal layer can be formed on one side of the first dielectric layer 120, and then the metal layer can be patterned to form the first The signal line 110 and the first conductive layer 150 .
  • the first shielding member 130 also penetrates to the connection layer 300 .
  • FIG. 11 is a schematic structural diagram of a signal transmission device 10 according to an embodiment of the present application.
  • the component 230 is arranged horizontally around the signal transmission cavity 400 and one end of the second signal line 210 close to the signal transmission cavity 400 .
  • the orthographic projection of the second shielding member 230 on the connection layer 300 is arranged around the signal transmission cavity 400 and the orthographic projection of one end of the second signal line 210 close to the signal transmission cavity 400 on the connection layer 300 .
  • the second shielding member 230 is used to prevent the signal radiated from the signal transmission cavity 400 from being radiated from the second signal layer 200 , so that the signal radiated from the signal transmission cavity 400 can be radiated to the second signal line 210 with a high efficiency.
  • the second signal line 210 receives.
  • the second shielding member 230 can be a metal sheet, a metal post or a via hole.
  • the metal can be one of copper, aluminum or iron, or other materials that can shield signals.
  • the via hole includes a blind hole or a through hole.
  • the second shielding member 230 is a blind hole 240 . When the second shielding member 230 is a through hole, the second shielding member 230 needs to be disposed away from the first signal line 110 to avoid penetrating the first signal line 110 .
  • the second shielding member 230 is disposed in a sheet shape, and one surface of the second shielding member 230 is disposed toward the signal transmission cavity 400 and the second signal line 210 to increase the signal shielding area.
  • the number of the second shielding members 230 is not limited, and can be set according to actual needs. The smaller the gap between two adjacent second shielding members 230, the better, and the smaller the gap, the better the shielding effect. In a possible implementation manner, the gap between two adjacent second shields 230 is less than 1/4 of the signal wavelength, so as to reduce radiation loss.
  • the plurality of second shields 230 may only be disposed horizontally around the signal transmission cavity 400 , that is, the orthographic projection of the second shields 230 on the connection layer 300 surrounds the projection of the signal transmission cavity 400 on the connection layer 300 Orthographic settings.
  • the second shielding member 230 may be one, and the second shielding member 230 is horizontally disposed around the signal transmission cavity 400 and one end of the second signal line 210 close to the signal transmission cavity 400, that is, in this embodiment , the second shielding member 230 is an integral structural member without gaps.
  • the second signal layer 200 is further provided with a second conductive layer 250, the second conductive layer 250 and the second signal line 210 are provided on the same side of the second dielectric layer 220, and the second conductive layer 250 and the second signal line 210 are spaced apart, and the second shielding member 230 penetrates through the second conductive layer 250 and the second dielectric layer 220 .
  • the second conductive layer 250 is grounded.
  • the second conductive layer 250 and the second signal line 210 can be formed on the same side of the second dielectric layer 220 at the same time, for example, a metal layer can be formed on one side of the second dielectric layer 220, and then the metal layer can be patterned to form a second The signal line 210 and the second conductive layer 250 .
  • the second shield 230 also penetrates to the connection layer 300 .
  • FIG. 12 is a schematic structural diagram of a signal transmission device 10 provided by an embodiment of the present application
  • FIG. 13 is a top view of the signal transmission device 10 provided by an embodiment of the present application.
  • the transmission device 10 further includes a first shielding cover 160 , the first shielding cover 160 is disposed on the side of the first signal line 110 away from the signal transmission cavity 400 and is insulated from the first signal line 110 , and the first shielding cover 160 is on the connection layer.
  • the orthographic projection on 300 covers at least the first opening 410 of the signal transmission cavity 400 .
  • the first shielding cover 160 can prevent the signal emitted by the first signal line 110 from radiating from the side of the first signal line 110 away from the signal transmission cavity 400 to reduce loss, and on the other hand, is used to prevent external wireless signals from being incident to the signal
  • the transmission cavity 400 interferes with the signal transmission in the signal transmission cavity 400 .
  • FIG. 14 is a schematic structural diagram of a first shielding cover 160 provided in an embodiment.
  • the first shielding cover 160 includes a top wall 161 and a peripheral wall 162 .
  • the notch 163 is used to avoid the electrical connection between the first signal line 110 and the first shielding case 160 .
  • an insulating layer is provided between the first shielding cover 160 and the first signal line 110 to insulate the two.
  • the first shielding cover 160 may be a copper layer.
  • FIG. 15 is a schematic structural diagram of a signal transmission device 10 provided by an embodiment of the present application
  • FIG. 16 is a top view of the signal transmission device 10 provided by an embodiment of the present application.
  • the transmission device 10 further includes a second shielding cover 260.
  • the second shielding cover 260 is disposed on the side of the second signal line 210 away from the signal transmission cavity 400 and is insulated from the second signal line 210.
  • the second shielding cover 260 is on the connection layer.
  • the orthographic projection on 300 covers at least the second opening 420 of the signal transmission cavity 400 .
  • the second shielding cover 260 can prevent the signal radiated from the signal transmission cavity 400 from being radiated from the side of the second signal line 210 away from the signal transmission cavity 400 , so that the signal can be effectively radiated to the second signal line 210 to enhance the signal Coupling efficiency reduces signal loss, and on the other hand, is used to prevent external wireless signals from being incident into the signal transmission cavity 400 to interfere with signal transmission in the signal transmission cavity 400 .
  • the second shielding cover 260 can also be provided with a gap in the peripheral wall, and the second signal line 210 can be passed through the gap to prevent the second signal line 210 from being electrically connected to the second shielding cover 260 .
  • an insulating layer is provided between the second shielding cover 260 and the second signal line 210 to insulate the two.
  • FIG. 17 is a schematic structural diagram of a signal transmission device 10 provided by an embodiment of the present application
  • FIG. 18 is a top view of the signal transmission device 10 provided by an embodiment of the present application.
  • the transmission device 10 further includes a first signal element 170 , the first signal element 170 is connected to one end of the first signal line 110 , and the orthographic projection on the signal transmission cavity 400 is located in the signal transmission cavity 400 .
  • the first signal element 170 is used to increase the area of the first signal line 110 for transmitting signals or receiving signals, so as to improve the transmission efficiency of signals between the first signal line 110 and the second signal line 210 .
  • the first signal element 170 is a copper layer.
  • the material of the first signal element 170 may also be aluminum or iron.
  • the shape and specific size of the first signal element 170 can be set according to the signal transmission efficiency and actual requirements of the product, which are not limited in this application.
  • the first signal element 170 may be formed by printing together with the first signal line 110 , or a copper sheet may be attached to one end of the first signal line 110 adjacent to the signal transmission cavity 400 as the first signal element 170 .
  • FIG. 19 is a schematic structural diagram of a signal transmission device 10 according to an embodiment of the present application.
  • the signal transmission device 10 further includes a first signal element 170 , and the first signal element 170 is located in the first signal element 170 .
  • the orthographic projection on the signal transmission cavity 400 between the line 110 and the second signal line 210 is located in the signal transmission cavity 400 .
  • the first signal element 170 is located on the surface of the first dielectric layer 120 away from the first signal line 110 , and the first signal element 170 is disposed adjacent to the first opening 210 for improving the signal between the first signal line 110 and the first signal line 110 . Transmission efficiency between the second signal lines 210 .
  • the first signal element 170 may be located at any position between the first signal line 110 and the second signal line 210 , and may be located in the cavity of the signal transmission cavity 400 , when located in the cavity of the signal transmission cavity 400 , the signal transmission medium 440 of the signal transmission cavity 400 is semi-solid or solid, so that the first signal element 170 is fixed in the signal transmission medium 440 .
  • the first signal element 170 is located on the surface of the second dielectric layer 220 away from the second signal line 210 , so as to improve signal transmission efficiency between the first signal line 110 and the second signal line 210 .
  • the first signal layer 100 further includes a third conductive layer 180 and a third dielectric layer 190.
  • the third conductive layer 180 is provided on the side of the first dielectric layer 120 away from the first signal line 110.
  • the three dielectric layers 190 are disposed between the plurality of connection layers 300 and the third conductive layer 180 .
  • the orthographic projection of the third conductive layer 180 on the connection layer 300 does not overlap with the orthographic projection of the signal transmission cavity 400 on the connection layer 300 .
  • the first signal layer 100 includes a core layer and a pp layer, the core layer is disposed farther from the connection layer 300 than the pp layer, wherein the first signal line 110 and the first conductive layer 150 are one of the core layers
  • the patterned metal sheet on the surface, the third conductive layer 180 and the first signal element 170 are patterned metal sheets on the other surface of the core layer, wherein the pp layer is the third dielectric layer 190 .
  • the second signal layer 200 includes a core layer and a pp layer.
  • the first signal element 170 may be disposed on the side of the first dielectric layer 120 away from the connection layer 300 , or may be disposed between the first dielectric layer 120 and the third dielectric layer 190 .
  • the first signal element 170 is disposed between the first dielectric layer 120 and the third dielectric layer 190 (as shown in FIG. 19 ), the first signal element 170 and the third conductive layer 180 are spaced apart, and are The orthographic projection on the signal transmission cavity 400 is located within the signal transmission cavity 400 .
  • FIG. 20 is a schematic structural diagram of the signal transmission device 10 provided by an embodiment of the present application
  • FIG. 21 is a bottom view of the signal transmission device 10 provided by an embodiment of the present application.
  • the signal transmission device 10 further includes a second signal element 270 , the second signal element 270 is connected to one end of the second signal line 210 , and the orthographic projection on the signal transmission cavity 400 is located in the signal transmission cavity 400 .
  • the second signal element 270 is used to increase the area of the second signal line 210 for transmitting signals or receiving signals, so as to improve the transmission efficiency of signals between the first signal line 110 and the second signal line 210 .
  • the signal transmission device 10 includes the first signal element 170 and the second signal element 270 at the same time, which increase the signal transmission area of the first signal line 110 and the second signal line 210 respectively, so that the signal transmission area of the first signal line 110 and the second signal line 210 can be increased respectively.
  • the transmission efficiency between the line 110 and the second signal line 210 reduces loss.
  • FIG. 22 is a top view of the signal transmission device 10 according to an embodiment of the present application.
  • the signal transmission device 10 is further provided with a first signal layer 100 , a second signal layer 200 and multiple The ground holes 500 of the connection layer 200 are arranged horizontally around a side of the first shield 130 away from the signal transmission cavity 400 , the first signal line 110 and the second signal line 210 .
  • the number of grounding holes is not limited and can be set according to actual needs.
  • FIG. 23 is a schematic structural diagram of a signal transmission device 10 according to an embodiment of the present application.
  • the first connection sublayer 340 may be a core layer or a pp layer.
  • the first connection sublayer 340 may cover the first opening 410 of the signal transmission cavity 400 .
  • the orthographic projection of the metal sheet in the core layer on the connection layer 300 does not overlap with the orthographic projection of the first opening 410 on the connection layer 300, so as to prevent the signal radiated from the first signal line 110 from being affected by the first signal line 110.
  • the metal sheet in a connection sublayer 340 is shielded from radiation into the signal transmission cavity 400 .
  • the plurality of first connection sub-layers 340 include multiple core layers and multiple pp layers that are alternately stacked.
  • the second connection sub-layer 350 may be a core layer or a pp layer.
  • the second connection sublayer 350 may cover the second opening 420 of the signal transmission cavity 400 .
  • 350 is the core layer, the orthographic projection of the metal sheet in the core layer on the connection layer 300 does not overlap with the orthographic projection of the second opening 420 on the connection layer 300, so as to prevent the signal radiated from the signal transmission cavity 400 from being affected by the second opening 420.
