WO2022065742A1 - 잉곳 성장 장치 - Google Patents

잉곳 성장 장치 Download PDF

Info

Publication number
WO2022065742A1
WO2022065742A1 PCT/KR2021/011957 KR2021011957W WO2022065742A1 WO 2022065742 A1 WO2022065742 A1 WO 2022065742A1 KR 2021011957 W KR2021011957 W KR 2021011957W WO 2022065742 A1 WO2022065742 A1 WO 2022065742A1
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
ingot
coil
members
magnetic field
Prior art date
Application number
PCT/KR2021/011957
Other languages
English (en)
French (fr)
Inventor
배동우
이경석
이영민
Original Assignee
한화솔루션 주식회사
주식회사 한화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사, 주식회사 한화 filed Critical 한화솔루션 주식회사
Priority to US18/028,921 priority Critical patent/US20230332325A1/en
Priority to NO20230330A priority patent/NO20230330A1/en
Publication of WO2022065742A1 publication Critical patent/WO2022065742A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/18Heating of the melt or the crystallised materials using direct resistance heating in addition to other methods of heating, e.g. using Peltier heat
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the present invention relates to an ingot growing apparatus.
  • Single crystal silicon is used as a basic material for most semiconductor components, and these materials are manufactured as single crystals with high purity.
  • One of these manufacturing methods is the Czochralski method.
  • silicon is put into a crucible and the crucible is heated to melt the silicon.
  • a single crystal seed is pulled upward while rotating in a state in contact with the molten silicon, an ingot having a predetermined diameter is grown.
  • Czochralski continuously grows the ingot while supplementing the consumed molten silicon by continuously injecting solid polysilicon or molten silicon into the crucible. way to do it
  • the crucible is heated through electrical energy, and in the continuous growth Czochralski method, such power cost occupies a large proportion in the ingot manufacturing cost, so power energy There is a need to reduce costs.
  • An ingot growth apparatus includes a growth furnace in which a main crucible for accommodating molten silicon to grow an ingot is disposed therein; a susceptor formed to surround the outer surface of the main crucible and including a plurality of heating members electrically insulated from each other; and a heater generating a magnetic field and heating the plurality of heating members by electromagnetic induction by the magnetic field.
  • the plurality of heating members may have a loop along the outer surface of the main crucible.
  • the susceptor may be formed in a form in which the plurality of heat generating members are divided in a horizontal direction parallel to the bottom surface of the growth furnace.
  • the susceptor may be formed in a form in which the plurality of heat generating members are divided in a vertical direction perpendicular to the bottom surface of the growth furnace.
  • the plurality of heating members may include a graphite material.
  • the susceptor may further include a plurality of insulating members disposed between the plurality of heat generating members to couple the plurality of heat generating members.
  • the plurality of insulating members may be formed of a non-magnetic material.
  • the ends of the plurality of heat generating members may include curved portions.
  • the ingot growth apparatus may further include a blocking unit disposed between the heater and the bottom surface of the growth furnace and blocking electromagnetic induction by the magnetic field to a lower side of the heater and the susceptor.
  • the ingot growth apparatus includes a growth furnace in which a main crucible for accommodating molten silicon to grow an ingot is disposed therein; a susceptor formed to surround the outer surface of the main crucible; and a heater formed to be wound along an outer surface of the susceptor to generate a magnetic field, and having a coil configured to heat the susceptor by electromagnetic induction by the magnetic field; Including, the coil, a first portion formed along the outer surface of the susceptor so that the direction in which the ingot is pulled up and the direction of the magnetic field at the center of the coil are parallel; and a second portion extending obliquely from the first portion to the first portion at a predetermined angle.
  • the coil may be formed such that the first part and the second part form one turn with respect to the outer surface of the susceptor, and have a plurality of turns in the vertical direction of the susceptor.
  • the length of the second part may be within 1/18 of the total length of the coil.
  • the heater may further include a shield formed to surround the outer surface of the coil and blocking the coil from being exposed to the inner space of the growth furnace.
  • each of the plurality of heat generating members is individually generated current by electromagnetic induction to generate heat, thereby ensuring uniformity of the temperature of the molten silicon.
  • the plurality of heating members are individually heated, thereby increasing the efficiency of power energy for heating the main crucible.
  • the first portion of the coil is formed perpendicular to the pulling direction of the ingot to minimize the influence on the ingot growing into a single crystal due to the magnetic field generated in the coil, It is possible to increase the single crystal yield of the ingot.
  • FIG. 1 is a view schematically showing an ingot growth apparatus according to an embodiment of the present invention.
  • Figure 2 is a perspective view mainly showing the susceptor of the ingot growth apparatus according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of FIG. 2 .
  • FIG. 4 is a cross-sectional view mainly showing the susceptor of the ingot growth apparatus according to another embodiment of the present invention.
  • Figure 5a is a perspective view showing a state in which the integrated susceptor is not divided.
  • FIG. 5B is a cross-sectional view of FIG. 5A.
  • FIG. 6A is a perspective view illustrating a state in which a susceptor is heated according to an embodiment of the present invention.
  • FIG. 6B is a cross-sectional view of FIG. 6A .
  • FIG. 7A is a perspective view illustrating a heated state of a susceptor according to another embodiment of the present invention.
  • FIG. 7B is a cross-sectional view of FIG. 7A .
  • FIG. 8 is a side view schematically showing a coil of an ingot growing apparatus according to another embodiment of the present invention.
  • FIG. 9 is a view of the coil of FIG. 8 as viewed from above.
  • FIG. 10 is a perspective view schematically illustrating a spirally wound coil.
  • 11A is a view of a susceptor heated by a coil according to another embodiment of the present invention as viewed from above.
  • 11B is a view of the susceptor being heated by the spirally wound coil of FIG. 10 as viewed from above.
  • 12A is a graph illustrating a difference between the temperature of the upper region of the susceptor according to the comparative example of FIG. 10 and the temperature of the upper region of the susceptor according to another embodiment of the present invention.
  • 12B is a graph illustrating a difference between the temperature of the central region of the susceptor according to the comparative example of FIG. 10 and the temperature of the central region of the susceptor according to another embodiment of the present invention.
  • 131 and 132 a plurality of heating members 140: a heater
  • Words and terms used in the present specification and claims are not limited to their ordinary or dictionary meanings, but in accordance with the principle that the inventor can define terms and concepts in order to best describe his invention. It should be interpreted as meaning and concept consistent with the technical idea.
  • an element “in front”, “behind”, “above” or “below” of another element means that, unless otherwise specified, it is directly in contact with another element, such as “front”, “rear”, “above” or “below”. It includes not only being disposed at the “lower side” but also cases in which another component is disposed in the middle.
  • a component is “connected” with another component includes not only direct connection to each other, but also indirect connection to each other, unless otherwise specified.
  • the arrow direction of the Z-axis is referred to as an upward direction of the growth path.
  • the lower side means the opposite direction to the upper side.
  • FIG. 1 is a view schematically showing an ingot growth apparatus according to an embodiment of the present invention.
  • the ingot growth apparatus 100 may include a growth furnace 110 , a main crucible 120 , a susceptor 130 , and a heater 140 .
  • the growth furnace 110 has an internal space 110a maintained in a vacuum state, and is formed so that the ingot I is grown in the internal space 110a.
  • a main crucible 120 to be described later is disposed in the inner space 110a.
  • the growth furnace 110 is provided with a vacuum pump (not shown) and an inert gas supply unit (not shown).
  • the vacuum pump may maintain the internal space 110a in a vacuum atmosphere.
  • the inert gas supply unit supplies the inert gas to the inner space (110a).
  • the inert gas may be, for example, argon (Ar).
  • the main crucible 120 is accommodated in the inner space 110a of the growth furnace 110 .
  • the main crucible 120 may accommodate the molten silicon (M).
  • M molten silicon
  • the main crucible 120 is generally formed in a reverse dome shape.
  • the main crucible 120 is not limited to being formed in an inverted dome shape, and may be formed in various shapes such as a cylindrical shape.
  • the main crucible 120 is made of a quartz (quartz) material.
  • the main crucible 120 is not limited to being made of a quartz material, and may include various materials that have heat resistance at a temperature of about 1400° C. or higher and withstand a sudden change in temperature.
  • the single crystal seed (S) is in contact with the molten silicon (M) accommodated in the main crucible 120, the wire (W) connected to the upper side of the growth furnace 110 is the single crystal seed (S)
  • the ingot (I) having a predetermined diameter is grown along the pulling direction (Z axis) of the ingot (I).
  • the growth furnace 110 is provided with a pre-melting unit (not shown) for receiving and melting a solid silicon raw material.
  • the pre-melting unit supplies the molten silicon to the main crucible 120 .
  • the susceptor 130 surrounds the outer surface of the main crucible 120 .
  • the susceptor 130 supports the main crucible 120 .
  • the inner surface of the susceptor 130 has a shape corresponding to the outer surface of the main crucible 120 . For example, if the main crucible 120 has an inverted dome shape, the susceptor 130 also has an inverted dome shape.
  • the susceptor 130 maintains the state in which the main crucible 120 receives the molten silicon (M). (120) is supported while wrapping.
  • M molten silicon
  • a susceptor support 150 supporting the susceptor 130 is disposed below the growth path 110 .
  • the upper end of the susceptor support 150 has a shape corresponding to the lower end of the susceptor 130 .
  • the susceptor support part 150 rotates together with the susceptor 130 . Accordingly, in a state in which the main crucible 120 accommodates the molten silicon M, the main crucible 120 is rotated together with the susceptor 130 .
  • the growth path 110 is provided with a driving unit (not shown) that provides a rotational force to rotate the susceptor support (150).
  • the susceptor support part 150 is rotatably connected to the driving part.
  • the driving unit receives power and provides a rotational force to the susceptor support unit 150 , the main crucible 120 is rotated together with the susceptor 130 .
  • a heater 140 for heating the susceptor 130 is provided in the growth furnace 110 .
  • the heater 140 includes a coil 141 receiving power to generate a magnetic field and a shield 142 surrounding the coil 141 .
  • the coil 141 generates a current in the susceptor 130 by electromagnetic induction by a magnetic field. At this time, the current generated in the susceptor 130 is converted into thermal energy. Accordingly, the heater 140 heats the susceptor 130 . The heat of the susceptor 130 is conducted to the main crucible 120 , and the susceptor 130 heats the main crucible 120 .
  • the shield 142 supports the coil 141 so that the coil 141 is maintained in a predetermined shape.
  • the shield 142 blocks the coil from being exposed to the inner space 110a of the growth path 110 . Accordingly, the shield 142 blocks the coil 141 from being exposed to the inner space 110a of the growth furnace 110, so that the coil 141 receives power to form a magnetic field. , preventing arc discharge from occurring due to plasma phenomenon in the vacuum state or arc discharge from being generated by the coil 141 coming into contact with an inert gas (eg, argon) existing in the inner space 110a do.
  • an inert gas eg, argon
  • the heater 140 is formed to surround the outer surface of the susceptor 130 .
  • the heater 140 may heat the susceptor 130 by electromagnetic induction, which is an induction heating method.
  • electromagnetic induction which is an induction heating method
  • the heater 140 is disposed to be spaced apart from the outer surface of the susceptor 130 , so that the heat of the susceptor 130 is transferred back to the heater 140 . it is prevented
  • a heater support unit 160 supporting the heater 140 is disposed below the growth furnace 110 .
  • the heater support 160 is generally formed in a cylindrical shape.
  • the susceptor support 150 is disposed inside the heater support 160 having the cylindrical shape.
  • the upper end of the heater support 160 has a shape corresponding to the lower end of the heater 140 , and the heater 140 is disposed on the upper end of the heater support 160 .
  • a blocking unit 170 is provided below the heater 140 to block electromagnetic induction by the magnetic field generated from the heater 140 .
  • the blocking part 170 is disposed between the heater 140 and the bottom surface 112 of the growth furnace 110 .
  • the blocking part 170 is made of a non-magnetic material, so that heat is not generated by electromagnetic induction by a magnetic field generated from the heater 140 .
  • the blocking part 170 is coupled to the heater support part 160 .
  • the blocking part 170 is disposed between the lower side of the susceptor 130 and the bottom surface 112 of the growth furnace 110 so that heat generated from the susceptor 130 is transferred to the growth furnace 110 . ) to block heat transfer to the device disposed on the bottom surface 112 or the susceptor 130 and the bottom surface 112 .
  • a through hole (not shown) through which the susceptor support part 150 passes is formed in the blocking part 170 . Accordingly, since the susceptor support part 150 passes through the blocking part 170 through the through hole, the blocking part 170 is prevented from interfering with the rotating susceptor support part 150 .
  • FIG. 2 is a perspective view mainly showing a susceptor of an ingot growth apparatus according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of FIG. 2 .
  • the susceptor 130 includes a plurality of heating members 131 and 132 and a plurality of insulating members 133 disposed between the plurality of heating members 131 and 132 . .
  • the plurality of heating members 131 and 132 form the outer shape of the inverted dome-shaped susceptor 130 .
  • the plurality of heating members 131 and 132 are electrically insulated from each other.
