WO2022065171A1 - アンギュラ玉軸受 - Google Patents

アンギュラ玉軸受 Download PDF

Info

Publication number
WO2022065171A1
WO2022065171A1 PCT/JP2021/034012 JP2021034012W WO2022065171A1 WO 2022065171 A1 WO2022065171 A1 WO 2022065171A1 JP 2021034012 W JP2021034012 W JP 2021034012W WO 2022065171 A1 WO2022065171 A1 WO 2022065171A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner ring
raceway groove
outer ring
ball
ring raceway
Prior art date
Application number
PCT/JP2021/034012
Other languages
English (en)
French (fr)
Inventor
修二 曽我
美昭 勝野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to KR1020237010521A priority Critical patent/KR20230075451A/ko
Priority to CN202180066546.5A priority patent/CN116209835A/zh
Priority to JP2022551924A priority patent/JPWO2022065171A1/ja
Priority to EP21872301.3A priority patent/EP4219968A4/en
Priority to US18/246,816 priority patent/US20230358277A1/en
Publication of WO2022065171A1 publication Critical patent/WO2022065171A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/12Force, load, stress, pressure
    • F16C2240/18Stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to angular contact ball bearings, and particularly to ball bearings used for spindles for various machine tools, motors, and the like.
  • the groove radius of curvature ratio of the outer ring is 50.5 to 53%
  • the groove curvature radius ratio of the inner ring is 52.5 to 60% (patented).
  • the external impact load is not the machining load that is applied during normal cutting, but the parts whose spindles (including parts up to the blade) make up the machining workpieces, jigs, and machine machines in the machining chamber. Collision load due to interference, unclamp load when replacing blades, unexpected collision during spindle assembly process, load due to vibration or impact that the bearing receives when transporting a single bearing, during operation. It is a large load that is more than an order of magnitude larger than the machining load.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide an angular contact ball bearing capable of reducing the amount of heat generated and suppressing damage due to an external impact load at rest. ..
  • the present invention provides the angular contact ball bearings shown below.
  • An inner ring having an inner ring raceway groove having an arcuate cross section on the outer peripheral surface
  • An outer ring having an outer ring raceway groove with an arc-shaped cross section on the inner peripheral surface
  • An angular contact ball bearing comprising a plurality of balls rotatably provided between the inner ring raceway groove and the outer ring raceway groove.
  • the groove radius of curvature ratio (Ri) of the inner ring raceway groove to the ball diameter is 54 to 58%
  • the groove curvature radius ratio (Ro) of the outer ring raceway groove to the ball diameter is 51 to 58%
  • At least the inner ring raceway groove has a maximum surface pressure when the sum of the permanent deformation amounts of the ball and the inner ring raceway groove at the center of the contact portion between the ball and the inner ring raceway groove is 1 / 10,000 of the ball diameter.
  • An angular contact ball bearing characterized by having a diameter of 4.7 to 6.0 GPa.
  • the angular contact ball bearing according to any one of (1) to (7) above which is an angular contact ball bearing used for a machine tool spindle having a dmn of 800,000 or more and to which a preload is applied.
  • At least one of the inner ring and the outer ring has C: 0.2 to 1.2% by mass, Si: 0.7 to 1.5% by mass, Mo: 0.5 to 1.5% by mass, Cr. : Composed of steel containing 0.5-2.0% by mass, balance Fe and unavoidable impurity elements, and The surface carbon concentration is 0.8 to 1.3% by mass, and the surface nitrogen concentration is 0.2 to 0.8% by mass.
  • the angular contact ball bearing of the present invention the amount of heat generated can be reduced and damage due to an external impact load at rest can be suppressed.
  • the angular contact ball bearing of the present invention is useful as an angular contact ball bearing for a machine tool spindle used at a high speed rotation of dmn 800,000 or more.
  • FIG. 1 is a partially enlarged cross-sectional view of an angular contact ball bearing, which is an example of the ball bearing of the present invention.
  • FIG. 2 is a schematic diagram for explaining spin slip.
  • FIG. 3 is a schematic diagram for explaining spin slip, and is a diagram showing an enlarged inner ring raceway groove of the inner ring.
  • 4A and 4B are schematic views for explaining spin slip, FIG. 4A is a diagram showing a direction in which centrifugal force acts, and FIG. 4B is a diagram showing a spin amount when the radius of curvature ratio of the inner ring groove is large.
  • (C) is a diagram showing the amount of spin when the radius of curvature ratio of the inner ring groove is small.
  • FIG. 1 is a partially enlarged cross-sectional view of an angular contact ball bearing, which is an example of the ball bearing of the present invention.
  • FIG. 2 is a schematic diagram for explaining spin slip.
  • FIG. 3 is a schematic diagram for explaining spin slip, and
  • FIG. 5 is a graph obtained by calculation of the relationship between the radius of curvature ratio (Ri) of the inner ring groove and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 1.
  • FIG. 6 is a graph obtained by calculation of the relationship between the outer ring groove radius of curvature ratio (Ro) and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 1.
  • FIG. 7 is a graph obtained by obtaining the relationship between Ri-Ro and the ratio of the inner ring surface pressure and the outer ring surface pressure from the calculated values under the analysis condition 1.
  • FIG. 8 is a graph obtained by calculation of the relationship between the radius of curvature ratio (Ri) of the inner ring groove and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 2.
  • FIG. 9 is a graph obtained by calculation of the relationship between the outer ring groove radius of curvature ratio (Ro) and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 2.
  • FIG. 10 is a graph obtained by calculation of the relationship between the radius of curvature ratio (Ri) of the inner ring groove and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 3.
  • FIG. 11 is a graph obtained by calculation of the relationship between the outer ring groove radius of curvature ratio (Ro) and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 3.
  • FIG. 12 is a graph obtained by calculation of the relationship between the radius of curvature ratio (Ri) of the inner ring groove and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 4.
  • FIG. 13 is a graph obtained by calculation of the relationship between the outer ring groove radius of curvature ratio (Ro) and the total spin calorific value between the inner ring side and the outer ring side under the analysis condition 4.
  • FIG. 1 shows an angular contact ball bearing used as a spindle for a machine tool as an example of the angular contact ball bearing of the present invention.
  • the angular contact ball bearing 1 has an inner ring 2 having an inner ring raceway groove 2a having an arcuate cross section on the outer peripheral surface, an outer ring 3 having an outer ring raceway groove 3a having an arcuate cross section on the inner peripheral surface, and an inner ring raceway groove 2a and an outer ring raceway groove 3a.
  • a plurality of balls 4 rotatably provided between the two balls 4 and a cage 5 for holding the plurality of balls 4 respectively are provided.
  • a counter bore 3b is formed on one side of the inner peripheral surface of the outer ring 3 in the axial direction, and the ball 4 is arranged between the inner ring raceway groove 2a and the outer ring raceway groove 3a with contact angles ⁇ i and ⁇ o. ..
  • the contact angles ⁇ i and ⁇ o are angles formed by a plane P perpendicular to the bearing center axis X and an action line connecting each contact point where the ball 4 contacts the inner ring 2 and the outer ring 3 and the center of the ball 4. Is defined as.
  • the ball diameter / cross-sectional height ratio that is, the diameter of the ball 4 / ⁇ (outer diameter of the outer ring 3-inner diameter of the inner ring 2) / 2 ⁇ is 0.39 to 0.65 times, preferably 0.39 to 0.65 times.
  • the one used is 0.55 to 0.65 times.
  • the radius of curvature ratio (Ro radius of curvature of the outer ring raceway groove / ball diameter) of the raceway groove 3a is set to 51 to 58%, and Ri-Ro ⁇ 0 points, preferably Ri-Ro ⁇ 1 point. ing.
  • the groove radius of curvature ratio Ri of the inner ring raceway groove 2a with respect to the ball diameter is also referred to as an inner ring groove radius of curvature ratio Ri
  • the groove radius of curvature ratio Ro of the outer ring raceway groove 3a with respect to the ball diameter is also referred to as an outer ring groove radius of curvature ratio Ro.
  • the inner ring raceway groove 2a is formed with a surface-hardened layer 10 by a roller burnishing process, which is a machining process, and the inner ring raceway groove 2a is a ball at the center of the contact portion between the ball 4 and the inner ring raceway groove 2a.
  • the maximum surface pressure when the sum of the permanent deformation amounts of 4 and the inner ring raceway groove 2a is 1 / 10,000 of the ball diameter is 4.7 to 6.0 GPa.
  • the outer ring raceway groove 3a is not subjected to the roller burnishing treatment, and the surface hardened layer is not formed.
  • the roller burnishing process is performed after the inner ring raceway groove 2a of the inner ring 2 formed by cutting is heat-treated and finished. Further, if necessary, precision processing may be performed after the roller burnishing process.