  • the metal sheet in the connection sub-layer 350 is shielded and cannot be radiated to the second signal line 210 .
  • the plurality of second connection sub-layers 350 include multiple core layers and multiple pp layers that are alternately stacked.
  • FIG. 24 is a schematic structural diagram of a signal transmission device 10 according to an embodiment of the present application.
  • at least one layer of the first signal layer 100 is further provided on the side of the first signal layer 100 away from the connection layer 300 .
  • the first cover layer 600 may be a core layer or a pp layer.
  • other electronic devices or functional circuits may be disposed on the surface of the first cover layer 600 away from the first signal layer 100 , but the preferential setting will not affect the signal between the first signal line 110 and the second signal line 210 Transmission electronics or functional circuits.
  • At least one second cover layer 700 is further provided on the side of the second signal layer 200 away from the connection layer 300.
  • the second cover layer 700 may be a core layer or a pp layer.
  • other electronic devices or functional circuits may be disposed on the surface of the second cover layer 700 away from the second signal layer 200 , but the preferential setting will not affect the signal between the first signal line 110 and the second signal line 210 Transmission electronics or functional circuits.
  • FIG. 25 is a schematic structural diagram of a signal transmission device 10 provided by an embodiment of the present application.
  • the signal transmission device 10 further includes a first signal element 170, and the first signal element 170 is arranged on the first At one end of a signal line 110 , the first cover layer 600 is located on the surfaces of the first signal line 110 and the first signal element 170 away from the connection layer 300 .
  • the signal transmission device 10 further includes a second signal element 270, the second signal element 270 is disposed at one end of the second signal line 210, and the second cover layer 700 is located between the second signal line 210 and the second signal element 270 on the surface away from the connection layer 300 .
  • FIG. 26 is a schematic structural diagram of a signal transmission device 10 according to an embodiment of the present application.
  • the signal transmission device 10 further includes a first shielding cover 160 , and the first cover layer 600 is located on the first The side of the signal layer 100 far away from the connection layer 300 covers the first shielding cover 160 .
  • the signal transmission device 10 further includes a second shield 260 , and the second cover layer 700 is located on a side of the second signal layer 200 away from the connection layer 300 and covers the second shield 260 .
  • the present application also makes a comparative description of the following embodiments and comparative embodiments.
  • FIG. 27 is a schematic structural diagram of the signal transmission device 10a provided in Embodiment 1.
  • the signal transmission device 10a includes a first signal layer 100, a second signal layer 200, and a second signal layer located in the first signal layer 100 and a second signal layer.
  • a plurality of connection layers 300 between the layers 200, the first signal layer 100 includes a first signal line 110, a first conductive layer 150 and a first dielectric layer 120, the first signal line 110 and the first conductive layer 150
  • a dielectric layer 120 is disposed away from the connection layer 300 , and the first signal layer 110 and the first conductive layer 150 are spaced apart and insulated.
  • the second signal layer 200 includes a second signal line 210, a second conductive layer 250 and a second dielectric layer 220.
  • the second signal line 210 and the second conductive layer 250 are disposed away from the connection layer 300.
  • the two signal lines 210 and the second conductive layer 250 are separated and insulated from each other.
  • the first dielectric layer 120 and the second dielectric layer 220 are pp layers.
  • the plurality of connection layers 300 are provided with signal transmission cavities 400.
  • the signal transmission cavity 400 includes a first opening 410 and a second opening 420 arranged opposite to each other.
  • the first opening 410 is disposed adjacent to the first dielectric layer 120, and the second opening 420 is adjacent to the second opening
  • the dielectric layer 220 is provided.
  • One end of the first signal line 110 has a first signal element 170 , the orthographic projection of one end of the first signal line 110 on the connection layer 200 at least partially overlaps with the orthographic projection of the first opening 410 on the connection layer 200 , and the first signal element 170 is located at the connection layer 200 .
  • the orthographic projection on the signal transmission cavity 400 is located in the signal transmission cavity 400 , one end of the second signal line 210 has the second signal element 270 , and one end of the second signal line 210 is connected to the second opening 320 on the orthographic projection of the connection layer 200 .
  • the orthographic projections of the layer 200 overlap at least partially, and the orthographic projection of the second signal element 270 on the signal transmission cavity 400 is located in the signal transmission cavity 400 .
  • the plurality of connection layers 300 include three core layers 310 and two pp layers 320, and the core layers 310 and the pp layers 320 are alternately stacked.
  • a signal transmission cavity 400 is formed in the plurality of connection layers 300, and a copper layer is electroplated on the inner wall of the signal transmission cavity 400 as a shielding layer 430.
  • the signal transmission cavity 400 is rectangular, and the size of the signal transmission cavity 400 is determined according to the frequency band of the signal to be transmitted. It is set that, in this embodiment, the transmitted signal is a millimeter wave with a frequency band of 76-81 GHz, and the size of the signal transmission cavity 400 matching the frequency band can be known in advance by means of simulation.
  • the first signal layer 100 and the second signal layer 200 are pressed together on the upper and lower surfaces of the plurality of connection layers 300 .
  • a plurality of blind vias are formed on the first signal layer 100 and the second signal layer 200 respectively, and the blind vias serve as the first shielding member 130 of the first signal layer 100 and the second shielding member 230 in the second signal layer 200 respectively, wherein
  • the first shielding member 130 horizontally surrounds the signal transmission cavity 400 and one end of the first signal line 110 close to the signal transmission cavity 400
  • the second shielding member 230 horizontally surrounds the signal transmission cavity 400 and one end of the second signal line 210 close to the signal transmission cavity 400 set up.
  • the signal transmission device 10a is further provided with a ground hole passing through the signal transmission device 10a.
  • the distribution curves of the insertion loss A1, the first return loss A2 and the second return loss A3 of the signal are obtained through simulation, where the first return loss refers to the signal The return loss transmitted from the first signal line 110 to the second signal line 210, the second return loss refers to the return loss transmitted from the second signal line 210 to the first signal line 110.
  • the first return loss refers to the signal
  • the second return loss refers to the return loss transmitted from the second signal line 210 to the first signal line 110.
  • FIG. 28 for details. As can be seen from FIG.
  • the maximum value of insertion loss is 2.42dB
  • the maximum value of the first return loss is -15.38dB
  • the maximum value of the second return loss is -15.38dB.
  • the maximum value of the wave loss is -15.39dB.
  • the insertion loss is expressed as an absolute value, and its actual value is a negative value. The larger the insertion loss value, the closer to zero, the first return loss and the second return loss value. The smaller the value, the better the signal transmission efficiency.
  • FIG. 29 is a schematic structural diagram of the signal transmission device 10b provided in Embodiment 2.
  • the first signal layer 100 in the signal transmission device 10b includes a core layer and a pp layer, and the pp layer is a medium Specifically, the surface of the first dielectric layer 120 away from the first signal line 110 and the first conductive layer 150 is provided with a third conductive layer 180 and a first signal element 170, and the third conductive layer 180 and the first signal element 170 are spaced apart Insulation arrangement, wherein the orthographic projection of the first signal element 170 on the signal transmission cavity 400 is located in the signal transmission cavity 400, and a third dielectric layer is provided on the side of the third conductive layer 180 and the first signal element 170 away from the first dielectric layer 120 190 , the first shielding member 130 penetrates the first signal layer 100 .
  • the distribution curves of the signal insertion loss A1, the first return loss A2, and the second return loss A3 are obtained through simulation. It can be seen that when the signal transmission device 10d of the above-mentioned Embodiment 2 is used, when the transmission frequency band is 76-81 GHz millimeter wave, the maximum value of the insertion loss is 1.28dB, the maximum value of the first return loss is -16.30dB, and the second return loss The maximum value is -11.76dB.
  • FIG. 31 is a schematic structural diagram of the signal transmission device 10c provided in Embodiment 3, and FIG. 32 is a bottom view of the signal transmission device 10c.
  • the signal transmission device 10c further includes a first A shielding cover 160 and a second shielding cover 260 , the first shielding cover 160 is disposed on the side of the first signal line 110 away from the connection layer 300 and is insulated from the first signal line 110 , and the first shielding cover 160 is disposed on the connecting layer 300
  • the orthographic projection above covers the first opening 410 of the signal transmission cavity 400
  • the second shield 260 is disposed on the side of the second signal line 210 away from the connection layer 300 and is insulated from the second signal line 210
  • the second shield 260 The orthographic projection on the connection layer 300 covers the second opening 420 of the signal transmission cavity 400 .
  • the distribution curves of the signal insertion loss A1, the first return loss A2, and the second return loss A3 are obtained through simulation. It can be seen that when the signal transmission device 10c of the third embodiment is used, when the transmission frequency band is 76-81 GHz millimeter wave, the maximum value of the insertion loss is 0.55dB, the maximum value of the first return loss is -16.39dB, and the second return loss The maximum value is -16.35dB.
  • FIG. 34 is a schematic structural diagram of the signal transmission device 10d provided in Embodiment 4.
  • the first signal layer 100 in the signal transmission device 10d includes a core layer and a pp layer, and the pp layer is a medium Specifically, the surface of the first dielectric layer 120 away from the first signal line 110 and the first conductive layer 150 is provided with a third conductive layer 180 and a first signal element 170, and the third conductive layer 180 and the first signal element 170 are spaced apart Insulation arrangement, wherein the orthographic projection of the first signal element 170 on the signal transmission cavity 400 is located in the signal transmission cavity 400, and a third dielectric layer is provided on the side of the third conductive layer 180 and the first signal element 170 away from the first dielectric layer 120 190 , the first shielding member 130 penetrates the first signal layer 100 .
  • the distribution curves of the signal insertion loss A1, the first return loss A2, and the second return loss A3 are obtained through simulation. It can be seen that, using the signal transmission device 10d of the above-mentioned Embodiment 4, when the transmission frequency band is 76-81 GHz millimeter wave, the maximum value of insertion loss is 0.81dB, the maximum value of the first return loss is -11.92dB, and the maximum value of the second return loss is -11.92dB. The maximum value is -12.99dB.
  • the comparative embodiment adopts the traditional via method for vertical signal transmission.
  • the structure of the signal transmission device is shown in FIG. 7 , including a first signal line 110 , a second signal line 210 and A plurality of connection layers 300 between the first signal line 110 and the second signal line 210, the plurality of connection layers 300 include a plurality of core layers and pp layers arranged alternately, the signal transmission device includes a through hole 40, and the via hole 40 is adjacent to One end of the first signal line 110 is provided with a first pad 41 , the first signal line 110 is directly connected to the first pad 41 , the first pad 41 is connected to the copper layer 43 on the inner wall of the via hole 40 , and the via hole 40 is adjacent to the There is a second pad 42 around one end of the second signal line 210. The second pad 42 is connected to the second signal line 210. 42 is transmitted to the second signal line 210 .
  • the insertion loss performance A1, the first return loss A2, and the second return loss A3 of the signal are obtained through simulation.
  • FIG. 36 It can be seen from FIG. 36 , using the signal transmission device of the above-mentioned comparative embodiment, when the transmission frequency band is 76-81GHz millimeter wave, the maximum value of insertion loss is 7.56dB, the maximum value of the first return loss is -4.90dB, and the maximum value of the second return loss is -4.90dB. Greater than -8.33dB.
  • Embodiment 1 2.42dB -15.38dB -15.39dB Embodiment 2 1.3dB -16.30dB -11.76dB Embodiment 3 0.55dB -16.39dB -16.35dB Embodiment 4 0.81dB -11.92dB -12.99dB
  • the maximum insertion loss values of Embodiments 1 to 4 of the present application are smaller than those of the comparative embodiments, that is, closer to zero, and the maximum insertion loss of Embodiments 1 to 4
  • the wave losses are all smaller than the maximum first return loss of the comparative embodiment, and the maximum second return loss of the embodiment 1 to the embodiment 4 are all smaller than the maximum second return loss of the comparative embodiment.
  • the implementation of the present application is viewed as a whole.
  • the transmission effect of the modes 1-4 is better than that of the comparative embodiment when performing signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种信号传输装置及电子设备,信号传输装置包括第一信号层、第二信号层以及位于两者之间的多个连接层,第一信号层包括第一信号线和邻近连接层设置的第一介质层,第二信号层包括第二信号线和邻近连接层设置的第二介质层,多个连接层中设有具有相对设置的第一开口和第二开口的信号传输腔,第一信号线的一端在连接层的正投影与邻近第一介质层设置的第一开口在连接层的正投影至少部分重叠,第二信号线的一端在连接层的正投影与邻近第二介质层设置的第二开口在连接层的正投影至少部分重叠。信号传输装置将信号在第一信号线、信号传输腔和第二信号线三者之间通过耦合的方式传输,相较于过孔方式具有较低的插损值和较高的带宽。

Description

信号传输装置及电子设备 技术领域
本申请涉及信息传输技术领域,特别涉及一种信号传输装置及电子设备。
背景技术
在通信领域,毫米波频段已经运用到5G移动通信中;在智能驾驶传感器领域,毫米波雷达(Millimeter-Wave Radar)技术上已非常成熟,而且其市场出货量相当可观,毫米波雷达在欧洲的普及率已经非常高。无线通信系统的发展促进了前端模块的小型化,即在限定的空间内同时放置了越来越多的组件。
随着毫米波技术的快速发展,PCB(Printed circuit board,印刷电路板)或封装基板信号插损对整体性能至关重要,插损是指在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,插损越小越利于信号传输。为了减小面积,实现高度集成,需要将信号垂直地从一层传输到另一层,传输线需要低的插损。例如在PCB板中,毫米波信号从PCB板的其中一个表面上传输到PCB板的另一个表面上时,通常需要在PCB板中进行穿层布线,而毫米波频段的信号采用常规过孔的穿层设计的插损太大,导致整体射频性能大幅下降。
发明内容
本申请提供一种信号传输装置及电子设备,用于在实现信号垂直传输时具有较低的插损值和具有较高的带宽。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请提供一种信号传输装置,包括第一信号层、第二信号层以及位于第一信号层和第二信号层之间的多个连接层,第一信号层包括第一信号线和第一介质层,第一信号线相较于第一介质层远离连接层设置,第二信号层包括第二信号线和第二介质层,第二信号线相较于第二介质层远离连接层设置,多个连接层中设有信号传输腔,信号传输腔包括相对设置的第一开口和第二开口,第一开口邻近第一介质层设置,第二开口邻近第二介质层设置。其中,在多个连接层中形成贯穿多个连接层的贯孔,贯孔与第一信号层和第二信号层围合形成信号传输腔,第一开口是指贯孔邻近第一介质层的一端,第二开口是指贯孔邻近第二介质层的一端。其中,当信号传输腔的横截面为矩形或者圆形时,第一开口和第二开口的面积等于信号传输腔的横截面面积。
第一信号线的一端在连接层的正投影与第一开口在连接层的正投影至少部分重叠,第二信号线的一端在连接层的正投影与第二开口在连接层的正投影至少部分重叠。
在本申请中,第一信号线和第二信号线不在同一个水平面上,两者之间具有垂直距离,第一信号线用于接收信号或者发射信号,第二信号线用于接收信号或者发射信号,其中,信号可以为毫米波或者太赫兹波,毫米波的频率范围为30-300GHz,太赫兹波的频率范围为100-10000GHz。
在一实施方式中,第一信号线的一端为信号发射端,第二信号线的一端为信号接收端,信号传输装置通过第一信号线接收信号后从第一信号线的信号发射端辐射至第一开口,并辐射至信号传输腔中,然后自第二开口输出后被第二信号线的信号接收端接收,并通过第二信号线发射出去。在一些实施方式中,第一信号线的一端为信号接收端,第二信号线的一端为信号发射端,信号传输装置通过第二信号线接收信号后从第二信号线的信号发射端辐射至第二开口,并辐射至信号传输腔中,然后自第一开口输出后被第一信号线的信号接收端接收,并通过第一信号线发射出去。在下面的实施方式中,如没有额外说明,均以第一信号线接收信号以及第二信号线发射信号为例来说明信号传输过程。
在一些实施方式中,当第一信号线、信号传输腔以及第二信号线相互平行时,第一开口和第二开口平行对齐,第一信号线的一端位于第一开口上方,第二信号线的一端位于第二开口下方。
其中,第一信号线可以贴设或者涂覆在第一介质层远离连接层的表面上。在制备过程中,先将第一信号层压合在连接层的表面上,然后再将第一信号层远离连接层表面的金属片图案化形成第一信号线。第二信号层的制备方法可与第一信号层的制备方法相同。在本申请中,介质层为绝缘介质层,如第一介质层和第二介质层为绝缘介质层,避免各层之间信号干扰。
其中,连接层可以为pp层或者core层,多个连接层包括多个pp层和多个core层,pp层和core层的数量在本申请中不做限制,具体可根据实际需要来设置。其中,第一介质层为pp层,pp层的材料为聚丙烯;第二介质层也为pp层。
本申请的信号传输装置将信号从第一信号线传输至第一信号线的一端后,在第一信号线的一端以能量辐射的方式传输至信号传输腔,再经由信号传输腔耦合至第二信号线上,然后自第二信号线传输至其他电子部件,信号传输腔分别与第一信号线、第二信号线之间没有直接相连接,信号在第一信号线和第二信号线上是电路传导,信号在第一信号线和第二信号线之间通过耦合的方式传输,这样的传输方式相较于过孔方式在传输毫米波及以上频段信号时具有较低的插损值,且具有较高的带宽。
具体的,当采用过孔方式进行传输信号时,过孔的一端周围设有第一焊盘,第一信号线与第一焊盘直接相连,第一焊盘与过孔内壁的铜层连接,过孔的另一端具有第二焊盘,第二焊盘与第二信号线连接,信号自第一信号线、第一焊盘、过孔、第二焊盘传输至第二信号线,在毫米波频段,由于电路的寄生效应,信号过孔的寄生电路非常复杂,例如:第一焊盘尺寸、过孔的尺寸、第二焊盘的尺寸等因素均影响阻抗匹配,当通过调整上述因素来调整阻抗匹配时,信号的传输性能对上述因素比较敏感,因而不容易实现阻抗调节,阻抗匹配较差,传输性能严重恶化。
而采用本申请的耦合方式传输时,第一信号线发射的信号通过信号传输腔传输时,通过调整腔体尺寸,激发在特定频段的波导模式,使该信号传输腔成为可供该特定频段的信号传输的波导;并且调整腔体尺寸对传输性能影响不敏感,因而可使本申请的信号传输装置有高带宽、低插损等优点。
另外,在本申请中,在信号传输腔的两侧设置第一信号线和第二信号线,采用第一信号线传输其他电子部件输出的信号,并自第一信号线的一端发射该信号,当信号完成在垂 直方向的传输后,信号被第二信号线接收,第二信号线将该信号传输至其他电子部件;在本申请中,在信号传输腔的两侧设置信号线进行电路传输信号,在垂直互联部分采用信号传输腔传输,实现在信号传输装置表层的第一信号线和底层的第二信号线之间的信号传输,可降低信号垂直传输损耗。
其中,当信号传输装置为芯片封装基板时,第一信号线可相较于第二信号线邻近裸片设置,在一些实施方式中,第二信号线可相较于第一信号线邻近裸片设置。
在一种可能的实现方式中,信号传输腔的内壁上设有屏蔽层,信号传输腔内填充信号传输介质。其中屏蔽层用于避免在信号传输腔内传播的信号从信号传输腔的内壁泄露出去,以保证信号传输效率,还可以屏蔽外部无线信号辐射至信号传输腔而干扰信号传输腔中的信号传输。屏蔽层的材质可以为铜、铝或者铁中的一种,还可以为其他能够屏蔽信号的材质。
其中信号传输介质可根据实际产品来选择,在一些实施方式中,信号传输介质可以为空气,也就是说通过空气传播信号,空气具有极低的介质损耗因子。在一些实施方式中,信号传输介质也可以为半固态或固体传输介质,其中半固态传输介质可为油墨,可根据信号的特性和传输要求来选择其他材质,并且信号传输介质的参数可根据实际需要来设计,优先选择介质损耗因子越小的材料,使得信号传输腔的信号传输损耗越小。对于信号传输介质为空气的信号传输腔,当信号传输装置受力挤压时易变形,并且当信号传输腔中不填充信号传输介质或者填充不满时会导致第一信号层与第二信号层在和信号传输腔进行压合的过程中第一介质层和第二介质层中的pp层介质流动不均匀,导致分层而影响层间粘附性;而填充有半固态或固体传输介质的信号传输腔,结构强度更强,不容易变形,且可避免分层问题。
在一种可能的实现方式中,第一信号层中还设有多个第一屏蔽件,多个第一屏蔽件水平围绕信号传输腔和第一信号线靠近信号传输腔的一端设置。其中,水平围绕是指第一屏蔽件在连接层上的正投影围绕信号传输腔和第一信号线靠近信号传输腔的一端在连接层上的正投影设置。第一屏蔽件用于防止第一信号线发射的信号从第一信号层所在的平面辐射出去,使得第一信号线发射的信号能以较大效率辐射至信号传输腔中。第一屏蔽件可以为金属片、金属柱或者过孔,金属可以为铜、铝或者铁中的一种,还可以为其他能够屏蔽信号的材质,过孔包括盲孔或者通孔,在本实施方式中,第一屏蔽件为盲孔。当第一屏蔽件为通孔时,第一屏蔽件需避开第二信号线设置,以避免贯穿第二信号线。
在一种可能的实现方式中,第一屏蔽件呈片状设置,且第一屏蔽件的其中一个表面朝向信号传输腔和第一信号线设置,以增加信号屏蔽面积。第一屏蔽件的个数不受限制,可根据实际需要来设置。相邻两个第一屏蔽件的间隙越小越好,间隙越小,屏蔽效果越好。在一种可能的实现方式中,相邻两个第一屏蔽件的间隙小于信号波长的1/4,以减少辐射损耗。
在一些实施方式中,多个第一屏蔽件可仅水平围绕信号传输腔设置,也就是说第一屏蔽件在连接层上的正投影围绕信号传输腔在连接层上的正投影设置。在一些实施方式中,第一屏蔽件可以为一个,且该第一屏蔽件水平围绕信号传输腔和第一信号线靠近信号传输腔的一端设置,也就是在该实施方式中,第一屏蔽件是一个整体而没有间隙的结构件。
在一种可能的实现方式中,第一信号层还设有第一导电层,第一导电层与第一信号线设置在第一介质层的同侧,且第一导电层和第一信号线间隔设置,第一屏蔽件贯穿第一导电层和第一介质层。第一导电层接地。其中第一导电层与第一信号层可同时形成在第一介质层的同侧,如可在第一介质层的一侧形成金属层,然后将该金属层图案化形成第一信号线和第一导电层。在一些实施方式中,第一屏蔽件还贯穿至连接层。
在一种可能的实现方式中,第二信号层中设有多个第二屏蔽件,多个第二屏蔽件水平围绕信号传输腔和第二信号线靠近信号传输腔的一端设置。具体的,第二屏蔽件在连接层上的正投影围绕信号传输腔和第二信号线靠近信号传输腔的一端在连接层上的正投影设置。