  • the plurality of heat generating members 131 and 132 include a graphite material.
  • the plurality of heat generating members 131 and 132 are not limited to being made of graphite material, and may include various materials having strong heat resistance.
  • the susceptor 130 has a form in which the plurality of heating members 131 and 132 are divided in a horizontal direction (Z-axis) parallel to the bottom surface 112 of the growth furnace 110 (refer to FIG. 1 ). can be done
  • the plurality of heating members 131 and 132 include first heating members 131 forming a sidewall of the susceptor 130 and a second heating member 132 forming a bottom of the susceptor 130 . ) is provided.
  • the first heating members 131 may be formed in a ring shape surrounding the outer surface of the main crucible 120 (refer to FIG. 1 ). In addition, the first heating members 131 form a loop through which a current induced by a magnetic field flows along an outer surface of the main crucible 120 (refer to FIG. 1 ). Accordingly, a current induced by a magnetic field flows through the first heating members 131 individually, so that the temperature uniformity of the entire susceptor 130 is secured.
  • the size of the first heating members 131 increases from the upper side to the lower side. Accordingly, it is controlled so that heat is not concentrated on the upper side of the susceptor 130 .
  • the degree of heat generation in the upper region, the central region, or the lower region of the sidewall of the susceptor 130 is reduced. can be adjusted
  • the first heating members 131 are composed of three, but is not limited thereto, and may be composed of four or more.
  • the ends 131a and 131b of the first heating member 131 are provided with curved portions 131a and 131b. Accordingly, current is prevented from intensively flowing through the curved portions 131a and 131b of the first heat generating member 131 by electromagnetic induction, and the curved portions 131a and 131b are prevented from being excessively heated.
  • the plurality of insulating members 133 are disposed between the plurality of heat generating members 131 and 132 to couple the plurality of heat generating members 131 and 132 .
  • the plurality of insulating members 133 together with the first heating member 131 constitute a sidewall of the susceptor 130 .
  • the plurality of insulating members 133 are made of a non-magnetic material.
  • the plurality of insulating members 133 may be made of a ceramic material. Accordingly, the plurality of insulating members 133 block the plurality of heating members 131 and 132 from being electrically connected to each other.
  • FIG. 4 is a cross-sectional view mainly showing the susceptor of the ingot growth apparatus according to another embodiment of the present invention.
  • the susceptor 230 of the ingot growth apparatus includes a plurality of heat generating members 231 and 232 and a plurality of heat generating members 231 and 232 disposed between the plurality of heat generating members 231 and 232 . and an insulating member 233 .
  • the description of another embodiment of the present invention is replaced with the same or similar content to the components of the above-described embodiment.
  • the plurality of heating members 231 and 232 are divided in a vertical direction (Z axis) perpendicular to the bottom surface 112 (refer to FIG. 1) of the growth furnace 110 (refer to FIG. 1). made in the form Accordingly, in the plurality of heating members 231 and 232 , current by induction of the magnetic field flows individually, and excessive heat or non-heating is prevented in a specific portion of the susceptor 230 .
  • the susceptor 230 includes three heat generating members 231 and 232, but is not limited thereto, and may include four or more.
  • Figure 5a is a perspective view showing a state in which the susceptor integrated without being divided is heated
  • Figure 5b is a cross-sectional view of Figure 5a
  • Figure 6a is a perspective view showing a state that the susceptor is heated according to an embodiment of the present invention
  • 6B is a cross-sectional view of FIG. 6A
  • FIG. 7A is a perspective view illustrating a heated susceptor according to another embodiment of the present invention
  • FIG. 7B is a cross-sectional view of FIG. 7A.
  • 5A to 7B show that the temperature change due to the heat exchange of the susceptor is excluded according to the flux simulation, and only the temperature of the susceptor generated by the induced current is displayed, and the result is higher than the melting point temperature of silicon. Under these conditions, the temperature according to the simulation corresponds to a maximum of about 6000 °C, but in the actual ingot growth apparatus, it is pointed out that it is different from the temperature range shown in the drawing.
  • integrated susceptor a susceptor integrated without division
  • susceptor a susceptor according to an embodiment of the present invention
  • susceptor according to another embodiment of the present invention to compare the thermal performance of
  • the temperature of the upper end of the integrated susceptor is the temperature of other parts of the integrated susceptor higher than That is, the temperature decreases from the upper side to the lower side of the integrated susceptor. This is because a loop is formed at the upper end of the integrated susceptor.
  • the temperature of the upper end of the susceptor 130 (see FIG. 3 ) according to an embodiment of the present invention has a small difference from the temperature of other parts.
  • the temperature of the sidewall of the susceptor according to an embodiment of the present invention is higher than the temperature of the sidewall of the integrated susceptor and is overall uniform. This is because, as described above, the plurality of heat generating members are individually heated by electromagnetic induction.
  • the susceptor according to an embodiment of the present invention can increase the single crystal yield of the ingot by securing the uniformity of the generated temperature.
  • the susceptor according to an embodiment of the present invention implements a higher temperature than the integrated susceptor receiving the same power, it is possible to increase the efficiency of power energy used in the ingot growing apparatus.
  • the sidewall of the susceptor 230 (see FIG. 4 ) according to another embodiment of the present invention is heated at a higher temperature in a wider portion than the sidewall of the integrated susceptor.
  • the plurality of heating members of the susceptor 230 (refer to FIG. 4 ) according to another embodiment of the present invention are individually heated by electromagnetic induction.
  • the susceptor 230 (refer to FIG. 4) according to another embodiment of the present invention generates heat at a lower temperature than the susceptor 130 (refer to FIG. 3) according to an embodiment of the present invention, but the integrated susceptor Since heat is generated at a high temperature in a wide area compared to , when the susceptor is composed of a plurality of divided heat generating members, heat generation performance is increased.
  • FIG. 8 is a side view schematically showing a coil of an ingot growing apparatus according to another embodiment of the present invention
  • FIG. 9 is a view of the coil of FIG. 8 viewed from the upper side.
  • An ingot growing apparatus is externally similar to the ingot growing apparatus according to an embodiment of the present invention shown in FIG. 1 . 8 and 9, the coil 341 of the ingot growth apparatus according to another embodiment of the present invention will be mainly viewed.
  • the ingot growth apparatus is provided with a susceptor (330).
  • the susceptor 330 has a form in which a plurality of heat generating members are divided in a horizontal direction (X-axis) or a vertical direction (Z-axis).
  • the coil 341 is supported to maintain the shape of the coil 341 while being surrounded by the shield 142 as in the above-described embodiment.
  • the coil 341 is positioned so that the direction (Z axis, see FIG. 1) in which the ingot (I, see FIG. 1) is pulled up and the direction (C) of the magnetic field of the center (O) of the coil 341 are parallel to each other. It includes a first portion 342 formed along the outer surface of the scepter 330 and a second portion 343 extending from the first portion 342 to be inclined at a predetermined angle from the first portion 342 .
  • the coil 341 is provided such that the first part 342 and the second part 343 form one turn with respect to the outer surface of the susceptor 330 .
  • the coil 341 is formed such that the first part 342 and the second part 342 have a plurality of turns in the vertical direction (Z-axis) of the susceptor 330 .
  • the vertical direction (Z axis) of the susceptor 330 is the same as the direction in which the ingot is pulled up (Z axis, see FIG. 1 ).
  • the first part 342 includes a first turn part 342a disposed above the coil 341 when the susceptor 330 is viewed from the side, the first It consists of a second turn part 342b disposed to be spaced apart from the lower side of the turn part 342a and a third turn part 342c disposed to be spaced apart from the lower side of the second turn part 342b.
  • the first part 342 is not limited to being composed of a first turn part 342a, a second turn part 342b and a third turn part 342c, and as shown in FIG. 8, a fourth turn part, It is composed of a plurality of turn units, such as a fifth turn unit.
  • the first part 342 is configured such that the first turn part 342a, the second turn part 342b, and the third turn part 342c are sequentially connected, however, the side surface of the susceptor 330 When viewed from, it is configured to be spaced apart from each other.
  • the second part 343 includes one side of the first connecting part 343a and the second turn part 342c disposed between one side of the first turn part 342a and the other side of the second turn part 342b, and the It consists of a second connection part 343b disposed between the other side of the third turn part 342c. And, when the first part 342 includes the plurality of turn parts, the second part 343 includes the plurality of connection parts to correspond to the plurality of turn parts.
  • the first connection part 343a is formed to be inclined from one side of the first turn part 342a toward the other side of the second turn part 342b. That is, the first turn part 342a is electrically connected to the second turn part 342b through the first connection part 343a, and the first turn part 342a is arranged in the horizontal direction (X-axis).
  • the horizontal direction (X-axis) is a direction perpendicular to the direction C of the magnetic field at the center of the coil 341 .
  • the second connection part 343b is formed to be inclined from one side of the second turn part 342b toward the other side of the third turn part 342c. That is, the second turn part 342b is electrically connected to the third turn part 342c through the second connection part 343b, and the second turn part 342b is arranged in the horizontal direction (X-axis). provided Similarly, the plurality of turn parts are provided to be arranged in the horizontal direction (X-axis).
  • the first part 342 is formed in a horizontal direction (X-axis) that is perpendicular to the direction C of the magnetic field at the center of the coil 341 , the magnetic field generated from the coil 341 is not affected.
  • the force generated by the ingot is not inclined to the direction in which the single crystal of the ingot grows. That is, as the first portion 342 of the coil 341 is arranged in the horizontal direction (X-axis), the yield of the single crystal of the ingot may be increased.
  • the first connection part 343a of the second part 343 is separated from the center O of the concentric circle of the coil 341 . placed in a certain angular range.
  • the predetermined angle may be approximately 20°. That is, since the second part 343 is disposed in a range of about 20° from the center O of the concentric circle of the coil 341 , the length of the second part 343 is the total length of the coil 341 . /18 or less.
  • the length of the second part 343 is determined according to the thickness of the coil 341 . For example, as the thickness of the coil 341 decreases, the length of the second portion 343 decreases.
  • the force by the magnetic field generated from the second part 343 is a single crystal of the ingot (I, see FIG. 1 ). influence is minimized.
  • FIG. 10 is a perspective view schematically showing a spirally wound coil
  • FIG. 11a is a view from the top of the susceptor being heated by the coil according to another embodiment of the present invention
  • FIG. 11b is the spirally wound coil of FIG.
  • the susceptor is heated by the coil as viewed from above
  • FIG. 12A is the temperature of the upper region of the susceptor according to the comparative example of FIG. 10 and the temperature of the upper region of the susceptor according to another embodiment of the present invention.
  • FIG. 12B is a graph showing the deviation of the temperature of the central region of the susceptor according to the comparative example of FIG. 10 and the temperature of the central region of the susceptor according to another embodiment of the present invention.
  • the coil 30 according to the comparative example is spirally wound a plurality of times along the outer surface of the susceptor 20 .
  • the susceptor heated by the coil according to another embodiment of the present invention shown in FIG. 11A is generally symmetrical with respect to the center of the concentric circle of the coil compared to the coil according to the comparative example shown in FIG. 11B . That is, the coil according to another embodiment of the present invention heats the susceptor so that the temperature of the susceptor is uniform compared to the coil according to the comparative example. Accordingly, the coil according to another embodiment of the present invention secures the uniformity of the temperature of the susceptor.
  • the temperature deviation of the upper region of the susceptor heated by the coil according to the comparative example is approximately 488 °C
  • the susceptor heated by the coil according to another embodiment of the present invention The temperature deviation of the upper region of the scepter is approximately 420°C. That is, the coil according to another embodiment of the present invention has a smaller temperature deviation of the upper region of the susceptor than the coil according to the comparative example.
  • the deviation of the temperature of the central region of the susceptor heated by the coil according to the comparative example is approximately 305 °C
  • the susceptor heated by the coil according to another embodiment of the present invention is The deviation of the temperature of the central region of the scepter is approximately 273°C. That is, the coil according to another embodiment of the present invention has a smaller temperature variation in the central region of the susceptor than the coil according to the comparative example.
  • the coil according to another embodiment of the present invention secures the uniformity of the temperature of the susceptor compared to the coil according to the comparative example.
  • the coil according to another embodiment of the present invention secures the uniformity of the temperature of the susceptor, excessive consumption of power energy is prevented in the process of securing the uniformity of the temperature of the susceptor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

