JP2012138467A - Solar battery sealing material, and solar battery module using the same - Google Patents

Solar battery sealing material, and solar battery module using the same Download PDF

Info

Publication number
JP2012138467A
JP2012138467A JP2010289766A JP2010289766A JP2012138467A JP 2012138467 A JP2012138467 A JP 2012138467A JP 2010289766 A JP2010289766 A JP 2010289766A JP 2010289766 A JP2010289766 A JP 2010289766A JP 2012138467 A JP2012138467 A JP 2012138467A
Authority
JP
Japan
Prior art keywords
sealing material
solar cell
mass
polyfunctional monomer
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010289766A
Other languages
Japanese (ja)
Inventor
Tetsuo Konno
哲郎 今野
Shinya Yoneda
伸也 米田
Kosuke Saeki
康佑 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010289766A priority Critical patent/JP2012138467A/en
Publication of JP2012138467A publication Critical patent/JP2012138467A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery sealing material having transparency, flexibility, adhesion with various materials, and thermal resistance against the rise in temperature at the time of generating power, and a solar battery module using the solar battery sealing material.SOLUTION: The solar battery sealing material comprises: (A) an ethylene-unsaturated carboxylic acid copolymer in which the content of unsaturated carboxylic acid in the copolymer is 3-30 mass%, and which has a melting point of 50-105°C, (B) an ionomer of ethylene-unsaturated carboxylic acid copolymer in which the content of unsaturated carboxylic acid in the copolymer is 3-30 mass%, and which has a degree of neutralization of 5-40%, and a melting point of 50-105°C, (C) a multifunctional monomer having more than one unsaturated double bond, (D) a multifunctional monomer consisting of a mixture of a multifunctional monomer having more than one unsaturated double bond, and a silane coupling agent having more than one alkoxyl group, and (E) an organic peroxide. The solar battery sealing material includes: 100 pts.wt. of resin of (A) and/or (B), 0.03-5.0 pts.wt. of the multifunctional monomer of (C) or (D), and 0.01-3.0 pts.wt. of the organic peroxide of (E).

Description

本発明は、太陽電池封止材料、及びこれを用いた太陽電池モジュールに関し、さらに詳しくは、透明性、耐熱性、密着性などに優れた太陽電池封止材料、及びこれを用いた太陽電池モジュールに関するものである。   The present invention relates to a solar cell sealing material and a solar cell module using the same, and more specifically, a solar cell sealing material excellent in transparency, heat resistance, adhesion, and the like, and a solar cell module using the solar cell sealing material. It is about.

本明細書において、配合を示す「比」、「部」、「%」などは特に断わらない限り質量基準である。また、「EVA」は「エチレン−酢酸ビニル共重合体」、「MAA」は「メタクリル酸」、「EMAA」は「エチレン−メタクリル酸共重合体」、「EMAA−Metal」は「エチレン−メタクリル酸共重合体のアイオノマー」、「ETFE」は「エチレン−四フッ化エチレン共重合体」の略語、機能的表現、通称、又は業界用語である。   In the present specification, “ratio”, “part”, “%” and the like indicating the composition are based on mass unless otherwise specified. “EVA” is “ethylene-vinyl acetate copolymer”, “MAA” is “methacrylic acid”, “EMAA” is “ethylene-methacrylic acid copolymer”, and “EMAA-Metal” is “ethylene-methacrylic acid”. “Ionomer of copolymer”, “ETFE” is an abbreviation, functional expression, common name, or industry term for “ethylene-tetrafluoroethylene copolymer”.

太陽電池モジュールは太陽電池素子に導電性金属で配線を施し、前面透明保護材と背面保護材からなる保護材で挟むように、配線を施した太陽電池素子を封止材料で固定し、パッケージ化したものである。このため、太陽電池封止材料としては、一般的に、太陽光を透し易い透明性と、太陽電池素子を物理的に保護するための柔軟性と、保護材のガラスや金属などの各種素材との密着性と、発電時の温度上昇に耐える耐熱性が必要とされている。太陽電池封止材料を用いた太陽電池モジュールは、太陽電池モジュールの製造時の剥離や変形のトラブルがなく、製造が容易であり、かつ、太陽電池として使用時には流動や剥離を回避することができて、長期間にわたって使用できることも必要とされている。従って、太陽電池封止材料は、透明性と、太陽電池素子を保護するための柔軟性と、ガラスや金属などの各種素材との密着性と、発電時の温度上昇に耐える耐熱性が求められている。   The solar cell module is packaged by wiring the solar cell element with conductive metal, fixing the solar cell element with wiring with a sealing material so that it is sandwiched between protective materials consisting of a front transparent protective material and a back protective material It is a thing. For this reason, as solar cell sealing materials, in general, transparency that allows sunlight to pass through, flexibility for physically protecting solar cell elements, and various materials such as protective glass and metal And heat resistance to withstand temperature rise during power generation is required. A solar cell module using a solar cell sealing material is free from troubles of peeling and deformation during the production of the solar cell module, can be easily manufactured, and can be prevented from flowing and peeling when used as a solar cell. Therefore, it must be usable for a long time. Therefore, solar cell sealing materials are required to have transparency, flexibility to protect solar cell elements, adhesion to various materials such as glass and metal, and heat resistance that can withstand temperature rise during power generation. ing.

特開2000−186114号公報JP 2000-186114 A

従来、太陽電池封止材料としては、エチレン−酢酸ビニル共重合体(EVA)に有機過酸化物と多官能モノマーとシランカップリング剤とを加えてなる架橋EVAがが知られている。しかしながら、架橋EVAは透明性と柔軟性と耐熱性とガラス密着性には比較的優れるものの、金属密着性に劣り、また、使用時などの高温高湿下では酢酸残基が加水分解し、酢酸を発生し、太陽電池素子や透明電極が腐食し、発電性能が低下するという欠点がある。
また、金属密着性に優れる太陽電池封止材料としては、エチレンー(メタ)アクリル酸共重合体を部分中和したアイオノマー樹脂が知られている(例えば、特許文献1参照。)。しかしながら、アイオノマー樹脂は透明性と柔軟性と金属密着性には比較的優れるものの、ガラスとの密着性も充分ではなく、有機過酸化物などを用いず、架橋されていないので耐熱性が不十分であり、耐熱性を向上させるために中和度を上げると金属密着性が低下するという問題点がある。
Conventionally, a crosslinked EVA obtained by adding an organic peroxide, a polyfunctional monomer, and a silane coupling agent to an ethylene-vinyl acetate copolymer (EVA) is known as a solar cell sealing material. However, although crosslinked EVA is relatively excellent in transparency, flexibility, heat resistance and glass adhesion, it is inferior in metal adhesion, and an acetic acid residue is hydrolyzed under high temperature and high humidity such as in use. , The solar cell element and the transparent electrode are corroded, and the power generation performance is reduced.
In addition, as a solar cell sealing material having excellent metal adhesion, an ionomer resin obtained by partially neutralizing an ethylene- (meth) acrylic acid copolymer is known (for example, see Patent Document 1). However, although ionomer resin is relatively excellent in transparency, flexibility, and metal adhesion, it does not have sufficient adhesion to glass, does not use organic peroxide, etc., and is not crosslinked, so it has insufficient heat resistance However, when the degree of neutralization is increased in order to improve heat resistance, there is a problem that metal adhesion is lowered.