第二屏蔽件用于防止信号传输腔辐射出的信号从第二信号层中辐射出去,使得自信号传输腔辐射出的信号能以较大效率辐射至第二信号线上被第二信号线接收。第二屏蔽件可以为金属片、金属柱或者过孔,金属可以为铜、铝或者铁中的一种,还可以为其他能够屏蔽信号的材质,过孔包括盲孔或者通孔,在本实施方式中,第二屏蔽件为盲孔。当第二屏蔽件为通孔时,第二屏蔽件需避开第一信号线设置,以避免贯穿第一信号线。
在一种可能的实现方式中,第二屏蔽件呈片状设置,且第二屏蔽件的其中一个表面朝向信号传输腔和第二信号线设置,以增加信号屏蔽面积。第二屏蔽件的个数不受限制,可根据实际需要来设置。相邻两个第二屏蔽件的间隙越小越好,间隙越小,屏蔽效果越好。在一种可能的实现方式中,相邻两个第二屏蔽件的间隙小于信号波长的1/4,以减少辐射损耗。
在一些实施方式中,多个第二屏蔽件可仅水平围绕信号传输腔设置,也就是说第二屏蔽件在连接层上的正投影围绕信号传输腔在连接层上的正投影设置。在一些实施方式中,第二屏蔽件可以为一个,且该第二屏蔽件水平围绕信号传输腔和第二信号线靠近信号传输腔的一端设置,也就是在该实施方式中,第二屏蔽件是一个整体而没有间隙的结构件。
在一种可能的实现方式中,第二信号层还设有第二导电层,第二导电层与第二信号线设置在第二介质层的同侧,且第二导电层和第二信号线间隔设置,第二屏蔽件贯穿第二导电层和第二介质层。第二导电层接地。其中第二导电层与第二信号线可同时形成在第二介质层的同侧,如可在第二介质层的一侧形成金属层,然后将该金属层图案化形成第二信号线和第二导电层。在一些实施方式中,第二屏蔽件还贯穿至连接层。
在一种可能的实现方式中,信号传输装置还包括第一屏蔽罩,第一屏蔽罩设置在第一信号线远离信号传输腔的一侧并与第一信号线绝缘设置,且第一屏蔽罩在连接层上的正投影至少覆盖信号传输腔的第一开口。第一屏蔽罩一方面可防止第一信号线发射的信号从第一信号线远离信号传输腔的一侧辐射出去,以减少损耗,另一方面用于防止外部无线信号入射至信号传输腔中而干扰信号传输腔中的信号传输。在一实施方式中,第一屏蔽罩包括顶壁和周壁,在周壁上设有一缺口,第一信号线穿过缺口,以避免第一信号线与第一屏蔽罩电连接。在一些实施方式中,第一屏蔽罩和第一信号线之间通过设置绝缘层以将两者绝缘设置。其中第一屏蔽罩可以为铜层。
在一种可能的实现方式中,信号传输装置还包括第二屏蔽罩,第二屏蔽罩设置在第二信号线远离信号传输腔的一侧并与第二信号线绝缘设置,且第二屏蔽罩在连接层上的正投 影至少覆盖信号传输腔的第二开口。第二屏蔽罩一方面可防止自信号传输腔辐射的信号从第二信号线远离信号传输腔的一侧辐射出去,使信号能有效的辐射至第二信号线,提升信号耦合效率,降低信号损耗,另一方面用于防止外部无线信号入射至信号传输腔中而干扰信号传输腔中的信号传输。其中第二屏蔽罩也可通过在周壁设有一缺口,并将第二信号线穿过缺口来避免第二信号线与第二屏蔽罩电连接。在一些实施方式中,第二屏蔽罩和第二信号线之间通过设置绝缘层以将两者绝缘设置。
在一种可能的实现方式中,信号传输装置还包括第一信号阵子,第一信号阵子与第一信号线的一端连接,且在信号传输腔上的正投影位于信号传输腔内。第一信号阵子用于增加第一信号线发射信号或者接受信号的面积,以提高信号在第一信号线和第二信号线之间的传输效率。在本实施方式中,第一信号阵子为铜层,在一些实施方式中,第一信号阵子的材质还可以为铝或者铁。其中第一信号阵子的形状和具体尺寸可根据信号传输效率和产品实际需求来设置,在本申请中不做限制。
在一些实施方式中,第一信号阵子可以与第一信号线一同印刷形成,也可以是将铜片作为第一信号阵子贴设在第一信号线邻近信号传输腔的一端。
在一种可能的实现方式中,信号传输装置还包括第一信号阵子,第一信号阵子位于第一信号线和第二信号线之间,且在信号传输腔上的正投影位于信号传输腔内。在一些实施方式中,第一信号阵子位于第一介质层远离第一信号线的表面,且第一信号阵子邻近第一开口设置,用于提高信号在第一信号线和第二信号线之间的传输效率。在其他一些实施方式中,第一信号阵子可位于第一信号线和第二信号线之间的任意位置,可位于信号传输腔的腔体内,当位于信号传输腔的腔体内时,信号传输腔的信号传输介质为半固态或者固体,以使第一信号阵子固定在信号传输介质中。在另一些实施方式中,第一信号阵子位于第二介质层远离第二信号线的表面,用于提高信号在第一信号线和第二信号线之间的传输效率。
在一实施方式中,第一信号层还包括第三导电层和第三介质层,第三导电层设置第一介质层远离第一信号线的一侧,第三介质层设置在多个连接层和第三导电层之间,第三导电层在连接层上的正投影与信号传输腔在连接层上的正投影不重叠。在本实施方式中,第一信号层包括core层和pp层,core层相较于pp层远离连接层设置,其中第一信号线和第一导电层即为core层的其中一个表面上的图案化的金属片,第三导电层和第一信号阵子为core层的另一个表面上的图案化的金属片,其中pp层为所述第三介质层。在一些实施方式中,第二信号层包括core层和pp层。
在一种可能的实现方式中,第一信号阵子可设于第一介质层远离连接层的一侧,也可以设置在第一介质层和第三介质层之间。在本实施方式中,第一信号阵子设置在第一介质层和第三介质层之间,第一信号阵子与第三导电层间隔设置,且在信号传输腔上的正投影位于信号传输腔内。
在一种可能的实现方式中,信号传输装置还包括第二信号阵子,第二信号阵子与第二信号线的一端连接,且在信号传输腔上的正投影位于信号传输腔内。第二信号阵子用于增加第二信号线发射信号或者接受信号的面积,以提高信号在第一信号线和第二信号线之间的传输效率。在一些实施方式中,信号传输装置同时包括第一信号阵子和第二信号阵子,分别增加第一信号线和第二信号线信号传输的面积,从而可提高信号在第一信号线和第二 信号线之间的传输效率,降低损耗。
在一种可能的实现方式中,信号传输装置上还设有贯穿第一信号层、第二信号层以及多个连接层的接地孔;接地孔水平围绕第一屏蔽件远离信号传输腔、第一信号线以及第二信号线的一侧设置。接地孔的个数不受限制,可根据实际需要来设置。
在一种可能的实现方式中,在第一信号层和连接层之间还具有至少一层第一连接子层。第一连接子层可以为core层或者pp层,当第一连接子层为pp层时,第一连接子层可覆盖信号传输腔的第一开口,当第一连接子层为core层时,该core层中的金属片在连接层的正投影与第一开口在连接层上的正投影不重叠,以避免自第一信号线辐射的信号被该第一连接子层中的金属片屏蔽而不能辐射至信号传输腔中。在一些实施方式中,多个第一连接子层包括交错层叠设置的多层core层和多层pp层。
在一些实施方式中,在第二信号层和连接层之间还具有至少一层第二连接子层。第二连接子层可以为core层或者pp层,当第二连接子层为pp层时,第二连接子层可覆盖信号传输腔的第二开口,当第二连接子层为core层时,该core层中的金属片在连接层的正投影与第二开口在连接层上的正投影不重叠,以避免自信号传输腔辐射的信号被该第二连接子层中的金属片屏蔽而不能辐射至第二信号线上。在一些实施方式中,多个第二连接子层包括交错层叠设置的多层core层和多层pp层。
在一种可能的实现方式中,在第一信号层远离连接层的一侧还设有至少一层第一覆盖层。第一覆盖层可以为core层或者pp层。在一些实施方式中,第一覆盖层远离第一信号层的表面上还可以设置其他电子器件或者功能电路,但优先设置不会影响第一信号线和第二信号线之间信号传输的电子器件或者功能电路。
在一些实施方式中,在第二信号层远离连接层的一侧还设有至少一层第二覆盖层。第二覆盖层可以为core层或者pp层。在一些实施方式中,第二覆盖层远离第二信号层的表面上还可以设置其他电子器件或者功能电路,但优先设置不会影响第一信号线和第二信号线之间信号传输的电子器件或者功能电路。
在一种可能的实现方式中,信号传输装置中还包括第一信号阵子,第一信号阵子设置在第一信号线的一端,第一覆盖层位于第一信号线和第一信号阵子远离连接层的表面上。在一些实施方式中,信号传输装置中还包括第二信号阵子,第二信号阵子设置在第二信号线的一端,第二覆盖层位于第二信号线和第二信号阵子远离连接层的表面上。
在一种可能的实现方式中,信号传输装置中还包括第一屏蔽罩,第一覆盖层位于第一信号层远离连接层的一侧且覆盖第一屏蔽罩。在一些实施方式中,信号传输装置中还包括第二屏蔽罩,第二覆盖层位于第二信号层远离连接层的一侧且覆盖第二屏蔽罩。
在一种可能的实现方式中,信号传输装置为电路板。
在一种可能的实现方式中,信号传输装置为芯片封装基板。
第二方面,本申请提供一种电子设备,电子设备包括中框、后盖以及位于中框和后盖之间的芯片和如上述的信号传输装置,芯片设置在信号传输装置上,并与信号传输装置电连接。
第三方面,本申请提供一种电子设备,电子设备包括中框、后盖以及位于中框和后盖之间的主板和芯片,芯片设置在主板上,芯片包括裸片和如上述的信号传输装置,裸片设 置在信号传输装置的一侧,并与信号传输装置电连接。
附图说明
图1是本申请一实施方式提供的电子设备的结构示意图;
图2是本申请一实施方式提供的设有芯片的PCB的结构示意图;
图3是本申请一实施方式提供的芯片的结构示意图;
图4a是本申请一实施方式提供的信号传输装置的俯视图;
图4b是图4a沿A-A线的剖视图;
图4c是本申请一实施方式提供的信号传输装置中的多个连接层的俯视图;
图4d是图4b沿B-B线的剖视图;
图5a是本申请一实施方式提供的信号传输装置的俯视图;
图5b是本申请一实施方式提供的信号传输装置的仰视图;
图6a是本申请一实施方式提供的信号传输装置中第一信号线和第二信号线在连接层上的正投影的结构示意图;
图6b是本申请一实施方式提供的信号传输装置中第一信号线和第二信号线在连接层上的正投影的结构示意图;
图7是本申请一实施方式提供的具有过孔的信号传输装置的结构示意图;
图8是本申请一实施方式提供的信号传输装置的结构示意图;
图9是本申请一实施方式提供的信号传输装置的结构示意图;
图10是本申请一实施方式提供的信号传输装置的俯视图;
图11是本申请一实施方式提供的信号传输装置的结构示意图;
图12是本申请一实施方式提供的信号传输装置的结构示意图;
图13是本申请一实施方式提供的信号传输装置的俯视图;
图14是本申请一实施方式提供的信号传输装置中的第一屏蔽罩的结构示意图;
图15是本申请一实施方式提供的信号传输装置的结构示意图;
图16是本申请一实施方式提供的信号传输装置的仰视图;
图17是本申请一实施方式提供的信号传输装置的结构示意图;
图18是本申请一实施方式提供的信号传输装置的俯视图;
图19是本申请一实施方式提供的信号传输装置的结构示意图;
图20是本申请一实施方式提供的信号传输装置的结构示意图;
图21是本申请一实施方式提供的信号传输装置的仰视图;
图22是本申请一实施方式提供的信号传输装置的俯视图;
图23是本申请一实施方式提供的信号传输装置的结构示意图;
图24是本申请一实施方式提供的信号传输装置的结构示意图;
图25是本申请一实施方式提供的信号传输装置的结构示意图;
图26是本申请一实施方式提供的信号传输装置的结构示意图;
图27是本申请一实施方式提供的信号传输装置的结构示意图;
图28是本申请一实施方式提供的信号传输装置进行信号传输的传输性能分布曲线图;
图29是本申请一实施方式提供的信号传输装置的结构示意图;
图30是本申请一实施方式提供的信号传输装置进行信号传输的传输性能分布曲线图;
图31是本申请一实施方式提供的信号传输装置的结构示意图;
图32是本申请一实施方式提供的信号传输装置的仰视图;
图33是本申请一实施方式提供的信号传输装置进行信号传输的传输性能分布曲线图;
图34是本申请一实施方式提供的信号传输装置的结构示意图;
图35是本申请一实施方式提供的信号传输装置进行信号传输的传输性能分布曲线图;
图36是本申请一实施方式提供的具有过孔的信号传输装置进行信号传输的传输性能分布曲线图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本文中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本文中,“上”、“下”等方位术语是相对于附图中的结构示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据结构所放置的方位的变化而相应地发生变化。