잉곳 성장 장치가 개시된다. 본 발명의 실시예에 따른 잉곳 성장 장치는, 잉곳을 성장시키기 위하여 용융된 실리콘을 수용하는 주 도가니가 내부에 배치되는 성장로; 상기 주 도가니의 외측면을 감싸도록 형성되고, 서로 전기적으로 절연된 복수의 발열 부재를 포함하는 서셉터; 및 자기장을 발생시키고, 자기장에 의한 전자기 유도에 의해 상기 복수의 발열 부재를 가열하는 히터; 를 포함하고, 상기 복수의 발열 부재는 상기 주 도가니의 외측면을 따라 루프를 구비한다.

Description

잉곳 성장 장치
본 발명은 잉곳 성장 장치에 관한 것이다.
단결정 실리콘은 대부분의 반도체 부품의 기본소재로서 사용되는 것으로, 이들 물질은 높은 순도를 가진 단결정체로 제조되는데, 이러한 제조방법 중 하나가 초크랄스키법(Czochralski)이다.
초크랄스키 결정법은 도가니에 실리콘을 넣고, 도가니를 가열하여 실리콘을 용융시킨다. 그리고, 단결정 시드(single crystal seed)가 이러한 용융된 실리콘에 접촉된 상태에서, 회전과 동시에 상측 방향으로 인상되면, 소정의 지름을 갖는 잉곳(ingot)이 성장된다.
이러한 초크랄스키법 중 하나인 연속성장형 초크랄스키법(CCz: Continuous Czochralski)은 도가니 내부로 고형의 폴리실리콘 또는 용융된 실리콘을 계속적으로 주입함으로써 소모된 용융된 실리콘을 보충하면서 잉곳을 지속적으로 성장시키는 방법이다.
이러한 연속성장형 초크랄스키법(CCz)을 통해 잉곳을 성장시키기 위해서는, 도가니를 가열하여 도가니 내부로 주입된 용융된 실리콘의 온도의 균일성을 확보가 중요하다. 특히, 도가니 내부 중 잉곳이 성장하는 잉곳 성장 영역의 온도의 균일성을 확보하지 못하면, 잉곳의 단결정 수율이 저하되는 문제가 있다.
또한, 잉곳 성장 환경에서 용융된 실리콘의 목표 온도 분포를 확보하기 위해 전기 에너지를 통해 도가니를 가열하며, 연속성장형 초크랄스키법에서 이와 같은 전력 비용이 잉곳 제조 원가에서 큰 비중을 차지하므로, 전력 에너지 비용을 줄일 필요성이 제기된다.
본 발명의 실시예에 따르면, 용융된 실리콘을 가열하는 과정에서, 용융된 실리콘의 온도의 균일성을 확보하면서 도가니를 가열하기 위한 전력 에너지의 효율을 개선하는 잉곳 성장 장치를 제공하고자 한다.
본 발명의 실시예에 따른 잉곳 성장 장치는, 잉곳을 성장시키기 위하여 용융된 실리콘을 수용하는 주 도가니가 내부에 배치되는 성장로; 상기 주 도가니의 외측면을 감싸도록 형성되고, 서로 전기적으로 절연된 복수의 발열 부재를 포함하는 서셉터; 및 자기장을 발생시키고, 자기장에 의한 전자기 유도에 의해 상기 복수의 발열 부재를 가열하는 히터; 를 포함하고, 상기 복수의 발열 부재는 상기 주 도가니의 외측면을 따라 루프를 구비할 수 있다.
이 때, 상기 서셉터는 상기 복수의 발열 부재가 상기 성장로의 바닥면과 평행한 수평 방향으로 분할된 형태로 이루어질 수 있다.
이 때, 상기 서셉터는 상기 복수의 발열 부재가 상기 성장로의 바닥면과 수직한 수직 방향으로 분할된 형태로 이루어질 수 있다.
이 때, 상기 복수의 발열 부재는 그라파이트 재질을 포함하여 이루어질 수 있다.
이 때, 상기 서셉터는 상기 복수의 발열 부재 사이에 배치되어 상기 복수의 발열 부재를 결합시키는 복수의 절연 부재를 더 포함할 수 있다.
이 때, 상기 복수의 절연 부재는 비자성체로 이루어질 수 있다.
이 때, 상기 복수의 발열 부재의 단부는 곡면부를 포함할 수 있다.
이 때, 상기 잉곳 성장 장치는, 상기 히터와 상기 성장로의 바닥면 사이에 배치되고, 상기 히터와 상기 서셉터의 하측으로 상기 자기장에 의한 전자기 유도를 차단하는 차단부를 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 잉곳 성장 장치는, 잉곳을 성장시키기 위하여 용융된 실리콘을 수용하는 주 도가니가 내부에 배치되는 성장로; 상기 주 도가니의 외측면을 감싸도록 형성되는 서셉터; 및 상기 서셉터의 외측면을 따라 감기도록 형성되어 자기장을 발생시키고, 상기 자기장에 의한 전자기 유도에 의해 상기 서셉터를 가열하는 코일을 구비하는 히터; 를 포함하고, 상기 코일은, 상기 잉곳이 인상되는 방향과 상기 코일의 중심의 자기장의 방향이 나란하도록 상기 서셉터의 외측면을 따라 형성되는 제1 부분; 및 상기 제1 부분으로부터 상기 제1 부분과 소정 각도로 경사지게 연장되는 제2 부분을 포함할 수 있다.
이 때, 상기 코일은 상기 제1 부분 및 상기 제2 부분이 상기 서셉터의 외측면에 대하여 1회턴을 형성하도록 구비되고, 상기 서셉터의 상하 방향으로 복수회의 턴을 갖도록 형성될 수 있다.
이 때, 상기 제2 부분의 길이는 상기 코일 전체 길이의 1/18 이내일 수 있다.
이 때, 상기 히터는, 상기 코일의 외측면을 감싸도록 형성되고, 상기 코일이 상기 성장로의 내부 공간에 노출되는 것을 차단하는 쉴드를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 잉곳 성장 장치는, 복수의 발열 부재 각각이 전자기 유도에 의해 개별적으로 전류가 발생되어 발열됨으로써, 용융된 실리콘의 온도의 균일성을 확보할 수 있다.
또한, 본 발명의 일 실시예에 따른 잉곳 성장 장치는, 복수의 발열 부재가 개별적으로 발열됨으로써, 주 도가니를 가열하기 위한 전력 에너지의 효율을 높일 수 있다.
본 발명의 또 다른 실시예에 따른 잉곳 성장 장치는, 코일에서 발생되는 자기장으로 인하여 단결정으로 성장하는 잉곳에 영향을 주는 것을 최소화하도록 코일의 제1 부분이 잉곳의 인상하는 방향과 수직하게 형성되어, 잉곳의 단결정 수율을 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 잉곳 성장 장치를 개략적으로 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 잉곳 성장 장치의 서셉터를 중점적으로 나타내는 사시도이다.
도 3은 도 2의 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 잉곳 성장 장치의 서셉터를 중점적으로 나타내는 단면도이다.
도 5a는 분할되지 않고 일체화된 서셉터가 가열된 모습을 나타내는 사시도이다.
도 5b는 도 5a의 단면도이다.
도 6a는 본 발명의 일 실시예에 따른 서셉터가 가열된 모습을 나타내는 사시도이다.
도 6b는 도 6a의 단면도이다.
도 7a는 본 발명의 다른 실시예에 따른 서셉터가 가열된 모습을 나타내는 사시도이다.
도 7b는 도 7a의 단면도이다.
도 8은 본 발명의 또 다른 실시예에 따른 잉곳 성장 장치의 코일을 개략적으로 나타내는 측면도이다.
도 9는 도 8의 코일을 상측에서 바라본 도면이다.
도 10는 나선형으로 감긴 코일을 개략적으로 나타내는 사시도이다.
도 11a는 본 발명의 다른 실시예에 따른 코일에 의해 서셉터가 가열된 모습을 상측에서 바라본 도면이다.
도 11b는 도 10의 나선형으로 감긴 코일에 의해 서셉터가 가열된 모습을 상측에서 바라본 도면이다.
도 12a는 도 10의 비교예에 따른 서셉터의 상측 영역의 온도와 본 발명의 또 다른 실시예에 따른 서셉터의 상측 영역의 온도의 편차를 나타내는 그래프이다.
도 12b는 도 10의 비교예에 따른 서셉터의 중앙 영역의 온도와 본 발명의 또 다른 실시예에 따른 서셉터의 중앙 영역의 온도의 편차를 나타내는 그래프이다.
100: 잉곳 성장 장치 110: 성장로
120: 주 도가니 130: 서셉터
131, 132: 복수의 발열 부재 140: 히터
141, 341: 코일 342: 제1 부분
343: 제2 부분
본 명세서 및 청구범위에 사용된 단어와 용어는 통상적이거나 사전적인 의미로 한정 해석되지 않고, 자신의 발명을 최선의 방법으로 설명하기 위해 발명자가 용어와 개념을 정의할 수 있는 원칙에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
그러므로 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 해당하고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로 해당 구성은 본 발명의 출원시점에서 이를 대체할 다양한 균등물과 변형예가 있을 수 있다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 설명하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
어떤 구성 요소가 다른 구성 요소의 "전방", "후방", "상부" 또는 "하부"에 있다는 것은 특별한 사정이 없는 한 다른 구성 요소와 바로 접하여 "전방", "후방", "상부" 또는 "하부"에 배치되는 것뿐만 아니라 그 중간에 또 다른 구성 요소가 배치되는 경우도 포함한다. 또한, 어떤 구성 요소가 다른 구성 요소와 "연결"되어 있다는 것은 특별한 사정이 없는 한 서로 직접 연결되는 것뿐만 아니라 간접적으로 서로 연결되는 경우도 포함한다.
이하에서는 도면을 참조하여 본 발명의 실시예에 따른 잉곳 성장 장치를 설명한다. 본 명세서에서는 본 발명의 실시예에 따른 잉곳 성장 장치를 설명함에 있어 발명의 내용과 관련이 없는 구성은 도면의 간략화를 위하여 상세하게 도시하지 않거나 도시를 생략하도록 하고 발명의 사상과 관련된 내용을 중심으로 본 발명에 따른 잉곳 성장 장치를 설명하도록 한다.
본 명세서에서, Z축의 화살표 방향은 성장로의 상측 방향이라 지칭한다. 하측은 상기 상측과 반대 방향을 의미한다.
도 1은 본 발명의 일 실시예에 따른 잉곳 성장 장치를 개략적으로 나타내는 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 잉곳 성장 장치(100)는, 성장로(110), 주 도가니(120), 서셉터(130) 및 히터(140)를 포함할 수 있다.
상기 성장로(110)는 진공 상태로 유지되는 내부 공간(110a)을 구비하여, 내부 공간(110a)에서 잉곳(I)이 성장되도록 형성된다. 상기 내부 공간(110a)에는 후술할 주 도가니(120)가 배치된다.
상기 성장로(110)에는 진공 펌프(미도시)와 비활성기체 공급부(미도시)가 구비된다. 상기 진공 펌프는 상기 내부 공간(110a)을 진공 분위기로 유지할 수 있다. 또한, 상기 비활성기체 공급부는 상기 내부 공간(110a)에 비활성기체를 공급한다. 상기 비활성기체는 예를 들어, 아르곤(Ar)일 수 있다.
상기 주 도가니(120)는 상기 성장로(110)의 상기 내부 공간(110a)에 수용된다. 상기 주 도가니(120)는 용융된 실리콘(M)을 수용할 수 있다. 상기 주 도가니(120)는 대체적으로 역돔(reverse dome) 형상으로 이루어진다. 또한, 상기 주 도가니(120)는 역돔 형상으로 이루어지는 것에 한정되지 않고, 실린더 형상과 같이 다양한 형상으로 이루어질 수 있다.
그리고, 상기 주 도가니(120)는 석영(quartz) 재질로 이루어진다. 다만, 상기 주 도가니(120)는 석영 재질로 이루어진 것에 한정되지 않고, 대략 1400 ℃ 이상의 온도에서 내열성을 가지면서 급격한 온도의 변화에 견디는 다양한 재질을 포함하여 이루어질 수 있다.
그리고, 단결정 시드(S)는 상기 주 도가니(120)에 수용된 용융된 실리콘(M)에 접촉된 상태에서, 상기 성장로(110)의 상측에 연결된 와이어(W)가 상기 단결정 시드(S)를 상측 방향(Z축)으로 인상하면, 상기 잉곳(I)이 인상되는 방향(Z축)을 따라 소정의 지름을 갖는 잉곳(I)이 성장된다.
또한, 상기 성장로(110)에는 고형의 실리콘 원료를 공급받아 용융시키는 예비 용융부(미도시)가 구비된다. 상기 예비 용융부는 상기 용융된 실리콘을 상기 주 도가니(120)에 공급한다.
상기 서셉터(susceptor)(130)는 상기 주 도가니(120)의 외측면을 감싼다. 상기 서셉터(130)는 상기 주 도가니(120)를 지지한다. 상기 서셉터(130)의 내측면은 상기 주 도가니(120)의 외측면과 대응하는 형상으로 이루어진다. 예를 들면, 상기 주 도가니(120)가 역돔 형상이면, 상기 서셉터(130)도 역돔 형상이다.
이에 따라, 상기 주 도가니(120)가 석영 재질로 이루어져 고온에서 변형되더라도, 상기 서셉터(130)는 상기 주 도가니(120)가 상기 용융된 실리콘(M)을 수용하는 상태를 유지하도록 상기 주 도가니(120)를 감싸면서 지지한다. 상기 서셉터(130)에 대해서는 이후 도면을 참조하여 자세하게 설명하기로 한다.
또한, 상기 성장로(110)의 하측에는 상기 서셉터(130)를 지지하는 서셉터 지지부(150)가 배치된다. 상기 서셉터 지지부(150)의 상단은 상기 서셉터(130)의 하단과 대응하는 형상으로 이루어진다. 또한, 상기 서셉터 지지부(150)가 상기 성장로(110)의 하측에서 상기 서셉터(130)를 지지한 상태에서, 상기 서셉터 지지부(150)는 상기 서셉터(130)와 함께 회전된다. 이에 따라, 상기 주 도가니(120)가 상기 용융된 실리콘(M)을 수용한 상태에서, 상기 주 도가니(120)는 서셉터(130)와 함께 회전된다.
또한, 상기 성장로(110)에는 상기 서셉터 지지부(150)를 회전하도록 회전력을 제공하는 구동부(미도시)가 구비된다. 상기 서셉터 지지부(150)는 상기 구동부와 회전 가능하게 연결된다. 상기 구동부는 전원을 공급받아 상기 서셉터 지지부(150)에 회전력을 제공하면, 상기 주 도가니(120)는 상기 서셉터 (130)와 함께 회전된다.
또한, 상기 성장로(110)에는 상기 서셉터(130)를 가열하는 히터(140)가 구비된다. 상기 히터(140)는 전원을 공급받아 자기장을 발생시키는 코일(141) 및 상기 코일(141)을 감싸는 쉴드(142)를 포함한다.
상기 코일(141)은 자기장에 의한 전자기 유도에 의해 상기 서셉터(130)에 전류를 발생시킨다. 이 때, 상기 서셉터(130)에 발생된 전류는 열 에너지로 전환된다. 이에 따라, 상기 히터(140)는 상기 서셉터(130)를 가열한다. 상기 서셉터(130)의 열은 상기 주 도가니(120)로 열전도되고, 상기 서셉터(130)는 상기 주 도가니(120)는 가열시킨다.
상기 쉴드(142)는 상기 코일(141)이 일정 형태로 유지되도록 상기 코일(141)을 지지한다. 상기 쉴드(142)는 상기 코일이 상기 성장로(110)의 상기 내부 공간(110a)으로 노출되는 것을 차단한다. 이에 따라, 상기 쉴드(142)는 상기 코일(141)이 상기 성장로(110)의 상기 내부 공간(110a)에 노출되는 것을 차단함으로써, 상기 코일(141)이 전원을 공급받아 자기장을 형성할 경우, 상기 진공 상태에서 플라즈마 현상에 의한 아크 방전(arc discharge)이 발생되거나 상기 코일(141)이 상기 내부 공간(110a)에 존재하는 비활성기체(예: 아르곤)과 접촉하여 아크 방전이 발생되는 것이 방지된다.
상기 히터(140)는 상기 서셉터(130)의 외측면을 감싸도록 형성된다. 또한, 상기 히터(140)는 유도 가열 방식인 전자기 유도에 의해 상기 서셉터(130)를 가열할 수 있다. 상기 히터(140)가 유도 가열 방식인 경우, 상기 히터(140)는 상기 서셉터(130)의 외측면과 이격되어 배치되어, 상기 서셉터(130)의 열이 다시 히터(140)로 열전도 되는 것이 방지된다.
또한, 상기 성장로(110)의 하측에는 상기 히터(140)를 지지하는 히터 지지부(160)가 배치된다. 상기 히터 지지부(160)는 대체적으로 원통 형상으로 이루어진다. 상기 원통 형상으로 이루어진 상기 히터 지지부(160)의 내부에는 상기 서셉터 지지부(150)가 배치된다. 또한, 상기 히터 지지부(160)의 상단은 상기 히터(140)의 하단과 대응하는 형상으로 이루어지게 되어, 상기 히터(140)는 상기 히터 지지부(160)의 상단에 배치된다.
또한, 상기 히터(140)의 하측에는 상기 히터(140)로부터 발생되는 자기장에 의한 전자기 유도를 차단하는 차단부(170)가 구비된다.
상기 차단부(170)는 상기 히터(140)와 상기 성장로(110)의 바닥면(112) 사이에 배치된다. 상기 차단부(170)는 비자성체로 이루어져, 상기 히터(140)로부터 발생되는 자기장에 의한 전자기 유도에 의해 발열되지 않는다. 또한, 상기 차단부(170)는 상기 히터 지지부(160)와 결합된다.
또한, 상기 차단부(170)는 상기 서셉터(130)의 하측과 상기 성장로(110)의 바닥면(112) 사이에 배치되어 상기 서셉터(130)로부터 발생되는 열이 상기 성장로(110)의 바닥면(112) 또는 상기 서셉터(130)와 상기 바닥면(112)에 배치된 장치로 열전달되는 것을 차단한다.
