WO2022065079A1 - シール構造、基板処理装置及び半導体装置の製造方法 - Google Patents

シール構造、基板処理装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2022065079A1
WO2022065079A1 PCT/JP2021/033341 JP2021033341W WO2022065079A1 WO 2022065079 A1 WO2022065079 A1 WO 2022065079A1 JP 2021033341 W JP2021033341 W JP 2021033341W WO 2022065079 A1 WO2022065079 A1 WO 2022065079A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
seal structure
metal plate
heater
contact
Prior art date
Application number
PCT/JP2021/033341
Other languages
English (en)
French (fr)
Inventor
崇之 佐藤
哲明 稲田
健太 佐々木
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN202180052087.5A priority Critical patent/CN115885370A/zh
Priority to KR1020237008161A priority patent/KR20230048129A/ko
Priority to JP2022551881A priority patent/JP7418603B2/ja
Publication of WO2022065079A1 publication Critical patent/WO2022065079A1/ja
Priority to US18/181,620 priority patent/US20230274916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces

Definitions

  • This disclosure relates to a sealing structure, a substrate processing device, and a method for manufacturing a semiconductor device.
  • a process of performing a predetermined process such as an oxidation process or a nitriding process on the substrate may be carried out as one step of the manufacturing process.
  • Japanese Patent Application Laid-Open No. 2014-75579 discloses that a pattern surface formed on a substrate is modified using a plasma-excited processing gas.
  • a gas supply unit is provided at the upper part of the treatment chamber so that the reaction gas can be supplied to the treatment chamber.
  • the substrate processing device may be provided with a seal structure to prevent gas mixing and gas leakage in the processing device.
  • a seal structure to prevent gas mixing and gas leakage in the processing device.
  • the purpose of the present disclosure is to suppress the heating of the sealing material due to the heat of the heater.
  • it is a seal structure that seals between the first member heated by the heater and the second member arranged to face the first member, and is the first member. It has a metal plate for heat dissipation arranged in contact with the metal plate and a resin encapsulant arranged in contact with the metal plate and the second member, and has the metal plate and the encapsulant. Provides a sealing structure that seals between the first member and the second member.
  • the substrate processing device according to the first embodiment of the present disclosure will be described below with reference to FIG.
  • the substrate processing apparatus 100 according to the present embodiment is configured to mainly perform, for example, an oxidation treatment on a film formed on a substrate surface.
  • the substrate processing apparatus 100 includes a processing chamber 201, a heater, a plate 1004 as a first member, a manifold 1006, and a seal structure 1000.
  • the heater is configured to heat the inside of the processing chamber 201.
  • the heaters are, for example, a lamp heater 1002 described later and a heater 217b provided on the susceptor 217.
  • the heater 217b is, for example, a resistance heater that generates heat due to the electric resistance of the heater 217b itself.
  • the plate 1004 is a portion constituting the first gas supply unit and the second gas supply unit, which will be described later.
  • the plate 1004 is a member provided between, for example, the lamp heater 1002 and the processing chamber 201 of the wafer 200 as a substrate, and allows radiant heat from the lamp heater 1002 to pass through the processing chamber 201.
  • At least a part of the plate 1004 is composed of, for example, quartz (transparent quartz) which is a non-metal transparent material.
  • the manifold 1006 is arranged so as to face the plate 1004.
  • the plate 1004 and the manifold 1006 are arranged in non-contact with each other. Thereby, when the plate 1004 is a quartz member and the manifold 1006 is a metal member, it is possible to prevent the plate 1004 from being damaged by the contact between the two.
  • the seal structure 1000 is a structure that seals between the plate 1004 and the manifold 1006.
  • the substrate processing apparatus 100 includes a processing furnace 202 that processes the wafer 200 as a substrate by using plasma.
  • the processing furnace 202 is provided with a processing container 203 constituting the processing chamber 201.
  • the processing container 203 includes a dome-shaped upper container 210 as a first container and a bowl-shaped lower container 211 as a second container.
  • the processing chamber 201 is formed by covering the upper container 210 on the lower container 211.