为方便理解,下面先对本申请实施例所涉及的英文简写和有关技术术语进行解释和描述。
core层、pp层:core层包括介质层以及设置在介质层相对两表面的金属片,是一种固态结构;pp层为一层介质层,在未层压前为半固化片,介质层为绝缘介质层。
波导:WAVEGUIDE,用来定向引导电磁波的结构。
带宽:信号的工作频率范围。
盲孔:是指连接表层和内层而不贯通整板的孔。
通孔:是指贯通整个板的孔。
阻抗匹配:信号源内阻与所接传输线的特征阻抗大小相等且相位相同,或传输线的特征阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态。
本申请提供一种信号传输装置及电子设备。信号传输装置可为芯片或者PCB等需要垂直传输信号的信号传输装置,芯片和PCB可应用于无线通讯、固网通讯、IT高性能计算和互连、射频终端、无人机和车载等电子设备中,例如电子设备可为手机、平板电脑、笔记本、穿戴产品和智能家庭终端产品。信号传输装置包括第一信号层、第二信号层以及位于两者之间的多个连接层,第一信号层包括第一信号线和邻近连接层设置的第一介质层,第二信号层包括第二信号线邻近连接层设置的第二介质层,多个连接层中设有信号传输腔,信号在第一信号线和第二信号线之间耦合传输,可实现高带宽和低插损的垂直传输信号。
请参阅图1,图1是一实施方式提供的电子设备20的结构示意图,在该实施方式中,电子设备20为手机,电子设备20包括显示屏11、中框12以及后盖13,中框12以及后盖13之间设有PCB101、芯片102以及其他部件,芯片102设置在PCB101上,并与PCB101电连接,在本实施方式中,PCB101和芯片102设置在中框12朝向后盖13的一侧,其他部件包括摄像装置、存储器、输入设备、传感器、电源等手机功能部件,需要说明的是,图1示出的手机结构并不构成对手机的限定,可以包括更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
在一实施方式中,PCB101为上文所述的信号传输装置10,请参阅图2,图2为PCB101和设置在PCB101上的芯片102的结构示意图,芯片102包括芯片封装基板21、裸片22以及封装外壳23,芯片封装基板21位于PCB101的一侧,裸片22设置在芯片封装基板21远离PCB101的一侧,封装外壳23覆盖在裸片22和芯片封装基板21之上,并与PCB101共同将裸片22和芯片封装基板21包覆。PCB101的一端与芯片102的引脚电连接,使信号能够在芯片102与PCB101之间传输,PCB101的另一端还可与底层器件电连接,使得PCB101能够传输芯片102与底层器件之间的信号。其中,裸片22可根据实际需要设置为不同的功能器件或者功能电路。
在一实施方式中,芯片封装基板21为上文所述的信号传输装置10,请参阅图3,图3是一实施方式提供的没有封装外壳23的芯片102的结构示意图,在该实施方式中,裸片22设置在芯片封装基板21的一侧,芯片封装基板21与裸片22电连接,用于实现裸片22与芯片封装基板21另一侧的外部器件之间的信号传输。
在一些实施方式中,信号传输装置10还可以为柔性电路板。柔性电路板上设有柔性集成电路,柔性集成电路与柔性电路板电连接,以实现柔性电路板中的信号垂直互联。
请参阅图4a至图5b,其中,图4a是本申请一实施方式提供的信号传输装置10的俯视图,图4b是图4a沿A-A线的剖视图,图4c是一实施方式提供的信号传输装置中的多个连接层300的俯视图,图4d是图4c沿B-B线的剖视图,图5a是一实施方式提供的信号传输装置10且具有第一信号线110的俯视图,图5b是一实施方式提供的信号传输装置10的仰视图。本申请一实施方式提供一种信号传输装置10,包括第一信号层100、第二信号层200以及位于第一信号层100和第二信号层200之间的多个连接层300,第一信号层100包括第一信号线110和第一介质层120,第一信号线110相较于第一介质层120远离连接层300设置,第二信号层200包括第二信号线210和第二介质层220,第二信号线210相较于第二介质层220远离连接层300设置,多个连接层300中设有信号传输腔400,信号传输腔400包括相对设置的第一开口410和第二开口420,第一开口410邻近第一介质层120设置,第二开口420邻近第二介质层220设置。在本实施方式中,在多个连接层300中形成贯穿多个连接层300的贯孔330(如图4c和图4d所示),贯孔330与第一信号层100和第二信号层200围合形成信号传输腔400,第一开口410是指贯孔330邻近第一介质层120的一端,第二开口420是指贯孔330邻近第二介质层220的一端。其中,当信号传输腔400的横截面为矩形或者圆形时,第一开口410和第二开口420的面积等于信号传输腔400的横截面面积。
第一信号线110的一端在连接层300的正投影与第一开口410在连接层300的正投影 至少部分重叠,第二信号线210的一端在连接层300的正投影与第二开口320在连接层300的正投影至少部分重叠。
在本申请中,第一信号线110和第二信号线210不在同一个水平面上,两者之间具有垂直距离,第一信号线110用于接收信号或者发射信号,第二信号线210用于接收信号或者发射信号,其中,信号可以为毫米波或者太赫兹波,毫米波的频率范围为30-300GHz,太赫兹波的频率范围为100-10000GHz。在本实施方式中,第一信号线110和第二信号线210平行设置,在一些实施方式中,第一信号线110和第二信号线210在连接层300上的正投影可以重叠也可以互相平行,也可以呈夹角设置。请参阅图6a和图6b,图6a是本申请一实施方式提供的信号传输装置中第一信号线110和第二信号线210在连接层300上的正投影的结构示意图;图6b是本申请一实施方式提供的信号传输装置10中第一信号线110和第二信号线210在连接层300上的正投影的结构示意图;在图6a中,第一信号线110和第二信号线210在连接层300上的正投影呈夹角设置,夹角为锐角,在一些实施方式中,夹角可为钝角;在图6b中,第一信号线110和第二信号线210在连接层300上的正投影呈直角设置。
在一实施方式中,第一信号线110的一端为信号发射端111(如图4b所示),第二信号线210的一端为信号接收端211。例如,信号传输装置10通过第一信号线110接收芯片102(如图2所示)的信号后从第一信号线110的信号发射端111辐射至第一开口410,并辐射至信号传输腔400中,然后自第二开口420输出后被第二信号线210的信号接收端211接收,并通过第二信号线210发射至底层器件。在一些实施方式中,第一信号线110的一端为信号接收端,第二信号线210的一端为信号发射端,信号传输装置10通过第二信号线210接收信号后从第二信号线210的信号发射端辐射至第二开口420,并辐射至信号传输腔400中,然后自第一开口410输出后被第一信号线110的信号接收端接收,并通过第一信号线110发射出去。在下面的实施方式中,如没有额外说明,均以第一信号线110接收信号以及第二信号线210发射信号为例来说明信号传输过程。
在一些实施方式中,当第一信号线110、信号传输腔400以及第二信号线210相互平行时,第一开口410和第二开口420平行对齐,第一信号线110的一端位于第一开口410上方,第二信号线210的一端位于第二开口420下方。
其中,第一信号线110可以贴设或者涂覆在第一介质层120远离连接层300的表面上。在制备过程中,先将第一信号层100压合在连接层300的表面上,然后再将第一信号层100远离连接层300表面的金属片图案化形成第一信号线110。第二信号层200的制备方法可与第一信号层100的制备方法相同。在本申请中,介质层为绝缘介质层,如第一介质层120和第二介质层220为绝缘介质层,避免各层之间信号干扰。
其中,连接层300可以为pp层或者core层,多个连接层300包括多个pp层和多个core层,pp层和core层的数量在本申请中不做限制,具体可根据实际需要来设置,在图27中示出的连接层300为三个core层310和两个pp层320交错层叠。其中,第一介质层120为pp层,pp层的材料为聚丙烯;第二介质层220也为pp层。
本申请的信号传输装置10将信号从第一信号线110传输至第一信号线110的一端后,在第一信号线110的一端以能量辐射的方式传输至信号传输腔400,再经由信号传输腔400 耦合至第二信号线210上,然后自第二信号线210传输至其他电子部件,信号传输腔400分别与第一信号线110、第二信号线120之间没有直接相连接,信号在第一信号线110和第二信号线210上是电路传导,在第一信号线110和第二信号线210之间通过耦合的方式传输,这样的传输方式相较于过孔方式在传输毫米波及以上频段信号时具有较低的插损值,且具有较高的带宽。
具体的,当采用过孔方式进行传输信号时,请参阅图7,图7是本申请一实施方式提供的具有过孔40的信号传输装置的结构示意图,过孔40的一端周围设有第一焊盘41,第一信号线110与第一焊盘41直接相连,第一焊盘41与过孔40内壁的铜层43连接,过孔40的另一端具有第二焊盘42,第二焊盘42与第二信号线210连接,信号自第一信号线110、第一焊盘41、过孔40、第二焊盘42传输至第二信号线210,在毫米波频段,由于电路的寄生效应,信号过孔的寄生电路非常复杂,例如:第一焊盘41尺寸、过孔40的尺寸、第二焊盘42的尺寸等因素均影响阻抗匹配,当通过调整上述因素来调整阻抗匹配时,信号的传输性能对上述因素比较敏感,因而不容易实现阻抗调节,阻抗匹配较差,传输性能严重恶化。
而采用本申请的耦合方式传输时,第一信号线110发射的信号通过信号传输腔400传输时,通过调整腔体尺寸,激发在特定频段的波导模式,使该信号传输腔400成为可供该特定频段的信号传输的波导;并且调整腔体尺寸对传输性能影响不敏感,因而可使本申请的信号传输装置10具有高带宽、低插损等优点。
例如,当信号为频率为76GHz的毫米波时,可根据该毫米波的特性匹配设置信号传输腔400的形状和尺寸,其中信号传输腔400的横截面可设置为矩形、圆形或者正多边形,其中正多边形的边越多,越接近圆形,信号传输效果越好。在本实施方式中设置为矩形,使得信号传输腔400成为一个矩形波导;当信号频率为其他频率时,可通过调整信号传输腔400的结构和尺寸来适配该信号,以使该信号传输腔400成为与该信号适配的波导结构。
另外,在本申请中,在信号传输腔400的两侧设置第一信号线110和第二信号线210,采用第一信号线110传输其他电子部件输出的信号,并自第一信号线110的一端发射该信号,当信号完成在垂直方向的传输后,信号被第二信号线210接收,第二信号线210将该信号传输至其他电子部件;在本申请中,在信号传输腔400的两侧设置信号线进行电路传输信号,在垂直互联部分采用信号传输腔400传输,实现在信号传输装置10表层的第一信号线110和底层的第二信号线210之间的信号传输,可降低信号垂直传输损耗。
其中,当信号传输装置10为芯片封装基板21时,第一信号线110可相较于第二信号线210邻近裸片22设置,在一些实施方式中,第二信号线210可相较于第一信号线110邻近裸片22设置。
请参阅图8,图8是本申请一实施方式提供的信号传输装置10的结构示意图,在该实施方式中,信号传输腔400的内壁上设有屏蔽层430,信号传输腔400内填充信号传输介质440。其中屏蔽层430用于避免在信号传输腔400内传播的信号从信号传输腔400的内壁泄露出去,以保证信号传输效率,还可以屏蔽外部无线信号辐射至信号传输腔400而干扰信号传输腔400中的信号传输。屏蔽层430的材质可以为铜、铝或者铁中的一种,还可以为其他能够屏蔽信号的材质。