そこで、本発明は上記のような問題点を解消するために、本発明者らは鋭意研究を進め、本発明の完成に至ったものである。その目的は、透明性と、太陽電池素子を保護するための柔軟性と、ガラスや金属などの各種素材との密着性と、発電時の温度上昇に耐える耐熱性とを有する太陽電池封止材料、及びこれを用いた太陽電池モジュールを提供することである。   In order to solve the above-described problems, the present inventors have made extensive studies and have completed the present invention. Its purpose is solar cell sealing material that has transparency, flexibility to protect solar cell elements, adhesion to various materials such as glass and metal, and heat resistance that can withstand temperature rise during power generation And a solar cell module using the same.

上記の課題を解決するために、本発明の請求項1の発明に係わる太陽電池封止材料は、樹脂(A)及び/又は樹脂(B)が100質量部と、多官能モノマー(C)又は多官能モノマー(D)が0.03〜5.0質量部と、有機過酸化物(E)が0.01〜3.0質量部とから構成される太陽電池モジュールの封止材料であって、前記樹脂(A)が共重合体中の不飽和カルボン酸含量が3〜30質量%で、融点が50〜105℃であるエチレンー不飽和カルボン酸共重合体で、前記樹脂(B)が共重合体中の不飽和カルボン酸含量が3〜30質量%で、中和度が5〜40%で、融点が50〜105℃であるエチレンー不飽和カルボン酸共重合体のアイオノマーで、前記多官能モノマー(C)が複数の不飽和二重結合を有する多官能モノマーで、前記多官能モノマー(D)が複数の不飽和二重結合を有する多官能モノマーと、複数のアルコキシル基を有するシランカップリング剤の混合物である多官能モノマーであることを特徴とする封止材料である。
請求項4の発明に係わる太陽電池封止材料は、請求項1〜3において、上記シランカップリング剤がエポキシ基を有するシランカップリング剤、又は不飽和二重結合を有するシランカップリング剤であるものである。
請求項5の発明に係わる太陽電池モジュールは、請求項1〜4のいずれかに記載の太陽電池封止材料を用いるものである。
In order to solve the above problems, the solar cell encapsulating material according to the invention of claim 1 of the present invention comprises 100 parts by mass of the resin (A) and / or the resin (B), the polyfunctional monomer (C) or It is a sealing material for a solar cell module composed of 0.03-5.0 parts by mass of a polyfunctional monomer (D) and 0.01-3.0 parts by mass of an organic peroxide (E). The resin (A) is an ethylene-unsaturated carboxylic acid copolymer having an unsaturated carboxylic acid content of 3 to 30% by mass and a melting point of 50 to 105 ° C. in the copolymer, and the resin (B) is a copolymer. An ionomer of an ethylene-unsaturated carboxylic acid copolymer having an unsaturated carboxylic acid content of 3 to 30% by mass, a neutralization degree of 5 to 40%, and a melting point of 50 to 105 ° C. The monomer (C) is a polyfunctional monomer having a plurality of unsaturated double bonds, A sealing material characterized in that the polyfunctional monomer (D) is a polyfunctional monomer that is a mixture of a polyfunctional monomer having a plurality of unsaturated double bonds and a silane coupling agent having a plurality of alkoxyl groups. is there.
A solar cell sealing material according to a fourth aspect of the present invention is the solar cell sealing material according to the first to third aspects, wherein the silane coupling agent is a silane coupling agent having an epoxy group or a silane coupling agent having an unsaturated double bond. Is.
The solar cell module according to the invention of claim 5 uses the solar cell sealing material according to any one of claims 1 to 4.

本願発明によれば、太陽光を透し易い透明性と、太陽電池素子を物理的に保護するための柔軟性と、保護材のガラスや金属などの各種素材との密着性と、発電時の温度上昇に耐える耐熱性に優れるという効果を奏し、さらに、太陽電池モジュールの製造時の剥離や変形のトラブルがなく、製造が容易であり、かつ、太陽電池として使用時には流動や剥離を回避することができて、長期間にわたって使用可能な効果を奏する。   According to the present invention, transparency that allows sunlight to pass through, flexibility for physically protecting the solar cell element, adhesion to various materials such as glass and metal of the protective material, and power generation Has the effect of excellent heat resistance that can withstand temperature rise, and has no trouble of peeling or deformation when manufacturing a solar cell module, is easy to manufacture, and avoids flow or peeling when used as a solar cell. Can be used for a long period of time.

本願発明の太陽電池モジュールの1実施例を示す断面図である。It is sectional drawing which shows one Example of the solar cell module of this invention. 本願発明の太陽電池モジュールの1実施例を示す断面図である。It is sectional drawing which shows one Example of the solar cell module of this invention.

以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(太陽電池モジュール)本願発明の太陽電池モジュール10は、図1に示すように、配線13を施した太陽電池セル11を前面透明保護材23A及び背面保護材23Bとで挟み込んだ構成をとるように、前面封止材料21A及び背面封止材料21Bを介し封止したものである。図2は薄膜型の太陽電池モジュールであって、前面透明保護材23Aへ、光電変換層43、表面電極層(透明電極)41、裏面電極45などの機能部が設けあり、該機能部へ背面保護材23Bを太陽電池封止材料21で封止したものである。本願発明の太陽電池モジュール10はいずれの太陽電池モジュールでもよい。なお、いずれも外部配線などは省略してある。なお、前面封止材料21Aと背面封止材料21Bとをまとめて、太陽電池封止材料21と呼称する。   (Solar Cell Module) As shown in FIG. 1, the solar cell module 10 of the present invention has a configuration in which the solar cell 11 provided with the wiring 13 is sandwiched between the front transparent protective material 23A and the back protective material 23B. , And sealed through the front sealing material 21A and the back sealing material 21B. FIG. 2 shows a thin-film solar cell module in which functional parts such as a photoelectric conversion layer 43, a surface electrode layer (transparent electrode) 41, and a back electrode 45 are provided on the front transparent protective material 23A. The protective material 23B is sealed with the solar cell sealing material 21. The solar cell module 10 of the present invention may be any solar cell module. In either case, external wiring and the like are omitted. The front sealing material 21A and the back sealing material 21B are collectively referred to as the solar cell sealing material 21.