  • the inner ring raceway groove 2a of the inner ring 2 In the contact portion (contact ellipse) of the ball 4 with the surface, the peripheral speed on the surface of the ball 4 due to rotation (indicated by the reference numeral A in the figure, from the rotation axis AX of the ball 4 to the arc on the outer peripheral surface of the ball 4). (Proportional to the vertical distance) and the peripheral speed on the inner ring raceway groove 2a of the inner ring 2 due to revolution (indicated by reference numeral B in the figure, proportional to the vertical distance from the rotation axis of the inner ring 2 to the inner ring raceway groove 2a).
  • the relative peripheral speed (reference numeral C in the figure) appears as spin slip.
  • reference numerals D1 and D2 in FIG. 3 the larger the contact angle ⁇ i, the larger the peripheral speed on the inner ring raceway groove 2a of the inner ring 2 due to revolution, and the contact surface between the ball 4 and the inner ring raceway groove 2a.
  • the peripheral speed difference between both ends of the contact ellipse (indicated by ⁇ d1 and ⁇ d2 in the figure, ⁇ d1> ⁇ d2) becomes larger, whereby the relative peripheral speed C becomes larger. Will also grow.
  • the reference numeral AX represents the rotation axis of the ball 4 of the outer ring control.
  • the outer ring of the outer ring 3 is balanced by the balance between the centrifugal force F acting on the ball 4 and the preload from the inner ring 2 or the outer ring 3.
  • the contact angle ⁇ o of the raceway groove 3a becomes small, and the contact angle ⁇ i of the inner ring 2 with the inner ring raceway groove 2a becomes large.
  • the spin slip amount becomes large and the calorific value also becomes large.
  • the contact angle ⁇ i is less likely to increase during high-speed rotation, and the contact elliptical length can be reduced, so that heat generation due to spin slip can be suppressed. That is, as shown in FIG. 4B, when Ri is increased, the change in contact angle due to centrifugal force becomes smaller, and the amount of spin slip also becomes smaller. On the other hand, as shown in FIG. 4 (c), when Ri is made small, the contact angle change due to the centrifugal force F becomes large, and the spin slip amount also becomes large. Therefore, in order to suppress the amount of spin slip, it is considered preferable to increase Ri.
  • the radius of curvature ratio Ro of the outer ring groove becomes large, the semimajor axis of the contact ellipse becomes small and there is an effect of suppressing heat generation, but it does not act in the direction in which the contact angle ⁇ o becomes small, so that due to spin slip.
  • it is less effective than increasing the radius of curvature ratio Ri of the inner ring groove.
  • FIG. 5 is a graph showing the relationship with the total spin calorific value with the inner ring groove radius of curvature ratio Ri as the horizontal axis
  • FIG. 6 is a graph showing the relationship with the total spin calorific value with the outer ring groove radius of curvature ratio Ro as the horizontal axis. It is a graph which shows.
  • the calorific value is reduced by increasing the inner ring groove radius of curvature ratio Ri regardless of the outer ring groove radius of curvature ratio Ro, and the calorific value is extreme when the inner ring groove radius of curvature ratio Ri is less than 54%. It turns out that it grows larger.
  • the radius of curvature ratio Ri of the inner ring groove is set to 54 to 58%.
  • the calorific value when the outer ring groove radius of curvature ratio Ro is less than 51%, the calorific value is extremely large, and when it is around 52%, a minimum value is taken.
  • the outer ring groove radius of curvature ratio Ro is 52% or more, the increase in calorific value accompanying the increase in Ro is relatively gradual, and is slightly larger than the minimum value of 52% in consideration of the variation in the performance of Ro in manufacturing. If the area is targeted, the variation in the calorific value due to the variation in the quality of Ri in manufacturing can be suppressed to a small extent.
  • the outer ring groove radius of curvature ratio Ro is 58%, the value is approximately equivalent to 51%. From the viewpoint of the effect of reducing the amount of heat generated by spin, the radius of curvature ratio Ro of the outer ring groove is set to 51 to 58% including the minimum value of the amount of heat generated.
  • the maximum surface pressure is 4.7 to 6 when the sum of the permanent deformation amounts of the ball and the inner ring raceway groove at the center of the contact portion between the ball and the inner ring raceway groove is 1 / 10,000 of the ball diameter. .0GPa]
  • the amount of spin heat generation during rotation can be reduced by setting the inner ring groove radius of curvature ratio Ri to 54 to 58% and the outer ring groove radius of curvature ratio Ro to 51 to 58%, but the outside at rest. It is considered that the contact surface pressure increases when an impact load is applied, and the possibility of indentation increases. Therefore, at least the surface-hardened layer 10 to which the surface residual stress is applied can be formed in the inner ring raceway groove 2a of the inner ring 2 to further prevent indentation.
  • the track groove is subjected to a roller burnishing treatment.
  • a roller burnishing process a hydraulically held ceramic or cemented carbide ball (indenter) is pressed against the inner ring raceway groove 2a and rolled into contact with the inner ring raceway groove 2a while being moved along the axial cross section of the inner ring raceway groove 2a.
  • the surface is hardened by this roller burnishing treatment, and at that time, the sum of the permanent deformation amounts of the ball 4 and the inner ring raceway groove 2a at the center of the contact portion between the ball 4 and the inner ring raceway groove 2a is 1 / 10,000 of the ball diameter.
  • the processing conditions such as the indenter diameter and the pressing force of the burnishing tool are selected so that the maximum surface pressure at the time of 1 becomes 4.7 to 6.0 GPa.
  • the sum of the permanent deformation amount of the ball 4 and the permanent deformation amount of the track at the center of the contact portion between the ball 4 and the track is set to 1 / 10,000 of the ball diameter.
  • the bearings returned from the market as hit damage are loaded with a surface pressure of about 4 GPa or more.
  • a residual compressive stress is applied to the surface layer of the raceway surface so that the maximum surface pressure when the sum of the permanent deformation amounts of the ball 4 and the inner ring raceway groove 2a is 1 / 10,000 of the ball diameter is 4.7 GPa.
  • a defective product due to indentation caused by a surface pressure of about 4 GPa or more and less than 4.7 GPa will not be recognized as a defect. This eliminates the need for bearing replacement.
  • the maximum surface pressure when the sum of the permanent deformation amounts of the ball 4 and the inner ring raceway groove 2a is 1 / 10,000 of the ball diameter is set to 4.7 to 6.0 GPa. It is set in consideration of processing conditions that do not reduce productivity.
  • the surface-hardened layer is not limited to the inner ring raceway groove 2a of the inner ring 2, and may be applied to the outer ring raceway groove 3a of the outer ring 3.
  • the technique of forming a hard film with a thickness of 0.05 to 8 ⁇ m on the raceway surface shown in Patent Document 1 coats the raceway ring after machining with a hardened layer by chemical treatment to provide wear resistance. This is intended to improve and reduce the coefficient of friction.
  • the surface-processed layer 10 of the present embodiment hardens the surface by machining to improve the pressure resistance.
  • the inner ring groove radius of curvature ratio Ri and the outer ring groove radius of curvature ratio Ro are set in the above ranges, but the load is increased by making Ri equal to or larger than the outer ring groove radius of curvature ratio Ro.
  • the increase in the surface pressure when the load is applied is suppressed to be lower in the outer ring 3 than in the inner ring 2.
  • the surface hardened layer 10 is formed in the inner ring raceway groove 2a, it is possible to prevent the bearing from being damaged due to indentation on the outer ring 3 prior to the inner ring 2 when an external impact load is applied at rest.
  • FIG. 7 is a graph obtained from calculated values of the relationship between Ri-Ro and the ratio of the inner ring surface pressure and the outer ring surface pressure under the bearing specifications of the analysis condition 1, and is a graph when a load is applied to the bearing.
  • the ball and the raceway groove at the center of the contact portion between the ball and the raceway groove as defined in JIS B1519. Since the maximum surface pressure when the sum of the permanent deformation amounts is 1 / 10,000 of the ball diameter is 4.2 GPa for both the inner ring raceway surface and the outer ring raceway surface, in the region of inner ring surface pressure / outer ring surface pressure> 1.
  • the surface hardening treatment is applied to the inner ring raceway groove 2a of the inner ring 2, the surface hardening layer 10 is formed, and the sum of the permanent deformation amounts of the ball 4 and the inner ring raceway groove 2a becomes 1 / 10,000 of the ball diameter.
  • the ratio of the inner ring surface pressure to the outer ring surface pressure where indentations occur before the outer ring raceway surface Is the region of 1.120 ⁇ inner ring surface pressure / outer ring surface pressure ⁇ 1.429 shown in FIG.
  • the surface hardening treatment on the outer ring raceway groove 3a becomes unnecessary, and a manufacturing merit can be obtained.
  • Pressure / outer ring surface pressure ⁇ 1.124, and at Ri—Ro 1 point, 1.151 ⁇ inner ring surface pressure / outer ring surface pressure ⁇ 1.191.
  • FIG. 8 is a graph showing the relationship with the total spin calorific value with the inner ring groove radius of curvature ratio Ri as the horizontal axis
  • FIG. 9 is a graph showing the total of the inner ring side and the outer ring side with the outer ring groove radius of curvature ratio Ro as the horizontal axis. It is a graph which shows the relationship with the spin calorific value.
  • the total spin heat generation amount on the inner ring side and the outer ring side can be reduced in the range where the radius of curvature ratio Ri of the inner ring groove is 54 to 58% and the radius of curvature ratio Ro of the outer ring groove is 51 to 58%. The effect is recognized.
  • analysis condition 3 with a ball diameter / cross-sectional height ratio of 0.572 using a ball diameter relatively large (large ball), which is different from analysis condition 1 while having a different bearing size, and analysis condition 1.
  • analysis condition 4 with a ball diameter / cross-sectional height ratio of 0.635, it was confirmed whether the total spin calorific value could be reduced according to the above rules of Ri and Ro.
  • Table 3 shows the calculation results of the total spin calorific value (W) corresponding to each Ri and Ro under the analysis condition 3, and the calculation results of the total spin calorific value (W) corresponding to each Ri and Ro under the analysis condition 4. It is shown in Table 4.
  • FIG. 10 is a graph showing the relationship with the total spin calorific value with the inner ring groove radius of curvature ratio Ri as the horizontal axis under the analysis condition 3, and FIG. 11 shows the outer ring groove radius of curvature ratio Ro laterally under the analysis condition 3. It is a graph which shows the relationship with the total spin calorific value as an axis. Further, FIG. 12 is a graph showing the relationship with the total spin calorific value with the inner ring groove radius of curvature ratio Ri as the horizontal axis under the analysis condition 4, and FIG. 13 is a graph showing the relationship with the total spin calorific value under the analysis condition 4, and FIG. 13 shows the outer ring groove radius of curvature ratio Ro under the analysis condition 4.
  • the ball diameter / cross-sectional height ratio is 0.39 or more.
  • the larger the ball diameter / cross-sectional height ratio is, the more advantageous it is for the pressure resistance.
  • this value is larger than 0.65, the wall thickness of the raceway ring becomes too thin, and heat treatment deformation or processing deformation occurs. It is not preferable because it causes manufacturing disadvantages such as an increase in the amount of water.
  • the ball diameter / cross-sectional height ratio is preferably 0.39 to 0.65 times, and when the pressure resistance is emphasized, the ball diameter / cross-sectional height ratio is 0.55 to 0.65. It is more preferable to use a large ball that is double.
  • the inner ring 2 and the outer ring 3 are usually composed of bearing steel such as SUJ2 (high carbon chromium bearing steel).
  • This bearing steel such as SUJ2 is used at a relatively low temperature because the hardness is significantly reduced and the life is shortened at a high temperature. Therefore, when higher speed rotation is required, the contact pressure on the contact surface where the ball 4 and the inner ring 2 and the outer ring 3 are in contact with each other and the slip of the ball 4 increase to generate heat, resulting in a locally high temperature. Will be. Therefore, it is desirable that the inner ring 2 and the outer ring 3 are made of a material having excellent heat resistance and wear resistance.
  • materials on which secondary hardening precipitation type eutectic carbides are formed such as high speed steel, semi-high speed steel, and martensitic stainless steel, are suitable, and examples thereof include SKD, SKH, M50, and SUS440C.
  • a general bearing steel (SUJ2) having a tempering temperature of 240 ° C. to 330 ° C. may be used and subjected to a hard coating treatment. In that case, the hardness of the base metal itself is reduced, but the hardness of the surface of the raceway ring can be made harder by the hard coating, so that the same performance as when the above-mentioned metal material is used can be obtained.
  • a material whose tempering resistance is improved by the constituent element components and whose dimensions are stabilized (a material equivalent to high carbon chrome steel) is suitable, and an SHX material can be mentioned as an example.
  • at least one of the inner ring 2 and the outer ring 3 has 0.2 to 1.2% by mass of C, 0.7 to 1.5% by mass of Si, and 0.5 to 1.5% by mass of Mo.
  • Cr is composed of a steel material containing 0.5 to 2.0% by mass, the balance Fe and unavoidable impurity elements, and the surface carbon concentration is 0.8 to 0.8 by quenching and tempering after carbonitriding. It shall be 1.3% by mass and the surface nitrogen concentration shall be 0.2 to 0.8% by mass.
  • Si 0.7 to 1.5% by mass Si is an element effective in temper softening resistance, and has an effect of improving high-temperature strength and delaying the decomposition of retained austenite, which is effective in preventing indentation-based exfoliation in a high-temperature environment. If the Si content is less than 0.7% by mass, the high-temperature strength is insufficient and indentation-origin type peeling occurs. Therefore, the lower limit is set to 0.7% by mass. On the other hand, if the Si content exceeds 1.5% by mass, the mechanical strength is lowered and carburizing is inhibited, so the upper limit is set to 1.5% by mass.
  • Mo is an element that is effective in tempering and softening resistance, and has the effect of improving high-temperature strength.
  • Mo acts as a carbide-forming element that forms minute carbides on the carburized and nitrided surface.
  • the Mo content is less than 0.5% by mass, the high-temperature strength is insufficient and the carbides deposited on the surface are insufficient. Therefore, the lower limit is set to 0.5% by mass.
  • the Mo content exceeds 1.5% by mass, huge carbides are formed at the material stage, which causes the carbides to fall off and shortens the rolling fatigue life of the bearing. Therefore, the upper limit is 1.5% by mass. And said.
  • Cr 0.5 to 2.0% by mass Cr is an additive element having the same action and effect as Mo. If the Cr content is less than 0.5% by mass, the high-temperature strength is insufficient and the amount of carbides precipitated on the surface is insufficient. Therefore, the lower limit is set to 0.5% by mass. On the other hand, if the Cr content exceeds 2.0% by mass, huge carbides are formed at the material stage, which causes the carbides to fall off and shortens the rolling fatigue life of the bearing. Therefore, the upper limit is 2.0% by mass. And said.
  • the amount of the average retained austenite in the steel including the surface and the core is preferably 5% by volume or less, and for that purpose, the carbon concentration on which the retained austenite depends is 1.2% by mass or less. Therefore, the upper limit was set to 1.2% by mass. On the other hand, if the carbon concentration is less than 0.2% by mass, it takes a long time to obtain the desired carburizing depth in the carburizing nitriding treatment, which leads to an increase in overall cost. Therefore, the lower limit is set to 0. It was set to 2% by mass.
  • Ti fine titanium carbides
  • Ti (C + N) carbides
  • the Ti content is preferably 0.1 to 0.3% by mass. If the Ti content is less than 0.1% by mass, the effect of precipitating carbides cannot be obtained, so the lower limit is set to 0.1% by mass. On the other hand, if the Ti content exceeds 0.3% by mass, huge precipitates are likely to be formed, which may become defects and reduce the rolling fatigue life. Therefore, the upper limit is set to 0.3% by mass. %.
  • the size of the titanium precipitate (TiC, Ti (C + N)) is 0.1 ⁇ m or less, it contributes to the improvement of wear resistance and seizure resistance.
  • the oxygen (O) content exceeds 12 ppm, oxide-based inclusions are likely to be formed, which may become a defect and reduce the rolling fatigue life. Therefore, the oxygen content should be less than 12 ppm. desirable.
  • the ball 4 may be made of steel having excellent heat resistance and abrasion resistance, but ceramics such as Si 3 N 4 (silicon nitride), SiC (silicon carbide) or Al 2 O 3 (aluminum oxide). It may be composed of.
  • ceramics such as Si 3 N 4 (silicon nitride), SiC (silicon carbide) or Al 2 O 3 (aluminum oxide). It may be composed of.
  • the ceramic ball 4 has a higher Young's modulus than the steel ball, the surface pressure with the track groove is high and indentation is likely to occur. Ball bearings work more effectively.
  • the groove radius of curvature ratio (Ri) of the inner ring raceway groove 2a to the ball diameter is 54 to 58%
  • the groove curvature radius ratio (Ro) of the outer ring raceway groove 3a to the ball diameter Is 51 to 58% and Ri-Ro ⁇ 0 point
  • at least the inner ring raceway groove 2a is the permanent deformation amount of the ball 4 and the inner ring raceway groove 2a at the center of the contact portion between the ball 4 and the inner ring raceway groove 2a.
  • the maximum surface pressure when the sum of the two is 1 / 10,000 of the ball diameter is configured to be 4.7 to 6.0 GPa.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified or improved.
  • the lubrication method for the angular contact ball bearing of the present invention may be oil-air lubrication or grease lubrication.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

アンギュラ玉軸受は、外周面に断面円弧状の内輪軌道溝を有する内輪と、内周面に断面円弧状の外輪軌道溝を有する外輪と、前記内輪軌道溝と前記外輪軌道溝との間に転動自在に設けられた複数の玉と、を備える。玉径に対する前記内輪軌道溝の溝曲率半径比Riが54~58%、前記玉径に対する前記外輪軌道溝の溝曲率半径比Roが51~58%であり、かつ、Ri-Ro≧0ポイントであるとともに、少なくとも前記内輪軌道溝は、前記玉と前記内輪軌道溝との接触部中央における前記玉及び前記内輪軌道溝の永久変形量の和が、前記玉径の1万分の1となる際の最大面圧が4.7~6.0GPaである。これにより、発熱量を低減できるとともに、静止時における外部衝撃荷重による損傷を抑制できるアンギュラ玉軸受を提供する。

Description

アンギュラ玉軸受
 本発明は、アンギュラ玉軸受に関し、特に、各種の工作機械用主軸、モータ用などに用いられる玉軸受に関する。
 近年、工作機械は加工効率や生産性の向上のために主軸の高速化が進んでおり、これに伴い工作機械用主軸に用いられるアンギュラ玉軸受の回転数も上昇しつつある。一般に、アンギュラ玉軸受が高速回転すると、玉と軌道面との接触点においてスピン運動やジャイロ運動による大きな滑りが生じ、また、内輪や玉に作用する遠心力などの影響により軸受内部すきまが減少して玉と軌道面との接触面圧が増加し、その結果、発熱が高くなる。発熱量が増加すると、油の粘度が低下し玉と軌道輪との間の転がり接触部で油膜切れが起こり、軸受が焼き付いたり、主軸の熱変位が大きくなって加工精度が悪化するなどの問題が生じる。
 アンギュラ玉軸受の発熱量を低減させるための従来技術としては、例えば、外輪の溝曲率半径比を50.5~53%、内輪の溝曲率半径比を52.5~60%としたもの(特許文献1参照)や、外輪と内輪の溝曲率半径比を共に54~57%としたもの(特許文献2参照)が知られている。
国際公開第2000/37813号 日本国特開2005-240881号公報
 ところで、特許文献1及び2では、外輪及び内輪の溝曲率半径比を大きく設定することにより低発熱化を図っているものの、転動体と軌道面の接触部の面圧が高くなる傾向になる。軸受を軸方向側面から見た場合に、転動体と内輪の軌道面との接触部と、転動体と外輪の軌道面との接触部はそれぞれ、転動体円弧の外周部と内輪軌道面円弧の外周部との接触、転動体円弧の外周部と外輪軌道面円弧の内周部との接触となることから、内輪の軌道面の接触面圧が特に高くなる傾向がある。このため、静止時における外部衝撃荷重がアンギュラ玉軸受に負荷された際に、内輪軌道面に圧痕が生じ易くなる。ここでの外部衝撃荷重とは、通常の切削時に負荷される加工荷重ではなく、主軸(刃物までの部品を含む)が加工ワークや冶具、加工室内の工作機械を構成している部品と不意に干渉することによる衝突荷重、刃物を交換する際のアンクランプ荷重、主軸の組立工程時の不意の衝突、軸受単品を運搬する際に軸受が受ける振動や衝撃による荷重のことであり、運転時の加工荷重に比べて一桁以上大きい大荷重である。そのため、外部衝撃荷重によって軌道面に圧痕が生じた状態で運転すると振動が発生して加工ワークの加工面の品質が低下したり、軌道面の圧痕を起点とする剥離が生じるなどの懸念がある。
 本発明は、このような課題を解決するためになされたものであり、その目的は、発熱量を低減できるとともに、静止時における外部衝撃荷重による損傷を抑制できるアンギュラ玉軸受を提供することにある。
 上記課題を解決するために、本発明は下記に示すアンギュラ玉軸受を提供する。
(1) 外周面に断面円弧状の内輪軌道溝を有する内輪と、
 内周面に断面円弧状の外輪軌道溝を有する外輪と、
 前記内輪軌道溝と前記外輪軌道溝との間に転動自在に設けられた複数の玉と、を備えるアンギュラ玉軸受であって、
 玉径に対する前記内輪軌道溝の溝曲率半径比(Ri)が54~58%、前記玉径に対する前記外輪軌道溝の溝曲率半径比(Ro)が51~58%、且つ、Ri-Ro≧0ポイントであるとともに、
 少なくとも前記内輪軌道溝は、前記玉と前記内輪軌道溝との接触部中央における前記玉及び前記内輪軌道溝の永久変形量の和が、前記玉径の1万分の1となる際の最大面圧が4.7~6.0GPaであることを特徴とするアンギュラ玉軸受。
(2)Ri-Ro≧1ポイントである、(1)に記載のアンギュラ玉軸受。
(3)少なくとも前記内輪軌道溝には、機械加工による表面硬化層が形成される、(1)又は(2)に記載のアンギュラ玉軸受。
(4) 前記内輪軌道溝と前記外輪軌道溝のうち、前記内輪軌道溝のみに、機械加工による表面硬化層が形成される、(1)又は(2)に記載のアンギュラ玉軸受。
(5)前記玉の材質がセラミックである、上記(1)~(4)のいずれかに記載のアンギュラ玉軸受。
(6)玉径/断面高さ比が0.39~0.65倍である、上記(1)~(5)のいずれかに記載のアンギュラ玉軸受。
(7)前記玉径/断面高さ比が0.55~0.65倍である、上記(6)に記載のアンギュラ玉軸受。
(8)dmn80万以上の工作機械主軸に用いられ、予圧が付与されるアンギュラ玉軸受である、上記(1)~(7)のいずれかに記載のアンギュラ玉軸受。
(9)前記内輪および前記外輪の少なくとも一方が、C:0.2~1.2質量%、Si:0.7~1.5質量%、Mo:0.5~1.5質量%、Cr:0.5~2.0質量%、残部Feおよび不可避的不純物元素を含有する鋼からなり、かつ、
 表面炭素濃度が0.8~1.3質量%、表面窒素濃度が0.2~0.8質量%である、
上記(1)~(8)のいずれかに記載のアンギュラ玉軸受。
 本発明のアンギュラ玉軸受によれば、発熱量を低減できるとともに、静止時における外部衝撃荷重による損傷を抑制できる。特に、本発明のアンギュラ玉軸受は、dmn80万以上の高速回転で使用される工作機械主軸用のアンギュラ玉軸受として有用である。
図1は、本発明の玉軸受の一例であるアンギュラ玉軸受の一部拡大断面図である。 図2は、スピン滑りを説明するための模式図である。 図3は、スピン滑りを説明するための模式図であり、内輪の内輪軌道溝を拡大して示す図である。 図4は、スピン滑りを説明するための模式図であり、(a)は遠心力が作用する方向を示す図であり、(b)は内輪溝曲率半径比が大きい場合のスピン量を示す図であり、(c)は内輪溝曲率半径比が小さい場合のスピン量を示す図である。 図5は、解析条件1において、内輪溝曲率半径比(Ri)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図6は、解析条件1において、外輪溝曲率半径比(Ro)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図7は、解析条件1において、Ri-Roと、内輪面圧と外輪面圧の比との関係を計算値から求めたグラフである。 図8は、解析条件2において、内輪溝曲率半径比(Ri)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図9は、解析条件2において、外輪溝曲率半径比(Ro)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図10は、解析条件3において、内輪溝曲率半径比(Ri)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図11は、解析条件3において、外輪溝曲率半径比(Ro)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図12は、解析条件4において、内輪溝曲率半径比(Ri)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。 図13は、解析条件4において、外輪溝曲率半径比(Ro)と、内輪側と外輪側との合計スピン発熱量との関係を計算から求めたグラフである。
 以下、図面を参照しながら、本発明の一実施形態に係るアンギュラ玉軸受について詳細に説明する。
 なお、本願明細書において、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 図1は、本発明のアンギュラ玉軸受の一例として、工作機械用主軸に用いられるアンギュラ玉軸受を示している。アンギュラ玉軸受1は、外周面に断面円弧状の内輪軌道溝2aを有する内輪2と、内周面に断面円弧状の外輪軌道溝3aを有する外輪3と、内輪軌道溝2aと外輪軌道溝3aとの間に転動自在に設けられた複数の玉4と、複数の玉4をそれぞれ保持する保持器5と、を備える。外輪3の内周面の軸方向一方側には、カウンターボア3bが形成されており、玉4は、接触角αi、αoをもって、内輪軌道溝2aと外輪軌道溝3aとの間に配置される。なお、接触角αi、αoとは、軸受中心軸Xに垂直な平面Pと、玉4が内輪2及び外輪3とそれぞれ接触する各接触点と玉4の中心を結んだ作用線とがなす角度と定義される。