其中信号传输介质440可根据实际产品来选择,在一些实施方式中,信号传输介质440可以为空气,也就是说通过空气传播信号,空气具有极低的介质损耗因子。在一些实施方式中,信号传输介质440也可以为半固态或者固体传输介质,其中半固态传输介质可为油墨等,可根据信号的特性和传输要求来选择其他材质,并且信号传输介质440的参数可根据实际需要来设计,优先选择介质损耗因子越小的材料,使得信号传输腔400的信号传输损耗越小。对于信号传输介质440为空气的信号传输腔400,当信号传输装置10受力挤压时易变形,并且当信号传输腔400中不填充信号传输介质440或者填充不满时会导致第一信号层100与第二信号层200在和信号传输腔400进行压合的过程中第一介质层120和第二介质层220中的pp层介质流动不均匀,导致分层而影响层间粘附性;而填充有半固态或固体传输介质的信号传输腔400,结构强度更强,不容易变形,且可避免分层问题。
请参阅图9和图10,图9是本申请一实施方式提供的信号传输装置10的结构示意图,图10是一实施方式提供的信号传输装置10的俯视图。在该实施方式中,第一信号层100中还设有多个第一屏蔽件130,多个第一屏蔽件130水平围绕信号传输腔400和第一信号线110靠近信号传输腔400的一端设置。其中,水平围绕是指第一屏蔽件130在连接层300上的正投影围绕信号传输腔400和第一信号线110靠近信号传输腔400的一端在连接层300上的正投影设置。第一屏蔽件130用于防止第一信号线110发射的信号从第一信号层100所在的平面辐射出去,使得第一信号线110发射的信号能以较大效率辐射至信号传输腔400中。第一屏蔽件130可以为金属片、金属柱或者过孔,金属可以为铜、铝或者铁中的一种,还可以为其他能够屏蔽信号的材质,过孔包括盲孔或者通孔,在本实施方式中,第一屏蔽件130为盲孔140。当第一屏蔽件130为通孔时,第一屏蔽件130需避开第二信号线210设置,以避免贯穿第二信号线210。
在一种可能的实现方式中,第一屏蔽件130呈片状设置,且第一屏蔽件130的其中一个表面朝向信号传输腔400和第一信号线110设置,以增加信号屏蔽面积。第一屏蔽件130的个数不受限制,可根据实际需要来设置。相邻两个第一屏蔽件130的间隙越小越好,间隙越小,屏蔽效果越好。在一种可能的实现方式中,相邻两个第一屏蔽件130的间隙小于信号波长的1/4,以减少辐射损耗。
在一些实施方式中,多个第一屏蔽件130可仅水平围绕信号传输腔400设置,也就是说第一屏蔽件130在连接层300上的正投影围绕信号传输腔400在连接层300上的正投影设置。在一些实施方式中,第一屏蔽件130可以为一个,且该第一屏蔽件130水平围绕信号传输腔400和第一信号线110靠近信号传输腔400的一端设置,也就是在该实施方式中,第一屏蔽件130是一个整体而没有间隙的结构件。
在一种可能的实现方式中,第一信号层100还设有第一导电层150(如图9所示),第一导电层150与第一信号线110设置在第一介质层120的同侧,且第一导电层150和第一信号线110间隔设置,第一屏蔽件130贯穿第一导电层150和第一介质层120。第一导电层150接地。其中第一导电层150与第一信号层100可同时形成在第一介质层120的同侧,如可在第一介质层120的一侧形成金属层,然后将该金属层图案化形成第一信号线110和第一导电层150。在一些实施方式中,第一屏蔽件130还贯穿至连接层300。
请参阅图11,图11是本申请一实施方式提供的信号传输装置10的结构示意图,在该 实施方式中,第二信号层200中设有多个第二屏蔽件230,多个第二屏蔽件230水平围绕信号传输腔400和第二信号线210靠近信号传输腔400的一端设置。具体的,第二屏蔽件230在连接层300上的正投影围绕信号传输腔400和第二信号线210靠近信号传输腔400的一端在连接层300上的正投影设置。
第二屏蔽件230用于防止信号传输腔400辐射出的信号从第二信号层200中辐射出去,使得自信号传输腔400辐射出的信号能以较大效率辐射至第二信号线210上被第二信号线210接收。第二屏蔽件230可以为金属片、金属柱或者过孔,金属可以为铜、铝或者铁中的一种,还可以为其他能够屏蔽信号的材质,过孔包括盲孔或者通孔,在本实施方式中,第二屏蔽件230为盲孔240。当第二屏蔽件230为通孔时,第二屏蔽件230需避开第一信号线110设置,以避免贯穿第一信号线110。
在一种可能的实现方式中,第二屏蔽件230呈片状设置,且第二屏蔽件230的其中一个表面朝向信号传输腔400和第二信号线210设置,以增加信号屏蔽面积。第二屏蔽件230的个数不受限制,可根据实际需要来设置。相邻两个第二屏蔽件230的间隙越小越好,间隙越小,屏蔽效果越好。在一种可能的实现方式中,相邻两个第二屏蔽件230的间隙小于信号波长的1/4,以减少辐射损耗。
在一些实施方式中,多个第二屏蔽件230可仅水平围绕信号传输腔400设置,也就是说第二屏蔽件230在连接层300上的正投影围绕信号传输腔400在连接层300上的正投影设置。在一些实施方式中,第二屏蔽件230可以为一个,且该第二屏蔽件230水平围绕信号传输腔400和第二信号线210靠近信号传输腔400的一端设置,也就是在该实施方式中,第二屏蔽件230是一个整体而没有间隙的结构件。
在一种可能的实现方式中,第二信号层200还设有第二导电层250,第二导电层250与第二信号线210设置在第二介质层220的同侧,且第二导电层250和第二信号线210间隔设置,第二屏蔽件230贯穿第二导电层250和第二介质层220。第二导电层250接地。其中第二导电层250与第二信号线210可同时形成在第二介质层220的同侧,如可在第二介质层220的一侧形成金属层,然后将该金属层图案化形成第二信号线210和第二导电层250。在一些实施方式中,第二屏蔽件230还贯穿至连接层300。
请参阅图12和图13,图12是本申请一实施方式提供的信号传输装置10的结构示意图,图13是本申请一实施方式提供的信号传输装置10的俯视图,在该实施方式中,信号传输装置10还包括第一屏蔽罩160,第一屏蔽罩160设置在第一信号线110远离信号传输腔400的一侧并与第一信号线110绝缘设置,且第一屏蔽罩160在连接层300上的正投影至少覆盖信号传输腔400的第一开口410。第一屏蔽罩160一方面可防止第一信号线110发射的信号从第一信号线110远离信号传输腔400的一侧辐射出去,以减少损耗,另一方面用于防止外部无线信号入射至信号传输腔400中而干扰信号传输腔400中的信号传输。请参阅图14,图14为一实施方式提供的第一屏蔽罩160的结构示意图,第一屏蔽罩160包括顶壁161和周壁162,在周壁162上设有一缺口163,第一信号线110穿过缺口163,以避免第一信号线110与第一屏蔽罩160电连接。在一些实施方式中,第一屏蔽罩160和第一信号线110之间通过设置绝缘层以将两者绝缘设置。其中第一屏蔽罩160可以为铜层。
请参阅图15和图16,图15是本申请一实施方式提供的信号传输装置10的结构示意 图,图16是本申请一实施方式提供的信号传输装置10的俯视图,在该实施方式中,信号传输装置10还包括第二屏蔽罩260,第二屏蔽罩260设置在第二信号线210远离信号传输腔400的一侧并与第二信号线210绝缘设置,且第二屏蔽罩260在连接层300上的正投影至少覆盖信号传输腔400的第二开口420。第二屏蔽罩260一方面可防止自信号传输腔400辐射出的信号从第二信号线210远离信号传输腔400的一侧辐射出去,使信号能有效的辐射至第二信号线210,提升信号耦合效率,降低信号损耗,另一方面用于防止外部无线信号入射至信号传输腔400中而干扰信号传输腔400中的信号传输。其中第二屏蔽罩260也可通过在周壁设有一缺口,并将第二信号线210穿过缺口来避免第二信号线210与第二屏蔽罩260电连接。在一些实施方式中,第二屏蔽罩260和第二信号线210之间通过设置绝缘层以将两者绝缘设置。
请参阅图17和图18,图17是本申请一实施方式提供的信号传输装置10的结构示意图,图18是本申请一实施方式提供的信号传输装置10的俯视图,在该实施方式中,信号传输装置10还包括第一信号阵子170,第一信号阵子170与第一信号线110的一端连接,且在信号传输腔400上的正投影位于信号传输腔400内。第一信号阵子170用于增加第一信号线110发射信号或者接受信号的面积,以提高信号在第一信号线110和第二信号线210之间的传输效率。在本实施方式中,第一信号阵子170为铜层,在一些实施方式中,第一信号阵子170的材质还可以为铝或者铁。其中第一信号阵子170的形状和具体尺寸可根据信号传输效率和产品实际需求来设置,在本申请中不做限制。
在一些实施方式中,第一信号阵子170可以与第一信号线110一同印刷形成,也可以是将铜片作为第一信号阵子170贴设在第一信号线110邻近信号传输腔400的一端。
请参阅图19,图19是本申请一实施方式提供的信号传输装置10的结构示意图,在该实施方式中,信号传输装置10还包括第一信号阵子170,第一信号阵子170位于第一信号线110和第二信号线210之间,且在信号传输腔400上的正投影位于信号传输腔400内。在一些实施方式中,第一信号阵子170位于第一介质层120远离第一信号线110的表面,且第一信号阵子170邻近第一开口210设置,用于提高信号在第一信号线110和第二信号线210之间的传输效率。在其他一些实施方式中,第一信号阵子170可位于第一信号线110和第二信号线210之间的任意位置,可位于信号传输腔400的腔体内,当位于信号传输腔400的腔体内时,信号传输腔400的信号传输介质440为半固态或者固体,以使第一信号阵子170固定在信号传输介质440中。在另一些实施方式中,第一信号阵子170位于第二介质层220远离第二信号线210的表面,用于提高信号在第一信号线110和第二信号线210之间的传输效率。
在一种可能的实现方式中,第一信号层100还包括第三导电层180和第三介质层190,第三导电层180设置第一介质层120远离第一信号线110的一侧,第三介质层190设置在多个连接层300和第三导电层180之间,第三导电层180在连接层300上的正投影与信号传输腔400在连接层300上的正投影不重叠。在本实施方式中,第一信号层100包括core层和pp层,core层相较于pp层远离连接层300设置,其中第一信号线110和第一导电层150即为core层的其中一个表面上的图案化的金属片,第三导电层180和第一信号阵子170为core层的另一个表面上的图案化的金属片,其中pp层为所述第三介质层190。在一些实 施方式中,第二信号层200包括core层和pp层。
在一种可能的实现方式中,第一信号阵子170可设于第一介质层120远离连接层300的一侧,也可以设置在第一介质层120和第三介质层190之间。在本实施方式中,第一信号阵子170设置在第一介质层120和第三介质层190之间(如图19所示),第一信号阵子170与第三导电层180间隔设置,且在信号传输腔400上的正投影位于信号传输腔400内。
请参阅图20和图21,图20是本申请一实施方式提供的信号传输装置10的结构示意图,图21是本申请一实施方式提供的信号传输装置10的仰视图,在该实施方式中,信号传输装置10还包括第二信号阵子270,第二信号阵子270与第二信号线210的一端连接,且在信号传输腔400上的正投影位于信号传输腔400内。第二信号阵子270用于增加第二信号线210发射信号或者接受信号的面积,以提高信号在第一信号线110和第二信号线210之间的传输效率。在一些实施方式中,信号传输装置10同时包括第一信号阵子170和第二信号阵子270,分别增加第一信号线110和第二信号线210信号传输的面积,从而可提高信号在第一信号线110和第二信号线210之间的传输效率,降低损耗。
请参阅图22,图22是本申请一实施方式提供的信号传输装置10的俯视图,在该实施方式中,信号传输装置10上还设有贯穿第一信号层100、第二信号层200以及多个连接层200的接地孔500;接地孔500水平围绕第一屏蔽件130远离信号传输腔400、第一信号线110以及第二信号线210的一侧设置。接地孔的个数不受限制,可根据实际需要来设置。
请参阅图23,图23是本申请一实施方式提供的信号传输装置10的结构示意图,在该实施方式中,在第一信号层100和连接层300之间还具有至少一层第一连接子层340。第一连接子层340可以为core层或者pp层,当第一连接子层340为pp层时,第一连接子层340可覆盖信号传输腔400的第一开口410,当第一连接子层340为core层时,该core层中的金属片在连接层300的正投影与第一开口410在连接层300上的正投影不重叠,以避免自第一信号线110辐射的信号被该第一连接子层340中的金属片屏蔽而不能辐射至信号传输腔400中。在一些实施方式中,多个第一连接子层340包括交错层叠设置的多层core层和多层pp层。
在一些实施方式中,在第二信号层200和连接层300之间还具有至少一层第二连接子层350。第二连接子层350可以为core层或者pp层,当第二连接子层350为pp层时,第二连接子层350可覆盖信号传输腔400的第二开口420,当第二连接子层350为core层时,该core层中的金属片在连接层300的正投影与第二开口420在连接层300上的正投影不重叠,以避免自信号传输腔400辐射的信号被该第二连接子层350中的金属片屏蔽而不能辐射至第二信号线210上。在一些实施方式中,多个第二连接子层350包括交错层叠设置的多层core层和多层pp层。
请参阅图24,图24是本申请一实施方式提供的信号传输装置10的结构示意图,在该实施方式中,在第一信号层100远离连接层300的一侧还设有至少一层第一覆盖层600。第一覆盖层600可以为core层或者pp层。在一些实施方式中,第一覆盖层600远离第一信号层100的表面上还可以设置其他电子器件或者功能电路,但优先设置不会影响第一信号线110和第二信号线210之间信号传输的电子器件或者功能电路。
在一些实施方式中,在第二信号层200远离连接层300的一侧还设有至少一层第二覆 盖层700。第二覆盖层700可以为core层或者pp层。在一些实施方式中,第二覆盖层700远离第二信号层200的表面上还可以设置其他电子器件或者功能电路,但优先设置不会影响第一信号线110和第二信号线210之间信号传输的电子器件或者功能电路。
请参阅图25,图25是本申请一实施方式提供的信号传输装置10的结构示意图,在该实施方式中,信号传输装置10中还包括第一信号阵子170,第一信号阵子170设置在第一信号线110的一端,第一覆盖层600位于第一信号线110和第一信号阵子170远离连接层300的表面上。在一些实施方式中,信号传输装置10中还包括第二信号阵子270,第二信号阵子270设置在第二信号线210的一端,第二覆盖层700位于第二信号线210和第二信号阵子270远离连接层300的表面上。
请参阅图26,图26是本申请一实施方式提供的信号传输装置10的结构示意图,在该实施方式中,信号传输装置10中还包括第一屏蔽罩160,第一覆盖层600位于第一信号层100远离连接层300的一侧且覆盖第一屏蔽罩160。在一些实施方式中,信号传输装置10中还包括第二屏蔽罩260,第二覆盖层700位于第二信号层200远离连接层300的一侧且覆盖第二屏蔽罩260。
为了说明本申请中信号传输装置10的有益效果,本申请还做了如下实施方式和对比实施方式的对比说明。
实施方式1
请参阅图27所示,图27是实施方式1提供的信号传输装置10a的结构示意图,信号传输装置10a包括第一信号层100、第二信号层200以及位于第一信号层100和第二信号层200之间的多个连接层300,第一信号层100包括第一信号线110、第一导电层150和第一介质层120,第一信号线110和第一导电层150相较于第一介质层120远离连接层300设置,且第一信号层110和第一导电层150间隔设置,两者绝缘。第二信号层200包括第二信号线210、第二导电层250和第二介质层220,第二信号线210和第二导电层250相较于第二介质层220远离连接层300设置,第二信号线210和第二导电层250间隔绝缘设置。其中,第一介质层120和第二介质层220为pp层。
多个连接层300中设有信号传输腔400,信号传输腔400包括相对设置的第一开口410和第二开口420,第一开口410邻近第一介质层120设置,第二开口420邻近第二介质层220设置。第一信号线110的一端具有第一信号阵子170,第一信号线110的一端在连接层200的正投影与第一开口410在连接层200的正投影至少部分重叠,第一信号阵子170在信号传输腔400上的正投影位于信号传输腔400内,第二信号线210的一端具有第二信号阵子270,第二信号线210的一端在连接层200的正投影与第二开口320在连接层200的正投影至少部分重叠,第二信号阵子270在信号传输腔400上的正投影位于信号传输腔400内。
其中多个连接层300包括三个core层310和两个pp层320,core层310和pp层320交错层叠设置。在多个连接层300中形成信号传输腔400,并在信号传输腔400的内壁电镀铜层作为屏蔽层430,信号传输腔400为矩形,信号传输腔400的尺寸根据所要传输的信号的频段来设置,在本实施方式中,所传输的信号为频段为76-81GHz的毫米波,可预先通过仿真方式来获知与该频段匹配的信号传输腔400的尺寸。
信号传输腔400形成后,将第一信号层100和第二信号层200压合在多个连接层300的上下两个表面。在第一信号层100和第二信号层200上分别形成多个盲孔,盲孔分别作为第一信号层100的第一屏蔽件130和第二信号层200中的第二屏蔽件230,其中第一屏蔽件130水平围绕信号传输腔400和第一信号线110靠近信号传输腔400的一端设置,第二屏蔽件230水平围绕信号传输腔400和第二信号线210靠近信号传输腔400的一端设置。信号传输装置10a中还设有贯穿信号传输装置10a的接地孔。
将频段为76-81GHz的毫米波通过本实施方式时,通过仿真获得信号的插损A1、第一回波损耗A2以及第二回波损耗A3的分布曲线,其中第一回波损耗是指信号自第一信号线110传输至第二信号线210的回波损耗,第二回波损耗是指自第二信号线210传输至第一信号线110的回波损耗,具体请参阅图28,从图28可知,采用上述实施方式1的信号传输装置10a,在传输频段为76-81GHz的毫米波时,插损最大值为2.42dB,第一回波损耗最大值为-15.38dB,第二回波损耗最大值为-15.39dB,需要说明的是,插损以绝对值来表示,其实际值为负值,其中插损值越大越接近零、第一回波损耗和第二回波损耗值越小说明信号传输效率越好。
实施方式2
请参阅图29,图29是实施方式2提供的信号传输装置10b的结构示意图,与实施方式1不同的是,信号传输装置10b中第一信号层100包括core层和pp层,pp层为介质层,具体的,第一介质层120远离第一信号线110和第一导电层150的表面设有第三导电层180和第一信号阵子170,第三导电层180和第一信号阵子170间隔绝缘设置,其中第一信号阵子170在信号传输腔400的正投影位于信号传输腔400内,在第三导电层180和第一信号阵子170远离第一介质层120的一侧具有第三介质层190,第一屏蔽件130贯穿第一信号层100。
将频段为76-81GHz的毫米波通过本实施方式时,通过仿真获得信号的插损A1、第一回波损耗A2以及第二回波损耗A3的分布曲线,具体请参阅图30,从图30可知,采用上述实施方式2的信号传输装置10d,在传输频段为76-81GHz的毫米波时,插损最大值为1.28dB,第一回波损耗最大值为-16.30dB,第二回波损耗最大值为-11.76dB。
实施方式3
请参阅图31和图32,图31是实施方式3提供的信号传输装置10c的结构示意图,图32是信号传输装置10c的仰视图,与实施方式1不同的是,信号传输装置10c还包括第一屏蔽罩160和第二屏蔽罩260,第一屏蔽罩160设置在第一信号线110远离连接层300的一侧并与第一信号线110绝缘设置,且第一屏蔽罩160在连接层300上的正投影覆盖信号传输腔400的第一开口410,第二屏蔽罩260设置在第二信号线210远离连接层300的一侧并与第二信号线210绝缘设置,且第二屏蔽罩260在连接层300上的正投影覆盖信号传输腔400的第二开口420。
将频段为76-81GHz的毫米波通过本实施方式时,通过仿真获得信号的插损A1、第一回波损耗A2以及第二回波损耗A3的分布曲线,具体请参阅图33,从图33可知,采用上 述实施方式3的信号传输装置10c,在传输频段为76-81GHz的毫米波时,插损最大值为0.55dB,第一回波损耗最大值为-16.39dB,第二回波损耗最大值为-16.35dB。
实施方式4
请参阅图34,图34是实施方式4提供的信号传输装置10d的结构示意图,与实施方式3不同的是,信号传输装置10d中第一信号层100包括core层和pp层,pp层为介质层,具体的,第一介质层120远离第一信号线110和第一导电层150的表面设有第三导电层180和第一信号阵子170,第三导电层180和第一信号阵子170间隔绝缘设置,其中第一信号阵子170在信号传输腔400的正投影位于信号传输腔400内,在第三导电层180和第一信号阵子170远离第一介质层120的一侧具有第三介质层190,第一屏蔽件130贯穿第一信号层100。
将频段为76-81GHz的毫米波通过本实施方式时,通过仿真获得信号的插损A1、第一回波损耗A2以及第二回波损耗A3的分布曲线,具体请参阅图35,从图35可知,采用上述实施方式4的信号传输装置10d,在传输频段为76-81GHz的毫米波时,插损最大值为0.81dB,第一回波损耗最大值为-11.92dB,第二回波损耗最大值为-12.99dB。
对比实施方式
与实施方式1-4不同的是,对比实施方式是采用传统的过孔方式进行垂直信号传输,该信号传输装置的结构如图7所示,包括第一信号线110、第二信号线210以及第一信号线110和第二信号线210之间的多个连接层300,多个连接层300包括交错设置多个core层和pp层,信号传输装置包括贯穿的过孔40,过孔40邻近第一信号线110的一端周围设有第一焊盘41,第一信号线110与第一焊盘41直接相连,第一焊盘41与过孔40内壁的铜层43连接,过孔40邻近第二信号线210的一端周围具有第二焊盘42,第二焊盘42与第二信号线210连接,信号自第一信号线110、第一焊盘41、过孔40、第二焊盘42传输至第二信号线210。
将频段为76-81GHz的毫米波通过本对比实施方式时,通过仿真获得信号的插损性能A1、第一回波损耗A2以及第二回波损耗A3,具体请参阅图36,从图36可知,采用上述对比实施方式的信号传输装置,在传输频段为76-81GHz的毫米波时,插损最大值为7.56dB,第一回波损耗最大值为-4.90dB,第二回波损耗最大值大于-8.33dB。
将上述实施方式1-4和对比实施方式的最大插损、最大第一回波损耗以及最大第二回波损耗进行对比,如表1所示。
表1
垂直连接类型 最大插损 最大第一回波损耗 最大第二回波损耗
对比实施方式 7.56dB -4.90dB -8.33dB
实施方式1 2.42dB -15.38dB -15.39dB
实施方式2 1.3dB -16.30dB -11.76dB
实施方式3 0.55dB -16.39dB -16.35dB
实施方式4 0.81dB -11.92dB -12.99dB
从表1可以看出,本申请的实施方式1至实施方式4的最大插损值小于对比实施方式的最大插损值,即更接近零,且实施方式1至实施方式4的最大第一回波损耗均小于对比实施方式的最大第一回波损耗,实施方式1至实施方式4的最大第二回波损耗均小于对比实施方式的最大第二回波损耗,从整体上看本申请的实施方式1-4在进行信号传输时的传输效果优于对比实施方式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种信号传输装置,其特征在于,所述信号传输装置包括第一信号层、第二信号层以及位于所述第一信号层和所述第二信号层之间的多个连接层,所述第一信号层包括第一信号线和第一介质层,所述第一信号线相较于所述第一介质层远离所述连接层设置,所述第二信号层包括第二信号线和第二介质层,所述第二信号线相较于所述第二介质层远离所述连接层设置,所述多个连接层中设有信号传输腔,所述信号传输腔包括相对设置的第一开口和第二开口,所述第一开口邻近所述第一介质层设置,所述第二开口邻近所述第二介质层设置;
    所述第一信号线的一端在所述连接层的正投影与所述第一开口在所述连接层的正投影至少部分重叠,所述第二信号线的一端在所述连接层的正投影与所述第二开口在所述连接层的正投影至少部分重叠。
  2. 根据权利要求1所述的信号传输装置,其特征在于,所述信号传输腔的内壁上设有屏蔽层,所述信号传输腔内填充信号传输介质。