또한, 상기 차단부(170)에는 상기 서셉터 지지부(150)가 통과하는 통과 홀(미도시)이 형성된다. 이에 따라, 상기 서셉터 지지부(150)가 통과 홀을 통해 상기 차단부(170)를 통과하므로, 상기 차단부(170)는 회전하는 상기 서셉터 지지부(150)와 간섭되는 것이 방지된다.
도 2는 본 발명의 일 실시예에 따른 잉곳 성장 장치의 서셉터를 중점적으로 나타내는 사시도이고, 도 3은 도 2의 단면도이다.
도 2 및 도 3을 참조하면, 상기 서셉터(130)는 복수의 발열 부재(131, 132) 및 상기 복수의 발열 부재(131, 132) 사이에 배치되는 복수의 절연 부재(133)를 포함한다.
상기 복수의 발열 부재(131, 132)는 역돔 형상의 서셉터(130)의 외형을 이룬다. 상기 복수의 발열 부재(131, 132)는 서로 전기적으로 절연된다. 또한, 상기 복수의 발열 부재(131, 132)는 그라파이트(graphite) 재질을 포함하여 이루어진다. 다만, 상기 복수의 발열 부재(131, 132)는 흑연 재질로 이루어지는 것에 한정되지 않고, 내열성이 강한 다양한 재질을 포함하여 이루어질 수 있다.
또한, 상기 서셉터(130)는 상기 복수의 발열 부재(131, 132)가 상기 성장로(110, 도 1 참조)의 바닥면(112)과 평행한 수평 방향(Z축)으로 분할된 형태로 이루어질 수 있다. 또한, 상기 복수의 발열 부재(131, 132)는 상기 서셉터(130)의 측벽을 형성하는 제1 발열 부재들(131)과 상기 서셉터(130)의 바닥을 형성하는 제2 발열 부재(132)로 구비된다.
상기 제1 발열 부재들(131)은 상기 주 도가니(120, 도 1 참조)의 외측면을 감싸는 링 형태로 이루어질 수 있다. 또한, 상기 제1 발열 부재들(131)은 상기 주 도가니(120, 도 1 참조)의 외측면을 따라 자기장에 의해 유도된 전류가 흐르는 루프를 형성한다. 이에 따라, 상기 제1 발열 부재들(131)은 개별적으로 자기장에 의해 유도된 전류가 흐르게 되어, 상기 서셉터(130)의 전체의 온도의 균일성이 확보된다.
또한, 상기 제1 발열 부재들(131)의 크기는 상측으로부터 하측으로 갈수록 커진다. 이에 따라, 상기 서셉터(130)의 상측에 발열이 집중되지 않도록 조절된다.
또한, 본 발명의 다양한 실시예에 따르면, 상기 제1 발열 부재들(131)의 크기를 다르게 설계함에 따라, 상기 서셉터(130)의 측벽의 상측 영역, 중앙 영역 또는 하측 영역의 발열의 정도를 조절할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제1 발열 부재들(131)은 3개로 구성되어 있으나, 이에 한정되지 않고, 4개 이상으로 구성될 수 있다.
한편, 상기 제1 발열 부재들(131)의 단부(131a, 131b)가 뾰족한 형태로 이루어질 경우, 상기 단부(131a, 131b)에는 전류가 집중적으로 흐르게 되어 과도하게 발열되는 문제가 발생된다.
이를 해결하기 위해, 상기 제1 발열 부재(131)의 단부(131a, 131b)에는 곡면부(131a, 131b)가 구비된다. 이에 따라, 상기 제1 발열 부재(131)의 곡면부(131a, 131b)에는 전자기 유도에 의해 전류가 집중적으로 흐르는 것이 방지되어, 상기 곡면부(131a, 131b)가 과도하게 발열되는 것이 방지된다.
상기 복수의 절연 부재(133)는 상기 복수의 발열 부재(131, 132) 사이에 배치되어 상기 복수의 발열 부재(131, 132)를 결합시킨다. 상기 복수의 절연 부재(133)는 상기 제1 발열 부재(131)와 함께 상기 서셉터(130)의 측벽으로 구성된다.
또한, 상기 복수의 절연 부재(133)는 비자성체로 이루어진다. 예를 들면, 상기 복수의 절연 부재(133)는 세라믹 재질로 이루어질 수 있다. 이에 따라, 상기 복수의 절연 부재(133)는 상기 복수의 발열 부재(131, 132)가 서로 전기적으로 연결되는 것을 차단한다.
도 4는 본 발명의 다른 실시예에 따른 잉곳 성장 장치의 서셉터를 중점적으로 나타내는 단면도이다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 잉곳 성장 장치의 서셉터(230)는 복수의 발열 부재(231, 232) 및 상기 복수의 발열 부재(231, 232) 사이에 배치되는 복수의 절연 부재(233)를 포함한다. 그리고, 본 발명의 다른 실시예에 대한 설명은 전술한 실시예의 구성요소와 동일하거나 유사한 내용으로 대체한다.
상기 서셉터(230)는 상기 복수의 발열 부재(231, 232)가 상기 성장로(110, 도 1 참조)의 바닥면(112, 도 1 참조)과 수직한 수직 방향(Z축)으로 분할된 형태로 이루어진다. 이에 따라, 상기 복수의 발열 부재(231, 232)는 자기장의 유도에 의한 전류가 개별적으로 흐르게 되어, 상기 서셉터(230)의 특정 부분에 과도하게 발열되거나 발열되지 않는 것이 방지된다.
본 발명의 다른 실시예에 따르면, 상기 서셉터(230)는 상기 복수의 발열 부재(231, 232)가 3개로 구성되나, 이에 한정되지 않고, 4개 이상으로 구성될 수 있다.
도 5a는 분할되지 않고 일체화된 서셉터가 가열된 모습을 나타내는 사시도이고, 도 5b는 도 5a의 단면도이고, 도 6a는 본 발명의 일 실시예에 따른 서셉터가 가열된 모습을 나타내는 사시도이고, 도 6b는 도 6a의 단면도이고, 도 7a는 본 발명의 다른 실시예에 따른 서셉터가 가열된 모습을 나타내는 사시도이고, 도 7b는 도 7a의 단면도이다.
도 5a 내지 도 7b는 Flux 시뮬레이션 에 따라 서셉터의 열교환에 따른 온도변화는 제외된 것으로 단순히 유도전류에 의한 발생된 서셉터의 온도만이 표시가 되어 실리콘의 용융점 온도 이상으로 결과 나온 것이다. 이러한 조건에서 시뮬레이션에 따른 온도가 최대 6000℃ 정도에 해당되나, 실제 잉곳 성장 장치에서는 도면에 표시된 온도 범위와 다르다는 것을 밝혀둔다.
도 5a 내지 도 7b를 참조하여, 분할되지 않고 일체화된 서셉터(이하, "일체화된 서셉터"라고 지칭함), 본 발명의 일 실시예에 따른 서셉터 및 본 발명의 다른 실시예에 따른 서셉터의 발열 성능을 비교하기로 한다.
먼저, 도 5a 및 도 5b에 도시된 바와 같이, 상기 일체화된 서셉터가 히터에 의한 전자기 유도에 의해 가열되는 경우, 상기 일체화된 서셉터의 상단부의 온도가 상기 일체화된 서셉터의 다른 부분의 온도에 비해 높다. 즉, 상기 일체화된 서셉터의 상측으로부터 하측으로 갈수록 온도가 낮아진다. 이는, 상기 일체화된 서셉터의 상단부에 루프가 형성되기 때문이다.
그리고, 도 6a 및 도 6b에 도시된 바와 같이, 본 발명의 일 실시예에 따른 서셉터(130, 도 3 참조)의 상단부의 온도가 다른 부분의 온도와의 차이가 적다.
그리고, 본 발명의 일 실시예에 따른 서셉터의 측벽의 온도는 상기 일체화된 서셉터의 측벽의 온도에 비하여 높으면서 전체적으로 균일한 것을 알 수 있다. 이는 전술한 바와 같이, 복수의 발열 부재들이 개별적으로 전자기 유도에 의해 발열되기 때문이다.
이와 같이, 본 발명의 일 실시예에 따른 서셉터는 발열되는 온도의 균일성을 확보하여 잉곳의 단결정 수율을 높일 수 있다.
또한, 본 발명의 일 실시예에 따른 서셉터는 동일한 전력을 제공받는 상기 일체화된 서셉터에 비해 높은 온도를 구현하기 되므로, 잉곳 성장 장치에서 사용되는 전력 에너지의 효율을 높일 수 있다.
그리고, 도 7a 및 도 7b에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 서셉터(230, 도 4 참조)의 측벽은 상기 일체화된 서셉터의 측벽보다 넓은 부분에서 높은 온도로 발열된다.
이는, 본 발명의 다른 실시예에 따른 서셉터(230, 도 4 참조)의 복수의 발열 부재들이 개별적으로 전자기 유도에 의해 발열되기 때문이다.
한편, 본 발명의 다른 실시예에 따른 서셉터(230, 도 4 참조)는 본 발명의 일 실시예에 따른 서셉터(130, 도 3 참조)에 비해 낮은 온도로 발열되지만, 상기 일체화된 서셉터에 비하여 넓은 부분에서 높은 온도로 발열되므로, 서셉터가 분할된 복수의 발열 부재로 구성된 경우, 발열 성능이 높아지게 된다.
도 8은 본 발명의 또 다른 실시예에 따른 잉곳 성장 장치의 코일을 개략적으로 나타내는 측면도이고, 도 9는 도 8의 코일을 상측에서 바라본 도면이다.