(太陽電池封止材料)本願発明の太陽電池封止材料21は、樹脂(A)及び/又は樹脂(B)が100質量部と、多官能モノマー(C)又は多官能モノマー(D)が0.03〜5.0質量部と、有機過酸化物(E)が0.01〜3.0質量部とから構成し、前記樹脂(A)が共重合体中の不飽和カルボン酸含量が3〜30質量%で、融点が50〜105℃であるエチレンー不飽和カルボン酸共重合体で、前記樹脂(B)が共重合体中の不飽和カルボン酸含量が3〜30質量%で、中和度が5〜40%で、融点が50〜105℃であるエチレンー不飽和カルボン酸共重合体のアイオノマーで、前記多官能モノマー(C)が複数の不飽和二重結合を有する多官能モノマーで、前記多官能モノマー(D)が複数の不飽和二重結合を有する多官能モノマーと、複数のアルコキシル基を有するシランカップリング剤の混合物である多官能モノマーとする。また、本願発明の太陽電池封止材料21は、前面封止材料21A、又は背面封止材料21Bのいずか一方でも、両方に用いてもよい。   (Solar cell sealing material) In the solar cell sealing material 21 of the present invention, the resin (A) and / or the resin (B) is 100 parts by mass, and the polyfunctional monomer (C) or the polyfunctional monomer (D) is 0. 0.03 to 5.0 parts by mass and 0.01 to 3.0 parts by mass of organic peroxide (E), and the resin (A) has an unsaturated carboxylic acid content of 3 in the copolymer. It is an ethylene-unsaturated carboxylic acid copolymer having a melting point of 50 to 105 ° C. at an amount of ˜30% by mass, and the resin (B) has an unsaturated carboxylic acid content in the copolymer of 3 to 30% by mass, An ionomer of an ethylene-unsaturated carboxylic acid copolymer having a degree of 5 to 40% and a melting point of 50 to 105 ° C., wherein the polyfunctional monomer (C) is a polyfunctional monomer having a plurality of unsaturated double bonds, The polyfunctional monomer (D) having a plurality of unsaturated double bonds To the over, the polyfunctional monomer is a mixture of the silane coupling agent having a plurality of alkoxy groups. Moreover, you may use the solar cell sealing material 21 of this invention for both of the front sealing material 21A or the back sealing material 21B, or both.

(A)エチレン−不飽和カルボン酸の共重合体、ないしはエチレンー不飽和カルボン酸の共重合体を金属イオンにより部分中和したアイオノマー樹脂からなる樹脂成分100質量部と、有機過酸化物0.01〜3.0質量部と、不飽和二重結合を有する多官能モノマー、ないしはシランカップリング剤を加えた多官能モノマー0.03〜5.0質量部からなる。上記のエチレン−不飽和カルボン酸共重合体は、不飽和カルボン酸含量が5〜30質量%であり、融点が50〜105℃である。かかる共重合体は優れた透明性を有している。   (A) Ethylene-unsaturated carboxylic acid copolymer or ethylene-unsaturated carboxylic acid copolymer partially neutralized with metal ions 100 parts by mass of resin component and organic peroxide 0.01 It consists of 0.03 to 5.0 parts by mass and a polyfunctional monomer having an unsaturated double bond or a polyfunctional monomer to which a silane coupling agent is added. The ethylene-unsaturated carboxylic acid copolymer has an unsaturated carboxylic acid content of 5 to 30% by mass and a melting point of 50 to 105 ° C. Such a copolymer has excellent transparency.

(B)上記のアイオノマーは、共重合体中の不飽和カルボン酸含量が5〜30質量%であり、金属イオンによる中和度が5〜30%であり、融点が50〜105℃である。上記の共重合体に中和度の高いアイオノマー樹脂をブレンドして、カルボン酸含量を5〜30質量%、中和度を5〜30%、融点を50〜105℃に調整しても良い。かかるアイオノマーは、優れた透明性を有している。   (B) The above-mentioned ionomer has an unsaturated carboxylic acid content in the copolymer of 5 to 30% by mass, a degree of neutralization with metal ions of 5 to 30%, and a melting point of 50 to 105 ° C. The copolymer may be blended with an ionomer resin having a high degree of neutralization to adjust the carboxylic acid content to 5 to 30% by mass, the degree of neutralization to 5 to 30%, and the melting point to 50 to 105 ° C. Such ionomers have excellent transparency.

上記の共重合体樹脂とアイオノマー樹脂を構成する不飽和カルボン酸としては、アクリル酸、メタクリル酸などである。なお、柔軟性を向上させるために、更にビニルエステルや(メタ)アクリル酸エステルなどを加えて共重合したものを用いても良く、或いはエチレンにビニルエステルや(メタ)アクリル酸エステルを共重合したものをブレンドしても良い。共重合体中の不飽和カルボン酸含量としては、少なすぎると透明性が劣り、多すぎると吸湿性が高くなるので、5〜30質量%が好ましく、8〜25質量%がより好ましい。   Examples of the unsaturated carboxylic acid constituting the copolymer resin and the ionomer resin include acrylic acid and methacrylic acid. In order to improve flexibility, a copolymer obtained by adding a vinyl ester or (meth) acrylic acid ester or the like may be used, or a vinyl ester or (meth) acrylic acid ester may be copolymerized with ethylene. You may blend things. When the content of the unsaturated carboxylic acid in the copolymer is too small, the transparency is inferior, and when it is too large, the hygroscopicity is increased, so that 5 to 30% by mass is preferable, and 8 to 25% by mass is more preferable.

上記のアイオノマー樹脂を構成する金属種としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)などのアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)などの多価金属などであり、単独或いは複数用いても良い。なお、中和度が低すぎると透明性が劣り、高すぎると密着性が劣るので、中和度は5〜30%が好ましく、8〜25%がより好ましい。   Examples of the metal species constituting the ionomer resin include alkali metals such as lithium (Li), sodium (Na), and potassium (K), and polyvalent metals such as magnesium (Mg), calcium (Ca), and zinc (Zn). These may be used alone or in combination. When the degree of neutralization is too low, the transparency is inferior, and when it is too high, the adhesion is inferior, so the degree of neutralization is preferably 5 to 30%, more preferably 8 to 25%.

上記の共重合体とアイオノマーの融点は、低すぎるとハンドリングが悪くなり、高すぎるとラミネートが困難になるので、50〜105℃が好ましく、55〜95℃がより好ましい。必要に応じて、更にビニルエステルや(メタ)アクリル酸エステルなどを加えて共重合して融点を制御しても良く、またエチレンにビニルエステルや(メタ)アクリル酸エステルを共重合したものをブレンドして融点を制御しても良い。   When the melting point of the copolymer and the ionomer is too low, the handling becomes worse, and when it is too high, lamination becomes difficult, so 50 to 105 ° C is preferable, and 55 to 95 ° C is more preferable. If necessary, vinyl ester or (meth) acrylic acid ester may be added and copolymerized to control the melting point, or a blend of ethylene and vinyl ester or (meth) acrylic acid ester copolymerized Then, the melting point may be controlled.

(E)上記の有機過酸化物の1時間半減期温度は、低すぎると上記アイオノマーが充分溶融する前に分解し、高すぎると分解に時間が掛かりすぎるので、80〜170℃が好ましく、90〜160℃がより好ましく、100〜150℃が特に好ましい。上記の有機過酸化物の配合量は、少なすぎると上記の多官能モノマーの反応が進まず、多すぎるとラミネート前に太陽電池封止材料がゲル化する可能性が発生するので、0.03〜3.0質量部が好ましく、0.05〜2.5質量部がより好ましく、0.1〜2.0質量部が特に好ましい。   (E) If the one-hour half-life temperature of the organic peroxide is too low, it decomposes before the ionomer is sufficiently melted, and if it is too high, it takes too much time for decomposition. -160 degreeC is more preferable, and 100-150 degreeC is especially preferable. If the amount of the organic peroxide is too small, the reaction of the polyfunctional monomer does not proceed. If the amount is too large, there is a possibility that the solar cell sealing material will gel before lamination. -3.0 mass parts is preferable, 0.05-2.5 mass parts is more preferable, 0.1-2.0 mass parts is especially preferable.