  3. 根据权利要求1所述的信号传输装置,其特征在于,所述信号传输装置还包括第一屏蔽罩,所述第一屏蔽罩设置在所述第一信号线远离所述信号传输腔的一侧并与所述第一信号线绝缘设置,且所述第一屏蔽罩在所述连接层上的正投影至少覆盖所述信号传输腔的第一开口。
  4. 根据权利要求1所述的信号传输装置,其特征在于,所述信号传输装置还包括第二屏蔽罩,所述第二屏蔽罩设置在所述第二信号线远离所述信号传输腔的一侧并与所述第二信号线绝缘设置,且所述第二屏蔽罩在所述连接层上的正投影至少覆盖所述信号传输腔的第二开口。
  5. 根据权利要求1所述的信号传输装置,其特征在于,所述信号传输装置还包括第一信号阵子,所述第一信号阵子与所述第一信号线的一端连接,且在所述信号传输腔上的正投影位于所述信号传输腔内。
  6. 根据权利要求1所述的信号传输装置,其特征在于,所述信号传输装置还包括第一信号阵子,所述第一信号阵子位于所述第一信号线和所述第二信号线之间,且在所述信号传输腔上的正投影位于所述信号传输腔内。
  7. 根据权利要求1所述的信号传输装置,其特征在于,所述信号传输装置还包括第二信号阵子,所述第二信号阵子与所述第二信号线的一端连接,且在所述信号传输腔上的正投影位于所述信号传输腔内。
  8. 根据权利要求1所述的信号传输装置,其特征在于,所述第一信号层中还设有多个第一屏蔽件,所述多个第一屏蔽件水平围绕所述信号传输腔和所述第一信号线靠近所述信号传输腔的一端设置。
  9. 根据权利要求8所述的信号传输装置,其特征在于,所述第一屏蔽件为金属片、金属柱或者过孔。
  10. 根据权利要求9所述的信号传输装置,其特征在于,所述第一信号层还设有第一导电层,所述第一导电层与所述第一信号线设置在所述第一介质层的同侧,且所述第一导电 层和所述第一信号线间隔设置,所述第一屏蔽件贯穿所述第一导电层和所述第一介质层。
  11. 根据权利要求1所述的信号传输装置,其特征在于,所述第二信号层中设有多个第二屏蔽件,所述多个第二屏蔽件水平围绕所述信号传输腔和所述第二信号线靠近所述信号传输腔的一端设置。
  12. 根据权利要求1所述的信号传输装置,其特征在于,所述第一信号层还包括第三导电层和第三介质层,所述第三导电层设置所述第一介质层远离所述第一信号线的一侧,所述第三介质层设置在所述第三导电层和所述多个连接层之间,所述第三导电层在所述多个连接层上的正投影与所述信号传输腔在所述多个连接层上的正投影不重叠。
  13. 根据权利要求12所述的信号传输装置,其特征在于,所述信号传输装置还包括第一信号阵子,所述第一信号阵子位于所述第一介质层和所述第三介质层之间,所述第一信号阵子与所述第三导电层间隔设置,且在所述信号传输腔上的正投影位于所述信号传输腔内。
  14. 根据权利要求9所述的信号传输装置,其特征在于,所述信号传输装置上还设有贯穿所述第一信号层、第二信号层以及所述多个连接层的接地孔;所述接地孔水平围绕所述第一屏蔽件远离所述信号传输腔、所述第一信号线以及所述第二信号线的一侧设置。
  15. 根据权利要求1-14任一项所述的信号传输装置,其特征在于,所述信号传输装置为电路板。
  16. 根据权利要求1-14任一项所述的信号传输装置,其特征在于,所述信号传输装置为芯片封装基板。
  17. 一种电子设备,其特征在于,所述电子设备包括中框、后盖以及位于所述中框和所述后盖之间的芯片和如权利要求15所述的信号传输装置,所述芯片设置在所述信号传输装置上,并与所述信号传输装置电连接。
  18. 一种电子设备,其特征在于,所述电子设备包括中框、后盖以及位于所述中框和所述后盖之间的电路板和芯片,所述芯片设置在所述电路板上,所述芯片包括裸片和如权利要求16所述的信号传输装置,所述裸片设置在所述信号传输装置的一侧,并与所述信号传输装置电连接。
PCT/CN2020/119033 2020-09-29 2020-09-29 信号传输装置及电子设备 WO2022067569A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080103207.5A CN115885588A (zh) 2020-09-29 2020-09-29 信号传输装置及电子设备
PCT/CN2020/119033 WO2022067569A1 (zh) 2020-09-29 2020-09-29 信号传输装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119033 WO2022067569A1 (zh) 2020-09-29 2020-09-29 信号传输装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022067569A1 true WO2022067569A1 (zh) 2022-04-07

Family

ID=80949365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119033 WO2022067569A1 (zh) 2020-09-29 2020-09-29 信号传输装置及电子设备

Country Status (2)

Country Link
CN (1) CN115885588A (zh)
WO (1) WO2022067569A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003991A2 (de) * 2002-06-26 2004-01-08 Infineon Technologies Ag Elektronisches bauteil mit einer gehäusepackung
EP1594353A1 (en) * 2003-02-13 2005-11-09 Matsushita Electric Industrial Co., Ltd. High frequency multilayer printed wiring board
CN101128088A (zh) * 2005-12-30 2008-02-20 英特尔公司 嵌入式波导印刷电路板结构
US20110057853A1 (en) * 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Patch antenna with wide bandwidth at millimeter wave band
CN102948266A (zh) * 2010-04-22 2013-02-27 施韦策电子公司 具有空腔的印制电路板
WO2018125775A1 (en) * 2016-12-28 2018-07-05 Raytheon Company An interconnection system for a multilayered radio frequency circuit and method of fabrication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003991A2 (de) * 2002-06-26 2004-01-08 Infineon Technologies Ag Elektronisches bauteil mit einer gehäusepackung
EP1594353A1 (en) * 2003-02-13 2005-11-09 Matsushita Electric Industrial Co., Ltd. High frequency multilayer printed wiring board
CN101128088A (zh) * 2005-12-30 2008-02-20 英特尔公司 嵌入式波导印刷电路板结构
US20110057853A1 (en) * 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Patch antenna with wide bandwidth at millimeter wave band
CN102948266A (zh) * 2010-04-22 2013-02-27 施韦策电子公司 具有空腔的印制电路板
WO2018125775A1 (en) * 2016-12-28 2018-07-05 Raytheon Company An interconnection system for a multilayered radio frequency circuit and method of fabrication

Also Published As

Publication number Publication date
CN115885588A (zh) 2023-03-31
CN115885588A8 (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US9252474B2 (en) Coupling arrangement
TWI650901B (zh) 貼片天線單元及天線
US9332644B2 (en) High-frequency transmission line and electronic device
US11716812B2 (en) Millimeter-wave active antenna unit, and interconnection structure between PCB boards
EP3252870B1 (en) Antenna module
US9699895B2 (en) Flexible board and electronic device
JP5669043B2 (ja) ポスト壁導波路アンテナ及びアンテナモジュール
US10749236B2 (en) Transmission line
US9312590B2 (en) High-frequency signal transmission line and electronic device
US9472839B2 (en) High-frequency transmission line and electronic device
WO2020000250A1 (zh) 一种天线封装结构
WO2022067569A1 (zh) 信号传输装置及电子设备
US11757166B2 (en) Surface-mount waveguide for vertical transitions of a printed circuit board
WO2021258270A1 (zh) 一种电路板、电子设备和电路板的加工方法
EP3249741B1 (en) Device for the connection between a strip line and a coaxial cable
US11737206B2 (en) Circuit board structure
CN216055120U (zh) 基于金属罩的耦合片
TWI825463B (zh) 封裝基板
CN215933819U (zh) 天线模块及智能电视
US20220077556A1 (en) Transmission line and electronic device
WO2019137159A1 (zh) 一种移动终端天线及其馈电网络
Namaki et al. Thorough Analysis of mm-Wave Broadband Planar and Vertical Transitions for Loss Reduction of Interconnects in Multilayer PCBs
JPH0927715A (ja) 一体型マイクロ波回路を有する誘電体多層基板
JP2023546690A (ja) アンチパッド形成を有する多層構造
CN118040274A (zh) 一种互联装置及无线通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955594

Country of ref document: EP

Kind code of ref document: A1