본 발명의 또 다른 실시예에 따른 잉곳 성장 장치는 외형적으로는 도 1에 도시된 본 발명의 일 실시예에 따른 잉곳 성장 장치와 유사하다. 도 8 및 도 9를 참조하여, 본 발명의 또 다른 실시예에 따른 잉곳 성장 장치의 코일(341)을 중점적으로 살펴보기로 한다.
먼저, 본 발명의 또 다른 실시예에 따른 잉곳 성장 장치에는 서셉터(330)가 구비된다. 상기 서셉터(330)는 전술한 바와 같이, 복수의 발열 부재가 수평 방향(X축) 또는 수직 방향(Z축)으로 분할된 형태로 이루어진다.
상기 코일(341)은 전술한 실시예와 마찬가지로, 상기 쉴드(142)에 의해 감싸지면서 상기 코일(341)의 형태를 유지하도록 지지된다.
상기 코일(341)은 상기 잉곳(I, 도 1 참조)이 인상되는 방향(Z축, 도 1 참조)과 상기 코일(341)의 중심(O)의 자기장의 방향(C)이 나란하도록 상기 서셉터(330)의 외측면을 따라 형성되는 제1 부분(342) 및 상기 제1 부분(342)으로부터 상기 제1 부분(342)과 소정 각도로 경사지게 연장되는 제2 부분(343)을 포함한다.
이 때, 상기 코일(341)은 상기 제1 부분(342)과 상기 제2 부분(343)이 상기 서셉터(330)의 외측면에 대하여 1회턴을 형성하도록 구비된다. 그리고, 상기 코일(341)은 상기 제1 부분(342)과 상기 제2 부분(342)이 상기 서셉터(330)의 상하 방향(Z축)으로 복수회의 턴을 갖도록 형성된다. 여기서, 상기 서셉터(330)의 상하 방향(Z축)은 상기 잉곳이 인상되는 방향(Z축, 도 1 참조)과 동일하다.
상기 제1 부분(342)은, 도 8에 도시된 바와 같이, 상기 서셉터(330)를 측면에서 바라볼 때, 상기 코일(341)의 상측에 배치되는 제1 턴부(342a), 상기 제1 턴부(342a)의 하측에 이격되어 배치되는 제2 턴부(342b) 및 상기 제2 턴부(342b)의 하측에 이격되어 배치되는 제3 턴부(342c)로 구성된다. 또한, 상기 제1 부분(342)은 제1 턴부(342a), 제2 턴부(342b) 및 제3 턴부(342c)로 구성되는 것에 한정되지 않고, 도 8에 도시된 바와 같이, 제4 턴부, 제5 턴부 등 복수의 턴부로 구성된다.
그리고, 제1 부분(342)은 상기 제1 턴부(342a), 상기 제2 턴부(342b) 및 상기 제3 턴부(342c)가 순차적으로 연결되도록 구성되며, 다만, 상기 서셉터(330)의 측면에서 바라볼 때, 서로 이격되어 배치되도록 구성된다.
상기 제2 부분(343)은, 상기 제1 턴부(342a)의 일측과 상기 제2 턴부(342b)의 타측 사이에 배치되는 제1 연결부(343a) 및 상기 제2 턴부(342c)의 일측과 상기 제3 턴부(342c)의 타측 사이에 배치되는 제2 연결부(343b)로 구성된다. 그리고, 상기 제1 부분(342)이 상기 복수의 턴부로 구성된 경우, 상기 제2 부분(343)은 상기 복수의 턴부에 대응되도록 상기 복수의 연결부로 구성된다.
상기 제1 연결부(343a)는 상기 제1 턴부(342a)의 일측에서 상기 제2 턴부(342b)의 타측을 향하여 기울어지도록 형성된다. 즉, 상기 제1 턴부(342a)는 상기 제1 연결부(343a)를 통해 상기 제2 턴부(342b)와 전기적으로 연결되고, 상기 제1 턴부(342a)는 상기 수평 방향(X축)으로 배치되도록 구비된다. 여기서, 상기 수평 방향(X축)은 상기 코일(341)의 중심의 자기장의 방향(C)과 수직한 방향이다.
상기 제2 연결부(343b)는 상기 제2 턴부(342b)의 일측에서 상기 제3 턴부(342c)의 타측을 향하여 기울어지도록 형성된다. 즉, 상기 제2 턴부(342b)는 상기 제2 연결부(343b)를 통해 상기 제3 턴부(342c)와 전기적으로 연결되고, 상기 제2 턴부(342b)는 상기 수평 방향(X축)으로 배치되도록 구비된다. 마찬가지로, 상기 복수의 턴부는 상기 수평 방향(X축)으로 배치되도록 구비된다.
이에 따라, 상기 제1 부분(342)은 상기 코일(341)의 중심의 자기장의 방향(C)과 수직한 방향인 수평 방향(X축)으로 형성되므로, 상기 코일(341)로부터 발생되는 자기장에 의해 발생되는 힘이 잉곳의 단결정이 성장하는 방향과 경사지지 않게 된다. 즉, 상기 코일(341)의 상기 제1 부분(342)이 수평 방향(X축)으로 배치됨에 따라, 상기 잉곳의 단결정의 수율을 높일 수 있다.
또한, 도 9에 도시된 바와 같이, 상기 코일(341)을 상측에서 바라볼 때, 상기 제2 부분(343)의 제1 연결부(343a)는 상기 코일(341)의 동심원의 중심(O)으로부터 일정 각도 범위에 배치된다. 상기 일정 각도는 대략 20°일 수 있다. 즉, 상기 제2 부분(343)은 상기 코일(341)의 동심원의 중심(O)으로부터 대략 20°범위에 배치되므로, 상기 제2 부분(343)의 길이는 상기 코일(341)의 전체 길이 1/18 이내이다. 상기 제2 부분(343)의 길이는 상기 코일(341)의 두께에 따라 결정된다. 예를 들면, 상기 코일(341)의 두께가 작을수록, 상기 제2 부분(343)의 길이는 작아진다.
이와 같이, 상기 코일(341)은 상기 제2 부분(343)의 길이가 최소화되도록 형성됨에 따라, 상기 제2 부분(343)으로부터 발생되는 자기장에 의한 힘이 잉곳(I, 도 1 참조)의 단결정에 영향을 주는 것이 최소화된다.
도 10는 나선형으로 감긴 코일을 개략적으로 나타내는 사시도이고, 도 11a는 본 발명의 다른 실시예에 따른 코일에 의해 서셉터가 가열된 모습을 상측에서 바라본 도면이고, 도 11b는 도 10의 나선형으로 감긴 코일에 의해 서셉터가 가열된 모습을 상측에서 바라본 도면이고, 도 12a는 도 10의 비교예에 따른 서셉터의 상측 영역의 온도와 본 발명의 또 다른 실시예에 따른 서셉터의 상측 영역의 온도의 편차를 나타내는 그래프이고, 도 12b는 도 10의 비교예에 따른 서셉터의 중앙 영역의 온도와 본 발명의 또 다른 실시예에 따른 서셉터의 중앙 영역의 온도의 편차를 나타내는 그래프이다.
도 10 내지 도 12b를 참조하여, 비교예에 따른 나선형으로 감긴 코일(이하, "비교예에 따른 코일"이라 지칭함.)과 본 발명의 또 다른 실시예에 따른 코일의 성능을 비교하기로 한다.
먼저, 도 10에 도시된 바와 같이, 상기 비교예에 따른 코일(30)은 서셉터(20)의 외측면을 따라 나선형으로 복수 회 감긴다.
그리고, 도 11a에 도시된 본 발명의 또 다른 실시예에 따른 코일에 의해 가열된 서셉터는 도 11b에 도시된 비교예에 따른 코일에 비하여 코일의 동심원의 중심을 기준으로 대체적으로 대칭적이다. 즉, 본 발명의 또 다른 실시예에 따른 코일은 비교예에 따른 코일에 비하여 서셉터의 온도가 균일하도록 서셉터를 가열한다. 이에 따라, 본 발명의 또 다른 실시예에 따른 코일은 서셉터의 온도의 균일성을 확보한다.
또한, 도 12a에 도시된 바와 같이, 상기 비교예에 따른 코일에 의해 가열된 서셉터의 상측 영역의 온도의 편차는 대략 488℃ 이고, 본 발명의 또 다른 실시예에 따른 코일에 의해 가열된 서셉터의 상측 영역의 온도의 편차는 대략 420℃이다. 즉, 본 발명의 또 다른 실시예에 따른 코일은 상기 비교예에 따른 코일에 비하여 서셉터의 상측 영역의 온도의 편차가 작다.
또한, 도 12b에 도시된 바와 같이, 상기 비교예에 따른 코일에 의해 가열된 서셉터의 중앙 영역의 온도의 편차는 대략 305℃ 이고, 본 발명의 또 다른 실시예에 따른 코일에 의해 가열된 서셉터의 중앙 영역의 온도의 편차는 대략 273℃이다. 즉, 본 발명의 또 다른 실시예에 따른 코일은 상기 비교예에 따른 코일에 비하여 서셉터의 중앙 영역의 온도의 편차가 작다. 그리고, 전술한 바와 같이, 주 도가니와 주 도가니에 수용된 용융된 실리콘에 열전달되는 것을 고려하지 않은 시뮬레이션 결과이므로, 잉곳 성장 장치를 구동하는 실제의 온도와 차이가 있음을 밝혀둔다.
이와 같이, 본 발명의 또 다른 실시예에 따른 코일은 상기 비교예에 따른 코일에 비하여 서셉터의 온도의 균일성을 확보한다. 또한, 본 발명의 또 다른 실시예에 따른 코일은 서셉터의 온도의 균일성을 확보하므로, 서셉터의 온도의 균일성을 확보하는 과정에서 필요 이상으로 전력 에너지가 소모되는 것이 방지된다.
본 발명의 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (12)