 玉4には、玉径/断面高さ比、即ち、玉4の直径/{(外輪3の外径-内輪2の内径)/2}が、0.39~0.65倍、好ましくは、0.55~0.65倍のものが使用されている。
 また、内輪軌道溝2a及び外輪軌道溝3aは、玉径に対する内輪軌道溝2aの溝曲率半径比(Ri=内輪軌道溝の曲率半径/玉径)が54~58%であり、玉径に対する外輪軌道溝3aの溝曲率半径比(Ro=外輪軌道溝の曲率半径/玉径)が51~58%であり、かつ、Ri-Ro≧0ポイント、好ましくは、Ri-Ro≧1ポイントに設定されている。以下、玉径に対する内輪軌道溝2aの溝曲率半径比Riは、内輪溝曲率半径比Riとも称し、玉径に対する外輪軌道溝3aの溝曲率半径比Roは、外輪溝曲率半径比Roとも称する。
 さらに、本実施形態では、内輪軌道溝2aには、機械加工であるローラバニシング処理によって表面硬化層10が形成され、内輪軌道溝2aは、玉4と内輪軌道溝2aとの接触部中央における玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧を4.7~6.0GPaとしている。一方、外輪軌道溝3aには、ローラバニシング処理が施されておらず、表面硬化層が形成されていない。
 なお、ローラバニシング処理は、切削加工により形成した内輪2の内輪軌道溝2aに対して熱処理を施し、仕上げ加工した後に行われる。さらに、必要に応じて、ローラバニシング処理工程後に、精密加工が施されてもよい。
 以下、上述した各軌道溝2a,3aの溝曲率半径比Ri,Ro、内輪軌道溝2aにおける上記玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧、及び、玉径の各臨界的意義について説明する。
[玉径に対する内輪軌道溝の溝曲率半径比(Ri)が54~58%、玉径に対する外輪軌道溝の溝曲率半径比(Ro)が51~58%]
 まず、工作機械主軸に用いられる高速回転用途のアンギュラ玉軸受1では、図2に示すように、外輪3の外輪軌道溝3aで玉4が純転がりすると仮定すると、内輪2の内輪軌道溝2aと、玉4の表面との接触部分(接触楕円)では、自転による玉4の表面上の周速(同図の符号Aで示され、玉4の自転軸AXから玉4の外周面円弧までの垂直距離に比例している)と、公転による内輪2の内輪軌道溝2a上の周速(同図の符号Bで示され、内輪2の自転軸から内輪軌道溝2aまでの垂直距離に比例している)との相対周速(同図の符号C)がスピン滑りとなって現れる。図3に符号D1と符号D2とで示すように、接触角αiが大きくなるほど公転による内輪2の内輪軌道溝2a上の周速は大きくなり、また、玉4と内輪軌道溝2aとの接触面が形成する接触楕円の長半径が大きくなる程、接触楕円の両端の周速差(同図のΔd1、Δd2で示され、Δd1>Δd2となっている)が大きくなり、これにより相対周速Cも大きくなる。このため、スピン滑りを抑えるためには玉4と内輪軌道溝2aとの接触部において、公転による内輪2の内輪軌道溝2a上の周速を抑え、且つ、玉4と内輪軌道溝2aとの接触面が形成する接触楕円の長半径を小さくすることが有効である。なお、図2中、符号AXは、外輪コントロールの玉4の自転軸を表す。
 図4の(a)に示すように、運転中にアンギュラ玉軸受1では、玉4に作用する遠心力Fと、内輪2または外輪3からの予圧荷重との力の釣合いによって、外輪3の外輪軌道溝3aの接触角αoは小さくなり、内輪2の内輪軌道溝2aとの接触角αiは大きくなる。そして、内輪2では、内輪軌道溝2aと玉4との接触角αiが大きくなると、スピン滑り量が大きくなり発熱量も多くなる。このため、内輪2においてRiを大きくすることで、高速回転中に接触角αiが大きくなり難くなり、かつ、接触楕円長を小さくすることができるため、スピン滑りによる発熱を抑制することができる。即ち、図4の(b)のように、Riを大きくすると、遠心力による接触角変化が小さくなり、スピン滑り量も小さくなる。これに対して図4の(c)のように、Riを小さくすると、遠心力Fによる接触角変化が大きくなり、スピン滑り量も大きくなる。そのため、スピン滑り量を抑えるには、Riを大きくすることが好ましいと考えられる。
 一方で、外輪3では、外輪溝曲率半径比Roが大きくなると、接触楕円の長半径が小さくなり発熱を抑制する効果があるものの、接触角αoが小さくなる方向には作用しないため、スピン滑りによる発熱量を低減する目的においては、内輪溝曲率半径比Riを大きくするよりも効果が得られにくい。
 ここで、以下の解析条件1のアンギュラ玉軸受を用いて、内輪溝曲率半径比Riと、外輪溝曲率半径比Roとを変えて、内輪側と外輪側との合計スピン発熱量について計算を行った。各Ri,Roに対応する合計スピン発熱量(W)の計算結果を表1に示す。
(解析条件1)
軸受内径:70mm
軸受外径:110mm
軸受幅:20mm
初期接触角:18°
玉径/断面高さ比:0.595
回転数:20,000min-1
予圧荷重:1,000N
Figure JPOXMLDOC01-appb-T000001
 図5は、内輪溝曲率半径比Riを横軸として、合計スピン発熱量との関係を示すグラフであり、図6は、外輪溝曲率半径比Roを横軸として、合計スピン発熱量との関係を示すグラフである。まず、図5のグラフから、外輪溝曲率半径比Roによらず、内輪溝曲率半径比Riを大きくすることにより発熱量が小さくなり、内輪溝曲率半径比Riが54%未満では発熱量が極端に大きくなることがわかる。但し、内輪溝曲率半径比Riを大きくし過ぎると、荷重負荷時の内輪軌道溝2aと玉4との間の面圧が高くなり、圧痕が生じやすくなる傾向がある。特に、内輪溝曲率半径比Riが58%より大きくなると、表面硬化により耐圧痕性を高めても従来品より耐圧痕性が低下してしまう。また、表面硬化の程度を高くするためには、加工条件をより厳しくする必要があるが、これにより生産性が低下するため、加工条件の制約を受ける。したがって、内輪溝曲率半径比Riは54~58%に設定する。
 一方、図6のグラフから、外輪溝曲率半径比Roが51%未満では発熱量が極端に大きく、52%前後で極小値を取る。外輪溝曲率半径比Roが52%以上では、Roの上昇に伴う発熱量の上昇は比較的緩やかであり、製造上のRoの出来栄えのばらつきを考慮すれば、極小値の52%よりも若干大きい領域を狙えば、製造上のRiの出来栄えのばらつきによる発熱量のばらつきも小さく抑えることができる。外輪溝曲率半径比Roが58%であれば、概ね51%と同等の値を取るため。スピン発熱量の低減効果の観点から、外輪溝曲率半径比Roは発熱量の極小値が含まれる51~58%に設定する。
[内輪軌道面において、玉と内輪軌道溝との接触部中央における玉及び内輪軌道溝の永久変形量の和が、玉径の1万分の1となる際の最大面圧が4.7~6.0GPa]
 上記のように、内輪溝曲率半径比Riを54~58%、外輪溝曲率半径比Roを51~58%にすることで回転中のスピン発熱量を低減させることができるが、静止時における外部衝撃荷重が負荷された際に接触面圧が大きくなり、圧痕が生じる可能性が高まると考えられる。このため、少なくとも内輪2の内輪軌道溝2aに表面残留応力が付与された表面硬化層10を形成して圧痕が生じるのをより防ぐことができる。
 表面硬化層10を形成するためには、軌道溝にローラバニシング処理を施す。このローラバニシング処理は、油圧で保持されたセラミックス製ないし超硬製のボール(圧子)を、内輪軌道溝2aに押し付けて転がり接触させながら、内輪軌道溝2aの軸方向断面に沿って移動させる。このローラバニシング処理により表面が硬化されるが、その際に、玉4と内輪軌道溝2aとの接触部中央における玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧が4.7~6.0GPaとなるようにバニシングツールの圧子径や加圧力等の加工条件を選択する。
 なお、軸受の円滑な回転を妨げない限度としては、玉4と軌道との接触部中央における玉4の永久変形量及び軌道の永久変形量の和が、玉径の1万分の1とされている。
 軌道面の表層に残留圧縮応力を付与していない玉軸受の場合、玉と軌道溝との接触部中央における玉と軌道溝の永久変形量の和が、玉径の1万分の1となる際の最大面圧は4.2GPaであるため(JIS B1519に準拠)、残留圧縮応力の付与により、静止時における外部衝撃荷重に対して圧痕が発生し難くなる効果が得られる。