上記の有機過酸化物としては、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシアセテート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシ2−エチルヘキシルカーボネート、ジクミルパーオキサイド、ジーt−ブチルパーオキサイド、ジーt−アミルパーオキサイドなどが例示できる。単独或いは複数用いても良い。1時間半減期温度が100〜150℃である有機過酸化物としては、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン(111℃)、2,2−ジ(4,4−ジ−(t−ブチルパーオキシ)シクロヘキシル)プロパン(114℃)、t−ヘキシルパーオキシイソプロピルモノカーボネート(115℃)、t−ブチルパーオキシラウレート(118℃)、t−ブチルパーオキシイソプロピルモノカーボネート(118℃)、t−ブチルパーオキシマレイン酸(119℃)、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート(119℃)、t−ブチルパーオキシ2−エチルヘキシルモノカーボネート(119℃)、t−ヘキシルパーオキシベンゾエート(119℃)、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン(119℃)、t−ブチルパーオキシアセテート(121℃)、2,2−ジ(t−ブチルパーオキシ)ブタン(122℃)、t−ブチルパーオキシベンゾエート(125℃)、n−ブチル4,4−ジ−(t−ブチルパーオキシ)バレレート(127℃)、ジクミルパーオキサイド(136℃)、ジ−t−ヘキシルパーオキサイド(136℃)、t−ブチルクミルパーオキサイド(137℃)、ジ(2−t−ブチルパーオキシイソプロピル)ベンゼン(138℃)、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(138℃)等が例示でき、括弧内の温度が1時間半減期温度である。   Examples of the organic peroxide include t-butyl peroxyacetate, t-butyl peroxybenzoate, t-amyl peroxyacetate, t-amyl peroxybenzoate, t-butyl peroxy 2-ethylhexyl carbonate, dicumyl per Examples thereof include oxide, di-t-butyl peroxide, di-t-amyl peroxide and the like. One or a plurality of them may be used. Examples of the organic peroxide having a one-hour half-life temperature of 100 to 150 ° C. include 1,1-di (t-butylperoxy) cyclohexane (111 ° C.), 2,2-di (4,4-di- ( t-butylperoxy) cyclohexyl) propane (114 ° C.), t-hexyl peroxyisopropyl monocarbonate (115 ° C.), t-butyl peroxylaurate (118 ° C.), t-butyl peroxyisopropyl monocarbonate (118 ° C.) ), T-butylperoxymaleic acid (119 ° C.), t-butylperoxy-3,5,5-trimethylhexanoate (119 ° C.), t-butylperoxy 2-ethylhexyl monocarbonate (119 ° C.), t-hexylperoxybenzoate (119 ° C.), 2,5-dimethyl-2,5-di (benzoylperoxy) he Sun (119 ° C.), t-butyl peroxyacetate (121 ° C.), 2,2-di (t-butylperoxy) butane (122 ° C.), t-butyl peroxybenzoate (125 ° C.), n-butyl 4 , 4-di- (t-butylperoxy) valerate (127 ° C.), dicumyl peroxide (136 ° C.), di-t-hexyl peroxide (136 ° C.), t-butyl cumyl peroxide (137 ° C.), Examples include di (2-t-butylperoxyisopropyl) benzene (138 ° C.), 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (138 ° C.), and the temperature in parentheses is 1 hour half-life temperature.

(C、D)上記の多官能モノマーの配合量は、少なすぎると耐熱性やガラス密着性の向上に繋がらず、多すぎると未反応成分が残存し劣化を早めるために、0.03〜5.0質量部が好ましく、0.05〜4.0質量部がより好ましく、0.1〜3.0質量部が特に好ましい。   (C, D) If the blending amount of the polyfunctional monomer is too small, it will not lead to improvement in heat resistance and glass adhesion, and if it is too much, unreacted components remain and accelerate deterioration, so that 0.03 to 5 0.0 part by mass is preferable, 0.05 to 4.0 parts by mass is more preferable, and 0.1 to 3.0 parts by mass is particularly preferable.

上記の不飽和二重結合を有する多官能モノマーは、複数の不飽和二重結合を有する多官能モノマーであり、多官能のアリレート、アクリレート、メタクリレートなどを用いることができる。具体的には、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルフタレート、エチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリメタクリレートなどが例示できる。単独或いは複数用いても良い。   The polyfunctional monomer having an unsaturated double bond is a polyfunctional monomer having a plurality of unsaturated double bonds, and polyfunctional arylate, acrylate, methacrylate, or the like can be used. Specific examples include triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, ethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, and trimethylolpropane trimethacrylate. One or a plurality of them may be used.

(シランカップリング剤)上記のシランカップリング剤としては、上記の共重合体やアイオノマーへのグラフト反応性があるという点で、エポキシ基を有するシランカップリング剤、不飽和二重結合を有するビニル系、スチリル系、メタクリロキシ系、アクリロキシ系のシランカップリング剤が好ましい。単独或いは複数用いても良い。具体的には、ビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、などが例示できる。   (Silane Coupling Agent) As the silane coupling agent, there is a silane coupling agent having an epoxy group and a vinyl having an unsaturated double bond in that it has graft reactivity to the copolymer or ionomer. , Styryl, methacryloxy and acryloxy silane coupling agents are preferred. One or a plurality of them may be used. Specific examples include vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane.

(添加剤)本願発明の太陽電池封止材料21には、必要に応じて種々の添加剤を配合することができる。このような添加剤としては、太陽電池素子の表側の前面透明保護材23A側の前面封止材料21Aに配合する場合はその透明性を損なわなければ良く、背面保護材23B側の背面封止材料21Bに配合する場合はそうした制約は無い。具体的には、酸化防止剤、光安定剤、紫外線吸収材、着色剤、光拡散剤、難燃剤、変色防止剤、透明性を高めるための増核剤などである。   (Additives) Various additives can be blended in the solar cell sealing material 21 of the present invention as required. As such an additive, when blended with the front sealing material 21A on the front transparent protective material 23A side on the front side of the solar cell element, the transparency may not be impaired, and the back sealing material on the back protective material 23B side. There is no such restriction when blended with 21B. Specific examples include antioxidants, light stabilizers, ultraviolet absorbers, colorants, light diffusing agents, flame retardants, discoloration inhibitors, and nucleating agents for enhancing transparency.