  1. 잉곳을 성장시키기 위하여 용융된 실리콘을 수용하는 주 도가니가 내부에 배치되는 성장로;
    상기 주 도가니의 외측면을 감싸도록 형성되고, 서로 전기적으로 절연된 복수의 발열 부재를 포함하는 서셉터; 및
    자기장을 발생시키고, 자기장에 의한 전자기 유도에 의해 상기 복수의 발열 부재를 가열하는 히터; 를 포함하고,
    상기 복수의 발열 부재는 상기 주 도가니의 외측면을 따라 루프를 구비하는, 잉곳 성장 장치.
  2. 제1 항에 있어서,
    상기 서셉터는 상기 복수의 발열 부재가 상기 성장로의 바닥면과 평행한 수평 방향으로 분할된 형태로 이루어지는, 잉곳 성장 장치.
  3. 제1 항에 있어서,
    상기 서셉터는 상기 복수의 발열 부재가 상기 성장로의 바닥면과 수직한 수직 방향으로 분할된 형태로 이루어지는, 잉곳 성장 장치.
  4. 제1 항에 있어서,
    상기 복수의 발열 부재는 그라파이트 재질을 포함하여 이루어지는, 잉곳 성장 장치.
  5. 제1 항에 있어서,
    상기 서셉터는 상기 복수의 발열 부재 사이에 배치되어 상기 복수의 발열 부재를 결합시키는 복수의 절연 부재를 더 포함하는, 잉곳 성장 장치.
  6. 제5 항에 있어서,
    상기 복수의 절연 부재는 비자성체로 이루어지는, 잉곳 성장 장치.
  7. 제1 항에 있어서,
    상기 복수의 발열 부재의 단부는 곡면부를 포함하는, 잉곳 성장 장치.
  8. 제1 항에 있어서,
    상기 히터와 상기 성장로의 바닥면 사이에 배치되고, 상기 히터와 상기 서셉터의 하측으로 상기 자기장에 의한 전자기 유도를 차단하는 차단부를 더 포함하는, 잉곳 성장 장치.
  9. 잉곳을 성장시키기 위하여 용융된 실리콘을 수용하는 주 도가니가 내부에 배치되는 성장로;
    상기 주 도가니의 외측면을 감싸도록 형성되는 서셉터; 및
    상기 서셉터의 외측면을 따라 감기도록 형성되어 자기장을 발생시키고, 상기 자기장에 의한 전자기 유도에 의해 상기 서셉터를 가열하는 코일을 구비하는 히터; 를 포함하고,
    상기 코일은,
    상기 잉곳이 인상되는 방향과 상기 코일의 중심의 자기장의 방향이 나란하도록 상기 서셉터의 외측면을 따라 형성되는 제1 부분; 및
    상기 제1 부분으로부터 상기 제1 부분과 소정 각도로 경사지게 연장되는 제2 부분을 포함하는, 잉곳 성장 장치.
  10. 제9 항에 있어서,
    상기 코일은 상기 제1 부분 및 상기 제2 부분이 상기 서셉터의 외측면에 대하여 1회턴을 형성하도록 구비되고, 상기 서셉터의 상하 방향으로 복수회의 턴을 갖도록 형성되는, 잉곳 성장 장치.
  11. 제9 항에 있어서,
    상기 제2 부분의 길이는 상기 코일 전체 길이의 1/18 이내인, 잉곳 성장 장치.
  12. 제9 항에 있어서,
    상기 히터는, 상기 코일의 외측면을 감싸도록 형성되고, 상기 코일이 상기 성장로의 내부 공간에 노출되는 것을 차단하는 쉴드를 더 포함하는, 잉곳 성장 장치.
PCT/KR2021/011957 2020-09-28 2021-09-03 잉곳 성장 장치 WO2022065742A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/028,921 US20230332325A1 (en) 2020-09-28 2021-09-03 Ingot growing apparatus
NO20230330A NO20230330A1 (en) 2020-09-28 2021-09-03 Ingot growing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0126317 2020-09-28
KR1020200126317A KR102271714B1 (ko) 2020-09-28 2020-09-28 잉곳 성장 장치

Publications (1)

Publication Number Publication Date
WO2022065742A1 true WO2022065742A1 (ko) 2022-03-31

Family

ID=76859866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011957 WO2022065742A1 (ko) 2020-09-28 2021-09-03 잉곳 성장 장치

Country Status (5)

Country Link
US (1) US20230332325A1 (ko)
KR (1) KR102271714B1 (ko)
CN (2) CN216237374U (ko)
NO (1) NO20230330A1 (ko)
WO (1) WO2022065742A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271714B1 (ko) * 2020-09-28 2021-07-01 한화솔루션 주식회사 잉곳 성장 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288110B2 (ja) * 2003-06-17 2009-07-01 三井造船株式会社 半導体製造装置
KR20150049327A (ko) * 2013-10-30 2015-05-08 주식회사수성기술 단결정 실리콘 잉곳 제조장치 및 그 제조방법
JP2017200868A (ja) * 2016-05-07 2017-11-09 株式会社デンソー 半導体結晶製造装置
KR101885210B1 (ko) * 2016-11-30 2018-09-11 웅진에너지 주식회사 히팅 유닛 및 이를 포함하는 잉곳 성장 장치
KR102271714B1 (ko) * 2020-09-28 2021-07-01 한화솔루션 주식회사 잉곳 성장 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288110B2 (ja) * 2003-06-17 2009-07-01 三井造船株式会社 半導体製造装置
KR20150049327A (ko) * 2013-10-30 2015-05-08 주식회사수성기술 단결정 실리콘 잉곳 제조장치 및 그 제조방법
JP2017200868A (ja) * 2016-05-07 2017-11-09 株式会社デンソー 半導体結晶製造装置
KR101885210B1 (ko) * 2016-11-30 2018-09-11 웅진에너지 주식회사 히팅 유닛 및 이를 포함하는 잉곳 성장 장치
KR102271714B1 (ko) * 2020-09-28 2021-07-01 한화솔루션 주식회사 잉곳 성장 장치

Also Published As

Publication number Publication date
CN216237374U (zh) 2022-04-08
NO20230330A1 (en) 2023-03-24
CN114277438A (zh) 2022-04-05
US20230332325A1 (en) 2023-10-19
KR102271714B1 (ko) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2022065740A1 (ko) 잉곳 성장 장치
WO2011027992A2 (ko) 사파이어 단결정 성장방법과 그 장치
CN110983429A (zh) 单晶炉及单晶硅制备方法
KR101300309B1 (ko) 용융기 어셈블리, 및 결정 형성 장치를 용융된 원재료로충전하는 방법
WO2022065742A1 (ko) 잉곳 성장 장치
WO2015037831A1 (ko) 냉각속도 제어장치 및 이를 포함하는 잉곳성장장치
WO2014126273A1 (ko) 고순도 MOx 나노 구조체 제조 장치 및 그 제조 방법
WO2012099343A2 (en) Resistance heated sapphire single crystal ingot grower, method of manufacturing resistance heated sapphire sngle crystal ingot, sapphire sngle crystal ingot, and sapphire wafer
WO2018101758A1 (ko) 히팅 유닛 및 이를 포함하는 잉곳 성장 장치
WO2016111431A1 (ko) 실리콘 단결정 잉곳 제조 방법 및 그 제조방법에 의해 제조된 실리콘 단결정 잉곳
WO2022065737A1 (ko) 연속 잉곳 성장 장치
US5968266A (en) Apparatus for manufacturing single crystal of silicon
WO2022065739A1 (ko) 히터를 포함하는 잉곳 성장 장치 및 잉곳 성장 장치용 히터의 제조 방법
WO2022065741A1 (ko) 잉곳 성장 장치
EP0781874B1 (en) Apparatus for producing silicon single crystal
WO2016021860A1 (ko) 시드 척 및 이를 포함하는 잉곳성장장치
WO2022065738A1 (ko) 잉곳 성장 장치 및 그 제어 방법
WO2016117756A1 (ko) 단결정 성장용 히터 및 이를 이용한 단결정 성장장치 및 성장방법
WO2022065743A1 (ko) 잉곳 성장 장치
WO2022065736A1 (ko) 연속 잉곳 성장 장치
WO2022010105A1 (ko) 증착 장치
WO2012144872A2 (en) Apparatus and method for fabricating ingot
WO2020122438A1 (ko) 잉곳 성장장치
JPS63159285A (ja) 単結晶製造装置
US6579363B2 (en) Semiconductor single crystal pulling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317029735

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872772

Country of ref document: EP

Kind code of ref document: A1