 なお、出願人の調査によれば、市場からぶつけ損傷として返却される軸受には、約4GPa以上の面圧が負荷されていることがわかっている。軌道面の表層に残留圧縮応力を付与し、上記玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧が4.7GPaとなるように構成した場合は、従来約4GPa以上4.7GPa未満の面圧で圧痕が生じて不具合品となっていたものが、不具合として認識されなくなる。これにより、軸受交換の手間が不要となる。
 また、内輪軌道溝2aにおいて、玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧を4.7~6.0GPaとしたのは、生産性が低下しない加工条件を考慮して設定したものである。
 また、表面硬化層は、内輪2の内輪軌道溝2aに限定されず、外輪3の外輪軌道溝3aにも施されてもよい。
 尚、特許文献1に示される軌道表面に厚さ0.05~8μmの硬質皮膜を形成させる技術は、機械加工後の軌道輪に対して化学処理によって硬化層のコーティングを行い、耐摩耗性の向上や摩擦係数の低減を図ったものである。一方、本実施形態の表面加工層10は、機械加工によって表面を硬化させ、耐圧痕性を向上させるものである。
[Ri-Ro≧0ポイント]
 内輪溝曲率半径比Ri及び外輪溝曲率半径比Roは、上記した範囲に設定されるが、Riを外輪溝曲率半径比Roと同等、又は外輪溝曲率半径比Roよりも大きくすることにより、荷重が負荷された際の面圧の上昇が内輪2よりも外輪3の方が低く抑えられる。一方、内輪軌道溝2aには表面硬化層10が形成されているので、静止時に外部衝撃荷重を受けた際に、内輪2より先に外輪3に圧痕が生じて軸受が損傷することを防止できれば、内輪軌道溝2aにおいて、上記玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧を上記した範囲に設定することで、耐圧痕性の向上効果を十分に得られる。
 図7は、解析条件1の軸受諸元において、Ri-Roと、内輪面圧と外輪面圧の比との関係を計算値から求めたグラフであり、軸受に荷重が負荷された際の、RiとRoとの差における外輪面圧と内輪面圧の大小の関係を示している。即ち、内輪面圧/外輪面圧>1の領域は内輪面圧が高く、内輪面圧/外輪面圧<1の領域は外輪面圧が高く、内輪面圧/外輪面圧=1の場合は内輪面圧と外輪面圧が等しいことを示す。例えば、内輪軌道溝2a及び外輪軌道溝3aに表面硬化処理を施さない一般的な軸受を考えた場合、JIS B1519に定義されている、玉と軌道溝との接触部中央における玉及び軌道溝の永久変形量の和が玉径の1万分の1となる際の最大面圧が、内輪軌道面及び外輪軌道面いずれも4.2GPaであるため、内輪面圧/外輪面圧>1の領域では、内輪軌道面に先に圧痕が生じ、内輪面圧/外輪面圧<1の領域では、外輪軌道面に先に圧痕が生じ、内輪面圧/外輪面圧=1の領域では、内輪軌道面と外輪軌道面に同時に圧痕が生じることを意味する。
 内輪2の内輪軌道溝2aに表面硬化処理を施して、表面硬化層10が形成され、玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧を4.7~6.0GPaとし、外輪の外輪軌道溝には表面硬化処理を施さない場合、外輪軌道面よりも内輪軌道面に先に圧痕が生じる内輪面圧と外輪面圧の比は図7に示した1.120≦内輪面圧/外輪面圧≦1.429の領域となる。尚、外輪軌道面よりも内輪軌道面に先に圧痕が生じる内輪面圧と外輪面圧の比の下限値1.120及び上限値1.429は、表面硬化処理を施した内輪軌道面と表面硬化処理を施していない外輪軌道面との面圧の比率であるため、それぞれ4.7÷4.2=1.120、6.0÷4.2=1.429として求められる。
 この図7の結果から、内輪の軌道溝に表面硬化処理を施した軸受において、Ri-Ro≧0ポイントであるときに、内輪面圧/外輪面圧≧1.120となることから、外輪に先に圧痕が生じることがなく、内輪への表面硬化の効果を十分に得ることが出来る。また、外輪3の外輪軌道溝3aには表面硬化処理を施さなくても、内輪軌道溝2aに表面硬化処理を施した内輪2と同等以上の耐圧痕性を得られることがわかる。したがって、本実施形態では、外輪軌道溝3aへの表面硬化処理が不要となり、製造上のメリットが得られる。
 尚、図7の結果から、Riが54~58%、Roが51~58%の範囲において、Ri-Ro=0ポイントでの内輪面圧/外輪面圧の範囲は、1.120≦内輪面圧/外輪面圧≦1.124となり、Ri-Ro=1ポイントでは、1.151≦内輪面圧/外輪面圧≦1.191となる。即ち、Ri-Ro=0ポイントよりもRi-Ro=1ポイントの時の内輪面圧/外輪面圧は値が大きく且つレンジが広いため、内輪面圧の方が外輪面圧より高い傾向となり、内輪に先に圧痕が生成され易く、外輪に先に圧痕が生成され難い条件となることから、より表面強化処理の効果を得やすくなる。従って、Ri-Ro≧1ポイントとするのが望ましい。
[玉径/断面高さ比との関係]
 上記解析条件1では、玉径が比較的大きい(大玉)を使用して、玉径/断面高さ比が0.595の場合について、内輪溝曲率半径比Riを54~58%、外輪溝曲率半径比Roを51~58%とすることで、合計スピン発熱量を低減できることを確認した。下記では、解析条件2において、玉径が上記よりも小さい(小玉)を使用して、玉径/断面高さ比が0.437の場合についても、上記Ri,Roの規定により、合計スピン発熱量を低減できるかについて確認を行った。各Ri,Roに対応する合計スピン発熱量(W)の計算結果を表2に示す。
(解析条件2)
軸受内径:70mm
軸受外径:110mm
軸受幅:20mm
接触角:18°
玉径/断面高さ比:0.437
回転数:20,000min-1
予圧荷重:1,000N
Figure JPOXMLDOC01-appb-T000002
 図8は、内輪溝曲率半径比Riを横軸として、合計スピン発熱量との関係を示すグラフであり、図9は、外輪溝曲率半径比Roを横軸として、内輪側及び外輪側の合計スピン発熱量との関係を示すグラフである。この場合も、解析条件1と同様に、内輪溝曲率半径比Riが54~58%、外輪溝曲率半径比Roが51~58%の範囲で内輪側及び外輪側の合計スピン発熱量の低減に効果が認められる。
 次いで、解析条件1とは、軸受サイズが異なる一方、解析条件1と同じく、玉径が比較的大きい(大玉)を使用した、玉径/断面高さ比が0.572の解析条件3、及び玉径/断面高さ比が0.635の解析条件4についても、上記Ri,Roの規定により、合計スピン発熱量を低減できるかについて確認を行った。解析条件3において、各Ri,Roに対応する合計スピン発熱量(W)の計算結果を表3に、解析条件4において、各Ri,Roに対応する合計スピン発熱量(W)の計算結果を表4に示す。
(解析条件3)
軸受内径:30mm
軸受外径:55mm
軸受幅:13mm
接触角:18°
玉径/断面高さ比:0.572
回転数:43,000min-1
予圧荷重:440N
Figure JPOXMLDOC01-appb-T000003
(解析条件4)
軸受内径:110mm
軸受外径:170mm
軸受幅:28mm
接触角:18°
玉径/断面高さ比:0.635
回転数:13,000min-1
予圧荷重:2,200N
Figure JPOXMLDOC01-appb-T000004
 図10は、解析条件3において、内輪溝曲率半径比Riを横軸として、合計スピン発熱量との関係を示すグラフであり、図11は、解析条件3において、外輪溝曲率半径比Roを横軸として、合計スピン発熱量との関係を示すグラフである。
 また、図12は、解析条件4において、内輪溝曲率半径比Riを横軸として、合計スピン発熱量との関係を示すグラフであり、図13は、解析条件4において、外輪溝曲率半径比Roを横軸として、合計スピン発熱量との関係を示すグラフである。
 解析条件3,4の場合も、内輪溝曲率半径比Riが54~58%、外輪溝曲率半径比Roが51~58%の範囲で内輪側及び外輪側の合計スピン発熱量の低減に効果が認められる。
 したがって、内輪溝曲率半径比Riと外輪溝曲率半径比Roを規定することで、軸受サイズが変わっても、合計スピン発熱量を低減できるとともに、耐圧痕性を低減できる効果が変化しないことがわかる。
 また、玉径/断面高さ比は、小さいほど発熱低減に有利であるが、小さすぎると、高速回転で運転した際に、内輪の遠心膨張と熱膨張の影響で、有効ラジアルすきまが過小となり、焼付きの原因となる。このため、玉径/断面高さ比は、0.39以上である必要がある。また、玉径/断面高さ比は、大きいほど耐圧痕性に対して有利であるが、この値が0.65より大きくなると軌道輪の肉厚が薄くなり過ぎてしまい、熱処理変形や加工変形が大きくなるなどの製造上のデメリットが生じるため好ましくない。このため、玉径/断面高さ比は、0.39~0.65倍であることが好ましく、耐圧痕性を重視した場合は、玉径/断面高さ比が0.55~0.65倍である大玉を使用することがより好ましい。
 また、内輪2及び外輪3は、通常、SUJ2(高炭素クロム軸受鋼)などの軸受鋼から構成される。このSUJ2などの軸受鋼は、比較的低温に用いられるが、これは高温になると硬さ低下が著しく、寿命が短くなるためである。よって、より高速な回転が要求される場合には、玉4と、内輪2及び外輪3とが互いに接触する接触面での接触圧力や玉4の滑りが増大して発熱し、局部的に高温となる。このため、内輪2及び外輪3は耐熱性及び耐摩耗性に優れた材料から構成されるのが望ましい。
 そのため、2次硬化析出型の共晶炭化物を形成させた材料、例えば高速度鋼、セミハイス、マルテンサイト系ステンレスが好適であり、例示すればSKD、SKH、M50、SUS440C等がある。また、一般的な軸受鋼(SUJ2)の焼き戻し温度を240℃~330℃に高くしたものを用い、これに硬質被膜処理を施してもよい。その場合、母材そのものの硬さは低下するが、軌道輪表面の硬さは硬質被膜により硬くすることが可能であるから、上述の金属材料を用いた場合と同等の性能が得られる。
 また、構成元素成分によって焼き戻し抵抗性を向上させ、寸法を安定化させた材料(高炭素クロム鋼に準ずる材料)が好適であり、例示として、SHX材が挙げられる。この場合は、内輪2、外輪3の少なくとも一方を、Cを0.2~1.2質量%、Siを0.7~1.5質量%、Moを0.5~1.5質量%、Crを0.5~2.0質量%、残部Feおよび不可避的不純物元素を含有する鋼材で構成し、かつ浸炭窒化処理した後に焼き入れ焼き戻し処理することにより、表面炭素濃度を0.8~1.3質量%とし、かつ表面窒素濃度を0.2~0.8質量%とする。ここで、上記の各成分元素の有効範囲の臨界的意義について説明する。
(1)Si;0.7~1.5質量%
 Siは焼戻し軟化抵抗性に効果のある元素であり、高温強度を向上させると共に、高温環境下において圧痕起点型剥離の防止に有効な残留オーステナイトの分解を遅滞させる効果がある。Si含有量が0.7質量%を下回ると高温強度が不足すると共に、圧痕起点型剥離を生じるようになるので、その下限値を0.7質量%とした。一方、Si含有量が1.5質量%を超えると機械的強度が低下すると共に、浸炭を阻害するようになるので、その上限値を1.5質量%とした。
(2)Mo;0.5~1.5質量%
 MoはSiと同様に焼戻し軟化抵抗性に効果のある元素であり、高温強度を向上させる効果がある。また、Moは浸炭窒化された表面に微少な炭化物を形成する炭化物形成元素として作用する。Mo含有量が0.5質量%を下回ると高温強度が不足すると共に、表面に析出する炭化物が不足するようになるので、その下限値を0.5質量%とした。一方、Mo含有量が1.5質量%を超えると素材の段階で巨大炭化物が形成され、炭化物の脱落を招来して軸受の転がり疲労寿命を低下させるので、その上限値を1.5質量%とした。
(3)Cr;0.5~2.0質量%
 CrはMoと同様の作用効果を奏する添加元素である。Cr含有量が0.5質量%を下回ると高温強度が不足すると共に、表面に析出する炭化物の量が不足するようになるので、その下限値を0.5質量%とした。一方、Cr含有量が2.0質量%を超えると素材の段階で巨大炭化物が形成され、炭化物の脱落を招来して軸受の転がり疲労寿命を低下させるので、その上限値を2.0質量%とした。
(4)C;0.2~1.2質量%
 上述のように残留オーステナイト量が多くなりすぎると残留オーステナイトが分解して形状の経時変化が発生し、軸受の寸法安定性が損なわれる。一方、軌道輪表面における残留オーステナイトの存在は圧痕起点型剥離の防止に効果的である。したがって、表面に残留オーステナイトを存在させた上で、軸受全体に占める残留オーステナイトの量を制限するのが好ましく、そのためには軸受芯部の残留オーステナイトの量を抑制する必要がある。このような観点から表面および芯部を含めて平均残留オーステナイトの鋼中に占める量を5体積%以下とするのが好ましく、そのためには残留オーステナイトが依存する炭素濃度を1.2質量%以下にする必要があるので、その上限値を1.2質量%とした。一方、炭素濃度が0.2質量%を下回ると浸炭窒化処理で所望の浸炭深さを得るのに長時間を要し、全体的なコスト上昇を招来するようになるので、その下限値を0.2質量%とした。
(5)表面炭素濃度;0.8~1.3質量%
 浸炭窒化処理により表面に炭素を付加するとマトリックスとなるマルテンサイト組織を固溶強化することができると共に、極表層部において圧痕起点型剥離の防止に有効な多量の残留オーステナイトを形成することができる。表面炭素濃度が0.8質量%を下回ると表面硬さが不足して転がり疲労寿命や耐摩耗性が低下するので、その下限値を0.8質量%とした。一方、表面炭素濃度が1.3質量%を超えると浸炭窒化処理時に巨大炭化物が析出し、転がり疲労寿命を低下させることとなるので、その上限値を1.3質量%とした。
(6)表面N濃度;0.2~0.8質量%
 浸炭窒化処理により表面に窒素を付加すると焼戻し抵抗が向上して高温強度が増大し、耐摩耗性が向上すると共に、極表層部において圧痕起点型剥離の防止に有効な多量の残留オーステナイトを存在させることができる。表面窒素濃度が0.2質量%を下回ると高温強度が低下して耐摩耗性が低下するので、その下限値を0.2質量%とした。一方、表面窒素濃度が0.8質量%を超えると軸受製造時における研削仕上げが困難になり、難研削のために軸受の生産性が低下するので、その上限値を0.8質量%とした。
(7)その他の成分元素
 残部はFeおよび不可避的不純物であるが、その他の成分元素として微量のTiを添加することが好ましい。Tiを添加すると微細なチタン炭化物(TiC)や炭化窒化物(Ti(C+N))がマトリックス中に析出分散し、耐摩耗性および耐焼付き性を向上させるからである。この場合にTi含有量は0.1~0.3質量%とすることが望ましい。Ti含有量が0.1質量%を下回ると炭化物の析出効果が得られなくなるので、その下限値を0.1質量%とする。一方、Ti含有量が0.3質量%を超えると巨大な析出物が形成されやすくなり、これが欠陥となって転がり疲労寿命が逆に低下することがあるので、その上限値を0.3質量%とする。ちなみにチタン析出物(TiC,Ti(C+N))の大きさが0.1μm以下であると、耐摩耗性や耐焼付き性の向上に寄与する。
 尚、S,P,H,O等の不可避的不純物元素は可能な限り含まないようにするほうが望ましい。特に酸素(O)の含有量が12ppmを超えると酸化物系介在物が形成されやすくなり、これが欠陥となって転がり疲労寿命を低下させることがあるので、酸素含有量は12ppm未満とすることが望ましい。
 さらに、玉4は、耐熱性および耐摩耗性に優れた鋼製であってもよいが、Si(窒化珪素)、SiC(炭化珪素)またはAl(酸化アルミニウム)等のセラミックスから構成されてもよい。特に、セラミックス製の玉4は、鋼球に比べてヤング率が高いため、軌道溝との面圧が高く圧痕が生じやすいことから、本実施形態のように、耐圧痕性が高められたアンギュラ玉軸受はより効果的に作用する。
 以上説明したように、本実施形態のアンギュラ玉軸受は、玉径に対する内輪軌道溝2aの溝曲率半径比(Ri)が54~58%、玉径に対する外輪軌道溝3aの溝曲率半径比(Ro)が51~58%、且つ、Ri-Ro≧0ポイントであるとともに、少なくとも内輪軌道溝2aは、玉4と内輪軌道溝2aとの接触部中央における玉4及び内輪軌道溝2aの永久変形量の和が、玉径の1万分の1となる際の最大面圧が4.7~6.0GPaであるように構成される。これにより、発熱が抑えられ、耐圧痕性に優れるため、高速回転で使用され、静止中に過大な荷重が負荷されるような用途での使用に好適であり、特にdmn80万以上の工作機械主軸に用いられ、予圧が付与されるアンギュラ玉軸受として有用である。
 また、上記構成は、内輪軌道溝2aと外輪軌道溝3aのうち、内輪軌道溝2aのみ機械加工による表面硬化層を形成すればよく、製造上のメリットも享受できる。
 なお、本発明は上述した実施形態に限定されるものでなく、適宜変形、改良などが可能である。
 例えば、本発明のアンギュラ玉軸受の潤滑方式は、オイルエア潤滑であってもよいし、グリース潤滑であってもよい。
 なお、本出願は、2020年9月28日出願の日本特許出願(特願2020-162504)に基づくものであり、その内容は本出願の中に参照として援用される。
1 アンギュラ玉軸受
2 内輪
2a 内輪軌道溝
3 外輪
3a 外輪軌道溝
4 玉
5 保持器
10 表面硬化層

Claims (9)

  1.  外周面に断面円弧状の内輪軌道溝を有する内輪と、
     内周面に断面円弧状の外輪軌道溝を有する外輪と、
     前記内輪軌道溝と前記外輪軌道溝との間に転動自在に設けられた複数の玉と、を備えるアンギュラ玉軸受であって、
     玉径に対する前記内輪軌道溝の溝曲率半径比(Ri)が54~58%、前記玉径に対する前記外輪軌道溝の溝曲率半径比(Ro)が51~58%、且つ、Ri-Ro≧0ポイントであるとともに、
     少なくとも前記内輪軌道溝は、前記玉と前記内輪軌道溝との接触部中央における前記玉及び前記内輪軌道溝の永久変形量の和が、前記玉径の1万分の1となる際の最大面圧が4.7~6.0GPaであることを特徴とするアンギュラ玉軸受。
  2.  Ri-Ro≧1ポイントである、請求項1に記載のアンギュラ玉軸受。
  3.  少なくとも前記内輪軌道溝には、機械加工による表面硬化層が形成される、請求項1又は2に記載のアンギュラ玉軸受。
  4.  前記内輪軌道溝と前記外輪軌道溝のうち、前記内輪軌道溝のみに、機械加工による表面硬化層が形成される、請求項1又は2に記載のアンギュラ玉軸受。
  5.  前記玉の材質がセラミックである、請求項1~4のいずれか1項に記載のアンギュラ玉軸受。
  6.  玉径/断面高さ比が0.39~0.65倍である、請求項1~5のいずれか1項に記載のアンギュラ玉軸受。
  7.  前記玉径/断面高さ比が0.55~0.65倍である、請求項6に記載のアンギュラ玉軸受。
  8.  dmn80万以上の工作機械主軸に用いられ、予圧が付与されるアンギュラ玉軸受である、請求項1~7のいずれか1項に記載のアンギュラ玉軸受。
  9.  前記内輪および前記外輪の少なくとも一方が、C:0.2~1.2質量%、Si:0.7~1.5質量%、Mo:0.5~1.5質量%、Cr:0.5~2.0質量%、残部Feおよび不可避的不純物元素を含有する鋼からなり、かつ、
     表面炭素濃度が0.8~1.3質量%、表面窒素濃度が0.2~0.8質量%である、
    請求項1~8のいずれか1項に記載のアンギュラ玉軸受。
PCT/JP2021/034012 2020-09-28 2021-09-15 アンギュラ玉軸受 WO2022065171A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237010521A KR20230075451A (ko) 2020-09-28 2021-09-15 앵귤러 볼 베어링
CN202180066546.5A CN116209835A (zh) 2020-09-28 2021-09-15 角接触球轴承
JP2022551924A JPWO2022065171A1 (ja) 2020-09-28 2021-09-15
EP21872301.3A EP4219968A4 (en) 2020-09-28 2021-09-15 ANGULAR BALL BEARING
US18/246,816 US20230358277A1 (en) 2020-09-28 2021-09-15 Angular ball bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020162504 2020-09-28
JP2020-162504 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065171A1 true WO2022065171A1 (ja) 2022-03-31

Family

ID=80846557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034012 WO2022065171A1 (ja) 2020-09-28 2021-09-15 アンギュラ玉軸受

Country Status (7)

Country Link
US (1) US20230358277A1 (ja)
EP (1) EP4219968A4 (ja)
JP (1) JPWO2022065171A1 (ja)
KR (1) KR20230075451A (ja)
CN (1) CN116209835A (ja)
TW (1) TWI833113B (ja)
WO (1) WO2022065171A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586026U (ja) * 1991-06-24 1993-11-19 エヌティエヌ株式会社 転がり軸受
WO2000037813A1 (fr) 1998-12-22 2000-06-29 Nsk Ltd. Roulement a billes
JP2004100867A (ja) * 2002-09-11 2004-04-02 Koyo Seiko Co Ltd 転がり軸受用軌道輪の製造方法および転がり軸受用軌道輪
JP2005240881A (ja) 2004-02-25 2005-09-08 Ntn Corp 工作機械用アンギュラ玉軸受
JP2008032169A (ja) * 2006-07-31 2008-02-14 Nsk Ltd アンギュラ玉軸受
JP2020162504A (ja) 2019-03-29 2020-10-08 森永乳業株式会社 気泡含有食品の製造方法、気泡含有食品包装体の製造方法、及び凍結気泡含有食品包装体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUT64023A (en) * 1991-03-22 1993-11-29 Sandoz Ag Process for producing aminoguanidine derivatives and pharmaceutical compositions comprising such compounds
JP6153705B2 (ja) * 2012-07-25 2017-06-28 Ntn株式会社 転がり軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586026U (ja) * 1991-06-24 1993-11-19 エヌティエヌ株式会社 転がり軸受
WO2000037813A1 (fr) 1998-12-22 2000-06-29 Nsk Ltd. Roulement a billes
JP2004100867A (ja) * 2002-09-11 2004-04-02 Koyo Seiko Co Ltd 転がり軸受用軌道輪の製造方法および転がり軸受用軌道輪
JP2005240881A (ja) 2004-02-25 2005-09-08 Ntn Corp 工作機械用アンギュラ玉軸受
JP2008032169A (ja) * 2006-07-31 2008-02-14 Nsk Ltd アンギュラ玉軸受
JP2020162504A (ja) 2019-03-29 2020-10-08 森永乳業株式会社 気泡含有食品の製造方法、気泡含有食品包装体の製造方法、及び凍結気泡含有食品包装体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219968A4

Also Published As

Publication number Publication date
EP4219968A4 (en) 2024-03-06
KR20230075451A (ko) 2023-05-31
US20230358277A1 (en) 2023-11-09
TW202212708A (zh) 2022-04-01
EP4219968A1 (en) 2023-08-02
CN116209835A (zh) 2023-06-02
TWI833113B (zh) 2024-02-21
JPWO2022065171A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
US5595613A (en) Steel for gear, gear superior in strength of tooth surface and method for producing same
JPH08311603A (ja) 転がり軸受
JP2006322017A (ja) 転がり軸受
JP2002115030A (ja) 工作機械主軸用転がり軸受
JP5163183B2 (ja) 転がり軸受
JP2002364648A (ja) 転がり軸受
JP2006291339A (ja) 軸受軌道輪の熱処理用の金型及び軸受軌道輪の製造方法
JPH11303874A (ja) 転動部材
JP2006241480A (ja) 転がり支持装置、転がり支持装置の転動部材の製造方法、鋼の熱処理方法
WO2001018273A1 (fr) Roulement a rouleaux
JP2008151236A (ja) 転がり軸受
JP2006329265A (ja) 転がり軸受
JP5058611B2 (ja) スラスト軸受
JP2008174822A (ja) スラスト軸受
JP5998631B2 (ja) 転がり軸受
WO2022065171A1 (ja) アンギュラ玉軸受
JP4968106B2 (ja) 転がり軸受
AU2022316878A1 (en) Bearing materials for tricone bit rolling elements
JP2006071022A (ja) 転がり軸受
JP3941782B2 (ja) 転がり軸受
JP2005232543A (ja) ボールねじ
JP2005337361A (ja) ころ軸受
JPH1068419A (ja) 転がり軸受
JP2006183845A (ja) 転がり軸受
JP2006045591A (ja) 円すいころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551924

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021872301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872301

Country of ref document: EP

Effective date: 20230428