(太陽電池モジュール)本願発明の太陽電池封止材料21を用いて、太陽電池セル11を上下の前面透明保護材23A及び背面保護材23Bで固定することにより太陽電池モジュール10を製作することができる。例えば、太陽電池セル11の上面に前面封止材料21Aを介して前面透明保護材23Aを、下面に背面封止材料21Bを介して背面保護材23Bを積層して積層体とし、この積層体を減圧下にて加熱することによって前面封止材料21A、背面封止材料21Bを架橋させながら、一体化させればよい。この際の加熱の条件としては、用いている有機過酸化物の1分間半減期温度で、半減期の5〜10倍の時間を加熱すればよい。なお、太陽電池封止材料21は、太陽電池モジュールの必要性に応じて、前面封止材料21A及び背面封止材料21Bのいずれか一方でも、両方に用いてもよい。   (Solar cell module) Using the solar cell sealing material 21 of the present invention, the solar cell module 10 can be manufactured by fixing the solar cells 11 with the upper and lower front transparent protective materials 23A and 23B. . For example, a front transparent protective material 23A is laminated on the upper surface of the solar battery cell 11 via a front sealing material 21A, and a rear protective material 23B is laminated on the lower surface via a rear sealing material 21B to form a laminated body. What is necessary is just to make it integrate, crosslinking the front sealing material 21A and the back sealing material 21B by heating under reduced pressure. As the heating conditions at this time, the half-life temperature of the organic peroxide used may be 5 to 10 times the half-life. Note that the solar cell sealing material 21 may be used for either the front sealing material 21A or the rear sealing material 21B, depending on the necessity of the solar cell module.

(保護材)説明のため、上下の前面透明保護材23Aと背面保護材23Bとをまとめて単に保護材23と呼称する。保護材23は使用する太陽電池セルの種類、素子上に設ける配線の種類、使用条件に合わせて適宜選択すればよく、特に限定されるものではない。例えば、前面透明保護材23Aは、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などが例示できる。背面保護材23Bは、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層のシートが例示できる。   (Protective material) For the sake of explanation, the upper and lower front transparent protective materials 23A and the rear protective material 23B are collectively referred to simply as protective materials 23. The protective material 23 may be appropriately selected according to the type of solar battery cell to be used, the type of wiring provided on the element, and the use conditions, and is not particularly limited. For example, the front transparent protective material 23A can be exemplified by glass, acrylic resin, polycarbonate, polyester, fluorine-containing resin, and the like. The back surface protective material 23B can be exemplified by a single-layer or multi-layer sheet of metals such as tin, aluminum, and stainless steel, inorganic materials such as glass, polyester, inorganic material-deposited polyester, fluorine-containing resin, and polyolefin.

(製造方法)次に、太陽電池封止材料21の製造方法について説明する。樹脂(A)及び/又は(B)に、多官能モノマー(C)又は(D)とを加え、必要に応じて添加剤を添加して、溶融押出し、例えば、樹脂(A)及び/又は(B)の融点より50℃程度高いダイス温度に設定した単軸押出機で押出して、シート状とする。得られたシート状物へ有機過酸化物(E)を含浸させればよい。   (Manufacturing method) Next, the manufacturing method of the solar cell sealing material 21 is demonstrated. The polyfunctional monomer (C) or (D) is added to the resin (A) and / or (B), an additive is added as necessary, and melt extrusion is performed. For example, the resin (A) and / or ( Extrude with a single screw extruder set at a die temperature about 50 ° C. higher than the melting point of B) to form a sheet. What is necessary is just to impregnate the organic peroxide (E) to the obtained sheet-like material.

樹脂(A)及び/又は(B)に、有機過酸化物(E)と、多官能モノマー(D)から選ばれる不飽和二重結合と複数のアルコキシル基を有するシランカップリング剤とを加え、必要に応じて添加剤を添加した後、ペレタイズしてシラン変性樹脂とする。得られたシラン変性樹脂に、さらに、樹脂(A)及び/又は(B)と、多官能モノマー(C)又は(D)と、必要に応じて添加剤を混合し、溶融押出し、例えば、樹脂(A)及び/又は(B)の融点より50℃程度高いダイス温度に設定した単軸押出機で押出して、シート状とする。得られたシート状物へ有機過酸化物(E)を含浸させればよい。   To the resin (A) and / or (B), an organic peroxide (E), an unsaturated double bond selected from the polyfunctional monomer (D) and a silane coupling agent having a plurality of alkoxyl groups are added, After adding an additive as necessary, it is pelletized to obtain a silane-modified resin. The obtained silane-modified resin is further mixed with a resin (A) and / or (B), a polyfunctional monomer (C) or (D), and an additive as necessary, and melt-extruded. Extrude with a single screw extruder set at a die temperature about 50 ° C. higher than the melting point of (A) and / or (B) to form a sheet. What is necessary is just to impregnate the organic peroxide (E) to the obtained sheet-like material.

太陽電池封止材料21には、太陽電池モジュールを製造する際に、太陽電池セル11、保護材23、及び太陽電池封止材料21との間を脱気できることが好ましく、表面にエンボス加工を施してもよい。このエンボス加工法としては、特に限定されるものではないが、太陽電池封止材料21の製造に合わせて、例えば、溶融押出の場合には押し出し直後の溶融状態でエンボス模様が施された冷却ロールとゴムロールとの間で加圧したり、一旦製造された太陽電池封止材料21を再度、加熱して公知のエンボス加工してもよい。   It is preferable that the solar cell sealing material 21 can be deaerated between the solar cell 11, the protective material 23, and the solar cell sealing material 21 when a solar cell module is manufactured, and the surface is embossed. May be. Although it does not specifically limit as this embossing method, According to manufacture of the solar cell sealing material 21, for example, in the case of melt extrusion, the cooling roll by which the embossed pattern was given in the molten state immediately after extrusion The solar cell encapsulating material 21 once manufactured may be heated between the rubber roll and the rubber roll, and may be heated again to perform known embossing.

以下、実施例及び比較例により、本発明を更に詳細に説明するが、これに限定されるものではない。なお、溶媒を除き、各層の各組成物は固形分換算の質量部である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, it is not limited to this. In addition, except a solvent, each composition of each layer is a mass part of solid content conversion.

まず、使用する材料である樹脂、多官能モノマー、シランカップリング剤、有機過酸化物を表1に示し、実施例及び比較例ではこの表の略号を用いる。   First, a resin, a polyfunctional monomer, a silane coupling agent, and an organic peroxide, which are materials to be used, are shown in Table 1. Abbreviations in this table are used in Examples and Comparative Examples.

Figure 2012138467
Figure 2012138467

(実施例1)表1に記載の樹脂(P−1)20質量部に、有機過酸化物(O−3)0.1質量部と、多官能モノマー(M−3)0.5質量部とを加え、微量の酸化防止剤を添加した後、ペレタイズしてシラン変性樹脂を得た。次に、得られたシラン変性樹脂20.6質量部に、表1に記載の樹脂(P−1)80質量部と、多官能モノマー(M−1)0.5質量部と、少量の安定剤(UV吸収剤、HALS、酸化防止剤)を混合し、単軸押出機(ダイス温度140℃設定)で厚さが0.5mmシートを押出し、表1に記載の有機過酸化物(E;O−1)0.5質量部を含浸させ、実施例1の太陽電池封止材料21を得た。   (Example 1) 20 parts by mass of the resin (P-1) described in Table 1, 0.1 part by mass of an organic peroxide (O-3) and 0.5 part by mass of a polyfunctional monomer (M-3) And a small amount of antioxidant was added, and then pelletized to obtain a silane-modified resin. Next, 20.6 parts by mass of the obtained silane-modified resin, 80 parts by mass of the resin (P-1) described in Table 1, 0.5 part by mass of the polyfunctional monomer (M-1), and a small amount of stability Agents (UV absorber, HALS, antioxidant) were mixed, a 0.5 mm thick sheet was extruded with a single screw extruder (die temperature set at 140 ° C.), and the organic peroxides (E; O-1) 0.5 mass part was impregnated, and the solar cell sealing material 21 of Example 1 was obtained.