  • the upper container 210 is made of a non-metal material such as aluminum oxide (Al 2 O 3 ) or quartz (SiO 2 ), and the lower container 211 is made of aluminum (Al), for example.
  • a gate valve 244 is provided on the lower side wall of the lower container 211.
  • the gate valve 244 When the gate valve 244 is open, the wafer 200 is carried into the processing chamber 201 or carried out of the processing chamber 201 via the carry-in outlet 245 by using a transport mechanism (not shown). It is configured so that it can be used.
  • the gate valve 244 is configured to be a sluice valve that maintains airtightness in the processing chamber 201 when it is closed.
  • the processing chamber 201 has a plasma generation space 201a in which a resonance coil 212 is provided around the periphery, and a substrate processing space 201b that communicates with the plasma generation space 201a and processes the wafer 200.
  • the plasma generation space 201a is a space in which plasma is generated, which is above the lower end of the resonance coil 212 and below the upper end of the resonance coil 212 in the processing chamber.
  • the substrate processing space 201b is a space in which the substrate is processed by using plasma, and is a space below the lower end of the resonance coil 212.
  • the diameters of the plasma generation space 201a and the substrate processing space 201b in the horizontal direction are configured to be substantially the same.
  • a susceptor 217 constituting a substrate mounting portion (board mounting table) on which the wafer 200 is mounted is arranged.
  • the susceptor 217 is made of a non-metal material such as aluminum nitride (AlN), ceramics, or quartz.
  • a heater 217b as a heating mechanism is integrally embedded inside the susceptor 217.
  • the heater 217b is configured to be able to heat the surface of the wafer 200 from, for example, about 25 ° C to 750 ° C when electric power is supplied.
  • the susceptor 217 is electrically insulated from the lower container 211.
  • the impedance adjustment electrode 217c is provided inside the susceptor 217, and is grounded via an impedance variable mechanism 275 as an impedance adjustment unit.
  • the impedance variable mechanism 275 is composed of a coil and a variable capacitor, and is configured so that the impedance can be changed by controlling the inductance and resistance of the coil and the capacitance value of the variable capacitor. Thereby, the potential (bias voltage) of the wafer 200 can be controlled via the impedance adjusting electrode 217c and the susceptor 217. In this embodiment, it is possible to arbitrarily select whether or not the bias voltage control using the impedance adjusting electrode 217c is performed.
  • the susceptor 217 is provided with a susceptor elevating mechanism 268 provided with a drive mechanism for elevating and lowering the susceptor. Further, the susceptor 217 is provided with a through hole 217a, and a wafer push-up pin 266 is provided on the bottom surface of the lower container 211. The through hole 217a and the wafer push-up pin 266 are provided at least three locations each facing each other. When the susceptor 217 is lowered by the susceptor elevating mechanism 268, the wafer push-up pin 266 is configured to penetrate through the through hole 217a.
  • the substrate mounting portion according to the present embodiment is mainly composed of the susceptor 217, the heater 217b, and the electrode 217c.
  • a plate 1004 is provided above the center of the processing chamber 201. As shown in FIG. 4, a manifold 1006 is arranged on the peripheral edge of the plate 1004 so as to face the plate 1004 in the vertical direction.
  • the plate 1004 is placed on the edge 203b of the opening 203a above the processing container 203. Specifically, a flange portion 1004f is formed on the peripheral edge of the plate 1004, and the plate 1004 is placed on the edge edge 203b by engaging the flange portion 1004f with the edge edge 203b. The main portion of the plate 1004 excluding the flange portion 1004f is arranged so as to close the opening 203a.
  • the manifold 1006 is mounted on the processing container 203.
  • the space between the manifold 1006 and the processing container 203 is sealed by an O-ring 1014.
  • a lid portion 1012 made of, for example, transparent quartz is provided above the manifold 1006.
  • the space between the manifold 1006 and the lid portion 1012 is sealed by an O-ring 1016.
  • a lamp heater 1002 is provided on the lid portion 1012. The radiant heat from the lamp heater 1002 reaches the inside of the processing chamber 201 through the lid portion 1012 and the plate 1004.
  • the plate 1004 is heated by the lamp heater 1002 and the heater 217b. In addition, it may be indirectly heated by heat conduction from the processing container 203 that comes into contact with the container 203. In addition, it may be heated by the plasma generated by the plasma generation unit described later.
  • the first buffer space 1018 to which the first gas is supplied is partitioned by the flange portion 1004f of the plate 1004, the processing container 203, the manifold 1006, and the metal plate 1008 described later.
  • the first buffer space 1018 is formed in an annular shape around the plate 1004. At the time of substrate processing, the first buffer space 1018 becomes a decompressed space.
  • the first gas is supplied to the first buffer space 1018 through the gas introduction path 1020 formed in the manifold 1006. Further, a first gas blowing hole 1022 is formed in the plate 1004 so that the first gas can be supplied from the first buffer space 1018 into the processing chamber 201 through the first gas blowing hole 1022.
  • the gas introduction path 1020 has a downstream end of the oxygen-containing gas supply pipe 232a for supplying the oxygen-containing gas, a downstream end of the hydrogen-containing gas supply pipe 232b for supplying the hydrogen-containing gas, and an inert gas for supplying the inert gas. It is connected to the supply pipe 232c so as to merge.
  • the oxygen-containing gas supply pipe 232a is provided with an oxygen-containing gas supply source 250a, a mass flow controller (MFC) 252a as a flow control device, and a valve 253a as an on-off valve.
  • the hydrogen-containing gas supply pipe 232b is provided with a hydrogen-containing gas supply source 250b, an MFC 252b, and a valve 253b.
  • the inert gas supply pipe 232c is provided with an inert gas supply source 250c, an MFC 252c, and a valve 253c.
  • a valve 243a is provided on the downstream side where the oxygen-containing gas supply pipe 232a, the hydrogen-containing gas supply pipe 232b, and the inert gas supply pipe 232c meet, and is connected to the upstream end of the gas introduction path 1020.
  • the valves 253a, 253b, 253c, 243a are opened and closed, and the flow rate of each gas is adjusted by the MFC 252a, 252b, 252c, via the oxygen-containing gas supply pipe 232a, the hydrogen-containing gas supply pipe 232b, and the inert gas supply pipe 232c. Therefore, the processing gas such as oxygen-containing gas, hydrogen gas-containing gas, and inert gas can be supplied into the processing chamber 201.
  • This embodiment mainly consists of a first gas outlet hole 1022, an oxygen-containing gas supply pipe 232a, a hydrogen-containing gas supply pipe 232b, an inert gas supply pipe 232c, MFC252a, 252b, 252c, and valves 253a, 253b, 253c, 243a.
  • the first gas supply unit (first gas supply system) according to the above is configured.
  • the first gas supply unit is configured to supply the oxygen-containing gas as an oxidation species source into the treatment chamber 201.
  • a second buffer space 1028 to which a second gas is supplied is partitioned by a lid portion 1012, a plate 1004, a manifold 1006, and a metal plate 1008 (FIG. 4) described later. ..
  • the second buffer space 1028 becomes a decompressed space.
  • the second gas is supplied to the second buffer space 1028 through the gas introduction path 1030 formed in the manifold 1006.
  • a second gas outlet 1004a is formed in the central portion of the plate 1004 so that the second gas can be supplied from the second buffer space 1028 into the processing chamber 201 through the second gas outlet 1004a.
  • the gas introduction path 1030 has a downstream end of the oxygen-containing gas supply pipe 232d for supplying the oxygen-containing gas, a downstream end of the hydrogen-containing gas supply pipe 232e for supplying the hydrogen-containing gas, and an inert gas for supplying the inert gas. It is connected to the supply pipe 232f so as to merge.
  • the oxygen-containing gas supply pipe 232d is provided with an oxygen-containing gas supply source 250d, an MFC 252d, and a valve 253d.
  • the hydrogen-containing gas supply pipe 232e is provided with a hydrogen-containing gas supply source 250e, an MFC 252e, and a valve 253e.
  • the inert gas supply pipe 232f is provided with an inert gas supply source 250f, an MFC 252f, and a valve 253f.
  • a valve 243c is provided on the downstream side where the oxygen-containing gas supply pipe 232d, the hydrogen-containing gas supply pipe 232e, and the inert gas supply pipe 232f meet, and is connected to the upstream end of the gas introduction path 1030.
  • the valves 253d, 253e, 253f, 243c are opened and closed, and the flow rate of each gas is adjusted by the MFC 252d, 252e, 252f, via the oxygen-containing gas supply pipe 232d, the hydrogen-containing gas supply pipe 232e, and the inert gas supply pipe 232f. Therefore, the processing gas such as oxygen-containing gas, hydrogen gas-containing gas, and inert gas can be supplied into the processing chamber 201.
  • This embodiment mainly consists of a second gas outlet 1004a, an oxygen-containing gas supply pipe 232d, a hydrogen-containing gas supply pipe 232e, an inert gas supply pipe 232f, MFC252d, 252e, 252f, and valves 253d, 253e, 253f, 243c.
  • the second gas supply unit (second gas supply system) according to the above is configured.
  • the second gas supply unit is configured to supply the hydrogen concentration adjusting gas for adjusting the hydrogen concentration containing hydrogen into the processing chamber 201.
  • the second gas supply unit is configured to supply the second gas to the outer peripheral region, which is the first region in the plasma generation space 201a (described later) along the inner wall of the processing chamber 201. Further, the first gas supply unit is configured to supply the first gas to a central region which is a region surrounded by an outer peripheral region and is a second region in the plasma generation space 201a.
  • a gas exhaust port 235 for exhausting a reaction gas or the like from the inside of the processing chamber 201 is provided on the side wall of the lower container 211.
  • the upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235.
  • the gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) valve 242 as a pressure regulator, a valve 243b as an on-off valve, and a vacuum pump 246 as a vacuum exhaust device.
  • APC Auto Pressure Controller
  • the exhaust unit according to this embodiment is mainly composed of a gas exhaust port 235, a gas exhaust pipe 231 and an APC valve 242, and a valve 243b.
  • the vacuum pump 246 may be included in the exhaust unit.
  • a spiral resonance coil 212 as a high-frequency electrode is provided on the outer peripheral portion of the processing chamber 201, that is, on the outside of the side wall of the upper container 210 so as to surround the processing chamber 201.
  • a matching device 274 that matches the impedance and output frequency of the RF sensor 272, the high frequency power supply 273, and the high frequency power supply 273 is connected to the resonance coil 212.
  • the high frequency power supply 273 supplies high frequency power (RF power) to the resonance coil 212.
  • the RF sensor 272 is provided on the output side of the high frequency power supply 273 and monitors the information of the high frequency traveling wave and the reflected wave supplied.
  • the reflected power monitored by the RF sensor 272 is input to the matching unit 274, and the matching unit 274 uses the high frequency power supply 273 to minimize the reflected wave based on the reflected wave information input from the RF sensor 272. It controls the impedance and the frequency of the output high frequency power.
  • the resonance coil 212 forms a standing wave having a predetermined wavelength
  • the winding diameter, winding pitch, and number of turns are set so as to resonate at a constant wavelength. That is, the electrical length of the resonance coil 212 is set to a length corresponding to an integral multiple of one wavelength at a predetermined frequency of the high frequency power supplied from the high frequency power supply 273.
  • the resonance coil 212 is applied with high frequency power of, for example, 800 kHz to 50 MHz and 0.1 to 5 kW in consideration of the applied power, the generated magnetic field strength, the outer shape of the device to be applied, and the like, and is 200 to 500 mm.
  • the coil diameter is set to the above, and the coil is wound around the outer peripheral side of the plasma generation space 201a about 2 to 60 times.
  • the notation of a numerical range such as "800 kHz to 50 MHz" in the present specification means that the lower limit value and the upper limit value are included in the range.
  • “800 kHz to 50 MHz” means "800 kHz or more and 50 MHz or less”. The same applies to other numerical ranges.
  • the shielding plate 223 is provided to shield the electric field outside the resonance coil 212.
  • the plasma generation unit according to this embodiment is mainly composed of the resonance coil 212, the RF sensor 272, and the matching unit 274.
  • the high frequency power supply 273 may be included as the plasma generation unit.
  • this configuration high-frequency power is supplied to the resonance coil 212, so that a ring-shaped plasma is generated in a region near the resonance coil 212 and along the inner circumference of the processing chamber 201. That is, this ring-shaped plasma is generated in the outer peripheral region in the processing chamber 201.
  • this ring-shaped plasma is generated at the height where the electrical midpoint of the resonance coil 212 is located, that is, at the intermediate height position between the upper end and the lower end of the resonance coil 212.
  • the seal structure 1000 is a structure that seals between the plate 1004 (first member) and the manifold 1006 (second member), and has a metal plate 1008 and an O-ring 1010 as a resin-made sealing material. And have.
  • the metal plate 1008 and the O-ring 1010 seal between the plate 1004 and the manifold 1006.
  • the flange portion 1004f of the plate 1004 is also a contact portion in contact with the metal plate 1008.
  • the manifold 1006 is, for example, a metal member.
  • the resin material forming the O-ring 1010 examples include rubber materials such as silicon rubber and fluororubber, but the resin material is not limited to the rubber material, and other elastic resin materials that function as a sealing material may be used. You can also. Further, although the O-ring is used as the sealing material in this embodiment, the shape is not limited to the ring shape as long as it functions as the sealing material, and other shapes such as a plate shape and a rod shape may be used.
  • the metal plate 1008 is formed in an annular shape and is fixed in contact with the manifold 1006 at a position away from the O-ring 1010. Specifically, it is fixed to the manifold 1006 by, for example, a metal bolt 1024. The central portion of the bolt 1024 penetrates in the axial direction to allow evacuation in the screw hole. In the illustrated example, a seal spacer 1026 is arranged between the metal plate 1008 and the manifold 1006. Even in this case, the metal plate 1008 and the manifold 1006 are in contact with each other via the bolt 1024. Since the metal plate 1008, the manifold 1006, and the bolt 1024 are all metal members, the heat of the metal plate 1008 is transferred to the manifold 1006 via the bolt 1024.
  • the metal plate 1008 is in contact with and fixed to the manifold 1006 at a position away from the O-ring 1010, the heat transferred from the metal plate 1008 to the manifold 1006 prevents the O-ring 1010 from being heated. Can be done.
  • the metal plate 1008 is thin in order to prevent damage when the plate 1004 is a quartz member.
  • the thickness of the metal plate 1008 is a predetermined value in the range of, for example, 0.1 to 1.0 mm. If the thickness of the metal plate 1008 is less than 0.1 mm, the metal plate 1008 itself is more likely to be damaged due to contact with the plate 1004 and the bolt 1024, and heat is conducted to the manifold 1006 and the bolt 1024 to conduct heat to the O-ring. It becomes difficult to suppress the temperature rise of 1010. By setting the thickness to 0.1 mm or more, it is possible to prevent the metal plate 1008 itself from being damaged and to suppress the temperature rise of the O-ring 1010.
  • the thickness of the metal plate 1008 exceeds 1.0 mm, the elasticity of the metal plate 1008 becomes small, which may damage the plate 1004 which is a quartz member in contact with the metal plate 1008.
  • the metal plate 1008 may be formed of at least one of aluminum, nickel alloy, and stainless steel.
  • the seal spacer 1026 may be omitted. In this case, since the metal plate 1008 comes into direct surface contact with the manifold 1006, the heat of the metal plate 1008 is easily transferred to the manifold 1006.
  • the O-ring 1010 is mainly (a) radiant heat radiated from at least one of the lamp heater 1002 and the heater 217b and transmitted through at least one of the plate 1004 and the processing container 203. b) It is heated by radiant heat radiated from at least one of the heated plate 1004 and the processing container 203, (c) conduction heat transmitted from the contact surface with the heated plate 1004, and the like.
  • the metal plate 1008 is arranged between the heater 217b and the O-ring 1010 so as to shield the O-ring 1010 from the radiant heat of the heater 217b radiated directly or indirectly toward the O-ring 1010 from below. There is. Further, the metal plate 1008 is arranged so as to shield the radiant heat directly or indirectly radiated from the lamp heater 1002 (FIG. 1) toward the O-ring 1010 by the O-ring 1010. That is, the metal plate 1008 is arranged so as to shield the O-ring from the above-mentioned heat sources (a) and (b).
  • the manifold 1006 is cooled by a cooling mechanism.
  • the manifold 1006 is provided with a refrigerant flow path 1032 as a cooling mechanism, and the heat of the manifold 1006 can be removed by flowing the refrigerant through the refrigerant flow path 1032. Therefore, the heat of the metal plate 1008 is efficiently removed via the manifold 1006. That is, the metal plate 1008 is arranged so as to insulate the O-ring 1010 from the above-mentioned heat source (c).
  • the plate 1004 may be configured by, for example, a combination of an inner peripheral portion 1004b and an outer peripheral portion 1004c.
  • the inner peripheral portion 1004b is a transparent portion made of, for example, transparent quartz.
  • the outer peripheral portion 1004c is formed in a cylindrical shape or a ring shape, and is placed so as to be locked to the edge 203b of the opening 203a of the processing container 203.
  • the inner peripheral portion 1004b is formed in a disk shape and is arranged in contact with the stepped portion 1004d of the outer peripheral portion 1004c.
  • the outer peripheral portion 1004c is also a contact portion that comes into contact with the metal plate 1008.
  • the outer peripheral portion 1004c is an opaque portion made of an opaque material that hinders the transmission of radiant heat of the lamp heater 1002, for example, opaque quartz.
  • the outer peripheral portion 1004c which is the contact portion, with an opaque material, it is possible to reduce the radiant heat that passes through the outer peripheral portion 1004c and reaches the metal plate 1008, the O-ring 1010, and the manifold 1006. Further, by bringing the opaque portion into contact with the metal plate 1008, it is possible to prevent the O-ring 1010 from being heated by the opaque portion heated by the radiant heat.
  • the controller 221 as a control unit includes an APC valve 242, a valve 243b and a vacuum pump 246 through the signal line A, a susceptor elevating mechanism 268 through the signal line B, and a heater power adjustment mechanism 276 and an impedance variable mechanism 275 through the signal line C. It is possible to control the gate valve 244 through the signal line D, the RF sensor 272, the high frequency power supply 273 and the matching unit 274 through the signal line E, and the MFC 252a to 252f and the valves 253a to 253f, 243a, 243c through the signal line F, respectively. It is configured as follows.
  • the controller 221 which is a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 221a, a RAM (Random Access Memory) 221b, a storage device 221c, and an I / O port 221d.
  • the RAM 221b, the storage device 221c, and the I / O port 221d are configured so that data can be exchanged with the CPU 221a via the internal bus 221e.
  • An input / output device 222 configured as, for example, a touch panel or a display is connected to the controller 221.
  • the storage device 221c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program that controls the operation of the board processing device, a program recipe that describes the procedure and conditions of the board processing described later, and the like are readablely stored.
  • the process recipes are combined so that the controller 221 can execute each procedure in the substrate processing step described later and obtain a predetermined result, and functions as a program.
  • this program recipe, control program, etc. are collectively referred to as a program.
  • the term program is used in the present specification, it may include only a program recipe alone, a control program alone, or both.
  • the RAM 221b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 221a are temporarily held.
  • the I / O port 221d includes the above-mentioned MFC 252a to 252f, valves 253a to 253f, 243a, 243b, 243c, gate valve 244, APC valve 242, vacuum pump 246, RF sensor 272, high frequency power supply 273, matching unit 274, and susceptor lift. It is connected to a mechanism 268, an impedance variable mechanism 275, a heater power adjustment mechanism 276, and the like.
  • the CPU 221a is configured to read and execute a control program from the storage device 221c and read a process recipe from the storage device 221c in response to an input of an operation command from the input / output device 222 or the like. Then, the CPU 221a performs an opening adjustment operation of the APC valve 242, an opening / closing operation of the valve 243b, and a start of the vacuum pump 246 through the I / O port 221d and the signal line A so as to follow the contents of the read process recipe.
  • the controller 221 is stored in an external storage device (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as MO, a semiconductor memory such as a USB memory or a memory card) 223. It can be configured by installing the above program on the computer.
  • the storage device 221c and the external storage device 223 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. In the present specification, when the term recording medium is used, the storage device 221c alone may be included, the external storage device 223 alone may be included, or both of them may be included.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 223.
  • the semiconductor device manufacturing method includes a step of carrying the substrate into the processing chamber 201 of the substrate processing device 100 (for example, the substrate carrying step S110 of FIG. 3) and a step of heating the wafer 200 by a lamp heater 1002 or the like as a heater (for example, FIG. 3.
  • the temperature rise / vacuum exhaust step S120 includes a step of carrying the substrate into the processing chamber 201 of the substrate processing device 100 (for example, the substrate carrying step S110 of FIG. 3) and a step of heating the wafer 200 by a lamp heater 1002 or the like as a heater (for example, FIG. 3.
  • the temperature rise / vacuum exhaust step S120 The temperature rise / vacuum exhaust step S120).
  • the substrate processing apparatus 100 includes a processing chamber 201 for processing the wafer 200, a lamp heater 1002 as a lamp configured to heat the inside of the processing chamber 201, and a plate 1004 as a first member heated by the lamp heater 1002. And a manifold 1006 arranged to face the plate 1004, and a seal structure 1000 for sealing between the plate 1000 and the manifold 1006.
  • the seal structure 1000 comprises a metal plate 1008 for heat dissipation arranged in contact with the plate 1000, and an O-ring 1010 as a resin encapsulant arranged in contact with the metal plate 1008 and the manifold 1006.
  • the plate 1000 and the manifold 1006 are sealed by a metal plate 1008 and an O-ring 1010.
  • the substrate processing apparatus 100 is formed on the surface of the wafer 200 as one step of a manufacturing process of a semiconductor device such as a flash memory.
  • a semiconductor device such as a flash memory.
  • An example of a method of forming an oxide film by oxidizing the formed film will be described.
  • the operation of each part constituting the substrate processing apparatus 100 is controlled by the controller 221.
  • the above wafer 200 is carried into the processing chamber 201 and accommodated. Specifically, the susceptor elevating mechanism 268 lowers the susceptor 217 to the transfer position of the wafer 200. As a result, the wafer push-up pin 266 is in a state of protruding from the through hole 217a by a predetermined height from the surface of the susceptor 217.
  • the gate valve 244 is opened, and the wafer 200 is carried into the processing chamber 201 from the vacuum transfer chamber adjacent to the processing chamber 201 by using a wafer transfer mechanism (not shown).
  • the carried-in wafer 200 is supported in a horizontal posture on the wafer push-up pin 266.
  • the gate valve 244 is closed to seal the inside of the processing chamber 201.
  • the susceptor elevating mechanism 268 raises the susceptor 217, so that the wafer 200 is supported on the upper surface of the susceptor 217.
  • the heater 217b is preheated, and by holding the wafer 200 on the susceptor 217 in which the heater 217b is embedded, the wafer 200 is heated to a predetermined value in the range of, for example, 150 to 750 ° C.
  • the processing chamber 201 is also heated by the lamp heater 1002. Further, while the temperature of the wafer 200 is raised, the inside of the processing chamber 201 is evacuated by the vacuum pump 246 via the gas exhaust pipe 231, and the pressure in the processing chamber 201 is set to a predetermined value.
  • the vacuum pump 246 is operated at least until the substrate unloading step S160 described later is completed.
  • the metal plate 1008 and the O-ring 1010 in the seal structure 1000 seal between the plate 1004 and the manifold 1006. Therefore, since the metal plate 1008 is arranged between the plate 1004 heated by the heater such as the lamp heater 1002 and the O-ring 1010, the radiant heat from the heater and the plate 1004 to the O-ring 1010 is shielded and the O-ring 1010 is shielded. It is possible to suppress the temperature rise of the O-ring and the deterioration accompanying it.
  • the metal plate 1008 is formed in an annular shape and is fixed in contact with the manifold 1006 at a position away from the O-ring 1010. