WO2022065146A1 - Resin composition, method of manufacturing resin composition, solar cell encapsulant, method of manufacturing solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass - Google Patents

Resin composition, method of manufacturing resin composition, solar cell encapsulant, method of manufacturing solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass Download PDF

Info

Publication number
WO2022065146A1
WO2022065146A1 PCT/JP2021/033860 JP2021033860W WO2022065146A1 WO 2022065146 A1 WO2022065146 A1 WO 2022065146A1 JP 2021033860 W JP2021033860 W JP 2021033860W WO 2022065146 A1 WO2022065146 A1 WO 2022065146A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
solar cell
ion
ionomer
laminated glass
Prior art date
Application number
PCT/JP2021/033860
Other languages
French (fr)
Japanese (ja)
Inventor
敬 永山
佳那 久木田
和幸 大木
葵 冨士野
Original Assignee
三井・ダウポリケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井・ダウポリケミカル株式会社 filed Critical 三井・ダウポリケミカル株式会社
Priority to JP2022551912A priority Critical patent/JP7467654B2/en
Publication of WO2022065146A1 publication Critical patent/WO2022065146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a resin composition, a method for producing a resin composition, a solar cell encapsulant, a method for producing a solar cell encapsulant, a solar cell module, a resin sheet for a laminated glass interlayer film, and a laminated glass.
  • photovoltaic power generation has become widespread as a clean energy source.
  • a semiconductor solar cell element
  • a silicon cell is usually used to convert solar energy into electrical energy.
  • the solar cell element is sandwiched between sealing materials to protect the solar cell element and prevent foreign matter from entering the solar cell element and moisture from entering the solar cell element.
  • Examples of the technology related to the solar cell encapsulant include those described in Patent Documents 1 to 3.
  • Patent Document 1 describes at least one resin (A) selected from an ethylene-vinyl acetate copolymer and an ethylene-aliphatic unsaturated carboxylic acid copolymer, and the above resin (A) and an ethylene-aliphatic unsaturated compound.
  • a solar cell encapsulating resin sheet including an inner layer made of B) and a surface layer made of the resin (A) laminated on the inner layer is described.
  • Patent Document 2 describes a resin encapsulating sheet for solar cells that softens and adheres the resin, and the resin encapsulating sheet is an ethylene-vinyl acetate copolymer or an ethylene-aliphatic unsaturated carboxylic acid copolymer. It contains at least one type of ionizing radiation crosslinked resin selected from the group consisting of ethylene-aliphatic unsaturated carboxylic acid ester copolymers, and the gel content is obtained by irradiating the ionized radiation crosslinked resin with ionizing radiation.
  • a resin encapsulating sheet for a solar cell having a ratio of 2 to 65% by mass and a heat shrinkage at 90 ° C. of 15% or less is described.
  • Patent Document 3 a front surface protective layer, a solar cell, a back surface protective layer, a polyvinyl acetal resin layer and a second resin layer are laminated, and the content of the plasticizer in 100 parts by mass of polyvinyl acetal in the polyvinyl acetal resin layer is 20 parts by mass or less, the thickness of the polyvinyl acetal resin layer is 600 ⁇ m or less, the polyvinyl acetal resin layer is arranged so as to be in contact with at least one surface of the solar cell, and the second resin layer protects the front surface and the back surface.
  • a solar cell module is described that is arranged so as to be in contact with at least one of the layers.
  • Japanese Unexamined Patent Publication No. 2014-95083 Japanese Unexamined Patent Publication No. 2013-177506 Japanese Unexamined Patent Publication No. 2015-8285
  • the solar cell encapsulant that encloses the solar cell element functions as a protective material for the solar cell element, it is required to have creep resistance that does not easily flow even if the module temperature rises due to sunlight. Further, in order not to reduce the conversion efficiency of the solar cell, the solar cell encapsulant is required to have high transparency (light transmittance). Further, the solar cell encapsulant is required to adhere sufficiently strongly to the solar cell element as long as it "seals" the solar cell element.
  • thermoplastic solar cell encapsulants have room for improvement in terms of good creep resistance, transparency and adhesiveness.
  • the other performance may be deteriorated.
  • the melting point of the thermoplastic resin is designed to be high and the creep resistance is improved, the transparency may be deteriorated or the adhesiveness may be deteriorated. That is, there is room for improvement in that the three performances of creep resistance, transparency and adhesiveness are improved in a well-balanced manner.
  • the present invention has been made in view of the above circumstances.
  • One of the objects of the present invention is to obtain a solar cell encapsulant having excellent creep resistance, transparency and adhesiveness. Further, one of the objects of the present invention is to provide a resin composition capable of forming such a solar cell encapsulant.
  • a resin composition containing an ionomer of an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant selected from the group consisting of fatty acids and fatty acid metal salts, an organic peroxide, and a silane coupling agent By manufacturing a solar cell encapsulant using a material, the above three performances could be improved in a well-balanced manner.
  • the present invention is as follows.
  • the metal ions contained in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer are lithium ion, potassium ion, sodium ion, silver ion, copper ion, calcium ion, magnesium ion, zinc ion, aluminum ion, and barium.
  • the metal ion contained in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer contains a first metal ion and a second metal ion different from the first metal ion.
  • the first metal ion contains at least one metal ion selected from the group consisting of zinc ion, copper ion, iron ion, aluminum ion, silver ion, cobalt ion and nickel ion.
  • the second metal ion is a resin composition containing at least one metal ion selected from the group consisting of sodium ion, lithium ion, potassium ion and magnesium ion. 4. 3. 3. The resin composition according to the above. A value obtained by multiplying the value obtained by multiplying the number of moles of the first metal ion by the valence in the ionomer (A) of the ethylene / unsaturated carboxylic acid polymer by the number of moles of the second metal ion by the valence. A resin composition having a ratio of 0.10 or more and 10.0 or less. 5. 1. 1. ⁇ 4. The resin composition according to any one of the above.
  • the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer when the total number of the constituent units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass, it is derived from the unsaturated carboxylic acid.
  • the lubricant (B) is a resin composition which is a fatty acid having 12 or more and 36 or less carbon atoms or a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
  • the lubricant (B) contains a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
  • At least a part of the carboxy group of the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer is at least one of the metals constituting the metal salt of the fatty acid having 12 or more and 36 or less carbon atoms contained in the lubricant (B).
  • the shear modulus at a heating rate of 3 ° C./min, a frequency of 1 Hz, and a shear modulus of -60 ° C to 150 ° C in a shear mode is nitrogen. Measure in an atmosphere.
  • the temperature at which the value of the shear storage elastic modulus (G') and the value of the shear loss elastic modulus (G ") are equal is defined as the crossover temperature.
  • G' shear storage elastic modulus
  • G " shear loss elastic modulus
  • the step of mixing the mixture, the organic peroxide (C), and the silane coupling agent (D) A method for producing a resin composition containing. 15. 1. 1. ⁇ 13.
  • a method for producing a solar cell encapsulant which comprises an extrusion molding step of extruding the heated melt of the resin composition according to any one of the above from the T die of an extruder equipped with a T die into a sheet. 17. 16. The method for manufacturing a solar cell encapsulant according to the above. A method for producing a solar cell encapsulant in which the temperature of the heated melt at the outlet of the T die is 140 ° C. or lower in the extrusion molding step. 18. With solar cell elements 15. The encapsulating resin layer for encapsulating the solar cell element, which is formed by the solar cell encapsulant according to the above. A solar cell module equipped with. 19. 1. 1. ⁇ 12. The resin composition according to any one of the above.
  • a laminated glass comprising a transparent plate-like member provided on at least one surface of the laminated glass interlayer film.
  • a solar cell encapsulant having excellent creep resistance, transparency and adhesiveness is provided. Further, according to the present invention, there is provided a resin composition capable of forming such a solar cell encapsulant.
  • the resin composition of the present invention is preferably applied to the use for forming a solar cell encapsulant, but can also be applied to other uses, for example, the use for producing an interlayer film of laminated glass.
  • (meth) acrylic herein represents a concept that includes both acrylic and methacrylic. The same applies to similar notations such as "(meth) acrylate".
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. ..
  • X can be x1 or more and y2 or less, or x2 or more and y1 or less. can.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • index X it is preferably described as x or more and y or less in the specification, and when the value of X in the embodiment is z, X may be x or more and z or less, and z or more and y or less. There may be.
  • the resin composition of the present embodiment contains an ionomer (A), which is an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts, and organic peroxides. (C) and a silane coupling agent (D) are included.
  • A ionomer
  • B lubricant
  • C silane coupling agent
  • D silane coupling agent
  • the resin composition of the present embodiment contains the ionomer (A) and the lubricant (B) in heating at the time of sealing the solar cell element. It is considered that the flow of the resin composition is suppressed because the cross-linking reaction proceeds between the molecular chains with the silane coupling agent (D) to form a cross-linked structure. It is presumed that this is related to good creep resistance and adhesiveness.
  • the resin composition of the present embodiment contains the lubricant (B)
  • the relaxation of the structure formed by the aggregation of the metal ions in the ionomer (A) is promoted, so that the organic peroxide does not decompose. It can be molded into a sheet-shaped solar cell encapsulant at a relatively low temperature.
  • the organic peroxide (C) is formed. It is presumed that the reaction is suppressed from forming an undesired crosslinked structure.
  • the cross-linking reaction proceeds during the molding process, the cross-linking reaction tends to proceed non-uniformly, which tends to be disadvantageous in terms of transparency, sheet appearance, adhesiveness, and sealing of the solar cell element.
  • the cross-linking reaction during the molding process is sufficiently suppressed, it is presumed that the transparency, the appearance of the sheet, the adhesiveness, and the sealing of the solar cell element are improved.
  • the resin composition of the present embodiment contains an ionomer (A) of an ethylene / unsaturated carboxylic acid-based copolymer.
  • the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer may be simply referred to as “ionomer (A)”.
  • the ionomer (A) is typically a resin obtained by neutralizing at least a part of carboxy groups with a metal ion to a polymer obtained by copolymerizing ethylene and at least one unsaturated carboxylic acid.
  • the ethylene / unsaturated carboxylic acid-based copolymer include a copolymer of ethylene and an unsaturated carboxylic acid, a copolymer of ethylene, an unsaturated carboxylic acid, and an unsaturated carboxylic acid ester, and the like. ..
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, 2-ethylacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride, fumaric anhydride, itaconic anhydride, monomethyl maleate, and maleic acid.
  • examples thereof include monoethyl acid.
  • acrylic acid and / or methacrylic acid is preferable from the viewpoint of productivity, hygiene and the like of the ethylene / unsaturated carboxylic acid-based copolymer.
  • the unsaturated carboxylic acid may be used alone or in combination of two or more.
  • an ethylene / unsaturated carboxylic acid-based copolymer containing one or two or more ethylene / unsaturated carboxylic acid-based copolymers and an unsaturated carboxylic acid such as acrylic acid or methacrylic acid as a constituent unit is further added.
  • it can be an ionomer (A).
  • Particularly preferable ethylene / unsaturated carboxylic acid-based copolymers are ethylene / (meth) acrylic acid copolymer and ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer.
  • the structural unit derived from ethylene when the total amount of the structural units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass, the structural unit derived from ethylene is preferably 65% by mass or more and 95% by mass or less. It is more preferably 65% by mass or more and 90% by mass or less, and further preferably 65% by mass or more and 85% by mass or less.
  • the structural unit derived from ethylene is at least the above lower limit value, the heat resistance, mechanical strength, water resistance, processability, etc. of the obtained solar cell encapsulant can be further improved.
  • the structural unit derived from ethylene when the structural unit derived from ethylene is not more than the above upper limit value, the transparency, flexibility, adhesiveness and the like of the obtained solar cell encapsulant can be further improved.
  • the structural unit derived from the unsaturated carboxylic acid is preferably 5% by mass or more and 35% by mass. % Or less, more preferably 10% by mass or more and 30% by mass or less, still more preferably 15% by mass or more and 25% by mass or less.
  • the structural unit derived from the unsaturated carboxylic acid is at least the above lower limit value, the transparency, flexibility, adhesiveness, etc. of the obtained solar cell encapsulant can be further improved.
  • the structural unit derived from the unsaturated carboxylic acid is not more than the above upper limit value, the heat resistance, mechanical strength, water resistance, processability and the like of the obtained solar cell encapsulant can be further improved.
  • the ionomer (A) is preferably 0% by mass or more and 30% by mass or less, more preferably 0% by mass or more, when the total amount of the constituent units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass. It may contain structural units derived from other copolymerizable monomers of 25% by weight or less. Other copolymerizable monomers include unsaturated esters such as vinyl acetate, vinyl esters such as vinyl propionate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) acrylic.
  • Examples thereof include unsaturated carboxylic acid esters such as isobutyl acid, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • unsaturated carboxylic acid esters such as isobutyl acid, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Examples of the metal ions constituting the ionomer (A) include lithium ion, potassium ion, sodium ion, silver ion, copper ion, calcium ion, magnesium ion, zinc ion, aluminum ion, barium ion, beryllium ion, and strontium ion.
  • One or more selected from the group consisting of tin ion, lead ion, iron ion, cobalt ion and nickel ion can be mentioned.
  • the ionomer (A) contains two or more metal ions selected from the above group.
  • the inclusion of two or more metal ions in the ionomer (A) causes the cross-linking reaction to proceed appropriately and randomly in the system (suppresses the excessive progress of the cross-linking reaction locally). ) It is presumed that it will be. As a result, the generation of gel can be suppressed, and as a result, the transparency of the solar cell encapsulant is considered to be further enhanced.
  • the composition of the ionomer (A) preferably contains the following first metal ion and a second metal ion different from the first metal ion.
  • First metal ion at least one metal ion selected from the group consisting of zinc ion, copper ion, iron ion, aluminum ion, silver ion, cobalt ion and nickel ion-Second metal ion: sodium ion, lithium ion, At least one metal ion selected from the group consisting of potassium ion and magnesium ion
  • an embodiment containing zinc ion as the first metal ion and magnesium ion as the second metal ion is mentioned. be able to.
  • the ionomer (A) contains both the first metal ion and the second metal ion, an unintended cross-linking reaction can be further suppressed, and as a result, the workability of the solar cell encapsulant can be improved, and further.
  • the generation of gel generated in the solar cell encapsulant sheet can be suppressed, and as a result, the transparency and appearance of the solar cell encapsulant can be further improved.
  • the ionomer (A) contains a first metal ion and a second metal ion
  • the number of moles of the second metal ion to the value obtained by multiplying the number of moles of the first metal ion in the ionomer (A) by the valence is the valence.
  • the ratio of the multiplied values ((number of moles of second metal ion x valence of second metal ion) / (number of moles of first metal ion x valence of first metal ion)) is the obtained solar cell encapsulation. From the viewpoint of improving the balance between transparency and water resistance of the material, it is preferably 0.10 or more, more preferably 0.15 or more, and further preferably 0.20 or more.
  • the second metal is obtained by multiplying the number of moles of the first metal ion in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer by the valence.
  • the ratio of the number of moles of ions multiplied by the valence is preferably 10.0 or less from the viewpoint of improving the balance between transparency and water resistance of the obtained solar cell encapsulant. It is more preferably 0 or less, further preferably 4.0 or less, even more preferably 3.0 or less, and particularly preferably 2.5 or less.
  • the ionomer (A) may be configured to include, for example, ionomer 1 of an ethylene / unsaturated carboxylic acid-based copolymer and ionomer 2 of an ethylene / unsaturated carboxylic acid-based copolymer different from ionomer 1. can. Thereby, by adjusting the mixing ratio of the ethylene / unsaturated carboxylic acid-based copolymer ionomer 1 and the ethylene / unsaturated carboxylic acid-based copolymer ionomer 2, the ethylene / unsaturated carboxylic acid-based copolymer can be adjusted. The ratio of the first metal ion and the second metal ion in the ionomer (A) of the above can be easily adjusted.
  • the degree of neutralization of the ionomer (A) is not particularly limited, but is preferably 95% or less, more preferably 90% or less, from the viewpoint of improving the flexibility, adhesiveness, processability, etc. of the obtained solar cell encapsulant. It is preferable, 80% or less is further preferable, 50% or less is particularly preferable, and 30% or less is particularly preferable.
  • the degree of neutralization of the ionomer (A) is not particularly limited, but 5% or more is preferable, and 10% or more is more preferable from the viewpoint of improving the transparency and mechanical strength of the obtained solar cell encapsulant. It is preferable, 15% or more is more preferable, and 20% or more is particularly preferable.
  • the degree of neutralization of the ionomer (A) refers to the ratio (%) of the carboxy groups neutralized by the metal ion among all the carboxy groups contained in the ethylene / unsaturated carboxylic acid-based copolymer. ..
  • the ionomer (A) can be configured to include, for example, an ionomer of an ethylene / unsaturated carboxylic acid-based copolymer and an ethylene / unsaturated carboxylic acid-based copolymer containing no metal ion. In this way, the degree of neutralization can be easily adjusted by adjusting the mixing ratio of the ethylene / unsaturated carboxylic acid-based copolymer ionomer and the ethylene / unsaturated carboxylic acid-based copolymer.
  • the method for producing the ethylene / unsaturated carboxylic acid-based copolymer constituting the ionomer (A) is not particularly limited, and it can be produced by a known method. For example, it can be obtained by radical copolymerizing each polymerization component under high temperature and high pressure. Further, the ionomer (A) can be obtained by reacting an ethylene / unsaturated carboxylic acid-based copolymer with a metal compound. As the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer, a commercially available one may be used.
  • the "timing" in which at least a part of the carboxy group of the ethylene / unsaturated carboxylic acid-based copolymer is neutralized with a metal ion to form an ionomer (A) is not particularly limited.
  • the final resin composition may include ionomer (A).
  • the resin composition is prepared by any of the following methods (i) to (iii). You may. In the examples described later, the resin composition is prepared by the method (ii).
  • a resin composition is prepared by using the ionomer (A) containing the first metal ion and the second metal ion as it is as a material.
  • (Ii) First, as a material, an ionomer containing only one of the first metal ion and the second metal ion is prepared. Then, the ionomer and, for example, a fatty acid metal salt exemplified as an example of the lubricant (B) described later are melt-mixed to obtain an ionomer (A) containing two kinds of metal ions.
  • a resin composition is prepared using this ionomer (A).
  • an ethylene / unsaturated carboxylic acid-based copolymer containing no metal ion is prepared as a material. Then, the polymer and two suitable metal materials are melt-mixed to obtain an ionomer (A) containing two metal ions. A resin composition is prepared using this ionomer (A).
  • the melt mass flow rate (MFR) of ionomer (A) measured under the condition of 190 ° C. and 2160 g load according to JIS K 7210: 1999 is 0.01 g / 10 minutes or more and 100 g / 10 minutes. It is preferably 0.1 g / 10 minutes or more, and more preferably 80 g / 10 minutes or less.
  • MFR melt mass flow rate
  • the MFR is at least the above lower limit value, the workability of the solar cell encapsulant can be further improved.
  • the MFR is not more than the above upper limit value, the heat resistance and mechanical strength of the obtained solar cell encapsulant can be further improved.
  • the content of the ionomer (A) in the resin composition is preferably 50.0% by mass or more and 99.9% by mass or less, more preferably 70.0% by mass, when the whole resin composition is 100% by mass. 99.5% by mass or less, more preferably 80.0% by mass or more and 99.5% by mass or less, still more preferably 85.0% by mass or more and 99.0% by mass or less.
  • the content of ionomer (A) is within the above range, the transparency, creep resistance, interlayer adhesion, insulation property, rigidity, water resistance, and the obtained solar cell module of the obtained solar cell encapsulant can be obtained.
  • the performance balance such as PID resistance can be further improved.
  • the resin composition of the present embodiment contains at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts. It is considered that the use of the lubricant (B) promotes relaxation of the structure formed by the aggregation of metal ions in the ionomer (A). Therefore, for example, when the resin composition is molded to produce a solar cell encapsulant, the molding process can be performed at a relatively low temperature at which the organic peroxide (C) does not decompose.
  • fatty acid a fatty acid having 12 or more and 36 or less carbon atoms is preferable, and a fatty acid having 16 or more and 30 or less carbon atoms is more preferable.
  • fatty acids lauric acid (12 carbon atoms), melissic acid (14 carbon atoms), palmitic acid (16 carbon atoms), stearic acid (18 carbon atoms), oleic acid (18 carbon atoms), behenic acid (18 carbon atoms). 22), erucic acid (22 carbons), montanic acid (28 carbons), melissic acid (30 carbons) and the like.
  • the fatty acid may be only one kind or two or more kinds.
  • the fatty acid constituting the fatty acid metal salt a fatty acid having 12 or more and 36 or less carbon atoms is preferable, and a fatty acid having 16 or more and 30 or less carbon atoms is more preferable.
  • the fatty acid metal salt is preferably a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
  • Specific examples of the fatty acids constituting the fatty acid metal salt include lauric acid (12 carbon atoms), melissic acid (14 carbon atoms), palmitic acid (16 carbon atoms), stearic acid (18 carbon atoms), and oleic acid (carbon number of carbon atoms).
  • the fatty acid constituting the fatty acid metal salt may be only one kind or two or more kinds.
  • Examples of the "metal" constituting the fatty acid metal salt include alkali metals, alkaline earth metals, zinc and the like. Among these, magnesium, zinc, and calcium are preferable, and magnesium is more preferable, from the viewpoint of having a relatively low melting point as a fatty acid metal salt.
  • the metal constituting the fatty acid metal salt only one kind may be used alone, or two or more kinds may be used in combination.
  • a fatty acid metal salt is preferable, magnesium stearate, zinc stearate and calcium stearate are more preferable, and magnesium stearate is further preferable.
  • the resin composition may contain only one kind of lubricant (B), or may contain two or more kinds of lubricant (B).
  • the amount of the lubricant (B) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and particularly preferably 4 parts by mass or more with respect to 100 parts by mass of the ionomer (A). be.
  • the amount of the lubricant (B) is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, still more preferably 20 parts by mass or less, and particularly preferably 15 parts by mass with respect to 100 parts by mass of the ionomer (A). It is as follows.
  • At least a part of the carboxy group of the ionomer (A) can be neutralized by at least a part of the metal constituting the fatty acid metal salt.
  • at least some metal ions of a fatty acid metal salt having a high acid dissociation constant can be incorporated into an ionomer (A) having a low acid dissociation constant.
  • the amount of lubricant (B) described above represents the total amount of lubricant incorporated into the ionomer (A) and the amount of lubricant not (free).
  • Organic peroxide (C) The resin composition of the present embodiment contains an organic peroxide (C).
  • organic peroxide (C) examples include organic peroxides known as radical polymerization initiators.
  • the 10-hour half-life temperature of the organic peroxide (C) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher, from the viewpoint of not causing an undesired crosslinking reaction during sheet processing. Further, from the viewpoint that it is desirable to cause a crosslinking reaction in the lamination step, 170 ° C. or lower is preferable, 150 ° C. or lower is more preferable, and 130 ° C. or lower is further preferable.
  • organic peroxide (C) examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, and 2,5-dimethyl-2.
  • dicumyl peroxide 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di-( tert-butylperoxy) hexine-3, bis (tert-butylperoxyisopropyl) benzene, tert-butylcumyl peroxide, tert-butylperoxyisopropyl carbonate, tert-butylperoxy-2-ethylhexyl carbonate are preferred, 2,5-dimethyl -2,5-di- (tert-butylperoxy) hexane and tert-butylperoxyisopropyl carbonate are more preferable.
  • the resin composition may contain only one type of organic peroxide (C), or may contain two or more types.
  • the amount of the organic peroxide (C) is preferably 0.1 part by mass or more, more preferably 0.25 part by mass or more, still more preferably 0.5 part by mass or more with respect to 100 parts by mass of the ionomer (A). Is.
  • the amount of the organic peroxide (C) is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, based on 100 parts by mass of the ionomer (A).
  • -A preferable ratio (unit: parts by mass / mass%) to the content (unit: mass%) of the structural unit derived from the unsaturated carboxylic acid in the unsaturated carboxylic acid-based copolymer is preferably 0.01 or more. It is 0.30 or less, more preferably 0.02 or more and 0.15 or less, and further preferably 0.03 or more and 0.10 or less.
  • the resin composition of the present embodiment contains a silane coupling agent (D).
  • the use of the silane coupling agent (D) is effective, for example, from the viewpoint of further improving the interlayer adhesion of the obtained solar cell module.
  • silane coupling agent (D) examples include (i) a group containing a polymerizable carbon-carbon double bond (vinyl group, (meth) acryloyl group, etc.), an amino group or an epoxy group, and (ii) an alkoxy group.
  • a silane coupling agent having a hydrolyzing group such as the above can be mentioned.
  • Examples of the silane coupling agent having a polymerizable group carbon-carbon double bond include vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxy.
  • Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-acryloxypropyltriethoxy Examples include silane.
  • silane coupling agent having an amino group examples include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-2- (.
  • silane coupling agent having an epoxy group examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycid. Examples thereof include xipropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • the silane coupling agent (D) preferably contains a silane coupling agent having a group containing a polymerizable carbon-carbon double bond, and more preferably contains a silane coupling agent having a (meth) acryloyl group.
  • Particularly preferable specific examples include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane and the like.
  • the resin composition may contain only one type of silane coupling agent (D), or may contain two or more types.
  • the amount of the silane coupling agent (D) is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.005% by mass or more and 2% by mass or less, based on 100 parts by mass of the ionomer (A). It is preferably 0.01% by mass or more and 1% by mass or less.
  • the resin composition of the present embodiment may contain components (other components) other than the above (A) to (D) within a range that does not impair the object of the present invention.
  • Other components include, for example, plasticizers, antioxidants, ultraviolet absorbers, wavelength converters, antistatic agents, surfactants, colorants, light stabilizers, foaming agents, lubricants, crystal nucleating agents, and crystallization. Accelerators, crystallization retarders, catalyst deactivating agents, heat ray absorbers, heat ray reflecting agents, heat dissipation agents, thermoplastic resins, thermosetting resins, inorganic fillers, organic fillers, impact resistance improvers, slip agents, Crosslinking agent, crosslinking aid, tackifier, processing aid, mold release agent, hydrolysis inhibitor, heat stabilizer, antiblocking agent, antifogging agent, flame retardant, flame retardant aid, light diffusing agent, antibacterial agent , Anti-corrosion agent, dispersant, resin not corresponding to ionomer (A) and the like.
  • plasticizers for example, plasticizers, antioxidants, ultraviolet absorbers, wavelength converters, antistatic agents, surfactants, colorants, light stabilizers, foaming agents,
  • a cross-linking aid is preferably used for the purpose of adjusting curability and improving various performances.
  • the cross-linking aid include oximes such as p-quinonedioxime and p, p'-dibenzoylquinonedioxime; ethylene dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropanetrimethacrylate, cyclohexylmethacrylate, acrylate / zinc oxide.
  • acrylates or methacrylates such as allyl methacrylate
  • vinyl monomers such as divinylbenzene, vinyltoluene, vinylpyridine
  • hexamethylene diallyl nadiimide diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl isocyanurate, triari Allyl compounds such as lucianurate and triallyl isocyanurate
  • maleimide compounds such as N, N'-m-phenylene bismaleimide, N, N'-(4,4'-methylenediphenylene) dimaleimide, vinylnorbornene, etc.
  • Examples thereof include cyclic non-conjugated dienes such as etylidenenorbornene and dicyclopentadiene.
  • a cross-linking aid when used, the amount thereof is preferably 0.1 part by mass or more, more preferably 0.2 part by mass or more, based on 100 parts by mass of the ionomer (A).
  • the amount thereof is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 2 parts by mass or less with respect to 100 parts by mass of the ionomer (A).
  • the resin composition may contain only one other component, or may contain two or more other components.
  • the resin composition of the present embodiment preferably satisfies the physical properties as described below.
  • the melt mass flow rate (MFR) measured under the condition of 190 ° C. and 2160 g load is preferably 20 g / 10 minutes or less in accordance with JIS K 7210: 1999. It is more preferably 10 g / 10 minutes or less, further preferably 3 g / 10 minutes or less, further preferably 1 g / 10 minutes or less, and particularly preferably 0.5 g / 10 minutes or less. ..
  • MFR melt mass flow rate
  • the creep distance measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 5.0 mm or less, more preferably 3.0 mm or less, still more preferably 2. It is 0 mm or less, particularly preferably 1.5 mm or less. The lower limit of the creep distance is preferably 0 mm.
  • the haze value measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 3.0% or less, more preferably 2.0% or less, still more preferably. It is 1.5% or less, particularly preferably 1.0% or less.
  • the lower limit of the haze value is ideally 0%, but in reality, it is, for example, 0.1%, specifically about 0.3%.
  • the value of the total light transmittance measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 80% or more, more preferably 85% or more. It is more preferably 87% or more, and particularly preferably 90% or more.
  • the upper limit of the total light transmittance is ideally 100%, but in reality, it is, for example, 95%, specifically about 92%.
  • the adhesive strength to the glass plate measured by the method described in Examples described later is preferably 10 N / 15 mm or more, preferably 20 N / 15 mm or more. It is more preferable that it is 30 N / 15 mm or more, and it is further preferable that it is 30 N / 15 mm or more.
  • the adhesive strength to the glass plate is large, the interlayer adhesiveness of the obtained solar cell module can be improved. Basically, the larger the adhesive strength is, the more preferable it is.
  • the adhesive strength depends on the rigidity of the resin, but in reality, if it is 30 N / 15 mm or more, the possibility of delamination or the like occurring is extremely low. Guessed.
  • the crossover temperature measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 140 ° C. or higher, more preferably 150 ° C. or higher. .. It is known that there is a correlation between the crossover temperature and the creep distance, and if the crossover temperature is 140 ° C or higher, the zero shear viscosity at the creep test temperature of 105 ° C is sufficiently high, so that creep can be suppressed. preferable. There is no particular upper limit to the crossover temperature, but from the viewpoint of realistic composition design, the upper limit is, for example, the thermal decomposition temperature of the resin composition or 240 ° C.
  • the resin composition of the present embodiment contains an ionomer (A), which is an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts, and organic peroxides. It can be obtained by mixing (C) with the silane coupling agent (D).
  • a commonly used mixing device such as a screw extruder, a roll mixer, or a Bambari mixer can be used. The mixing may be carried out by blending the four components (A) to (D) at the same time, or may be carried out separately.
  • the ionomer (A), which is an ethylene / unsaturated carboxylic acid-based copolymer, and at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts are mixed in advance, and (ii). )
  • a method of mixing the mixture obtained by this mixing, the organic peroxide (C), and the silane coupling agent (D) is preferable.
  • Ionomer (A), an ethylene / unsaturated carboxylic acid-based copolymer, and at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts are mixed in advance to flow into a resin composition. Gender can be imparted. This makes it possible to suppress the non-uniform progress of the cross-linking reaction by the organic peroxide (C).
  • the solar cell encapsulant of the present embodiment includes a layer made of the above-mentioned resin composition.
  • the solar cell encapsulant of the present embodiment may have a single-layer structure or a multi-layer structure of two or more layers. More specifically, the solar cell encapsulant of the present embodiment may be (i) a single-layer film composed of a layer composed of the above-mentioned resin composition, or (ii) the above-mentioned resin. It may be a multi-layered film composed of the composition, or (iii) has a layer composed of the above-mentioned resin composition and a layer composed of a resin composition other than the above-mentioned resin composition. It may be a multi-layered film.
  • the solar cell encapsulant of the present embodiment has a multi-layer structure, (i) it has a two-layer structure in which two outer layers (hereinafter, also referred to as an adhesive layer) are laminated, and at least one outer layer is the present embodiment. It is a two-layer structure composed of the resin composition of (ii), or a three-layer structure including (ii) an intermediate layer and two outer layers formed on both sides so as to sandwich the intermediate layer. It is preferable that at least one of the intermediate layers has a three-layer structure composed of the resin composition (P) according to the present embodiment. From the viewpoint of achieving both transparency and adhesiveness, the above-mentioned three-layer structure (ii) is more preferable.
  • the composition of each layer and the type of ionomer contained (for example, the copolymerization ratio of ethylene / unsaturated carboxylic acid-based copolymer, medium).
  • the degree of sum, the type of metal ion, etc.) may be the same or different.
  • the layer made of other than the resin composition (P) according to the present embodiment may or may not contain an organic peroxide.
  • the thickness of the solar cell encapsulant of the present embodiment is, for example, 0.001 mm or more and 10 mm or less, preferably 0.01 mm or more and 5 mm or less, and more preferably 0.05 mm or more and 2 mm or less.
  • the thickness of the solar cell encapsulant is 0.001 mm or more, the mechanical strength of the solar cell encapsulant can be improved.
  • the thickness of the solar cell encapsulant is 10 mm or less, the transparency of the solar cell encapsulant and the processability in the lamination step can be further improved.
  • the layer composed of the resin composition of the present embodiment may be an outer layer or an intermediate layer.
  • the thickness of the outer layer is arbitrary, but the thickness a of the outer layer is preferably in the range of 1 ⁇ m or more and 500 ⁇ m or less, and 10 ⁇ m or more and 500 ⁇ m. The following range is more preferable, and the range of 20 ⁇ m or more and 300 ⁇ m or less is particularly preferable.
  • the thickness a is 1 ⁇ m or more, the adhesive strength and workability can be further improved. Further, when the thickness a is 500 ⁇ m or less, the transparency is more excellent.
  • the thickness of the intermediate layer occupying the total layer thickness may be thick in terms of transparency.
  • the thickness b of the intermediate layer can be freely set within a range obtained by subtracting the preferable thickness a of the outer layer from the range of 0.1 mm or more and 10 mm or less, which is the preferable total thickness.
  • the thickness ratio (a / b) between the outer layer (thickness a) and the intermediate layer (thickness b) is 1/20 to 5. 1/1 is preferable, more preferably 1/15 to 3/1, still more preferably 1/10 to 3/1.
  • the thickness a of the outer layers is the average value of the thicknesses of the two outer layers.
  • the method for producing the above-mentioned solar cell encapsulant is not particularly limited, and a conventionally known production method can be adopted as the production method, but it can be preferably produced by the method described below.
  • the manufacturing method for example, a press molding method, an extrusion molding method, a T-die molding method, an injection molding method, a compression molding method, a cast molding method, a calendar molding method, an inflation molding method and the like can be used.
  • the extrusion molding method is preferable. That is, the solar cell encapsulant of the present embodiment is manufactured including, for example, an extrusion molding step of extruding the heated melt of the above-mentioned resin composition from the T die of an extruder equipped with a T die to form a sheet. It can be obtained by the method.
  • the processing temperature in the extrusion molding step is not particularly limited, but from the viewpoint of suppressing the crosslinking reaction, the temperature of the heated melt at the outlet of the T die is preferably 200 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 140 ° C. Below, it is preferable to adjust the processing temperature so as to be particularly preferably 130 ° C. or lower, and particularly preferably 120 ° C. or lower. This temperature may be as low as possible as long as extrusion molding is possible, but from the viewpoint of smooth extrusion molding, the temperature of the heated melt at the outlet of the T-die is, for example, 100 ° C. or higher.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the solar cell module (solar cell module 1) of the present embodiment.
  • the solar cell module 1 includes, for example, a solar cell element 3 and a sealing resin layer 5 for sealing the solar cell element 3 made of the solar cell encapsulant of the present embodiment.
  • the solar cell module 1 may further include a substrate 2 to which sunlight is incident, a protective material 4, and the like (hereinafter, the substrate 2 to which sunlight is incident may be simply referred to as a substrate 2. be).
  • the solar cell module 1 can be manufactured, for example, by fixing the solar cell element 3 sealed with the solar cell encapsulant of the present embodiment on the substrate 2.
  • Examples of the solar cell module 1 include various types. For example, a structure such as a substrate / encapsulant / solar cell element / encapsulant / protective material sandwiched between encapsulants from both sides of the solar cell element; a solar cell preformed on the surface of a substrate such as glass.
  • the element is configured as a substrate / solar cell element / sealing material / protective material; a solar cell element formed on the inner peripheral surface of the substrate, for example, an amorphous solar cell element is sputtering on a fluororesin-based sheet or the like.
  • the protective material 4 is provided on the side opposite to the substrate 2 side of the solar cell module 1, that is, on the lower portion when the substrate 2 on which sunlight is incident is the upper portion of the solar cell module 1. Therefore, the protective material 4 is sometimes referred to as a lower protective material.
  • the solar cell element 3 examples include silicon-based devices such as single crystal silicon, polycrystalline silicon, and amorphous silicon, group III-V such as gallium-arsenide, copper-indium-selenium, copper-indium-gallium-selenium, and cadmium-tellur. Various solar cell elements such as II-VI group compound semiconductor devices can be used. In the solar cell module 1, a plurality of solar cell elements 3 are usually electrically connected in series via an interconnector 6.
  • the substrate 2 constituting the solar cell module 1 examples include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin.
  • the protective material 4 (lower protective material) is usually a single or multilayer sheet of a metal, various thermoplastic resin films, or the like.
  • Examples of the protective material 4 include single-layer or multi-layer sheets such as metals such as tin, aluminum and stainless steel, inorganic materials such as glass, polyester, inorganic vapor-deposited polyester, fluorine-containing resin and polyolefin.
  • the solar cell encapsulant of the present embodiment exhibits good adhesiveness to these substrates 2 or the protective material 4.
  • the method for manufacturing the solar cell module 1 is not particularly limited, and examples thereof include the following methods. First, a plurality of solar cell elements 3 electrically connected using an interconnector 6 are sandwiched between solar cell encapsulants, and these solar cell encapsulants are further sandwiched between a substrate 2 and a protective material 4 to prepare a laminate. do. Next, the laminate is heated and pressurized to bond the members together. By doing so, the solar cell module 1 can be obtained.
  • the resin composition of the present embodiment is used to manufacture a solar cell encapsulant, and the solar cell encapsulant is used to enclose a solar cell element to manufacture a solar cell module. Said to do.
  • the resin composition of the present embodiment can be applied to various uses other than the sealing of solar cells. For example, it is also possible to manufacture a resin sheet for a laminated glass interlayer using the resin composition of the present embodiment, or to manufacture a laminated glass using the resin sheet for a laminated glass interlayer.
  • the resin sheet for the laminated glass interlayer film may have a single-layer structure or a multi-layer structure of two or more layers.
  • the specific embodiment of the multi-layer structure can be the same as the above-mentioned mode when the solar cell encapsulant has a multi-layer structure.
  • the thickness of the resin sheet for the laminated glass interlayer film can be about the same as that of the above-mentioned solar cell encapsulant.
  • the method for manufacturing the resin sheet for the laminated glass interlayer film the same manufacturing method as the above-mentioned solar cell encapsulant can be adopted.
  • a transparent plate provided on at least one surface of the laminated glass interlayer and the laminated glass interlayer by contacting the resin sheet for the laminated glass interlayer and the transparent plate-shaped member to heat and pressurize the laminated glass interlayer. It is possible to manufacture a laminated glass provided with a shaped member. More specifically, a laminated glass can be manufactured by sandwiching a resin sheet for a laminated glass interlayer film between two transparent plate-shaped members and then heating and pressurizing the resin sheet.
  • the transparent plate-shaped member that can be used is not particularly limited.
  • a commonly used transparent plate glass can be mentioned.
  • Specific examples thereof include float plate glass, polished plate glass, template glass, meshed plate glass, lined plate glass, colored plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, and inorganic glass such as green glass.
  • an organic plastic plate such as a polycarbonate plate, a poly (meth) acrylate plate, a polymethyl (meth) acrylate plate, a polystyrene plate, a cyclic polyolefin plate, a polyethylene terephthalate plate, a polyethylene naphthalate plate, or a polyethylene butyrate plate.
  • the transparent plate-shaped member may be subjected to surface treatment such as corona treatment, plasma treatment, and frame treatment.
  • a laminated glass body was obtained (a five-layer structure of a laminated glass body: a glass plate-a release film-a film (crosslinked film) -a release film-a glass plate).
  • a dynamic viscoelasticity measuring device MCR302 manufactured by Anton Pearl Co., Ltd.
  • the shear modulus at a temperature of 3 ° C./min, a frequency of 1 Hz, and a shear modulus of ⁇ 60 ° C. to 150 ° C. in a shear mode was measured under a nitrogen atmosphere.
  • the temperature at which the value of the shear storage elastic modulus (G') and the value of the shear loss elastic modulus (G ") are equal is defined as the crossover temperature.
  • the laminated glass sample was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C. Then, one of the obtained laminated glasses was fixed so that the other glass could be freely displaced. Then, after attaching a weight of 400 g to the freely displaceable glass, it was put into a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 105 ° C. The displacement length of the glass after 200 hours of charging was measured. When the displacement length reaches 8 cm or more, the load attached to the test piece comes into contact with the bottom surface of the oven, so measurement is not possible.
  • a circulation type high temperature dryer manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F
  • the film composed of the resin compositions obtained in the examples and comparative examples described below was cut into a size of 120 mm ⁇ 75 mm ⁇ 0.4 mm. Next, the obtained film was sandwiched between 120 mm ⁇ 75 mm ⁇ 3.2 mm white plate glass (haze 0.2% or less, total light transmittance 92% or more), and vacuum-held at 150 ° C. for 3 minutes with a vacuum laminator. Pressing was performed at 1 MPa (gauge pressure) for 5 minutes to obtain a laminated glass.
  • the laminated glass sample was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C.
  • the haze of the obtained laminated glass was measured according to JIS K 7136: 2000. Further, the total light transmittance of the obtained laminated glass was measured by a haze meter (manufactured by Suga Test Instruments Co., Ltd., product name: haze meter HZ-V3) according to JIS K 7631-1: 1997.
  • a film having a size of 120 mm ⁇ 75 mm ⁇ 0.4 mm composed of the resin compositions obtained in the examples and comparative examples described later was obtained.
  • the obtained film was laminated on the tin surface of a glass plate having a size of 120 mm ⁇ 75 mm ⁇ 3.9 mm, vacuum-held at 160 ° C. for 690 seconds with a vacuum laminator, and pressed at 0.06 MPa (gauge pressure) for 15 minutes.
  • 0.06 MPa gauge pressure
  • the laminated glass sample was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C.
  • the bonded film was cut into strips having a width of 15 mm, and then the film was separated from the glass plate at a pulling speed of 100 mm / min at a peel angle of 180 °.
  • the maximum peeling force at this time was calculated as the adhesive strength (N / 15 mm) with respect to the glass plate.
  • Resin-A Ethylene / methacrylic acid copolymer (ethylene content: 80% by mass, methacrylic acid content: 20% by mass) zinc ionomer (neutralization degree: 40%, MFR (JIS K 7210: 1999) compliant , 190 °C, measured under the condition of 2160g load): 1.3g / 10 minutes)
  • Resin-B Ethylene / methacrylic acid copolymer (ethylene content: 80% by mass, methacrylic acid content: 20% by mass, MFR (measured according to JIS K 7210: 1999, measured at 190 ° C. and 2160 g load)) : 500g / 10 minutes)
  • Crosslinking aid (Triallyl Isocyanurate, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Silane coupling agent-A 3-methacryloxypropylmethyldiethoxysilane (trade name: KBM502, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Silane coupling agent-B N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (trade name: KBM602, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Extrusion molding was performed at a T-die outlet resin temperature of 120 ° C. and a processing speed of 1.3 to 1.9 m / min. As a result, a sheet-shaped resin molded product (solar cell encapsulant) having a thickness of 0.4 mm was obtained.
  • Table 1 summarizes the composition and evaluation results of each composition.
  • the unit (phr) of the blending amount of magnesium stearate and Luperox 101, TAIC, silane coupling agent-A and silane coupling agent-B was 100 parts by mass in total of resin-A and resin-B. It means the mass part of time.
  • the "neutralization degree” represents the neutralization degree of the above-mentioned kneaded product of resin-A, resin-B and magnesium stearate.
  • MFR represents the melt mass flow rate measured under the conditions of 190 ° C. and 2160 g load according to JIS K 7210: 1999 of the resin composition.
  • the resin compositions of Examples 1 and 2 were used, and the performance balance of transparency, creep resistance and interlayer adhesion was excellent. On the other hand, the resin compositions of Comparative Examples 1 to 3 were inferior in the performance balance of transparency, creep resistance and interlayer adhesion.

Abstract

A resin composition that comprises: (A) an ionomer of an ethylene-unsaturated carboxylic acid-based copolymer; (B) at least one kind of lubricant selected from the group consisting of a fatty acid and a fatty acid metal salt; (C) an organic peroxide; and (D) a silane coupling agent. A solar cell encapsulant that comprises a layer formed of the resin composition.

Description

樹脂組成物、樹脂組成物の製造方法、太陽電池封止材、太陽電池封止材の製造方法、太陽電池モジュール、合わせガラス中間膜用樹脂シートおよび合わせガラスResin composition, manufacturing method of resin composition, solar cell encapsulant, manufacturing method of solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass
 本発明は、樹脂組成物、樹脂組成物の製造方法、太陽電池封止材、太陽電池封止材の製造方法、太陽電池モジュール、合わせガラス中間膜用樹脂シートおよび合わせガラスに関する。 The present invention relates to a resin composition, a method for producing a resin composition, a solar cell encapsulant, a method for producing a solar cell encapsulant, a solar cell module, a resin sheet for a laminated glass interlayer film, and a laminated glass.
 近年、クリーンなエネルギーとして太陽光発電の普及が進んでいる。太陽光発電においては、通常、シリコンセル等の半導体(太陽電池素子)を用いて太陽光エネルギーを電気エネルギーに変換する。太陽電池素子の長期信頼を図るため、太陽電池素子を封止材で挟み、太陽電池素子を保護し、太陽電池素子への異物の混入や水分等の侵入を防いでいる。 In recent years, photovoltaic power generation has become widespread as a clean energy source. In photovoltaic power generation, a semiconductor (solar cell element) such as a silicon cell is usually used to convert solar energy into electrical energy. In order to ensure long-term reliability of the solar cell element, the solar cell element is sandwiched between sealing materials to protect the solar cell element and prevent foreign matter from entering the solar cell element and moisture from entering the solar cell element.
 太陽電池封止材に関する技術としては、例えば、特許文献1~3に記載のものが挙げられる。 Examples of the technology related to the solar cell encapsulant include those described in Patent Documents 1 to 3.
 特許文献1には、エチレン-酢酸ビニル共重合体及びエチレン-脂肪族不飽和カルボン酸共重合体から選ばれる少なくとも1種の樹脂(A)と、上記樹脂(A)及びエチレン-脂肪族不飽和カルボン酸エステル共重合体以外の熱可塑性の樹脂(B)と、を含有する樹脂シートであって、上記樹脂(A)は、メルトフローレートの値が0.3g~30gであり、上記樹脂(B)からなる内層と、上記内層に積層された上記樹脂(A)からなる表面層と、を備える太陽電池封止樹脂シートが記載されている。 Patent Document 1 describes at least one resin (A) selected from an ethylene-vinyl acetate copolymer and an ethylene-aliphatic unsaturated carboxylic acid copolymer, and the above resin (A) and an ethylene-aliphatic unsaturated compound. A resin sheet containing a thermoplastic resin (B) other than a carboxylic acid ester copolymer, wherein the resin (A) has a melt flow rate value of 0.3 g to 30 g, and the above resin ( A solar cell encapsulating resin sheet including an inner layer made of B) and a surface layer made of the resin (A) laminated on the inner layer is described.
 特許文献2には、樹脂を軟化させて密着させる太陽電池用樹脂封止シートであって、上記樹脂封止シートが、エチレン-酢酸ビニル共重合体、エチレン-脂肪族不飽和カルボン酸共重合体およびエチレン-脂肪族不飽和カルボン酸エステル共重合体からなる群より選ばれる少なくとも1種類の電離性放射線架橋型樹脂を含み、上記電離性放射線架橋型樹脂に電離性放射線を照射することによりゲル分率を2~65質量%とし、90℃での熱収縮率が15%以下である太陽電池用樹脂封止シートが記載されている。 Patent Document 2 describes a resin encapsulating sheet for solar cells that softens and adheres the resin, and the resin encapsulating sheet is an ethylene-vinyl acetate copolymer or an ethylene-aliphatic unsaturated carboxylic acid copolymer. It contains at least one type of ionizing radiation crosslinked resin selected from the group consisting of ethylene-aliphatic unsaturated carboxylic acid ester copolymers, and the gel content is obtained by irradiating the ionized radiation crosslinked resin with ionizing radiation. A resin encapsulating sheet for a solar cell having a ratio of 2 to 65% by mass and a heat shrinkage at 90 ° C. of 15% or less is described.
 特許文献3には、表面保護層、太陽電池セル、裏面保護層、ポリビニルアセタール樹脂層及び第二の樹脂層が積層され、ポリビニルアセタール樹脂層中のポリビニルアセタール100質量部に対する可塑剤の含有量が20質量部以下であり、ポリビニルアセタール樹脂層の厚さが600μm以下であり、ポリビニルアセタール樹脂層が太陽電池セルの少なくとも一面と接するように配置され、第二の樹脂層が表面保護層と裏面保護層との少なくとも一方と接するように配置されている太陽電池モジュールが記載されている。 In Patent Document 3, a front surface protective layer, a solar cell, a back surface protective layer, a polyvinyl acetal resin layer and a second resin layer are laminated, and the content of the plasticizer in 100 parts by mass of polyvinyl acetal in the polyvinyl acetal resin layer is 20 parts by mass or less, the thickness of the polyvinyl acetal resin layer is 600 μm or less, the polyvinyl acetal resin layer is arranged so as to be in contact with at least one surface of the solar cell, and the second resin layer protects the front surface and the back surface. A solar cell module is described that is arranged so as to be in contact with at least one of the layers.
特開2014-95083号公報Japanese Unexamined Patent Publication No. 2014-95083 特開2013-177506号公報Japanese Unexamined Patent Publication No. 2013-177506 特開2015-8285号公報Japanese Unexamined Patent Publication No. 2015-8285
 太陽電池素子を封止する太陽電池封止材は、太陽電池素子の保護材として機能するものであるので、太陽光によりモジュール温度が高くなったとしても流動しにくい耐クリープ性が求められる。
 また、太陽電池の変換効率を低下させないために、太陽電池封止材には、透明性(光線透過性)が高いことが求められる。
 さらに、太陽電池封止材は、太陽電池素子を「封止」するものである以上、太陽電池素子と十分強く接着することが求められる。
Since the solar cell encapsulant that encloses the solar cell element functions as a protective material for the solar cell element, it is required to have creep resistance that does not easily flow even if the module temperature rises due to sunlight.
Further, in order not to reduce the conversion efficiency of the solar cell, the solar cell encapsulant is required to have high transparency (light transmittance).
Further, the solar cell encapsulant is required to adhere sufficiently strongly to the solar cell element as long as it "seals" the solar cell element.
 近年、太陽電池封止材の各種特性について要求される技術水準は、ますます高くなっている。
 従来の熱可塑性太陽電池封止材には、良好な耐クリープ性、透明性および接着性の点で改善の余地があった。特に、これら3性能については、1つの性能を向上させようとすると他の性能が低下する場合があった。例えば、熱可塑性樹脂の融点を高く設計して耐クリープ性を改善した場合、透明性が悪化してしまったり、接着性が低下してしまったりする場合があった。すなわち、耐クリープ性、透明性および接着性の3性能をバランスよく向上させるという点で改善の余地があった。
In recent years, the technical level required for various characteristics of solar cell encapsulants has become higher and higher.
Conventional thermoplastic solar cell encapsulants have room for improvement in terms of good creep resistance, transparency and adhesiveness. In particular, with regard to these three performances, if one attempt is made to improve the performance, the other performance may be deteriorated. For example, when the melting point of the thermoplastic resin is designed to be high and the creep resistance is improved, the transparency may be deteriorated or the adhesiveness may be deteriorated. That is, there is room for improvement in that the three performances of creep resistance, transparency and adhesiveness are improved in a well-balanced manner.
 本発明は上記事情に鑑みてなされたものである。本発明の目的の1つは、耐クリープ性、透明性および接着性に優れた太陽電池封止材を得ることである。また、本発明の目的の1つは、そのような太陽電池封止材を形成することが可能な樹脂組成物を提供することである。 The present invention has been made in view of the above circumstances. One of the objects of the present invention is to obtain a solar cell encapsulant having excellent creep resistance, transparency and adhesiveness. Further, one of the objects of the present invention is to provide a resin composition capable of forming such a solar cell encapsulant.
 本発明者らは、上記課題を達成するために鋭意検討を重ねた。その結果、エチレン・不飽和カルボン酸系共重合体のアイオノマーと、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤と、有機過酸化物と、シランカップリング剤と、を含む樹脂組成物を用いて太陽電池封止材を製造することで、上記3性能をバランスよく向上させることができた。 The present inventors have made extensive studies in order to achieve the above-mentioned problems. As a result, a resin composition containing an ionomer of an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant selected from the group consisting of fatty acids and fatty acid metal salts, an organic peroxide, and a silane coupling agent. By manufacturing a solar cell encapsulant using a material, the above three performances could be improved in a well-balanced manner.
 本発明は、以下である。 The present invention is as follows.
1.
 エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)と、有機過酸化物(C)と、シランカップリング剤(D)とを含む樹脂組成物。
2.
 1.に記載の樹脂組成物であって、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)が含む金属イオンが、リチウムイオン、カリウムイオン、ナトリウムイオン、銀イオン、銅イオン、カルシウムイオン、マグネシウムイオン、亜鉛イオン、アルミニウムイオン、バリウムイオン、ベリリウムイオン、ストロンチウムイオン、錫イオン、鉛イオン、鉄イオン、コバルトイオンおよびニッケルイオンからなる群から選択される2種以上を含む樹脂組成物。
3. 
 1.または2.に記載の樹脂組成物であって、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)が含む金属イオンは、第1金属イオンおよび前記第1金属イオンとは異なる第2金属イオンを含み、
 前記第1金属イオンは、亜鉛イオン、銅イオン、鉄イオン、アルミニウムイオン、銀イオン、コバルトイオンおよびニッケルイオンからなる群から選択される少なくとも一種の金属イオンを含み、
 前記第2金属イオンは、ナトリウムイオン、リチウムイオン、カリウムイオンおよびマグネシウムイオンからなる群から選択される少なくとも一種の金属イオンを含む樹脂組成物。
4. 
 3.に記載の樹脂組成物であって、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)中の、前記第1金属イオンのモル数を価数で乗じた値に対する前記第2金属イオンのモル数を価数で乗じた値の比が0.10以上10.0以下である樹脂組成物。
5.
 1.~4.のいずれか一つに記載の樹脂組成物であって、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)において、前記エチレン・不飽和カルボン酸系共重合体を構成する構成単位の全体を100質量%としたとき、不飽和カルボン酸から導かれる構成単位が5質量%以上35質量%以下である樹脂組成物。
6.
 1.~5.のいずれか一つに記載の樹脂組成物であって、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)の中和度が5%以上95%以下である樹脂組成物。
7.
 1.~6.のいずれか一つに記載の樹脂組成物であって、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)100質量部に対する前記滑剤(B)の量が1質量部以上20質量部以下である樹脂組成物。
8.
 1.~7.のいずれか一つに記載の樹脂組成物であって、
 前記滑剤(B)は、炭素数12以上36以下の脂肪酸であるか、または、炭素数12以上36以下の脂肪酸の金属塩である樹脂組成物。
9.
 1.~8.のいずれか一つに記載の樹脂組成物であって、
 前記滑剤(B)は、炭素数12以上36以下の脂肪酸の金属塩を含み、
 前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)の少なくとも一部のカルボキシ基が、前記滑剤(B)が含む炭素数12以上36以下の脂肪酸の金属塩を構成する金属の少なくとも一部で中和されている樹脂組成物。
10.
 1.~9.のいずれか一つに記載の樹脂組成物であって、
 前記シランカップリング剤(D)が、重合性炭素-炭素二重結合を含む基を有するシランカップリング剤を含む樹脂組成物。
11.
 1.~10.のいずれか一つに記載の樹脂組成物であって、
 前記有機過酸化物(C)の10時間半減期温度が100℃以上である樹脂組成物。
12.
 1.~11.のいずれか一つに記載の樹脂組成物であって、
 下記方法により測定されるクロスオーバー温度が150℃以上である樹脂組成物。
(方法)
 前記樹脂組成物により構成された120mm×75mm×0.4mmの膜を、剥離フィルムを介してガラス板間に積層し、真空ラミネーターにて160℃、690秒真空保持、0.06MPa(ゲージ圧)で15分間プレスを行い、合わせガラスを得る。次いで得られた前記合わせガラスを165℃で30分間熱処理することで合わせガラス体を得る。得られた前記合わせガラス体からガラス板及び剥離フィルムを除去して得られる膜を試料として、昇温速度3℃/min、周波数1Hz、ずりモードで-60℃から150℃のせん断弾性率を窒素雰囲気下で測定する。せん断貯蔵弾性率(G')の値とせん断損失弾性率(G")の値とが等しくなる温度をクロスオーバー温度とする。
13.
 1.~12.のいずれか一つに記載の樹脂組成物であって、
 太陽電池封止材の形成用である樹脂組成物。
14.
 1.~13.のいずれか一つに記載の樹脂組成物の製造方法であって、
 エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)と、を混合することにより混合物を得る工程と、
 前記工程の後に、前記混合物と、有機過酸化物(C)と、シランカップリング剤(D)と、を混合する工程と、
を含む樹脂組成物の製造方法。
15.
 1.~13.のいずれか一つに記載の樹脂組成物により構成された層を含む太陽電池封止材。
16.
 1.~13.のいずれか一つに記載の樹脂組成物の加熱溶融物を、Tダイを備えた押出機の前記Tダイから押し出してシート状に成形する押出成形工程を含む太陽電池封止材の製造方法。
17.
 16.に記載の太陽電池封止材の製造方法であって、
 前記押出成形工程において、前記Tダイの出口における前記加熱溶融物の温度が140℃以下である太陽電池封止材の製造方法。
18.
 太陽電池素子と、
 15.に記載の太陽電池封止材により形成された、前記太陽電池素子を封止する封止樹脂層と、
を備える太陽電池モジュール。
19.
 1.~12.のいずれか一つに記載の樹脂組成物であって、
 合わせガラスの中間膜を形成するために用いられる樹脂組成物。
20.
 19.に記載の樹脂組成物により形成された膜を含む、合わせガラス中間膜用樹脂シート。
21.
 20.に記載の合わせガラス中間膜用樹脂シートにより形成された合わせガラス中間膜と、
 前記合わせガラス中間膜の少なくとも一方の面上に設けられた透明板状部材と、を備える合わせガラス。
1. 1.
Ionomer (A), an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts, organic peroxides (C), and silane coupling agents. A resin composition containing (D).
2. 2.
1. 1. The resin composition according to the above.
The metal ions contained in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer are lithium ion, potassium ion, sodium ion, silver ion, copper ion, calcium ion, magnesium ion, zinc ion, aluminum ion, and barium. A resin composition containing two or more selected from the group consisting of ions, beryllium ions, strontium ions, tin ions, lead ions, iron ions, cobalt ions and nickel ions.
3. 3.
1. 1. Or 2. The resin composition according to the above.
The metal ion contained in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer contains a first metal ion and a second metal ion different from the first metal ion.
The first metal ion contains at least one metal ion selected from the group consisting of zinc ion, copper ion, iron ion, aluminum ion, silver ion, cobalt ion and nickel ion.
The second metal ion is a resin composition containing at least one metal ion selected from the group consisting of sodium ion, lithium ion, potassium ion and magnesium ion.
4.
3. 3. The resin composition according to the above.
A value obtained by multiplying the value obtained by multiplying the number of moles of the first metal ion by the valence in the ionomer (A) of the ethylene / unsaturated carboxylic acid polymer by the number of moles of the second metal ion by the valence. A resin composition having a ratio of 0.10 or more and 10.0 or less.
5.
1. 1. ~ 4. The resin composition according to any one of the above.
In the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer, when the total number of the constituent units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass, it is derived from the unsaturated carboxylic acid. A resin composition having a constituent unit of 5% by mass or more and 35% by mass or less.
6.
1. 1. ~ 5. The resin composition according to any one of the above.
A resin composition having a neutralization degree of ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer of 5% or more and 95% or less.
7.
1. 1. ~ 6. The resin composition according to any one of the above.
A resin composition in which the amount of the lubricant (B) is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer.
8.
1. 1. ~ 7. The resin composition according to any one of the above.
The lubricant (B) is a resin composition which is a fatty acid having 12 or more and 36 or less carbon atoms or a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
9.
1. 1. ~ 8. The resin composition according to any one of the above.
The lubricant (B) contains a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
At least a part of the carboxy group of the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer is at least one of the metals constituting the metal salt of the fatty acid having 12 or more and 36 or less carbon atoms contained in the lubricant (B). A resin composition that is neutralized in the part.
10.
1. 1. ~ 9. The resin composition according to any one of the above.
A resin composition in which the silane coupling agent (D) contains a silane coupling agent having a group containing a polymerizable carbon-carbon double bond.
11.
1. 1. ~ 10. The resin composition according to any one of the above.
A resin composition having a 10-hour half-life temperature of the organic peroxide (C) of 100 ° C. or higher.
12.
1. 1. ~ 11. The resin composition according to any one of the above.
A resin composition having a crossover temperature of 150 ° C. or higher measured by the following method.
(Method)
A film of 120 mm × 75 mm × 0.4 mm composed of the resin composition was laminated between glass plates via a release film, and was held in a vacuum laminator at 160 ° C. for 690 seconds, 0.06 MPa (gauge pressure). Press for 15 minutes to obtain a laminated glass. Next, the obtained laminated glass is heat-treated at 165 ° C. for 30 minutes to obtain a laminated glass body. Using the film obtained by removing the glass plate and the release film from the obtained laminated glass as a sample, the shear modulus at a heating rate of 3 ° C./min, a frequency of 1 Hz, and a shear modulus of -60 ° C to 150 ° C in a shear mode is nitrogen. Measure in an atmosphere. The temperature at which the value of the shear storage elastic modulus (G') and the value of the shear loss elastic modulus (G ") are equal is defined as the crossover temperature.
13.
1. 1. ~ 12. The resin composition according to any one of the above.
A resin composition for forming a solar cell encapsulant.
14.
1. 1. ~ 13. The method for producing a resin composition according to any one of the above.
A step of obtaining a mixture by mixing an ionomer (A) of an ethylene / unsaturated carboxylic acid-based copolymer and at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts.
After the step, the step of mixing the mixture, the organic peroxide (C), and the silane coupling agent (D),
A method for producing a resin composition containing.
15.
1. 1. ~ 13. A solar cell encapsulant containing a layer composed of the resin composition according to any one of the above.
16.
1. 1. ~ 13. A method for producing a solar cell encapsulant, which comprises an extrusion molding step of extruding the heated melt of the resin composition according to any one of the above from the T die of an extruder equipped with a T die into a sheet.
17.
16. The method for manufacturing a solar cell encapsulant according to the above.
A method for producing a solar cell encapsulant in which the temperature of the heated melt at the outlet of the T die is 140 ° C. or lower in the extrusion molding step.
18.
With solar cell elements
15. The encapsulating resin layer for encapsulating the solar cell element, which is formed by the solar cell encapsulant according to the above.
A solar cell module equipped with.
19.
1. 1. ~ 12. The resin composition according to any one of the above.
A resin composition used to form an interlayer film of laminated glass.
20.
19. A resin sheet for a laminated glass interlayer film, which comprises a film formed by the resin composition according to 1.
21.
20. The laminated glass interlayer film formed by the resin sheet for the laminated glass interlayer film described in 1.
A laminated glass comprising a transparent plate-like member provided on at least one surface of the laminated glass interlayer film.
 本発明によれば、耐クリープ性、透明性および接着性に優れた太陽電池封止材が提供される。また、本発明によれば、そのような太陽電池封止材を形成することが可能な樹脂組成物が提供される。
 ちなみに、本発明の樹脂組成物は、太陽電池封止材の形成用途に好ましく適用されるが、それ以外の用途、例えば、合わせガラスの中間膜の製造用途などにも適用可能である。
INDUSTRIAL APPLICABILITY According to the present invention, a solar cell encapsulant having excellent creep resistance, transparency and adhesiveness is provided. Further, according to the present invention, there is provided a resin composition capable of forming such a solar cell encapsulant.
Incidentally, the resin composition of the present invention is preferably applied to the use for forming a solar cell encapsulant, but can also be applied to other uses, for example, the use for producing an interlayer film of laminated glass.
太陽電池モジュールの構造の一例を模式的に示した図(断面図)である。It is a figure (cross-sectional view) schematically showing an example of the structure of a solar cell module.
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合がある。
 図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate.
In order to avoid complication, when there are a plurality of the same components in the same drawing, only one of them may be coded and all of them may not be coded.
The drawings are for illustration purposes only. The shape and dimensional ratio of each member in the drawing do not necessarily correspond to the actual article.
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。例えば、ある指標Xについて「好ましくはx1以上y1以下、より好ましくはx2以上y2以下」との記載がある場合、Xはx1以上y2以下であることができるし、x2以上y1以下であることもできる。
 また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。ある指標Xについて、明細書中には好ましくはx以上y以下と記載され、実施例でのXの値はzである場合、Xは、x以上z以下でもよく、また、z以上y以下であってもよい。
The notation "(meth) acrylic" herein represents a concept that includes both acrylic and methacrylic. The same applies to similar notations such as "(meth) acrylate".
In the numerical range described in the present specification stepwise, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. For example, when there is a description of "preferably x1 or more and y1 or less, more preferably x2 or more and y2 or less" for a certain index X, X can be x1 or more and y2 or less, or x2 or more and y1 or less. can.
Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. For a certain index X, it is preferably described as x or more and y or less in the specification, and when the value of X in the embodiment is z, X may be x or more and z or less, and z or more and y or less. There may be.
<樹脂組成物>
 本実施形態の樹脂組成物は、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)と、有機過酸化物(C)と、シランカップリング剤(D)とを含む。
<Resin composition>
The resin composition of the present embodiment contains an ionomer (A), which is an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts, and organic peroxides. (C) and a silane coupling agent (D) are included.
 本実施形態の樹脂組成物は、比較的反応性が高い有機過酸化物(C)を含むことにより、太陽電池素子の封止の際の加熱において、アイオノマー(A)と、滑剤(B)と、シランカップリング剤(D)との分子鎖間に架橋反応が進行して架橋構造が形成されるため、樹脂組成物の流動が抑制されると考えられる。このことが良好な耐クリープ性や接着性に関係していると推測される。 By containing the organic peroxide (C) having a relatively high reactivity, the resin composition of the present embodiment contains the ionomer (A) and the lubricant (B) in heating at the time of sealing the solar cell element. It is considered that the flow of the resin composition is suppressed because the cross-linking reaction proceeds between the molecular chains with the silane coupling agent (D) to form a cross-linked structure. It is presumed that this is related to good creep resistance and adhesiveness.
 一方、本実施形態の樹脂組成物は、滑剤(B)を含むことにより、アイオノマー(A)中の金属イオンが凝集して形成する構造の緩和が促進されるため、有機過酸化物が分解しない比較的低温でシート状の太陽電池封止材に成形加工することが可能となる。これにより、樹脂組成物をシート状の太陽電池封止材とした後であって、その太陽電池封止材を用いて太陽電池素子を封止する前においては、有機過酸化物(C)が反応して望ましくない架橋構造が形成されることが抑えられると推測される。
 成形加工時に架橋反応が進行すると、架橋反応が不均一に進行しやすいため、透明性やシート外観、接着性、太陽電池素子の封止の点では不利となりやすい。しかし、本実施形態においては成形加工時の架橋反応が十分に抑えられるため、透明性やシート外観、接着性、太陽電池素子の封止が良好となると推測される。
On the other hand, since the resin composition of the present embodiment contains the lubricant (B), the relaxation of the structure formed by the aggregation of the metal ions in the ionomer (A) is promoted, so that the organic peroxide does not decompose. It can be molded into a sheet-shaped solar cell encapsulant at a relatively low temperature. Thereby, after the resin composition is made into a sheet-shaped solar cell encapsulant and before the solar cell element is encapsulated by the solar cell encapsulant, the organic peroxide (C) is formed. It is presumed that the reaction is suppressed from forming an undesired crosslinked structure.
If the cross-linking reaction proceeds during the molding process, the cross-linking reaction tends to proceed non-uniformly, which tends to be disadvantageous in terms of transparency, sheet appearance, adhesiveness, and sealing of the solar cell element. However, in the present embodiment, since the cross-linking reaction during the molding process is sufficiently suppressed, it is presumed that the transparency, the appearance of the sheet, the adhesiveness, and the sealing of the solar cell element are improved.
 本実施形態の樹脂組成物の含有成分、性状、物性などについて説明を続ける。 The explanation of the components, properties, physical properties, etc. of the resin composition of the present embodiment will be continued.
(エチレン・不飽和カルボン酸系共重合体のアイオノマー(A))
 本実施形態の樹脂組成物は、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)を含む。以下では、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)を、単に「アイオノマー(A)」とも表記することがある。
(Ionomer (A) of ethylene / unsaturated carboxylic acid-based copolymer)
The resin composition of the present embodiment contains an ionomer (A) of an ethylene / unsaturated carboxylic acid-based copolymer. In the following, the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer may be simply referred to as “ionomer (A)”.
 アイオノマー(A)は、典型的には、エチレンと、不飽和カルボン酸の少なくとも1種とを共重合した重合体に対し、カルボキシ基の少なくとも一部を金属イオンで中和した樹脂である。エチレン・不飽和カルボン酸系共重合体としては、エチレンと不飽和カルボン酸との共重合体や、エチレンと不飽和カルボン酸と不飽和カルボン酸エステルとの共重合体等を例示することができる。 The ionomer (A) is typically a resin obtained by neutralizing at least a part of carboxy groups with a metal ion to a polymer obtained by copolymerizing ethylene and at least one unsaturated carboxylic acid. Examples of the ethylene / unsaturated carboxylic acid-based copolymer include a copolymer of ethylene and an unsaturated carboxylic acid, a copolymer of ethylene, an unsaturated carboxylic acid, and an unsaturated carboxylic acid ester, and the like. ..
 不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、2-エチルアクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、無水マレイン酸、無水フマル酸、無水イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル等が挙げられる。これらの中でも、エチレン・不飽和カルボン酸系共重合体の生産性や衛生性等の観点から、アクリル酸および/またはメタクリル酸が好ましい。
 不飽和カルボン酸は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、1または2以上のエチレン・不飽和カルボン酸系共重合体のアイオノマーに、さらにアクリル酸やメタクリル酸等の不飽和カルボン酸を構成単位として含有するエチレン・不飽和カルボン酸系共重合体を加えて、アイオノマー(A)とすることもできる。
Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, 2-ethylacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, maleic anhydride, fumaric anhydride, itaconic anhydride, monomethyl maleate, and maleic acid. Examples thereof include monoethyl acid. Among these, acrylic acid and / or methacrylic acid is preferable from the viewpoint of productivity, hygiene and the like of the ethylene / unsaturated carboxylic acid-based copolymer.
The unsaturated carboxylic acid may be used alone or in combination of two or more.
Further, an ethylene / unsaturated carboxylic acid-based copolymer containing one or two or more ethylene / unsaturated carboxylic acid-based copolymers and an unsaturated carboxylic acid such as acrylic acid or methacrylic acid as a constituent unit is further added. In addition, it can be an ionomer (A).
 特に好ましいエチレン・不飽和カルボン酸系共重合体は、エチレン・(メタ)アクリル酸共重合体およびエチレン・(メタ)アクリル酸・(メタ)アクリル酸エステル共重合体である。 Particularly preferable ethylene / unsaturated carboxylic acid-based copolymers are ethylene / (meth) acrylic acid copolymer and ethylene / (meth) acrylic acid / (meth) acrylic acid ester copolymer.
 アイオノマー(A)において、エチレン・不飽和カルボン酸系共重合体を構成する構成単位の全体を100質量%としたとき、エチレンから導かれる構成単位は、好ましくは65質量%以上95質量%以下、より好ましくは65質量%以上90質量%以下、さらに好ましくは65質量%以上85質量%以下である。エチレンから導かれる構成単位が上記下限値以上であると、得られる太陽電池封止材の耐熱性や機械的強度、耐水性、加工性等をより良好にすることができる。また、エチレンから導かれる構成単位が上記上限値以下であると、得られる太陽電池封止材の透明性や柔軟性、接着性等をより良好にすることができる。 In the ionomer (A), when the total amount of the structural units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass, the structural unit derived from ethylene is preferably 65% by mass or more and 95% by mass or less. It is more preferably 65% by mass or more and 90% by mass or less, and further preferably 65% by mass or more and 85% by mass or less. When the structural unit derived from ethylene is at least the above lower limit value, the heat resistance, mechanical strength, water resistance, processability, etc. of the obtained solar cell encapsulant can be further improved. Further, when the structural unit derived from ethylene is not more than the above upper limit value, the transparency, flexibility, adhesiveness and the like of the obtained solar cell encapsulant can be further improved.
 アイオノマー(A)において、エチレン・不飽和カルボン酸系共重合体を構成する構成単位の全体を100質量%としたとき、不飽和カルボン酸から導かれる構成単位は、好ましくは5質量%以上35質量%以下、より好ましくは10質量%以上30質量%以下、さらに好ましくは15質量%以上25質量%以下である。不飽和カルボン酸から導かれる構成単位が上記下限値以上であると、得られる太陽電池封止材の透明性や柔軟性、接着性等をより良好にすることができる。また、不飽和カルボン酸から導かれる構成単位が上記上限値以下であると、得られる太陽電池封止材の耐熱性や機械的強度、耐水性、加工性等をより良好にすることができる。 In the ionomer (A), when the total amount of the structural units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass, the structural unit derived from the unsaturated carboxylic acid is preferably 5% by mass or more and 35% by mass. % Or less, more preferably 10% by mass or more and 30% by mass or less, still more preferably 15% by mass or more and 25% by mass or less. When the structural unit derived from the unsaturated carboxylic acid is at least the above lower limit value, the transparency, flexibility, adhesiveness, etc. of the obtained solar cell encapsulant can be further improved. Further, when the structural unit derived from the unsaturated carboxylic acid is not more than the above upper limit value, the heat resistance, mechanical strength, water resistance, processability and the like of the obtained solar cell encapsulant can be further improved.
 アイオノマー(A)には、エチレン・不飽和カルボン酸系共重合体を構成する構成単位の全体を100質量%としたとき、好ましくは0質量%以上30質量%以下、より好ましくは0質量%以上25質量%以下のその他の共重合性モノマーから導かれる構成単位が含まれていてもよい。その他の共重合性モノマーとしては不飽和エステル、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル等の不飽和カルボン酸エステル等が挙げられる。その他の共重合体モノマーから導かれる構成単位が上記範囲内で含まれていると、得られる太陽電池封止材の柔軟性が向上する点で好ましい。 The ionomer (A) is preferably 0% by mass or more and 30% by mass or less, more preferably 0% by mass or more, when the total amount of the constituent units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass. It may contain structural units derived from other copolymerizable monomers of 25% by weight or less. Other copolymerizable monomers include unsaturated esters such as vinyl acetate, vinyl esters such as vinyl propionate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) acrylic. Examples thereof include unsaturated carboxylic acid esters such as isobutyl acid, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. When the structural unit derived from the other copolymer monomer is contained within the above range, it is preferable in that the flexibility of the obtained solar cell encapsulant is improved.
 アイオノマー(A)を構成する金属イオンとしては、例えば、リチウムイオン、カリウムイオン、ナトリウムイオン、銀イオン、銅イオン、カルシウムイオン、マグネシウムイオン、亜鉛イオン、アルミニウムイオン、バリウムイオン、ベリリウムイオン、ストロンチウムイオン、錫イオン、鉛イオン、鉄イオン、コバルトイオンおよびニッケルイオンからなる群から選択される1種または2種以上を挙げることができる。 Examples of the metal ions constituting the ionomer (A) include lithium ion, potassium ion, sodium ion, silver ion, copper ion, calcium ion, magnesium ion, zinc ion, aluminum ion, barium ion, beryllium ion, and strontium ion. One or more selected from the group consisting of tin ion, lead ion, iron ion, cobalt ion and nickel ion can be mentioned.
 好ましくは、アイオノマー(A)は、上記の群から選択される2種以上の金属イオンを含む。詳細は不明であるが、アイオノマー(A)が2種以上の金属イオンを含むことにより、架橋反応が系中で適度にランダムに進行する(局所的に過度に架橋反応が進行することが抑えられる)こととなると推測される。これにより、ゲルの発生を抑制することができ、その結果、太陽電池封止材の透明性が一層高まると考えられる。 Preferably, the ionomer (A) contains two or more metal ions selected from the above group. Although the details are unknown, the inclusion of two or more metal ions in the ionomer (A) causes the cross-linking reaction to proceed appropriately and randomly in the system (suppresses the excessive progress of the cross-linking reaction locally). ) It is presumed that it will be. As a result, the generation of gel can be suppressed, and as a result, the transparency of the solar cell encapsulant is considered to be further enhanced.
 より具体的には、アイオノマー(A)の構成は、以下の、第1金属イオンと、第1金属イオンとは異なる第2金属イオンと、を含むことが好ましい。
・第1金属イオン:亜鉛イオン、銅イオン、鉄イオン、アルミニウムイオン、銀イオン、コバルトイオンおよびニッケルイオンからなる群から選択される少なくとも一種の金属イオン
・第2金属イオン:ナトリウムイオン、リチウムイオン、カリウムイオンおよびマグネシウムイオンからなる群から選択される少なくとも一種の金属イオン
 ちなみに、特に好ましいアイオノマー(A)の構成としては、第1金属イオンとして亜鉛イオン、第2金属イオンとしてマグネシウムイオンを含む態様を挙げることができる。
More specifically, the composition of the ionomer (A) preferably contains the following first metal ion and a second metal ion different from the first metal ion.
-First metal ion: at least one metal ion selected from the group consisting of zinc ion, copper ion, iron ion, aluminum ion, silver ion, cobalt ion and nickel ion-Second metal ion: sodium ion, lithium ion, At least one metal ion selected from the group consisting of potassium ion and magnesium ion By the way, as a particularly preferable composition of the ionomer (A), an embodiment containing zinc ion as the first metal ion and magnesium ion as the second metal ion is mentioned. be able to.
 アイオノマー(A)が第1金属イオンおよび第2金属イオンの両方を含むことにより、意図しない架橋反応をより一層抑制でき、その結果、太陽電池封止材の加工性を向上させることができ、さらに、太陽電池封止材シート中に生成するゲルの発生を抑制することができ、その結果、太陽電池封止材の透明性および外観をより一層良好にすることができる。 Since the ionomer (A) contains both the first metal ion and the second metal ion, an unintended cross-linking reaction can be further suppressed, and as a result, the workability of the solar cell encapsulant can be improved, and further. , The generation of gel generated in the solar cell encapsulant sheet can be suppressed, and as a result, the transparency and appearance of the solar cell encapsulant can be further improved.
 アイオノマー(A)が第1金属イオンおよび第2金属イオンを含む場合、アイオノマー(A)中の第1金属イオンのモル数を価数で乗じた値に対する第2金属イオンのモル数を価数で乗じた値の比((第2金属イオンのモル数×第2金属イオンの価数)/(第1金属イオンのモル数×第1金属イオンの価数))は、得られる太陽電池封止材の透明性および耐水性のバランスをより良好にする観点から、0.10以上であることが好ましく、0.15以上であることがより好ましく、0.20以上であることがさらに好ましい。
 また、本実施形態に係る樹脂組成物(P)において、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)中の第1金属イオンのモル数を価数で乗じた値に対する第2金属イオンのモル数を価数で乗じた値の比は、得られる太陽電池封止材の透明性および耐水性のバランスをより良好にする観点から、10.0以下であることが好ましく、5.0以下であることがより好ましく、4.0以下であることがさらに好ましく、3.0以下であることがさらにより好ましく、2.5以下であることが特に好ましい。
When the ionomer (A) contains a first metal ion and a second metal ion, the number of moles of the second metal ion to the value obtained by multiplying the number of moles of the first metal ion in the ionomer (A) by the valence is the valence. The ratio of the multiplied values ((number of moles of second metal ion x valence of second metal ion) / (number of moles of first metal ion x valence of first metal ion)) is the obtained solar cell encapsulation. From the viewpoint of improving the balance between transparency and water resistance of the material, it is preferably 0.10 or more, more preferably 0.15 or more, and further preferably 0.20 or more.
Further, in the resin composition (P) according to the present embodiment, the second metal is obtained by multiplying the number of moles of the first metal ion in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer by the valence. The ratio of the number of moles of ions multiplied by the valence is preferably 10.0 or less from the viewpoint of improving the balance between transparency and water resistance of the obtained solar cell encapsulant. It is more preferably 0 or less, further preferably 4.0 or less, even more preferably 3.0 or less, and particularly preferably 2.5 or less.
 アイオノマー(A)は、例えば、エチレン・不飽和カルボン酸系共重合体のアイオノマー1と、アイオノマー1とは異なるエチレン・不飽和カルボン酸系共重合体のアイオノマー2と、を含む構成とすることができる。これにより、エチレン・不飽和カルボン酸系共重合体のアイオノマー1とエチレン・不飽和カルボン酸系共重合体のアイオノマー2との混合比を調整することで、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)中の第1金属イオンと第2金属イオンとの比率を容易に調整することができる。 The ionomer (A) may be configured to include, for example, ionomer 1 of an ethylene / unsaturated carboxylic acid-based copolymer and ionomer 2 of an ethylene / unsaturated carboxylic acid-based copolymer different from ionomer 1. can. Thereby, by adjusting the mixing ratio of the ethylene / unsaturated carboxylic acid-based copolymer ionomer 1 and the ethylene / unsaturated carboxylic acid-based copolymer ionomer 2, the ethylene / unsaturated carboxylic acid-based copolymer can be adjusted. The ratio of the first metal ion and the second metal ion in the ionomer (A) of the above can be easily adjusted.
 アイオノマー(A)の中和度は特に限定されないが、得られる太陽電池封止材の柔軟性や接着性、加工性等をより良好にする観点から、95%以下が好ましく、90%以下がより好ましく、80%以下がさらに好ましく、50%以下が特に好ましく、30%以下がとりわけ好ましい。
 また、アイオノマー(A)の中和度は特に限定されないが、得られる太陽電池封止材の透明性や機械的強度等をより良好にする観点から、5%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましく、20%以上が特に好ましい。
 ここで、アイオノマー(A)の中和度は、エチレン・不飽和カルボン酸系共重合体中に含まれる全カルボキシ基のうち、金属イオンによって中和されているカルボキシ基の割合(%)を指す。
The degree of neutralization of the ionomer (A) is not particularly limited, but is preferably 95% or less, more preferably 90% or less, from the viewpoint of improving the flexibility, adhesiveness, processability, etc. of the obtained solar cell encapsulant. It is preferable, 80% or less is further preferable, 50% or less is particularly preferable, and 30% or less is particularly preferable.
The degree of neutralization of the ionomer (A) is not particularly limited, but 5% or more is preferable, and 10% or more is more preferable from the viewpoint of improving the transparency and mechanical strength of the obtained solar cell encapsulant. It is preferable, 15% or more is more preferable, and 20% or more is particularly preferable.
Here, the degree of neutralization of the ionomer (A) refers to the ratio (%) of the carboxy groups neutralized by the metal ion among all the carboxy groups contained in the ethylene / unsaturated carboxylic acid-based copolymer. ..
 アイオノマー(A)は、例えば、エチレン・不飽和カルボン酸系共重合体のアイオノマーと、金属イオンを含まないエチレン・不飽和カルボン酸系共重合体と、を含む構成とすることができる。このように、エチレン・不飽和カルボン酸系共重合体のアイオノマーとエチレン・不飽和カルボン酸系共重合体との混合比を調整することで、中和度を容易に調整することができる。 The ionomer (A) can be configured to include, for example, an ionomer of an ethylene / unsaturated carboxylic acid-based copolymer and an ethylene / unsaturated carboxylic acid-based copolymer containing no metal ion. In this way, the degree of neutralization can be easily adjusted by adjusting the mixing ratio of the ethylene / unsaturated carboxylic acid-based copolymer ionomer and the ethylene / unsaturated carboxylic acid-based copolymer.
 アイオノマー(A)を構成するエチレン・不飽和カルボン酸系共重合体の製造方法は特に限定されず、公知の方法により製造することができる。例えば、各重合成分を高温、高圧下でラジカル共重合することによって得ることができる。また、アイオノマー(A)は、エチレン・不飽和カルボン酸系共重合体と金属化合物を反応させることによって得ることができる。
 エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)としては市販されているものを用いてもよい。
The method for producing the ethylene / unsaturated carboxylic acid-based copolymer constituting the ionomer (A) is not particularly limited, and it can be produced by a known method. For example, it can be obtained by radical copolymerizing each polymerization component under high temperature and high pressure. Further, the ionomer (A) can be obtained by reacting an ethylene / unsaturated carboxylic acid-based copolymer with a metal compound.
As the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer, a commercially available one may be used.
 補足しておくと、エチレン・不飽和カルボン酸系共重合体のカルボキシ基の少なくとも一部を金属イオンで中和してアイオノマー(A)とする「タイミング」は特に限定されない。最終的な樹脂組成物がアイオノマー(A)を含めばよい。
 例えば、最終的な樹脂組成物が第1金属イオンおよび第2金属イオンを含むアイオノマー(A)を含むようにする場合、以下の(i)~(iii)いずれの方法で樹脂組成物を調製してもよい。後掲の実施例においては、(ii)の方法で樹脂組成物を調製している。
(i)素材として、第1金属イオンおよび第2金属イオンを含むアイオノマー(A)をそのまま用いて樹脂組成物を調製する。
(ii)まず、素材として、第1金属イオンと第2金属イオンの片方のみ含むアイオノマーを準備する。そして、そのアイオノマーと、例えば後述の滑剤(B)の一例として例示される脂肪酸金属塩とを溶融混合することで、2種の金属イオンを含むアイオノマー(A)を得る。このアイオノマー(A)を用いて樹脂組成物を調製する。
(iii)まず、素材として、金属イオンを含まないエチレン・不飽和カルボン酸系共重合体を準備する。そして、この重合体と、適当な2種の金属材料とを溶融混合することで、2種の金属イオンを含むアイオノマー(A)を得る。このアイオノマー(A)を用いて樹脂組成物を調製する。
As a supplement, the "timing" in which at least a part of the carboxy group of the ethylene / unsaturated carboxylic acid-based copolymer is neutralized with a metal ion to form an ionomer (A) is not particularly limited. The final resin composition may include ionomer (A).
For example, when the final resin composition contains an ionomer (A) containing a first metal ion and a second metal ion, the resin composition is prepared by any of the following methods (i) to (iii). You may. In the examples described later, the resin composition is prepared by the method (ii).
(I) A resin composition is prepared by using the ionomer (A) containing the first metal ion and the second metal ion as it is as a material.
(Ii) First, as a material, an ionomer containing only one of the first metal ion and the second metal ion is prepared. Then, the ionomer and, for example, a fatty acid metal salt exemplified as an example of the lubricant (B) described later are melt-mixed to obtain an ionomer (A) containing two kinds of metal ions. A resin composition is prepared using this ionomer (A).
(Iii) First, an ethylene / unsaturated carboxylic acid-based copolymer containing no metal ion is prepared as a material. Then, the polymer and two suitable metal materials are melt-mixed to obtain an ionomer (A) containing two metal ions. A resin composition is prepared using this ionomer (A).
 さらに補足すると、上記(ii)の場合、詳細は明らかでないが、アイオノマー(A)のカルボキシ基は、脂肪酸金属塩のカルボキシ基と比較して酸解離定数が低いため、脂肪酸金属塩を構成する金属の少なくとも一部がアイオノマー(A)の少なくとも一部のカルボキシ基を中和すると考えられている。 Further supplementing, in the case of (ii) above, the details are not clear, but since the carboxy group of the ionomer (A) has a lower acid dissociation constant than the carboxy group of the fatty acid metal salt, the metal constituting the fatty acid metal salt. It is believed that at least a portion of the ionomer (A) neutralizes at least a portion of the carboxy group.
 本実施形態において、JIS K 7210:1999に準拠し、190℃、2160g荷重の条件で測定される、アイオノマー(A)のメルトマスフローレート(MFR)は、0.01g/10分以上100g/10分以下であることが好ましく、0.1g/10分以上80g/10分以下であることがより好ましい。MFRが上記下限値以上であると、太陽電池封止材の加工性をより一層良好にすることができる。MFRが上記上限値以下であると、得られる太陽電池封止材の耐熱性や機械的強度等をより一層良好にすることができる。 In this embodiment, the melt mass flow rate (MFR) of ionomer (A) measured under the condition of 190 ° C. and 2160 g load according to JIS K 7210: 1999 is 0.01 g / 10 minutes or more and 100 g / 10 minutes. It is preferably 0.1 g / 10 minutes or more, and more preferably 80 g / 10 minutes or less. When the MFR is at least the above lower limit value, the workability of the solar cell encapsulant can be further improved. When the MFR is not more than the above upper limit value, the heat resistance and mechanical strength of the obtained solar cell encapsulant can be further improved.
 樹脂組成物中のアイオノマー(A)の含有量は、樹脂組成物の全体を100質量%としたとき、好ましくは50.0質量%以上99.9質量%以下、より好ましくは70.0質量%以上99.5質量%以下、さらに好ましくは80.0質量%以上99.5質量%以下、さらにより好ましくは85.0質量%以上99.0質量%以下である。アイオノマー(A)の含有量が上記範囲内であることにより、得られる太陽電池封止材の透明性、耐クリープ性、層間接着性、絶縁性、剛性、耐水性、および得られる太陽電池モジュールのPID耐性等の性能バランスをより一層良好にすることができる。 The content of the ionomer (A) in the resin composition is preferably 50.0% by mass or more and 99.9% by mass or less, more preferably 70.0% by mass, when the whole resin composition is 100% by mass. 99.5% by mass or less, more preferably 80.0% by mass or more and 99.5% by mass or less, still more preferably 85.0% by mass or more and 99.0% by mass or less. When the content of ionomer (A) is within the above range, the transparency, creep resistance, interlayer adhesion, insulation property, rigidity, water resistance, and the obtained solar cell module of the obtained solar cell encapsulant can be obtained. The performance balance such as PID resistance can be further improved.
(滑剤(B))
 本実施形態の樹脂組成物は、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)を含む。滑剤(B)が用いられることで、アイオノマー(A)中の金属イオンが凝集して形成する構造の緩和が促進されると考えられる。そのため、例えば、樹脂組成物を成形加工して太陽電池封止材を製造する際、有機過酸化物(C)が分解しない比較的低温で成形加工を行うことができる。
(Glidant (B))
The resin composition of the present embodiment contains at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts. It is considered that the use of the lubricant (B) promotes relaxation of the structure formed by the aggregation of metal ions in the ionomer (A). Therefore, for example, when the resin composition is molded to produce a solar cell encapsulant, the molding process can be performed at a relatively low temperature at which the organic peroxide (C) does not decompose.
 脂肪酸としては、炭素数12以上36以下の脂肪酸が好ましく、炭素数16以上30以下の脂肪酸がより好ましい。脂肪酸として具体的には、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、ベヘニン酸(炭素数22)、エルカ酸(炭素数22)、モンタン酸(炭素数28)、メリシン酸(炭素数30)等が挙げられる。脂肪酸は、1種のみであってもよいし、2種以上であってもよい。 As the fatty acid, a fatty acid having 12 or more and 36 or less carbon atoms is preferable, and a fatty acid having 16 or more and 30 or less carbon atoms is more preferable. Specifically, as fatty acids, lauric acid (12 carbon atoms), melissic acid (14 carbon atoms), palmitic acid (16 carbon atoms), stearic acid (18 carbon atoms), oleic acid (18 carbon atoms), behenic acid (18 carbon atoms). 22), erucic acid (22 carbons), montanic acid (28 carbons), melissic acid (30 carbons) and the like. The fatty acid may be only one kind or two or more kinds.
 脂肪酸金属塩を構成する脂肪酸としては、炭素数12以上36以下の脂肪酸が好ましく、炭素数16以上30以下の脂肪酸がより好ましい。換言すると、脂肪酸金属塩は、好ましくは、炭素数12以上36以下の脂肪酸の金属塩である。脂肪酸金属塩を構成する脂肪酸として具体的には、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、ベヘニン酸(炭素数22)、エルカ酸(炭素数22)、モンタン酸(炭素数28)、メリシン酸(炭素数30)等が挙げられる。脂肪酸金属塩を構成する脂肪酸は、1種のみであってもよいし、2種以上であってもよい。 As the fatty acid constituting the fatty acid metal salt, a fatty acid having 12 or more and 36 or less carbon atoms is preferable, and a fatty acid having 16 or more and 30 or less carbon atoms is more preferable. In other words, the fatty acid metal salt is preferably a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms. Specific examples of the fatty acids constituting the fatty acid metal salt include lauric acid (12 carbon atoms), melissic acid (14 carbon atoms), palmitic acid (16 carbon atoms), stearic acid (18 carbon atoms), and oleic acid (carbon number of carbon atoms). 18), behenic acid (22 carbon atoms), oleic acid (22 carbon atoms), montanic acid (28 carbon atoms), melissic acid (30 carbon atoms) and the like. The fatty acid constituting the fatty acid metal salt may be only one kind or two or more kinds.
 脂肪酸金属塩を構成する「金属」としては、例えばアルカリ金属、アルカリ土類金属、亜鉛等が挙げられる。これらの中でも、脂肪酸金属塩としての融点が比較的低い観点から、マグネシウム、亜鉛、カルシウムが好ましく、マグネシウムがより好ましい。脂肪酸金属塩を構成する金属としては、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the "metal" constituting the fatty acid metal salt include alkali metals, alkaline earth metals, zinc and the like. Among these, magnesium, zinc, and calcium are preferable, and magnesium is more preferable, from the viewpoint of having a relatively low melting point as a fatty acid metal salt. As the metal constituting the fatty acid metal salt, only one kind may be used alone, or two or more kinds may be used in combination.
 滑剤(B)としては、脂肪酸金属塩が好ましく、ステアリン酸マグネシウム、ステアリン酸亜鉛およびステアリン酸カルシウムがより好ましく、ステアリン酸マグネシウムがさらに好ましい。 As the lubricant (B), a fatty acid metal salt is preferable, magnesium stearate, zinc stearate and calcium stearate are more preferable, and magnesium stearate is further preferable.
 樹脂組成物は、滑剤(B)を1種のみ含んでもよいし、2種以上含んでもよい。
 滑剤(B)の量は、アイオノマー(A)100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上、特に好ましくは4質量部以上である。また、滑剤(B)の量は、アイオノマー(A)100質量部に対して、好ましくは30質量部以下、より好ましくは25質量部以下、さらに好ましくは20質量部以下、特に好ましくは15質量部以下である。
The resin composition may contain only one kind of lubricant (B), or may contain two or more kinds of lubricant (B).
The amount of the lubricant (B) is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and particularly preferably 4 parts by mass or more with respect to 100 parts by mass of the ionomer (A). be. The amount of the lubricant (B) is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, still more preferably 20 parts by mass or less, and particularly preferably 15 parts by mass with respect to 100 parts by mass of the ionomer (A). It is as follows.
 ちなみに、前述のように、アイオノマー(A)の少なくとも一部のカルボキシ基は、脂肪酸金属塩を構成する金属の少なくとも一部で中和されうる。別の言い方として、酸解離定数の高い脂肪酸金属塩の少なくとも一部の金属イオンは、酸解離定数の低いアイオノマー(A)中に組み込まれうる。上記の滑剤(B)の量は、アイオノマー(A)中に組み込まれた滑剤と、そうではない(フリーな)滑剤の量との合計量を表している。 Incidentally, as described above, at least a part of the carboxy group of the ionomer (A) can be neutralized by at least a part of the metal constituting the fatty acid metal salt. In other words, at least some metal ions of a fatty acid metal salt having a high acid dissociation constant can be incorporated into an ionomer (A) having a low acid dissociation constant. The amount of lubricant (B) described above represents the total amount of lubricant incorporated into the ionomer (A) and the amount of lubricant not (free).
(有機過酸化物(C))
 本実施形態の樹脂組成物は、有機過酸化物(C)を含む。有機過酸化物(C)としては、例えばラジカル重合開始剤として知られている有機過酸化物を挙げることができる。
(Organic peroxide (C))
The resin composition of the present embodiment contains an organic peroxide (C). Examples of the organic peroxide (C) include organic peroxides known as radical polymerization initiators.
 有機過酸化物(C)の10時間半減期温度は、シート加工時に望ましくない架橋反応を起こさないという観点から、100℃以上が好ましく、105℃以上がより好ましく、110℃以上がさらに好ましい。また、ラミネーション工程で架橋反応を起こすことが望ましい点から、170℃以下が好ましく、150℃以下がより好ましく、130℃以下がさらに好ましい。 The 10-hour half-life temperature of the organic peroxide (C) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher, from the viewpoint of not causing an undesired crosslinking reaction during sheet processing. Further, from the viewpoint that it is desirable to cause a crosslinking reaction in the lamination step, 170 ° C. or lower is preferable, 150 ° C. or lower is more preferable, and 130 ° C. or lower is further preferable.
 有機過酸化物(C)としては、例えば、ジクミルペルオキシド、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、tert-ブチルクミルペルオキシド、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルペルオキシ)シクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、tert-ブチルペルオキシイソプロピルカーボネート、tert-ブチルペルオキシ-2-エチルヘキシルカーボネート等が挙げられる。 Examples of the organic peroxide (C) include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, and 2,5-dimethyl-2. , 5-Di- (tert-butylperoxy) hexin-3, bis (tert-butylperoxyisopropyl) benzene, tert-butylcumyl peroxide, 1,1-bis (tert-butylperoxy) -3,3,5- Trimethylcyclohexane, 1,1-bis (tert-butylperoxy) cyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, Examples thereof include tert-butylperoxybenzoate, tert-butylperoxyisopropyl carbonate, tert-butylperoxy-2-ethylhexyl carbonate and the like.
 これらの中でも、反応性、ハンドリング性の観点から、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、tert-ブチルクミルペルオキシド、tert-ブチルペルオキシイソプロピルカーボネート、tert-ブチルペルオキシ-2-エチルヘキシルカーボネートが好ましく、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、tert-ブチルペルオキシイソプロピルカーボネートがより好ましい。 Among these, from the viewpoint of reactivity and handleability, dicumyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di-( tert-butylperoxy) hexine-3, bis (tert-butylperoxyisopropyl) benzene, tert-butylcumyl peroxide, tert-butylperoxyisopropyl carbonate, tert-butylperoxy-2-ethylhexyl carbonate are preferred, 2,5-dimethyl -2,5-di- (tert-butylperoxy) hexane and tert-butylperoxyisopropyl carbonate are more preferable.
 樹脂組成物は、有機過酸化物(C)を1種のみ含んでもよいし、2種以上含んでもよい。
 有機過酸化物(C)の量は、アイオノマー(A)100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.25質量部以上、さらに好ましくは0.5質量部以上である。また、有機過酸化物(C)の量は、アイオノマー(A)100質量部に対して、好ましくは3質量部以下、より好ましくは2質量部以下である。
The resin composition may contain only one type of organic peroxide (C), or may contain two or more types.
The amount of the organic peroxide (C) is preferably 0.1 part by mass or more, more preferably 0.25 part by mass or more, still more preferably 0.5 part by mass or more with respect to 100 parts by mass of the ionomer (A). Is. The amount of the organic peroxide (C) is preferably 3 parts by mass or less, more preferably 2 parts by mass or less, based on 100 parts by mass of the ionomer (A).
 別観点として、アイオノマー(A)100質量部に対する有機過酸化物(C)の量(単位:質量部)と、エチレン・不飽和カルボン酸系共重合体の全体を100質量%としたときのエチレン・不飽和カルボン酸系共重合体中の不飽和カルボン酸から導かれる構成単位の含有量(単位:質量%)との好ましい比(単位:質量部/質量%)は、好ましくは0.01以上0.30以下、より好ましくは0.02以上0.15以下、さらに好ましくは0.03以上0.10以下である。 As another viewpoint, the amount of the organic peroxide (C) with respect to 100 parts by mass of the ionomer (A) (unit: parts by mass) and ethylene when the total of the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass. -A preferable ratio (unit: parts by mass / mass%) to the content (unit: mass%) of the structural unit derived from the unsaturated carboxylic acid in the unsaturated carboxylic acid-based copolymer is preferably 0.01 or more. It is 0.30 or less, more preferably 0.02 or more and 0.15 or less, and further preferably 0.03 or more and 0.10 or less.
 有機過酸化物(C)の量を適切に調整することで、加工性、耐クリープ性、透明性、接着性などの性能を一層高めることができる。 By appropriately adjusting the amount of organic peroxide (C), performance such as workability, creep resistance, transparency, and adhesiveness can be further improved.
(シランカップリング剤(D))
 本実施形態の樹脂組成物は、シランカップリング剤(D)を含む。シランカップリング剤(D)を用いることは、例えば、得られる太陽電池モジュールの層間接着性をより一層良好にする観点で有効である。
(Silane Coupling Agent (D))
The resin composition of the present embodiment contains a silane coupling agent (D). The use of the silane coupling agent (D) is effective, for example, from the viewpoint of further improving the interlayer adhesion of the obtained solar cell module.
 シランカップリング剤(D)としては、例えば、(i)重合性炭素-炭素二重結合を含む基(ビニル基、(メタ)アクリロイル基など)、アミノ基またはエポキシ基と、(ii)アルコキシ基のような加水分解基と、を有するシランカップリング剤等を挙げることができる。
 重合性基炭素-炭素二重結合を有するシランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリエトキシシラン等が挙げられる。
Examples of the silane coupling agent (D) include (i) a group containing a polymerizable carbon-carbon double bond (vinyl group, (meth) acryloyl group, etc.), an amino group or an epoxy group, and (ii) an alkoxy group. A silane coupling agent having a hydrolyzing group such as the above can be mentioned.
Examples of the silane coupling agent having a polymerizable group carbon-carbon double bond include vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxy. Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-acryloxypropyltriethoxy Examples include silane.
 アミノ基を有するシランカップリング剤としては、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩等が挙げられる。 Examples of the silane coupling agent having an amino group include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-2- (. Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- Examples thereof include a hydrochloride of phenyl-3-aminopropyltrimethoxysilane and N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane.
 エポキシ基を有するシランカップリング剤としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Examples of the silane coupling agent having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycid. Examples thereof include xipropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane.
 シランカップリング剤(D)は、重合性炭素-炭素二重結合を含む基を有するシランカップリング剤を含むことが好ましく、(メタ)アクリロイル基を有するシランカップリング剤を含むことがさらに好ましい。特に好ましい具体例としては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等が挙げられる。 The silane coupling agent (D) preferably contains a silane coupling agent having a group containing a polymerizable carbon-carbon double bond, and more preferably contains a silane coupling agent having a (meth) acryloyl group. Particularly preferable specific examples include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane and the like.
 樹脂組成物は、シランカップリング剤(D)を1種のみ含んでもよいし、2種以上含んでもよい。
 シランカップリング剤(D)の量は、アイオノマー(A)100質量部に対して、好ましくは0.001質量%以上5質量%以下、より好ましくは0.005質量%以上2質量%以下、さらに好ましくは0.01質量%以上1質量%以下である。
The resin composition may contain only one type of silane coupling agent (D), or may contain two or more types.
The amount of the silane coupling agent (D) is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.005% by mass or more and 2% by mass or less, based on 100 parts by mass of the ionomer (A). It is preferably 0.01% by mass or more and 1% by mass or less.
(その他の成分)
 本実施形態の樹脂組成物は、本発明の目的を損なわない範囲内において、上記(A)~(D)以外の成分(その他の成分)を含むことができる。
(Other ingredients)
The resin composition of the present embodiment may contain components (other components) other than the above (A) to (D) within a range that does not impair the object of the present invention.
 その他の成分としては、例えば、可塑剤、酸化防止剤、紫外線吸収剤、波長変換剤、帯電防止剤、界面活性剤、着色剤、光安定剤、発泡剤、潤滑剤、結晶核剤、結晶化促進剤、結晶化遅延剤、触媒失活剤、熱線吸収剤、熱線反射剤、放熱剤、熱可塑性樹脂、熱硬化性樹脂、無機充填剤、有機充填剤、耐衝撃性改良剤、スリップ剤、架橋剤、架橋助剤、粘着付与剤、加工助剤、離型剤、加水分解防止剤、耐熱安定剤、アンチブロッキング剤、防曇剤、難燃剤、難燃助剤、光拡散剤、抗菌剤、防黴剤、分散剤、アイオノマー(A)に該当しない樹脂等を挙げることができる。 Other components include, for example, plasticizers, antioxidants, ultraviolet absorbers, wavelength converters, antistatic agents, surfactants, colorants, light stabilizers, foaming agents, lubricants, crystal nucleating agents, and crystallization. Accelerators, crystallization retarders, catalyst deactivating agents, heat ray absorbers, heat ray reflecting agents, heat dissipation agents, thermoplastic resins, thermosetting resins, inorganic fillers, organic fillers, impact resistance improvers, slip agents, Crosslinking agent, crosslinking aid, tackifier, processing aid, mold release agent, hydrolysis inhibitor, heat stabilizer, antiblocking agent, antifogging agent, flame retardant, flame retardant aid, light diffusing agent, antibacterial agent , Anti-corrosion agent, dispersant, resin not corresponding to ionomer (A) and the like.
 その他の成分のうち、特に、架橋助剤は、硬化性の調整や、諸性能の向上などの目的のために好ましく用いられる。架橋助剤としては、p-キノンジオキシム、p,p'-ジベンゾイルキノンジオキシム等のオキシム類;エチレンジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、シクロヘキシルメタクリレート、アクリル酸/酸化亜鉛混合物、アリルメタクリレート等のアクリレートもしくはメタクリレート類;ジビニルベンゼン、ビニルトルエン、ビニルピリジン等のビニルモノマー類;ヘキサメチレンジアリルナジイミド、ジアリルイタコネート、ジアリルフタレート、ジアリルイソフタレート、ジアリルモノグリシジルイソシアヌレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル化合物類;N,N'-m-フェニレンビスマレイミド、N,N'-(4,4'-メチレンジフェニレン)ジマレイミド等のマレイミド化合物類等、ビニルノルボルネン、エチリデンノルボルネン、ジシクロペンタジエン等の環状非共役ジエン類が挙げられる。
 架橋助剤を用いる場合、その量は、アイオノマー(A)100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上である。また、架橋助剤を用いる場合、その量は、アイオノマー(A)100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下、さらに好ましくは2質量部以下である。
Among other components, a cross-linking aid is preferably used for the purpose of adjusting curability and improving various performances. Examples of the cross-linking aid include oximes such as p-quinonedioxime and p, p'-dibenzoylquinonedioxime; ethylene dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropanetrimethacrylate, cyclohexylmethacrylate, acrylate / zinc oxide. Mixtures, acrylates or methacrylates such as allyl methacrylate; vinyl monomers such as divinylbenzene, vinyltoluene, vinylpyridine; hexamethylene diallyl nadiimide, diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl isocyanurate, triari Allyl compounds such as lucianurate and triallyl isocyanurate; maleimide compounds such as N, N'-m-phenylene bismaleimide, N, N'-(4,4'-methylenediphenylene) dimaleimide, vinylnorbornene, etc. Examples thereof include cyclic non-conjugated dienes such as etylidenenorbornene and dicyclopentadiene.
When a cross-linking aid is used, the amount thereof is preferably 0.1 part by mass or more, more preferably 0.2 part by mass or more, based on 100 parts by mass of the ionomer (A). When a cross-linking aid is used, the amount thereof is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 2 parts by mass or less with respect to 100 parts by mass of the ionomer (A).
 樹脂組成物がその他の成分を含む場合、樹脂組成物は1種のみのその他の成分を含んでもよいし、2種以上のその他の成分を含んでもよい。 When the resin composition contains other components, the resin composition may contain only one other component, or may contain two or more other components.
(物性)
 例えば太陽電池封止材への適用性の観点で、本実施形態の樹脂組成物は、以下に説明するような物性を満たすことが好ましい。
(Physical characteristics)
For example, from the viewpoint of applicability to a solar cell encapsulant, the resin composition of the present embodiment preferably satisfies the physical properties as described below.
 本実施形態の樹脂組成物を用いて、JIS K 7210:1999に準拠し、190℃、2160g荷重の条件で測定されるメルトマスフローレート(MFR)は、20g/10分以下であることが好ましく、10g/10分以下であることがより好ましく、3g/10分以下であることがさらに好ましく、1g/10分以下であることがさらによく好ましく、0.5g/10分以下であることが特に好ましい。MFRが上記上限値以下であると、得られる太陽電池封止材の耐クリープ性や機械的強度等をより一層良好にすることができる。 Using the resin composition of the present embodiment, the melt mass flow rate (MFR) measured under the condition of 190 ° C. and 2160 g load is preferably 20 g / 10 minutes or less in accordance with JIS K 7210: 1999. It is more preferably 10 g / 10 minutes or less, further preferably 3 g / 10 minutes or less, further preferably 1 g / 10 minutes or less, and particularly preferably 0.5 g / 10 minutes or less. .. When the MFR is not more than the above upper limit value, the creep resistance, mechanical strength, etc. of the obtained solar cell encapsulant can be further improved.
・クリープ距離
 本実施形態の樹脂組成物を用いて、後述する実施例に記載の方法により測定されるクリープ距離は、好ましくは5.0mm以下、より好ましくは3.0mm以下、さらに好ましくは2.0mm以下、特に好ましくは1.5mm以下である。クリープ距離の下限値は0mmが好ましい。
Creep distance The creep distance measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 5.0 mm or less, more preferably 3.0 mm or less, still more preferably 2. It is 0 mm or less, particularly preferably 1.5 mm or less. The lower limit of the creep distance is preferably 0 mm.
・ヘイズ
 本実施形態の樹脂組成物を用いて、後述する実施例に記載の方法により測定されるヘイズの値は、好ましくは3.0%以下、より好ましくは2.0%以下、さらに好ましくは1.5%以下、特に好ましくは1.0%以下である。ヘイズの値の下限値は理想的には0%であるが、現実的には、例えば0.1%、具体的には0.3%程度である。
-Haze The haze value measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 3.0% or less, more preferably 2.0% or less, still more preferably. It is 1.5% or less, particularly preferably 1.0% or less. The lower limit of the haze value is ideally 0%, but in reality, it is, for example, 0.1%, specifically about 0.3%.
・全光線透過率
 本実施形態の樹脂組成物を用いて、後述する実施例に記載の方法により測定される全光線透過率の値は、好ましくは80%以上、より好ましくは85%以上。さらに好ましくは87%以上、特に好ましくは90%以上である。全光線透過率の上限値は理想的には100%であるが、現実的には、例えば95%、具体的には92%程度である。
-Total light transmittance The value of the total light transmittance measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 80% or more, more preferably 85% or more. It is more preferably 87% or more, and particularly preferably 90% or more. The upper limit of the total light transmittance is ideally 100%, but in reality, it is, for example, 95%, specifically about 92%.
・ガラス板に対する接着強度
 本実施形態の樹脂組成物を用いて、後述する実施例に記載の方法により測定されるガラス板に対する接着強度は、10N/15mm以上であることが好ましく、20N/15mm以上であることがより好ましく、30N/15mm以上であることがさらに好ましい。ガラス板に対する接着強度が大きいことで、得られる太陽電池モジュールの層間接着性をより良好にすることができる。接着強度は基本的には大きければ大きいほど好ましく、接着強度は樹脂の剛性にも依存するが、現実的には、30N/15mm以上あればデラミネーション等の現象が起こる可能性が極めて低いものと推測される。
Adhesive strength to the glass plate Using the resin composition of the present embodiment, the adhesive strength to the glass plate measured by the method described in Examples described later is preferably 10 N / 15 mm or more, preferably 20 N / 15 mm or more. It is more preferable that it is 30 N / 15 mm or more, and it is further preferable that it is 30 N / 15 mm or more. When the adhesive strength to the glass plate is large, the interlayer adhesiveness of the obtained solar cell module can be improved. Basically, the larger the adhesive strength is, the more preferable it is. The adhesive strength depends on the rigidity of the resin, but in reality, if it is 30 N / 15 mm or more, the possibility of delamination or the like occurring is extremely low. Guessed.
・クロスオーバー温度
 本実施形態の樹脂組成物を用いて、後述する実施例に記載の方法により測定されるクロスオーバー温度は、140℃以上であることが好ましく、150℃以上であることがより好ましい。クロスオーバー温度とクリープ距離には相関があることが知られており、クロスオーバー温度が140℃以上であれば、クリープ試験温度105℃におけるゼロせん断粘度が十分に高くなるためクリープが抑制できる点で好ましい。
 クロスオーバー温度の上限は特に無いが、現実的な組成物設計の観点から、上限は例えば樹脂組成物の熱分解温度、または240℃である。
-Crossover temperature The crossover temperature measured by the method described in Examples described later using the resin composition of the present embodiment is preferably 140 ° C. or higher, more preferably 150 ° C. or higher. .. It is known that there is a correlation between the crossover temperature and the creep distance, and if the crossover temperature is 140 ° C or higher, the zero shear viscosity at the creep test temperature of 105 ° C is sufficiently high, so that creep can be suppressed. preferable.
There is no particular upper limit to the crossover temperature, but from the viewpoint of realistic composition design, the upper limit is, for example, the thermal decomposition temperature of the resin composition or 240 ° C.
<樹脂組成物の製造方法>
  本実施形態の樹脂組成物は、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)と、有機過酸化物(C)と、シランカップリング剤(D)を混合することによって得ることができる。混合に際しては、スクリュー押出機、ロールミキサー、バンバリミキサー等の通常使用される混合装置を用いることができる。
 混合は、(A)~(D)の4成分を同時に配合して行なってもよいし、別々に行ってもよい。ただし、(i)まず、エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)とを予め混合し、(ii)次に、この混合により得られた混合物と、有機過酸化物(C)と、シランカップリング剤(D)とを混合する方法が好ましい。
 エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)とを予め混合しておくことで、樹脂組成物に流動性を付与できる。このことにより、有機過酸化物(C)による架橋反応が不均一に進行することを抑制することができる。
<Manufacturing method of resin composition>
The resin composition of the present embodiment contains an ionomer (A), which is an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts, and organic peroxides. It can be obtained by mixing (C) with the silane coupling agent (D). For mixing, a commonly used mixing device such as a screw extruder, a roll mixer, or a Bambari mixer can be used.
The mixing may be carried out by blending the four components (A) to (D) at the same time, or may be carried out separately. However, (i) first, the ionomer (A), which is an ethylene / unsaturated carboxylic acid-based copolymer, and at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts are mixed in advance, and (ii). ) Next, a method of mixing the mixture obtained by this mixing, the organic peroxide (C), and the silane coupling agent (D) is preferable.
Ionomer (A), an ethylene / unsaturated carboxylic acid-based copolymer, and at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts are mixed in advance to flow into a resin composition. Gender can be imparted. This makes it possible to suppress the non-uniform progress of the cross-linking reaction by the organic peroxide (C).
<太陽電池封止材>
 本実施形態の太陽電池封止材は、上述の樹脂組成物により構成された層を含む。
 本実施形態の太陽電池封止材は、単層構成であってもよいし、2層以上の多層構成であってもよい。
 より具体的には、本実施形態の太陽電池封止材は、(i)上述の樹脂組成物により構成された層からなる単層構成の膜であってもよいし、(ii)上述の樹脂組成物により構成された多層構成の膜であってもよいし、(iii)上述の樹脂組成物により構成された層と、上述の樹脂組成物ではない樹脂組成物により構成された層とを有する多層構成の膜であってもよい。
<Solar cell encapsulant>
The solar cell encapsulant of the present embodiment includes a layer made of the above-mentioned resin composition.
The solar cell encapsulant of the present embodiment may have a single-layer structure or a multi-layer structure of two or more layers.
More specifically, the solar cell encapsulant of the present embodiment may be (i) a single-layer film composed of a layer composed of the above-mentioned resin composition, or (ii) the above-mentioned resin. It may be a multi-layered film composed of the composition, or (iii) has a layer composed of the above-mentioned resin composition and a layer composed of a resin composition other than the above-mentioned resin composition. It may be a multi-layered film.
 本実施形態の太陽電池封止材が多層構成である場合、(i)2つの外層(以下、接着層とも呼ぶ。)を積層した2層構成であって、外層の少なくとも1層が本実施形態の樹脂組成物により構成された2層構成であること、あるいは、(ii)中間層とその中間層を挟むように両面に形成された2つの外層とを含む3層構成であって、外層および中間層の少なくとも1層が本実施形態に係る樹脂組成物(P)により構成された3層構成であることが好ましい。
 透明性および接着性を両立する観点からは、上記(ii)の3層構成がより好ましい。
When the solar cell encapsulant of the present embodiment has a multi-layer structure, (i) it has a two-layer structure in which two outer layers (hereinafter, also referred to as an adhesive layer) are laminated, and at least one outer layer is the present embodiment. It is a two-layer structure composed of the resin composition of (ii), or a three-layer structure including (ii) an intermediate layer and two outer layers formed on both sides so as to sandwich the intermediate layer. It is preferable that at least one of the intermediate layers has a three-layer structure composed of the resin composition (P) according to the present embodiment.
From the viewpoint of achieving both transparency and adhesiveness, the above-mentioned three-layer structure (ii) is more preferable.
 本実施形態の樹脂組成物により構成された層を複数層有する多層構成の膜において、各層の組成や含まれるアイオノマーの種類(例えば、エチレン・不飽和カルボン酸系共重合体の共重合比、中和度、金属イオンの種類等)は、同一であっても異なっていてもよい。また、本実施形態に係る樹脂組成物(P)以外から成る層は、有機過酸化物を含んでいても含まなくてもよい。 In a multi-layered film having a plurality of layers composed of the resin composition of the present embodiment, the composition of each layer and the type of ionomer contained (for example, the copolymerization ratio of ethylene / unsaturated carboxylic acid-based copolymer, medium). The degree of sum, the type of metal ion, etc.) may be the same or different. Further, the layer made of other than the resin composition (P) according to the present embodiment may or may not contain an organic peroxide.
 本実施形態の太陽電池封止材の厚みは、例えば0.001mm以上10mm以下、好ましくは0.01mm以上5mm以下、より好ましくは0.05mm以上2mm以下である。太陽電池封止材の厚みが0.001mm以上であると、太陽電池封止材の機械的強度をより良好にすることができる。また、太陽電池封止材の厚みが10mm以下であると、太陽電池封止材の透明性やラミネーション工程における加工性をより良好にすることができる。 The thickness of the solar cell encapsulant of the present embodiment is, for example, 0.001 mm or more and 10 mm or less, preferably 0.01 mm or more and 5 mm or less, and more preferably 0.05 mm or more and 2 mm or less. When the thickness of the solar cell encapsulant is 0.001 mm or more, the mechanical strength of the solar cell encapsulant can be improved. Further, when the thickness of the solar cell encapsulant is 10 mm or less, the transparency of the solar cell encapsulant and the processability in the lamination step can be further improved.
 本実施形態に係る太陽電池封止材が多層構成である場合、本実施形態の樹脂組成物により構成される層は、外層であってもよく、中間層であってもよい。 When the solar cell encapsulant according to the present embodiment has a multi-layer structure, the layer composed of the resin composition of the present embodiment may be an outer layer or an intermediate layer.
 本実施形態の太陽電池封止材が外層と中間層とを含む場合、外層の厚みは任意であるが、外層の厚みaとしては、1μm以上500μm以下の範囲であることが好ましく、10μm以上500μm以下の範囲であることがより好ましく、20μm以上300μm以下の範囲であることが特に好ましい。厚みaが1μm以上であることで、接着強度、加工性をより向上させることができる。また、厚みaが500μm以下であることで、透明性がより優れる。 When the solar cell encapsulant of the present embodiment includes an outer layer and an intermediate layer, the thickness of the outer layer is arbitrary, but the thickness a of the outer layer is preferably in the range of 1 μm or more and 500 μm or less, and 10 μm or more and 500 μm. The following range is more preferable, and the range of 20 μm or more and 300 μm or less is particularly preferable. When the thickness a is 1 μm or more, the adhesive strength and workability can be further improved. Further, when the thickness a is 500 μm or less, the transparency is more excellent.
 また、本実施形態の太陽電池封止材が外層と中間層とを含む場合、透明性の点では全層厚に占める中間層の厚みは厚くてもよい。具体的には、中間層の厚みbとしては、好ましい総厚である0.1mm以上10mm以下の範囲から、上記外層の好ましい厚みaを差し引いた範囲内で自在に設定することができる。 Further, when the solar cell encapsulant of the present embodiment includes an outer layer and an intermediate layer, the thickness of the intermediate layer occupying the total layer thickness may be thick in terms of transparency. Specifically, the thickness b of the intermediate layer can be freely set within a range obtained by subtracting the preferable thickness a of the outer layer from the range of 0.1 mm or more and 10 mm or less, which is the preferable total thickness.
 また、本実施形態の太陽電池封止材が外層と中間層とを含む場合、外層(厚みa)と中間層(厚みb)との厚みの比(a/b)は、1/20から5/1が好ましく、より好ましくは1/15から3/1であり、さらに好ましくは1/10から3/1である。ここで、本実施形態の太陽電池封止材が外層を2つ含む場合、外層の厚みaは、2つの外層の厚みの平均値である。
 外層および中間層の厚みの比(a/b)が上記範囲内にあると、接着性および透明性がより向上する。
When the solar cell encapsulant of the present embodiment includes an outer layer and an intermediate layer, the thickness ratio (a / b) between the outer layer (thickness a) and the intermediate layer (thickness b) is 1/20 to 5. 1/1 is preferable, more preferably 1/15 to 3/1, still more preferably 1/10 to 3/1. Here, when the solar cell encapsulant of the present embodiment includes two outer layers, the thickness a of the outer layers is the average value of the thicknesses of the two outer layers.
When the thickness ratio (a / b) of the outer layer and the intermediate layer is within the above range, the adhesiveness and transparency are further improved.
<太陽電池封止材の製造方法>
 上述の太陽電池封止材の製造方法は特に限定されず、製造方法については従来公知の製造方法を採用することができるが、好ましくは以下に説明する方法により製造することができる。
<Manufacturing method of solar cell encapsulant>
The method for producing the above-mentioned solar cell encapsulant is not particularly limited, and a conventionally known production method can be adopted as the production method, but it can be preferably produced by the method described below.
 製造方法としては、例えば、プレス成形法、押出成形法、Tダイ成形法、射出成形法、圧縮成形法、キャスト成形法、カレンダー成形法、インフレーション成形法等を用いることができる。これらの中でも押出成形法が好ましい。すなわち、本実施形態の太陽電池封止材は、例えば、上述の樹脂組成物の加熱溶融物を、Tダイを備えた押出機のTダイから押し出してシート状に成形する押出成形工程を含む製造方法により得ることができる。
 押出成形工程における加工温度は特に限定されないが、架橋反応を抑制する観点から、Tダイの出口における加熱溶融物の温度が、好ましくは200℃以下、より好ましくは160℃以下、さらに好ましくは140℃以下、特に好ましくは130℃以下、とりわけ好ましくは120℃以下となるように加工温度を調整することが好ましい。この温度は、押出成形が可能である限り低温でもよいが、スムーズな押出成形を行う観点から、Tダイの出口における加熱溶融物の温度は、例えば100℃以上である。
As the manufacturing method, for example, a press molding method, an extrusion molding method, a T-die molding method, an injection molding method, a compression molding method, a cast molding method, a calendar molding method, an inflation molding method and the like can be used. Of these, the extrusion molding method is preferable. That is, the solar cell encapsulant of the present embodiment is manufactured including, for example, an extrusion molding step of extruding the heated melt of the above-mentioned resin composition from the T die of an extruder equipped with a T die to form a sheet. It can be obtained by the method.
The processing temperature in the extrusion molding step is not particularly limited, but from the viewpoint of suppressing the crosslinking reaction, the temperature of the heated melt at the outlet of the T die is preferably 200 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 140 ° C. Below, it is preferable to adjust the processing temperature so as to be particularly preferably 130 ° C. or lower, and particularly preferably 120 ° C. or lower. This temperature may be as low as possible as long as extrusion molding is possible, but from the viewpoint of smooth extrusion molding, the temperature of the heated melt at the outlet of the T-die is, for example, 100 ° C. or higher.
<太陽電池モジュール>
 図1は、本実施形態の太陽電池モジュール(太陽電池モジュール1)の構造を模式的に示した断面図である。
 太陽電池モジュール1は、例えば、太陽電池素子3と、本実施形態の太陽電池封止材より構成された太陽電池素子3を封止する封止樹脂層5と、を備える。太陽電池モジュール1は、必要に応じて、さらに太陽光が入射する基板2、保護材4などを備えていてもよい(以下、太陽光が入射する基板2を、単に基板2と記載することもある)。
 太陽電池モジュール1は、例えば、基板2上に、本実施形態の太陽電池封止材により封止された太陽電池素子3を固定することで作製することができる。
<Solar cell module>
FIG. 1 is a cross-sectional view schematically showing the structure of the solar cell module (solar cell module 1) of the present embodiment.
The solar cell module 1 includes, for example, a solar cell element 3 and a sealing resin layer 5 for sealing the solar cell element 3 made of the solar cell encapsulant of the present embodiment. If necessary, the solar cell module 1 may further include a substrate 2 to which sunlight is incident, a protective material 4, and the like (hereinafter, the substrate 2 to which sunlight is incident may be simply referred to as a substrate 2. be).
The solar cell module 1 can be manufactured, for example, by fixing the solar cell element 3 sealed with the solar cell encapsulant of the present embodiment on the substrate 2.
 太陽電池モジュール1としては、種々のタイプのものを挙げることができる。例えば、基板/封止材/太陽電池素子/封止材/保護材のように太陽電池素子の両側から封止材で挟む構成のもの;ガラス等の基板の表面上に予め形成された太陽電池素子を、基板/太陽電池素子/封止材/保護材のように構成するもの;基板の内周面上に形成された太陽電池素子、例えばフッ素樹脂系シート上にアモルファス太陽電池素子をスパッタリング等で作製したものの上に封止材と保護材を形成させるような構成のもの;等を挙げることができる。
 保護材4は、太陽光が入射する基板2を太陽電池モジュール1の上部としたとき、太陽電池モジュール1の基板2側とは反対側、すなわち下部に備えられる。このため、保護材4は、下部保護材と称されることもある。
Examples of the solar cell module 1 include various types. For example, a structure such as a substrate / encapsulant / solar cell element / encapsulant / protective material sandwiched between encapsulants from both sides of the solar cell element; a solar cell preformed on the surface of a substrate such as glass. The element is configured as a substrate / solar cell element / sealing material / protective material; a solar cell element formed on the inner peripheral surface of the substrate, for example, an amorphous solar cell element is sputtering on a fluororesin-based sheet or the like. A structure in which a sealing material and a protective material are formed on the material produced in the above;
The protective material 4 is provided on the side opposite to the substrate 2 side of the solar cell module 1, that is, on the lower portion when the substrate 2 on which sunlight is incident is the upper portion of the solar cell module 1. Therefore, the protective material 4 is sometimes referred to as a lower protective material.
 太陽電池素子3としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン等のシリコン系、ガリウム-砒素、銅-インジウム-セレン、銅-インジウム-ガリウム-セレン、カドミウム-テルル等のIII-V族やII-VI族化合物半導体系等の各種太陽電池素子を用いることができる。
 太陽電池モジュール1において、複数の太陽電池素子3は、通常、インターコネクタ6を介して電気的に直列に接続されている。
Examples of the solar cell element 3 include silicon-based devices such as single crystal silicon, polycrystalline silicon, and amorphous silicon, group III-V such as gallium-arsenide, copper-indium-selenium, copper-indium-gallium-selenium, and cadmium-tellur. Various solar cell elements such as II-VI group compound semiconductor devices can be used.
In the solar cell module 1, a plurality of solar cell elements 3 are usually electrically connected in series via an interconnector 6.
 太陽電池モジュール1を構成する基板2としては、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂等を例示することができる。
 保護材4(下部保護材)は、通常、金属や各種熱可塑性樹脂フィルム等の単体もしくは多層のシートである。保護材4としては、例えば、錫、アルミ、ステンレススチール等の金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等の1層もしくは多層のシートを挙げることができる。本実施形態の太陽電池封止材は、これらの基板2または保護材4に対して良好な接着性を示す。
Examples of the substrate 2 constituting the solar cell module 1 include glass, acrylic resin, polycarbonate, polyester, and fluorine-containing resin.
The protective material 4 (lower protective material) is usually a single or multilayer sheet of a metal, various thermoplastic resin films, or the like. Examples of the protective material 4 include single-layer or multi-layer sheets such as metals such as tin, aluminum and stainless steel, inorganic materials such as glass, polyester, inorganic vapor-deposited polyester, fluorine-containing resin and polyolefin. The solar cell encapsulant of the present embodiment exhibits good adhesiveness to these substrates 2 or the protective material 4.
 太陽電池モジュール1の製造方法は特に限定されないが、例えば、以下の方法が挙げられる。
 まず、インターコネクタ6を用いて電気的に接続した複数の太陽電池素子3を太陽電池封止材で挟み、さらにこれら太陽電池封止材を基板2と保護材4とで挟んで積層体を作製する。次いで、積層体を加熱・加圧して、各部材間を接着する。このようにすることで、太陽電池モジュール1が得られる。
The method for manufacturing the solar cell module 1 is not particularly limited, and examples thereof include the following methods.
First, a plurality of solar cell elements 3 electrically connected using an interconnector 6 are sandwiched between solar cell encapsulants, and these solar cell encapsulants are further sandwiched between a substrate 2 and a protective material 4 to prepare a laminate. do. Next, the laminate is heated and pressurized to bond the members together. By doing so, the solar cell module 1 can be obtained.
<合わせガラス中間膜用樹脂シートおよび合わせガラス>
 ここまで、主に、本実施形態の樹脂組成物を用いて太陽電池封止材を製造すること、また、その太陽電池封止材を用いて太陽電池素子を封止して太陽電池モジュールを製造することについて述べた。
 本実施形態の樹脂組成物は、太陽電池の封止以外の種々の用途にも適用可能である。例えば、本実施形態の樹脂組成物を用いて合わせガラス中間膜用樹脂シートを製造することや、その合わせガラス中間膜用樹脂シートを用いて合わせガラスを製造することも可能である。
<Resin sheet for laminated glass interlayer film and laminated glass>
Up to this point, mainly the resin composition of the present embodiment is used to manufacture a solar cell encapsulant, and the solar cell encapsulant is used to enclose a solar cell element to manufacture a solar cell module. Said to do.
The resin composition of the present embodiment can be applied to various uses other than the sealing of solar cells. For example, it is also possible to manufacture a resin sheet for a laminated glass interlayer using the resin composition of the present embodiment, or to manufacture a laminated glass using the resin sheet for a laminated glass interlayer.
 合わせガラス中間膜用樹脂シートは、単層構成であってもよいし、2層以上の多層構成であってもよい。多層構成の具体的態様は、前述の太陽電池封止材が多層構成である場合の態様と同様とすることができる。合わせガラス中間膜用樹脂シートの厚みについても、前述の太陽電池封止材と同程度とすることができる。合わせガラス中間膜用樹脂シートの製造方法についても、前述の太陽電池封止材と同様の製法を採用することができる。 The resin sheet for the laminated glass interlayer film may have a single-layer structure or a multi-layer structure of two or more layers. The specific embodiment of the multi-layer structure can be the same as the above-mentioned mode when the solar cell encapsulant has a multi-layer structure. The thickness of the resin sheet for the laminated glass interlayer film can be about the same as that of the above-mentioned solar cell encapsulant. As for the method for manufacturing the resin sheet for the laminated glass interlayer film, the same manufacturing method as the above-mentioned solar cell encapsulant can be adopted.
合わせガラス中間膜用樹脂シートと透明板状部材とを接触させて、加熱および加圧を行うことで、合わせガラス中間膜と、その合わせガラス中間膜の少なくとも一方の面上に設けられた透明板状部材と、を備える合わせガラスを製造することができる。より具体的には、合わせガラス中間膜用樹脂シートを2枚の透明板状部材の間に狭持した後、加熱加圧することで、合わせガラスを製造することができる。 A transparent plate provided on at least one surface of the laminated glass interlayer and the laminated glass interlayer by contacting the resin sheet for the laminated glass interlayer and the transparent plate-shaped member to heat and pressurize the laminated glass interlayer. It is possible to manufacture a laminated glass provided with a shaped member. More specifically, a laminated glass can be manufactured by sandwiching a resin sheet for a laminated glass interlayer film between two transparent plate-shaped members and then heating and pressurizing the resin sheet.
 使用可能な透明板状部材は特に限定されない。例えば、一般に使用されている透明板ガラスを挙げることができる。具体的には、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、着色された板ガラス、熱線吸収板ガラス、熱線反射板ガラス、グリーンガラス等の無機ガラスが挙げられる。また、ポリカーボネート板、ポリ(メタ)アクリレート板、ポリメチル(メタ)アクリレート板、ポリスチレン板、環式ポリオレフィン板、ポリエチレンテレフタレート板、ポリエチレンナフタレート板、ポリエチレンブチレート板等の有機プラスチックス板を用いることもできる。
 透明板状部材には、コロナ処理、プラズマ処理、フレーム処理等の表面処理が施されていてもよい。
The transparent plate-shaped member that can be used is not particularly limited. For example, a commonly used transparent plate glass can be mentioned. Specific examples thereof include float plate glass, polished plate glass, template glass, meshed plate glass, lined plate glass, colored plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, and inorganic glass such as green glass. It is also possible to use an organic plastic plate such as a polycarbonate plate, a poly (meth) acrylate plate, a polymethyl (meth) acrylate plate, a polystyrene plate, a cyclic polyolefin plate, a polyethylene terephthalate plate, a polyethylene naphthalate plate, or a polyethylene butyrate plate. can.
The transparent plate-shaped member may be subjected to surface treatment such as corona treatment, plasma treatment, and frame treatment.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like to the extent that the object of the present invention can be achieved are included in the present invention.
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。 The embodiments of the present invention will be described in detail based on Examples and Comparative Examples. As a reminder, the invention is not limited to examples.
1.測定・評価方法
 まず、測定・評価方法について説明する。
1. 1. Measurement / evaluation method First, the measurement / evaluation method will be described.
[動的粘弾性測定/クロスオーバー温度]
 まず、後掲の実施例および比較例で得られた樹脂組成物により構成された120mm×75mm×0.4mmの膜を、剥離フィルムを介してガラス板間に積層し、真空ラミネーターにて160℃、690秒真空保持、0.06MPa(ゲージ圧)で15分間プレスを行い、合わせガラスを得た。
 次いで、架橋反応を完了させるため、得られた前記合わせガラスを、165℃に設定した循環式高温乾燥機(三洋電機株式会社製、製品名:MOV-212F)で30分間熱処理した。これにより、合わせガラス体を得た(合わせガラス体:ガラス板-剥離フィルム-膜(架橋フィルム)-剥離フィルム-ガラス板の5層構造)。
 得られた前記合わせガラス体からガラス板及び剥離フィルムを除去して得られる膜を試料として、直径8mmのパラレルプレートを備えた動的粘弾性測定装置(アントンパール社製、MCR302)にて、昇温速度3℃/min、周波数1Hz、ずりモードで-60℃から150℃のせん断弾性率を窒素雰囲気下で測定した。せん断貯蔵弾性率(G')の値とせん断損失弾性率(G")の値とが等しくなる温度をクロスオーバー温度とした。
[Dynamic Viscoelasticity Measurement / Crossover Temperature]
First, a film having a size of 120 mm × 75 mm × 0.4 mm composed of the resin compositions obtained in Examples and Comparative Examples described later was laminated between glass plates via a release film, and the temperature was 160 ° C. using a vacuum laminator. , Vacuum holding for 690 seconds and pressing at 0.06 MPa (gauge pressure) for 15 minutes to obtain laminated glass.
Next, in order to complete the crosslinking reaction, the obtained laminated glass was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C. As a result, a laminated glass body was obtained (a five-layer structure of a laminated glass body: a glass plate-a release film-a film (crosslinked film) -a release film-a glass plate).
Using the film obtained by removing the glass plate and the release film from the obtained laminated glass body as a sample, ascending with a dynamic viscoelasticity measuring device (MCR302 manufactured by Anton Pearl Co., Ltd.) equipped with a parallel plate having a diameter of 8 mm. The shear modulus at a temperature of 3 ° C./min, a frequency of 1 Hz, and a shear modulus of −60 ° C. to 150 ° C. in a shear mode was measured under a nitrogen atmosphere. The temperature at which the value of the shear storage elastic modulus (G') and the value of the shear loss elastic modulus (G ") are equal is defined as the crossover temperature.
[クリープ試験]
 後掲の実施例および比較例で得られた樹脂組成物により構成された膜を180mm×160mm×0.4mmのサイズに裁断した。次いで、得られた膜二枚を重ねて、180mm×180mm×3.2mmの2枚のフロートガラスを2cmずらして挟み、真空ラミネーターにて150℃、3分真空保持、0.075MPa(ゲージ圧)で5分間プレスを行い、合わせガラスを得た。さらに、架橋反応を完了させるため、合わせガラスサンプルを165℃に設定した循環式高温乾燥機(三洋電機株式会社製、製品名:MOV-212F)で30分間熱処理した。
 次いで、得られた合わせガラスの一方を固定し、もう一方のガラスが自由に変位できるようにした。そして、自由に変位するガラスのほうに400gの重りを取り付けた上で、105℃に設定した循環式高温乾燥機(三洋電機株式会社製、製品名:MOV-212F)に投入した。
 投入して200時間経過後のガラスの変位長を測定した。なお、変位長が8cm以上に達した場合はオーブン底面に試験体に取り付けた荷重が接してしまうため、測定不可とした。
[Creep test]
The film composed of the resin compositions obtained in the examples and comparative examples described below was cut into a size of 180 mm × 160 mm × 0.4 mm. Next, the two obtained films were overlapped, and two float glasses of 180 mm × 180 mm × 3.2 mm were sandwiched by shifting them by 2 cm, and vacuum-held at 150 ° C. for 3 minutes with a vacuum laminator, 0.075 MPa (gauge pressure). Was pressed for 5 minutes to obtain a laminated glass. Further, in order to complete the crosslinking reaction, the laminated glass sample was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C.
Then, one of the obtained laminated glasses was fixed so that the other glass could be freely displaced. Then, after attaching a weight of 400 g to the freely displaceable glass, it was put into a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 105 ° C.
The displacement length of the glass after 200 hours of charging was measured. When the displacement length reaches 8 cm or more, the load attached to the test piece comes into contact with the bottom surface of the oven, so measurement is not possible.
[光学特性(ヘイズおよび全光線透過率)]
 後掲の実施例および比較例で得られた樹脂組成物により構成された膜を120mm×75mm×0.4mmのサイズに裁断した。次いで、得られた膜を120mm×75mm×3.2mmの白板ガラス(ヘイズ0.2%以下、全光線透過率92%以上)で挟み、真空ラミネーターにて150℃、3分真空保持、0.1MPa(ゲージ圧)で5分間プレスを行い、合わせガラスを得た。架橋反応を完了させるため、合わせガラスサンプルを165℃に設定した循環式高温乾燥機(三洋電機株式会社製、製品名:MOV-212F)で30分間熱処理した。
 得られた合わせガラスのヘイズをJIS K 7136:2000に準じて測定した。また、得られた合わせガラスの全光線透過率をJIS K 7361-1:1997に準じてヘイズメーター(スガ試験機株式会社製、製品名:ヘイズメーターHZ-V3)により測定した。
[Optical characteristics (haze and total light transmittance)]
The film composed of the resin compositions obtained in the examples and comparative examples described below was cut into a size of 120 mm × 75 mm × 0.4 mm. Next, the obtained film was sandwiched between 120 mm × 75 mm × 3.2 mm white plate glass (haze 0.2% or less, total light transmittance 92% or more), and vacuum-held at 150 ° C. for 3 minutes with a vacuum laminator. Pressing was performed at 1 MPa (gauge pressure) for 5 minutes to obtain a laminated glass. In order to complete the crosslinking reaction, the laminated glass sample was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C.
The haze of the obtained laminated glass was measured according to JIS K 7136: 2000. Further, the total light transmittance of the obtained laminated glass was measured by a haze meter (manufactured by Suga Test Instruments Co., Ltd., product name: haze meter HZ-V3) according to JIS K 7631-1: 1997.
[接着性]
 後掲の実施例および比較例で得られた樹脂組成物により構成された120mm×75mm×0.4mmの膜を得た。次いで、得られた膜を120mm×75mm×3.9mmのガラス板のスズ面に積層し、真空ラミネーターにて160℃、690秒真空保持、0.06MPa(ゲージ圧)で15分間プレスした。これにより、膜をガラス板のスズ面に接着させた。架橋反応を完了させるため、合わせガラスサンプルを165℃に設定した循環式高温乾燥機(三洋電機株式会社製、製品名:MOV-212F)で30分間熱処理した。
 接着させた膜を幅15mmの短冊状にカットした後、引張速度100mm/分で、膜をガラス板から、ピール角度180°で引き離した。この際の最大ピール力を、ガラス板に対する接着強度(N/15mm)として算出した。
[Adhesiveness]
A film having a size of 120 mm × 75 mm × 0.4 mm composed of the resin compositions obtained in the examples and comparative examples described later was obtained. Next, the obtained film was laminated on the tin surface of a glass plate having a size of 120 mm × 75 mm × 3.9 mm, vacuum-held at 160 ° C. for 690 seconds with a vacuum laminator, and pressed at 0.06 MPa (gauge pressure) for 15 minutes. As a result, the film was adhered to the tin surface of the glass plate. In order to complete the crosslinking reaction, the laminated glass sample was heat-treated for 30 minutes in a circulation type high temperature dryer (manufactured by Sanyo Electric Co., Ltd., product name: MOV-212F) set at 165 ° C.
The bonded film was cut into strips having a width of 15 mm, and then the film was separated from the glass plate at a pulling speed of 100 mm / min at a peel angle of 180 °. The maximum peeling force at this time was calculated as the adhesive strength (N / 15 mm) with respect to the glass plate.
2.素材の準備
 以下の素材を準備した。
2. 2. Preparation of materials The following materials were prepared.
[樹脂(アイオノマーおよびそれ以外の樹脂)]
 樹脂-A:エチレン・メタクリル酸共重合体(エチレン含有量:80質量%、メタクリル酸含有量:20質量%)の亜鉛アイオノマー(中和度:40%、MFR(JIS K 7210:1999に準拠し、190℃、2160g荷重の条件で測定):1.3g/10分)
 樹脂-B:エチレン・メタクリル酸共重合体(エチレン含有量:80質量%、メタクリル酸含有量:20質量%、MFR(JIS K 7210:1999に準拠し、190℃、2160g荷重の条件で測定):500g/10分)
[Resin (ionomer and other resins)]
Resin-A: Ethylene / methacrylic acid copolymer (ethylene content: 80% by mass, methacrylic acid content: 20% by mass) zinc ionomer (neutralization degree: 40%, MFR (JIS K 7210: 1999) compliant , 190 ℃, measured under the condition of 2160g load): 1.3g / 10 minutes)
Resin-B: Ethylene / methacrylic acid copolymer (ethylene content: 80% by mass, methacrylic acid content: 20% by mass, MFR (measured according to JIS K 7210: 1999, measured at 190 ° C. and 2160 g load)) : 500g / 10 minutes)
[滑剤]
 脂肪酸金属塩:ステアリン酸マグネシウム(商品名:マグネシウムステアレートG、日油株式会社製)
[Glidant]
Fatty acid metal salt: Magnesium stearate (trade name: Magnesium stearate G, manufactured by NOF CORPORATION)
[有機過酸化物]
 有機過酸化物:(商品名:Luperox101、アルケマ吉富株式会社製、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、10時間半減期温度=120℃)
[Organic peroxide]
Organic peroxide: (trade name: Luperox101, manufactured by Alchema Yoshitomi Co., Ltd., 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 10-hour half-life temperature = 120 ° C.)
[架橋助剤]
 架橋助剤:TAIC(トリアリルイソシアヌレート、和光純薬工業株式会社製)
[Crosslinking aid]
Crosslinking aid: TAIC (Triallyl Isocyanurate, manufactured by Wako Pure Chemical Industries, Ltd.)
[シランカップリング剤]
 シランカップリング剤-A:3-メタクリロキシプロピルメチルジエトキシシラン(商品名:KBM502、信越化学工業株式会社製)
 シランカップリング剤-B:N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(商品名:KBM602、信越化学工業株式会社製)
[Silane coupling agent]
Silane coupling agent-A: 3-methacryloxypropylmethyldiethoxysilane (trade name: KBM502, manufactured by Shin-Etsu Chemical Co., Ltd.)
Silane coupling agent-B: N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (trade name: KBM602, manufactured by Shin-Etsu Chemical Co., Ltd.)
3.太陽電池封止材の製造と評価
 まず、表1に示す配合割合で、樹脂-A、樹脂-Bおよびステアリン酸マグネシウムを、160℃、吐出量10kg/時間で溶融混練し、混錬物を得た。この混錬により、樹脂-Aおよび樹脂-Bの少なくとも一部のカルボキシ基が、ステアリン酸マグネシウム中のマグネシウムイオンで中和された。
 次いで、得られた混錬物と、Luperox101、TAIC、シランカップリング剤-Aおよびシランカップリング剤-Bを表1に示す配合割合でブレンドし、Tダイを備えた押出機を用い、押出機Tダイ出口樹脂温度120℃、加工速度1.3~1.9m/分にて押出成形した。これにより、厚さ0.4mmのシート状の樹脂成型物(太陽電池封止材)を得た。
3. 3. Manufacture and evaluation of solar cell encapsulant First, resin-A, resin-B and magnesium stearate are melt-kneaded at 160 ° C. and a discharge rate of 10 kg / hour at the blending ratios shown in Table 1 to obtain a kneaded product. rice field. By this kneading, at least a part of the carboxy groups of the resin-A and the resin-B were neutralized with magnesium ions in magnesium stearate.
Next, the obtained kneaded product was blended with Luperox 101, TAIC, a silane coupling agent-A and a silane coupling agent-B in the blending ratios shown in Table 1, and an extruder equipped with a T-die was used. Extrusion molding was performed at a T-die outlet resin temperature of 120 ° C. and a processing speed of 1.3 to 1.9 m / min. As a result, a sheet-shaped resin molded product (solar cell encapsulant) having a thickness of 0.4 mm was obtained.
 得られた樹脂成型物(太陽電池封止材)を用い、上記1.の評価を行った。 Using the obtained resin molded product (solar cell encapsulant), the above 1. Was evaluated.
 各組成物の組成と評価結果をまとめて表1に示す。
 表1において、ステアリン酸マグネシウムおよびLuperox101、TAIC、シランカップリング剤-Aおよびシランカップリング剤-Bの配合量の単位(phr)は、樹脂-Aと樹脂-Bの合計を100質量部としたときの質量部を意味する。
 表1において、「中和度」は、上述の、樹脂-A、樹脂-Bおよびステアリン酸マグネシウムの混錬物の中和度を表す。
 表1において、「MFR」は、樹脂組成物の、JIS K 7210:1999に準拠し、190℃、2160g荷重の条件で測定されるメルトマスフローレートを表す。
Table 1 summarizes the composition and evaluation results of each composition.
In Table 1, the unit (phr) of the blending amount of magnesium stearate and Luperox 101, TAIC, silane coupling agent-A and silane coupling agent-B was 100 parts by mass in total of resin-A and resin-B. It means the mass part of time.
In Table 1, the "neutralization degree" represents the neutralization degree of the above-mentioned kneaded product of resin-A, resin-B and magnesium stearate.
In Table 1, "MFR" represents the melt mass flow rate measured under the conditions of 190 ° C. and 2160 g load according to JIS K 7210: 1999 of the resin composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1および2の樹脂組成物を用いた透明性、耐クリープ性および層間接着性の性能バランスに優れていた。これに対し、比較例1~3の樹脂組成物は透明性、耐クリープ性および層間接着性の性能バランスに劣っていた。 The resin compositions of Examples 1 and 2 were used, and the performance balance of transparency, creep resistance and interlayer adhesion was excellent. On the other hand, the resin compositions of Comparative Examples 1 to 3 were inferior in the performance balance of transparency, creep resistance and interlayer adhesion.
 この出願は、2020年9月25日に出願された日本出願特願2020-160349号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-160349 filed on September 25, 2020, and incorporates all of its disclosures here.
1  太陽電池モジュール
2  基板
3  太陽電池素子
4  保護材
5  封止樹脂層
6  インターコネクタ
1 Solar cell module 2 Substrate 3 Solar cell element 4 Protective material 5 Encapsulating resin layer 6 Interconnector

Claims (21)

  1.  エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)と、有機過酸化物(C)と、シランカップリング剤(D)とを含む樹脂組成物。 Ionomer (A), an ethylene / unsaturated carboxylic acid-based copolymer, at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts, organic peroxides (C), and silane coupling agents. A resin composition containing (D).
  2.  請求項1に記載の樹脂組成物であって、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)が含む金属イオンが、リチウムイオン、カリウムイオン、ナトリウムイオン、銀イオン、銅イオン、カルシウムイオン、マグネシウムイオン、亜鉛イオン、アルミニウムイオン、バリウムイオン、ベリリウムイオン、ストロンチウムイオン、錫イオン、鉛イオン、鉄イオン、コバルトイオンおよびニッケルイオンからなる群から選択される2種以上を含む樹脂組成物。
    The resin composition according to claim 1.
    The metal ions contained in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer are lithium ion, potassium ion, sodium ion, silver ion, copper ion, calcium ion, magnesium ion, zinc ion, aluminum ion, and barium. A resin composition containing two or more selected from the group consisting of ions, beryllium ions, strontium ions, tin ions, lead ions, iron ions, cobalt ions and nickel ions.
  3.  請求項1または2に記載の樹脂組成物であって、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)が含む金属イオンは、第1金属イオンおよび前記第1金属イオンとは異なる第2金属イオンを含み、
     前記第1金属イオンは、亜鉛イオン、銅イオン、鉄イオン、アルミニウムイオン、銀イオン、コバルトイオンおよびニッケルイオンからなる群から選択される少なくとも一種の金属イオンを含み、
     前記第2金属イオンは、ナトリウムイオン、リチウムイオン、カリウムイオンおよびマグネシウムイオンからなる群から選択される少なくとも一種の金属イオンを含む樹脂組成物。
    The resin composition according to claim 1 or 2.
    The metal ion contained in the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer contains a first metal ion and a second metal ion different from the first metal ion.
    The first metal ion contains at least one metal ion selected from the group consisting of zinc ion, copper ion, iron ion, aluminum ion, silver ion, cobalt ion and nickel ion.
    The second metal ion is a resin composition containing at least one metal ion selected from the group consisting of sodium ion, lithium ion, potassium ion and magnesium ion.
  4.  請求項3に記載の樹脂組成物であって、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)中の、前記第1金属イオンのモル数を価数で乗じた値に対する前記第2金属イオンのモル数を価数で乗じた値の比が0.10以上10.0以下である樹脂組成物。
    The resin composition according to claim 3.
    A value obtained by multiplying the value obtained by multiplying the number of moles of the first metal ion by the valence in the ionomer (A) of the ethylene / unsaturated carboxylic acid polymer by the number of moles of the second metal ion by the valence. A resin composition having a ratio of 0.10 or more and 10.0 or less.
  5.  請求項1~4のいずれか一項に記載の樹脂組成物であって、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)において、前記エチレン・不飽和カルボン酸系共重合体を構成する構成単位の全体を100質量%としたとき、不飽和カルボン酸から導かれる構成単位が5質量%以上35質量%以下である樹脂組成物。
    The resin composition according to any one of claims 1 to 4.
    In the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer, when the total number of the constituent units constituting the ethylene / unsaturated carboxylic acid-based copolymer is 100% by mass, it is derived from the unsaturated carboxylic acid. A resin composition having a constituent unit of 5% by mass or more and 35% by mass or less.
  6.  請求項1~5のいずれか一項に記載の樹脂組成物であって、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)の中和度が5%以上95%以下である樹脂組成物。
    The resin composition according to any one of claims 1 to 5.
    A resin composition having a neutralization degree of ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer of 5% or more and 95% or less.
  7.  請求項1~6のいずれか一項に記載の樹脂組成物であって、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)100質量部に対する前記滑剤(B)の量が1質量部以上20質量部以下である樹脂組成物。
    The resin composition according to any one of claims 1 to 6.
    A resin composition in which the amount of the lubricant (B) is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer.
  8.  請求項1~7のいずれか一項に記載の樹脂組成物であって、
     前記滑剤(B)は、炭素数12以上36以下の脂肪酸であるか、または、炭素数12以上36以下の脂肪酸の金属塩である樹脂組成物。
    The resin composition according to any one of claims 1 to 7.
    The lubricant (B) is a resin composition which is a fatty acid having 12 or more and 36 or less carbon atoms or a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
  9.  請求項1~8のいずれか一項に記載の樹脂組成物であって、
     前記滑剤(B)は、炭素数12以上36以下の脂肪酸の金属塩を含み、
     前記エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)の少なくとも一部のカルボキシ基が、前記滑剤(B)が含む炭素数12以上36以下の脂肪酸の金属塩を構成する金属の少なくとも一部で中和されている樹脂組成物。
    The resin composition according to any one of claims 1 to 8.
    The lubricant (B) contains a metal salt of a fatty acid having 12 or more and 36 or less carbon atoms.
    At least a part of the carboxy group of the ionomer (A) of the ethylene / unsaturated carboxylic acid-based copolymer is at least one of the metals constituting the metal salt of the fatty acid having 12 or more and 36 or less carbon atoms contained in the lubricant (B). A resin composition that is neutralized in the part.
  10.  請求項1~9のいずれか一項に記載の樹脂組成物であって、
     前記シランカップリング剤(D)が、重合性炭素-炭素二重結合を含む基を有するシランカップリング剤を含む樹脂組成物。
    The resin composition according to any one of claims 1 to 9.
    A resin composition in which the silane coupling agent (D) contains a silane coupling agent having a group containing a polymerizable carbon-carbon double bond.
  11.  請求項1~10のいずれか一項に記載の樹脂組成物であって、
     前記有機過酸化物(C)の10時間半減期温度が100℃以上である樹脂組成物。
    The resin composition according to any one of claims 1 to 10.
    A resin composition having a 10-hour half-life temperature of the organic peroxide (C) of 100 ° C. or higher.
  12.  請求項1~11のいずれか一項に記載の樹脂組成物であって、
     下記方法により測定されるクロスオーバー温度が150℃以上である樹脂組成物。
    (方法)
     前記樹脂組成物により構成された120mm×75mm×0.4mmの膜を、剥離フィルムを介してガラス板間に積層し、真空ラミネーターにて160℃、690秒真空保持、0.06MPa(ゲージ圧)で15分間プレスを行い、合わせガラスを得る。次いで得られた前記合わせガラスを165℃で30分間熱処理することで合わせガラス体を得る。得られた前記合わせガラス体からガラス板及び剥離フィルムを除去して得られる膜を試料として、昇温速度3℃/min、周波数1Hz、ずりモードで-60℃から150℃のせん断弾性率を窒素雰囲気下で測定する。せん断貯蔵弾性率(G')の値とせん断損失弾性率(G")の値とが等しくなる温度をクロスオーバー温度とする。
    The resin composition according to any one of claims 1 to 11.
    A resin composition having a crossover temperature of 150 ° C. or higher measured by the following method.
    (Method)
    A film of 120 mm × 75 mm × 0.4 mm composed of the resin composition was laminated between glass plates via a release film, and was held in a vacuum laminator at 160 ° C. for 690 seconds, 0.06 MPa (gauge pressure). Press for 15 minutes to obtain a laminated glass. Next, the obtained laminated glass is heat-treated at 165 ° C. for 30 minutes to obtain a laminated glass body. Using the film obtained by removing the glass plate and the release film from the obtained laminated glass as a sample, the shear modulus at a heating rate of 3 ° C./min, a frequency of 1 Hz, and a shear modulus of -60 ° C to 150 ° C in a shear mode is nitrogen. Measure in an atmosphere. The temperature at which the value of the shear storage elastic modulus (G') and the value of the shear loss elastic modulus (G ") are equal is defined as the crossover temperature.
  13.  請求項1~12のいずれか一項に記載の樹脂組成物であって、
     太陽電池封止材の形成用である樹脂組成物。
    The resin composition according to any one of claims 1 to 12.
    A resin composition for forming a solar cell encapsulant.
  14.  請求項1~13のいずれか一項に記載の樹脂組成物の製造方法であって、
     エチレン・不飽和カルボン酸系共重合体のアイオノマー(A)と、脂肪酸および脂肪酸金属塩からなる群より選ばれる少なくとも一種の滑剤(B)と、を混合することにより混合物を得る工程と、
     前記工程の後に、前記混合物と、有機過酸化物(C)と、シランカップリング剤(D)と、を混合する工程と、
    を含む樹脂組成物の製造方法。
    The method for producing a resin composition according to any one of claims 1 to 13.
    A step of obtaining a mixture by mixing an ionomer (A) of an ethylene / unsaturated carboxylic acid-based copolymer and at least one lubricant (B) selected from the group consisting of fatty acids and fatty acid metal salts.
    After the step, the step of mixing the mixture, the organic peroxide (C), and the silane coupling agent (D),
    A method for producing a resin composition containing.
  15.  請求項1~13のいずれか一項に記載の樹脂組成物により構成された層を含む太陽電池封止材。 A solar cell encapsulant containing a layer composed of the resin composition according to any one of claims 1 to 13.
  16.  請求項1~13のいずれか一項に記載の樹脂組成物の加熱溶融物を、Tダイを備えた押出機の前記Tダイから押し出してシート状に成形する押出成形工程を含む太陽電池封止材の製造方法。 Solar cell encapsulation including an extrusion molding step of extruding the heated melt of the resin composition according to any one of claims 1 to 13 from the T die of an extruder equipped with a T die to form a sheet. Material manufacturing method.
  17.  請求項16に記載の太陽電池封止材の製造方法であって、
     前記押出成形工程において、前記Tダイの出口における前記加熱溶融物の温度が140℃以下である太陽電池封止材の製造方法。
    The method for manufacturing a solar cell encapsulant according to claim 16.
    A method for producing a solar cell encapsulant in which the temperature of the heated melt at the outlet of the T die is 140 ° C. or lower in the extrusion molding step.
  18.  太陽電池素子と、
     請求項15に記載の太陽電池封止材により形成された、前記太陽電池素子を封止する封止樹脂層と、
    を備える太陽電池モジュール。
    With solar cell elements
    A sealing resin layer for encapsulating the solar cell element, which is formed by the solar cell encapsulant according to claim 15.
    A solar cell module equipped with.
  19.  請求項1~12のいずれか一項に記載の樹脂組成物であって、
     合わせガラスの中間膜を形成するために用いられる樹脂組成物。
    The resin composition according to any one of claims 1 to 12.
    A resin composition used to form an interlayer film of laminated glass.
  20.  請求項19に記載の樹脂組成物により形成された膜を含む、合わせガラス中間膜用樹脂シート。 A resin sheet for a laminated glass interlayer film, which comprises a film formed by the resin composition according to claim 19.
  21.  請求項20に記載の合わせガラス中間膜用樹脂シートにより形成された合わせガラス中間膜と、
     前記合わせガラス中間膜の少なくとも一方の面上に設けられた透明板状部材と、を備える合わせガラス。
    The laminated glass interlayer film formed by the resin sheet for the laminated glass interlayer film according to claim 20 and the laminated glass interlayer film,
    A laminated glass comprising a transparent plate-like member provided on at least one surface of the laminated glass interlayer film.
PCT/JP2021/033860 2020-09-25 2021-09-15 Resin composition, method of manufacturing resin composition, solar cell encapsulant, method of manufacturing solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass WO2022065146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551912A JP7467654B2 (en) 2020-09-25 2021-09-15 Method for producing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-160349 2020-09-25
JP2020160349 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065146A1 true WO2022065146A1 (en) 2022-03-31

Family

ID=80845373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033860 WO2022065146A1 (en) 2020-09-25 2021-09-15 Resin composition, method of manufacturing resin composition, solar cell encapsulant, method of manufacturing solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass

Country Status (3)

Country Link
JP (1) JP7467654B2 (en)
TW (1) TW202216885A (en)
WO (1) WO2022065146A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316368A (en) * 1994-05-26 1995-12-05 Du Pont Mitsui Polychem Co Ltd Ionomer composition
JPH0930846A (en) * 1995-05-17 1997-02-04 Bridgestone Corp Laminated glass
JP2010519346A (en) * 2007-02-15 2010-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Articles comprising a high melt flow ionomer composition
JP2012138467A (en) * 2010-12-27 2012-07-19 Dainippon Printing Co Ltd Solar battery sealing material, and solar battery module using the same
KR20140072380A (en) * 2012-12-03 2014-06-13 주식회사 엘지화학 Olefin Ionomer Resin Composition and Encapsulant of Optoelectronic Device
JP2018099435A (en) * 2016-12-21 2018-06-28 住友ゴム工業株式会社 Resin composition for golf ball and golf ball

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914269B (en) * 2003-12-03 2012-12-26 纳幕尔杜邦公司 Articles of manufacture comprising stiff and resilient ethylene copolymer compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316368A (en) * 1994-05-26 1995-12-05 Du Pont Mitsui Polychem Co Ltd Ionomer composition
JPH0930846A (en) * 1995-05-17 1997-02-04 Bridgestone Corp Laminated glass
JP2010519346A (en) * 2007-02-15 2010-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Articles comprising a high melt flow ionomer composition
JP2012138467A (en) * 2010-12-27 2012-07-19 Dainippon Printing Co Ltd Solar battery sealing material, and solar battery module using the same
KR20140072380A (en) * 2012-12-03 2014-06-13 주식회사 엘지화학 Olefin Ionomer Resin Composition and Encapsulant of Optoelectronic Device
JP2018099435A (en) * 2016-12-21 2018-06-28 住友ゴム工業株式会社 Resin composition for golf ball and golf ball

Also Published As

Publication number Publication date
TW202216885A (en) 2022-05-01
JP7467654B2 (en) 2024-04-15
JPWO2022065146A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2011132589A1 (en) Optical semiconductor protective material, precursor for same, and method for manufacturing optical semiconductor protective material
JP4325965B2 (en) Solar cell element sealing material and solar cell module
TWI735468B (en) Multilayer sheet for solar cell encapsulant, method for manufacture thereof and solar cell module
JP6281563B2 (en) Solar cell module and manufacturing method thereof
TWI752919B (en) Insulative multilayer sheet and solar cell module
EP2685508A1 (en) Sealing film for solar cells and solar cell using same
JP6970096B2 (en) Resin composition and its uses
CN111094435B (en) Resin composition for laminated glass interlayer or solar cell sealing material, laminated glass interlayer, laminated glass, solar cell sealing material, and solar cell module
WO2022065146A1 (en) Resin composition, method of manufacturing resin composition, solar cell encapsulant, method of manufacturing solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass
JP5687818B2 (en) Solar cell module
JP7311613B2 (en) Resin composition for solar cell encapsulant, solar cell encapsulant, method for producing solar cell encapsulant, and solar cell module
WO2011037233A1 (en) Adhesive sheet for solar cell, process for production of the adhesive sheet, and solar cell module
WO2021125004A1 (en) Resin composition for solar cell sealing material, solar cell sealing material, method for producing solar cell sealing material, and solar cell module
WO2023176584A1 (en) Adhesive resin composition, laminated glass interlayer, laminated glass, solar cell encapsulant, and solar cell module
WO2019159852A1 (en) Resin composition for laminated glass interlayer film or solar cell sealing material, laminated glass interlayer film, laminated glass, solar cell sealing material, and solar cell module
JP2015095593A (en) Sealing material for solar cell and solar cell module
JP2012243775A (en) Solar cell module
WO2014054579A1 (en) Filler sheet for solar cell modules and method for manufacturing solar cell module
JP2017107923A (en) Sealing material for solar cell module and solar cell module
JP2011061057A (en) Sealing material sheet
JP2015046509A (en) Seal material for solar cell module and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872276

Country of ref document: EP

Kind code of ref document: A1