(実施例2)樹脂(P−1)を樹脂(P−2)に、有機過酸化物(O−1)を有機過酸化物(O−2)に変更した以外は、実施例1と同様にして、実施例2の太陽電池封止材料21を得た。   (Example 2) The same as Example 1 except that the resin (P-1) is changed to the resin (P-2) and the organic peroxide (O-1) is changed to the organic peroxide (O-2). Thus, a solar cell sealing material 21 of Example 2 was obtained.

(実施例3〜6)表1に記載の樹脂、多官能モノマーを、表2に記載の材料及び割合で加え、少量の安定剤(UV吸収剤、HALS、酸化防止剤)を混合し、単軸押出機(ダイス160℃設定)で0.5mmシートを押出し、表1に記載の有機過酸化物を表2に記載の材料及び割合で含浸させ、実施例3〜6の太陽電池封止材料21を得た。   (Examples 3 to 6) The resins and polyfunctional monomers listed in Table 1 were added in the materials and proportions listed in Table 2, and a small amount of stabilizer (UV absorber, HALS, antioxidant) was mixed. A 0.5 mm sheet was extruded with a shaft extruder (die set at 160 ° C.) and impregnated with the organic peroxides shown in Table 1 in the materials and proportions shown in Table 2. Solar cell sealing materials of Examples 3 to 6 21 was obtained.

(比較例1〜6)表1に記載の樹脂のみを、表2に記載の材料及び割合で加え、少量の安定剤(UV吸収剤、HALS、酸化防止剤)を混合し、単軸押出機(ダイス180℃設定)で0.5mmシートを押出し、比較例1〜6の太陽電池封止材料21を得た。   (Comparative Examples 1-6) Only the resins listed in Table 1 were added in the materials and proportions listed in Table 2, and a small amount of stabilizer (UV absorber, HALS, antioxidant) was mixed, and a single screw extruder. A 0.5 mm sheet was extruded with a die set at 180 ° C. to obtain solar cell sealing materials 21 of Comparative Examples 1 to 6.

Figure 2012138467
Figure 2012138467

(評価)
評価は、透明性、耐熱性、ガラス及び金属密着性で行った。
(Evaluation)
Evaluation was performed by transparency, heat resistance, glass and metal adhesion.

(測定方法)評価方法は次の通りである。
(1)透明性は、スガ試験機製ヘーズメーターを用いて、JIS K7105で、厚さ0.5mmの太陽電池封止材料を評価した。光線透過率は90%以上が好ましい。
(2)耐熱性は、厚さ0.5mmの太陽電池封止材料を透明ガラス板に挟み、実施例及び比較例中に記載した所定温度に調整した真空ラミネーターにセットし、真空引きを5分、加圧を20分行い、積層体を得た。この積層体を、45度に傾け、130℃で12時間放置した後、上下のガラス板のズレを測定した。ズレは0.10mm以下が好ましい。なお、測定中にズレが10mmを越えた場合はその時点で評価を中止した。
(3)ガラス密着性は、厚さ0.5mmの太陽電池封止材料を透明ガラス板とETFEフィルムとで挟み、実施例及び比較例中に記載した所定温度に調整した真空ラミネーターにセットし、真空引きを5分、加圧を20分行い、ガラス板/太陽電池封止材料/ETFEフィルムの積層体を得た。この積層体のETFEフィルムを除去した後に、太陽電池封止材料を透明ガラス板から1部剥離し、10mm幅の太陽電池封止材料とガラス板との層間の密着強度を、測定機としてテンシロン型引張試験機を用いて、室温で、50mm/分の速度で180度剥離した際の剥離強度を測定した。ガラス密着性としては20N/10mm幅以上が好ましい。
(4)金属密着性は、厚さ0.5mmの太陽電池封止材料を亜鉛板とETFEフィルムとで挟み、実施例及び比較例中に記載した所定温度に調整した真空ラミネーターにセットし、真空引きを5分、加圧を20分行い、亜鉛板/太陽電池封止材料/ETFEフィルムの積層体を得た。この積層体のETFEフィルムを除去した後に、太陽電池封止材料を亜鉛板から1部剥離し、10mm幅の太陽電池封止材料と亜鉛板との層間の密着強度を、測定機としてテンシロン型引張試験機を用いて、室温で、50mm/分の速度で180度剥離した際の剥離強度を測定した。金属密着性としては20N/10mm幅以上が好ましく、ガラス密着性と金属密着性は、共に20N/10mm幅以上がより好ましい。
(Measurement method) The evaluation method is as follows.
(1) Transparency evaluated the solar cell sealing material of thickness 0.5mm by JISK7105 using the Suga Test Instruments haze meter. The light transmittance is preferably 90% or more.
(2) For heat resistance, a solar cell sealing material having a thickness of 0.5 mm is sandwiched between transparent glass plates, set in a vacuum laminator adjusted to the predetermined temperature described in the examples and comparative examples, and evacuation is performed for 5 minutes. And pressurizing for 20 minutes to obtain a laminate. The laminate was tilted at 45 degrees and allowed to stand at 130 ° C. for 12 hours, and then the deviation between the upper and lower glass plates was measured. The deviation is preferably 0.10 mm or less. When the deviation exceeded 10 mm during the measurement, the evaluation was stopped at that time.
(3) Glass adhesion is set in a vacuum laminator adjusted to a predetermined temperature described in Examples and Comparative Examples by sandwiching a solar cell sealing material having a thickness of 0.5 mm between a transparent glass plate and an ETFE film, Vacuuming was performed for 5 minutes and pressurization was performed for 20 minutes to obtain a laminate of glass plate / solar cell sealing material / ETFE film. After removing the ETFE film of this laminate, a part of the solar cell sealing material was peeled from the transparent glass plate, and the adhesion strength between the 10 mm wide solar cell sealing material and the glass plate was measured as a tensilon type. Using a tensile tester, the peel strength when peeled 180 ° at a rate of 50 mm / min at room temperature was measured. The glass adhesion is preferably 20 N / 10 mm width or more.
(4) Metal adhesion is set in a vacuum laminator adjusted to a predetermined temperature described in the examples and comparative examples by sandwiching a solar cell sealing material having a thickness of 0.5 mm between a zinc plate and an ETFE film. Pulling was performed for 5 minutes and pressurization was performed for 20 minutes to obtain a laminate of zinc plate / solar cell sealing material / ETFE film. After removing the ETFE film of this laminate, a part of the solar cell sealing material was peeled off from the zinc plate, and the adhesion strength between the 10 mm wide solar cell sealing material and the zinc plate was measured using a Tensilon type tensile Using a testing machine, the peel strength when peeled 180 degrees at a rate of 50 mm / min at room temperature was measured. The metal adhesion is preferably 20 N / 10 mm width or more, and both the glass adhesion and the metal adhesion are more preferably 20 N / 10 mm width or more.

(評価結果)実施例1〜6では、透明性は92%以上で良好、耐熱性は0.03mm以下で良好、ガラス密着性は21N/10mm以上で良好、金属密着性は20N/10mm以上で良好、といずれも良好であり、特に耐熱性と金属密着性とを両立させることができた。これに対して、比較例1〜6は、透明性は92%以上で良好なものの、耐熱性は0.1mm以上で悪く、ガラス密着性は17N/10mm以下で悪く、金属密着性は比較例1〜2では38N/10mm以上で良好なものの、比較例3〜6では24N/10mm以下と悪かった。透明性、耐熱性、ガラス及び金属密着性のいずれもが良好なものはなかった。なお、ガラス及び金属密着性は、実施例1〜2は140℃で、実施例3〜6は160℃で、比較例1、2は140℃で、比較例3〜6は160℃で真空ラミネートした評価結果を表3に示す。   (Evaluation results) In Examples 1 to 6, the transparency is good at 92% or more, the heat resistance is good at 0.03 mm or less, the glass adhesion is good at 21 N / 10 mm or more, and the metal adhesion is 20 N / 10 mm or more. Both were good, and in particular, both heat resistance and metal adhesion could be achieved. On the other hand, in Comparative Examples 1 to 6, although transparency is good at 92% or more, heat resistance is bad at 0.1 mm or more, glass adhesion is bad at 17 N / 10 mm or less, and metal adhesion is a comparative example. Although it was good at 38 N / 10 mm or more in 1-2, it was bad at 24 N / 10 mm or less in Comparative Examples 3-6. None of the transparency, heat resistance, glass and metal adhesion were good. In addition, as for glass and metal adhesiveness, vacuum laminating is performed at 140 ° C. in Examples 1-2, 160 ° C. in Examples 3-6, 140 ° C. in Comparative Examples 1 and 2, and 160 ° C. in Comparative Examples 3-6. The evaluation results are shown in Table 3.

Figure 2012138467
Figure 2012138467

(産業上の利用可能性)本発明は、透明性、耐熱性、密着性などに優れた太陽電池封止材料、及びこれを用いた太陽電池モジュールに利用することができる。   (Industrial Applicability) The present invention can be used for a solar cell sealing material excellent in transparency, heat resistance, adhesion and the like, and a solar cell module using the same.

10:太陽電池モジュール
11:太陽電池セル
12A、12B:電極層
13:配線
21:太陽電池封止材料
21A:前面封止材料
21B:背面封止材料
23:保護材
23A:前面透明保護材
23B:背面保護材
31:フレーム
DESCRIPTION OF SYMBOLS 10: Solar cell module 11: Solar cell 12A, 12B: Electrode layer 13: Wiring 21: Solar cell sealing material 21A: Front surface sealing material 21B: Back surface sealing material 23: Protection material 23A: Front surface transparent protection material 23B: Rear protective material 31: Frame

Claims (5)

樹脂(A)及び/又は樹脂(B)が100質量部と、多官能モノマー(C)又は多官能モノマー(D)が0.03〜5.0質量部と、有機過酸化物(E)が0.01〜3.0質量部とから構成される太陽電池モジュールの封止材料であって、前記樹脂(A)が共重合体中の不飽和カルボン酸含量が3〜30質量%で、融点が50〜105℃であるエチレンー不飽和カルボン酸共重合体で、前記樹脂(B)が共重合体中の不飽和カルボン酸含量が3〜30質量%で、中和度が5〜40%で、融点が50〜105℃であるエチレンー不飽和カルボン酸共重合体のアイオノマーで、前記多官能モノマー(C)が複数の不飽和二重結合を有する多官能モノマーで、前記多官能モノマー(D)が複数の不飽和二重結合を有する多官能モノマーと、複数のアルコキシル基を有するシランカップリング剤の混合物である多官能モノマーであることを特徴とする封止材料。   Resin (A) and / or resin (B) is 100 parts by mass, polyfunctional monomer (C) or polyfunctional monomer (D) is 0.03 to 5.0 parts by mass, and organic peroxide (E) is A sealing material for a solar cell module comprising 0.01 to 3.0 parts by mass, wherein the resin (A) has an unsaturated carboxylic acid content in the copolymer of 3 to 30% by mass, a melting point Is an ethylene-unsaturated carboxylic acid copolymer having a temperature of 50 to 105 ° C., and the resin (B) has an unsaturated carboxylic acid content of 3 to 30% by mass and a neutralization degree of 5 to 40%. , An ionomer of an ethylene-unsaturated carboxylic acid copolymer having a melting point of 50 to 105 ° C., wherein the polyfunctional monomer (C) is a polyfunctional monomer having a plurality of unsaturated double bonds, and the polyfunctional monomer (D) A polyfunctional monomer having a plurality of unsaturated double bonds and a plurality of Sealing material which is a polyfunctional monomer which is a mixture of the silane coupling agent having a Rukokishiru group. 上記有機過酸化物成分の1時間半減期温度が80〜170℃であることを特徴とする請求項1記載の太陽電池封止材料。   The solar cell sealing material according to claim 1, wherein the organic peroxide component has a one-hour half-life temperature of 80 to 170 ° C. 上記多官能モノマー成分がアリレート、アクリレート、又はメタクリレートであることを特徴とする請求項1〜2のいずれかに記載の太陽電池封止材料。   The solar cell sealing material according to claim 1, wherein the polyfunctional monomer component is arylate, acrylate, or methacrylate. 上記シランカップリング剤がエポキシ基を有するシランカップリング剤、又は不飽和二重結合を有するシランカップリング剤であることを特徴とする請求項1〜3のいずれかに記載の太陽電池封止材料。   The solar cell sealing material according to any one of claims 1 to 3, wherein the silane coupling agent is a silane coupling agent having an epoxy group or a silane coupling agent having an unsaturated double bond. . 請求項1〜4のいずれかに記載の太陽電池封止材料を用いたことを特徴とする太陽電池モジュール。   A solar cell module using the solar cell sealing material according to claim 1.
JP2010289766A 2010-12-27 2010-12-27 Solar battery sealing material, and solar battery module using the same Pending JP2012138467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289766A JP2012138467A (en) 2010-12-27 2010-12-27 Solar battery sealing material, and solar battery module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289766A JP2012138467A (en) 2010-12-27 2010-12-27 Solar battery sealing material, and solar battery module using the same

Publications (1)

Publication Number Publication Date
JP2012138467A true JP2012138467A (en) 2012-07-19

Family

ID=46675662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289766A Pending JP2012138467A (en) 2010-12-27 2010-12-27 Solar battery sealing material, and solar battery module using the same

Country Status (1)

Country Link
JP (1) JP2012138467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125882A1 (en) * 2015-02-06 2016-08-11 長州産業株式会社 Photovoltaic module
WO2016125880A1 (en) * 2015-02-06 2016-08-11 三井・デュポンポリケミカル株式会社 Wiring sheet, structure, and photovoltaic generation module
KR20180061221A (en) * 2015-09-29 2018-06-07 듀폰-미츠이 폴리케미칼 가부시키가이샤 Multi-layer sheet for solar cell sealant, method for manufacturing multilayer sheet for solar cell sealant, and solar cell module
WO2019054363A1 (en) * 2017-09-14 2019-03-21 三井・デュポンポリケミカル株式会社 Resin composition for laminated glass interlayer film or solar cell encapsulant, laminated glass interlayer film, laminated glass, solar cell encapsulant, and solar cell module
JPWO2022065146A1 (en) * 2020-09-25 2022-03-31

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119056A (en) * 1999-10-20 2001-04-27 Du Pont Mitsui Polychem Co Ltd Solar cell sealing material and solar cell module
JP2007305634A (en) * 2006-05-09 2007-11-22 Sekisui Chem Co Ltd Adhesive sheet for solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119056A (en) * 1999-10-20 2001-04-27 Du Pont Mitsui Polychem Co Ltd Solar cell sealing material and solar cell module
JP2007305634A (en) * 2006-05-09 2007-11-22 Sekisui Chem Co Ltd Adhesive sheet for solar cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125882A1 (en) * 2015-02-06 2016-08-11 長州産業株式会社 Photovoltaic module
WO2016125880A1 (en) * 2015-02-06 2016-08-11 三井・デュポンポリケミカル株式会社 Wiring sheet, structure, and photovoltaic generation module
JPWO2016125880A1 (en) * 2015-02-06 2017-11-16 三井・デュポンポリケミカル株式会社 Wiring sheet, structure and photovoltaic module
TWI693724B (en) * 2015-02-06 2020-05-11 日商三井 陶氏聚合化學股份有限公司 Wiring sheet, structure, and photovoltaic power generation module
JPWO2017057217A1 (en) * 2015-09-29 2018-07-12 三井・デュポンポリケミカル株式会社 Multilayer sheet for solar cell encapsulant, method for producing multilayer sheet for solar cell encapsulant, and solar cell module
KR20180061221A (en) * 2015-09-29 2018-06-07 듀폰-미츠이 폴리케미칼 가부시키가이샤 Multi-layer sheet for solar cell sealant, method for manufacturing multilayer sheet for solar cell sealant, and solar cell module
KR102579787B1 (en) * 2015-09-29 2023-09-19 미츠이·다우 폴리케미칼 가부시키가이샤 Multilayer sheet for solar cell encapsulant, manufacturing method of multilayer sheet for solar cell encapsulant, and solar cell module
WO2019054363A1 (en) * 2017-09-14 2019-03-21 三井・デュポンポリケミカル株式会社 Resin composition for laminated glass interlayer film or solar cell encapsulant, laminated glass interlayer film, laminated glass, solar cell encapsulant, and solar cell module
KR20200044122A (en) * 2017-09-14 2020-04-28 미츠이·다우 폴리케미칼 가부시키가이샤 Resin composition for laminated glass interlayer film or solar cell encapsulant, laminated glass interlayer film, laminated glass, solar cell encapsulant and solar cell module
CN111094435A (en) * 2017-09-14 2020-05-01 三井—陶氏聚合化学株式会社 Resin composition for laminated glass interlayer or solar cell sealing material, laminated glass interlayer, laminated glass, solar cell sealing material, and solar cell module
JPWO2019054363A1 (en) * 2017-09-14 2020-05-28 三井・ダウポリケミカル株式会社 Laminated glass interlayer film or resin composition for solar cell encapsulant, laminated glass interlayer film, laminated glass, solar cell encapsulant and solar cell module
KR102390856B1 (en) 2017-09-14 2022-04-26 미츠이·다우 폴리케미칼 가부시키가이샤 Resin composition for laminated glass interlayer film or solar cell encapsulant, laminated glass interlayer film, laminated glass, solar cell encapsulant and solar cell module
US11628651B2 (en) 2017-09-14 2023-04-18 Dow-Mitsui Polychemicals Co., Ltd. Resin composition for laminated glass interlayer film or solar cell encapsulant, laminated glass interlayer film, laminated glass, solar cell encapsulant, and solar cell module
JP7267200B2 (en) 2017-09-14 2023-05-01 三井・ダウポリケミカル株式会社 LAMINATED GLASS INTERMEDIATE FILM OR RESIN COMPOSITION FOR SOLAR CELL ENCLOSURE MATERIAL, LAMINATED GLASS INTERMEDIATE FILM, LAMINATED GLASS, SOLAR CELL ENCLOSURE MATERIAL AND SOLAR CELL MODULE
JPWO2022065146A1 (en) * 2020-09-25 2022-03-31
WO2022065146A1 (en) * 2020-09-25 2022-03-31 三井・ダウポリケミカル株式会社 Resin composition, method of manufacturing resin composition, solar cell encapsulant, method of manufacturing solar cell encapsulant, solar cell module, resin sheet for laminated glass interlayer film and laminated glass
JP7467654B2 (en) 2020-09-25 2024-04-15 三井・ダウポリケミカル株式会社 Method for producing resin composition

Similar Documents

Publication Publication Date Title
JP4034382B2 (en) Protection sheet for solar cell module
JP4751792B2 (en) Composition for solar cell sealing film, solar cell sealing film, and solar cell using the same
JP2006036875A (en) Ethylene copolymer composition for sealing solar battery, and solar battery module using the same
JP6914841B2 (en) Multi-layer sheet for solar cell encapsulant, manufacturing method of multi-layer sheet for solar cell encapsulant and solar cell module
US9123836B2 (en) Solar cell sealing film and solar cell using the same
JP4912122B2 (en) Crosslinkable ethylene copolymer composition, sheet for sealing solar cell element comprising the copolymer composition, and solar cell module using the same
WO2009139033A1 (en) Crosslinkable ethylene copolymer, solar battery sealing material sheet produced from the crosslinkable ethylene copolymer, and solar battery module using the solar battery sealing material sheet
JP2011216804A (en) Sealing film for solar cell, solar cell using the same, and method of manufacturing solar cell
JP5785794B2 (en) Solar cell sealing film and solar cell using the same
WO2014034406A1 (en) Pair of sealing films for solar cell and method for manufacturing solar cell module using same
JP2014207457A (en) Sealing film for solar cell and solar cell using the same, and method of minimizing degradation of electrical insulation properties in sealing film for solar cell
JP2012138467A (en) Solar battery sealing material, and solar battery module using the same
JP5538092B2 (en) Composition for solar cell encapsulant, encapsulant comprising the same, and solar cell module using the same
WO2013058354A1 (en) Sealing film for solar cells, and solar cell using same
JP2012174881A (en) Solar cell sealing film and solar cell using the same
JP5788712B2 (en) Ethylene-polar monomer copolymer sheet, and interlayer film for laminated glass, laminated glass, solar cell sealing film and solar cell using the same
JP2010059259A (en) Sealing sheet for solar cell
WO2014133074A1 (en) Solar cell module manufacturing method and solar cell module
JP5909101B2 (en) Composition for forming sealing film for solar cell
JP2010219174A (en) Sealing sheet for solar cell
JP5869211B2 (en) Solar cell sealing film and solar cell using the same
JP5726568B2 (en) Solar cell sealing film and solar cell using the same
JP2017103410A (en) Method for manufacturing sealant for solar battery, and composition for manufacturing sealant for solar battery
WO2016104175A1 (en) Sealing film for solar cells and solar cell using same
WO2015068691A1 (en) Adhesive film, solar-cell sealing material, solar-cell module, laminated-glass interlayer, and laminated glass

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118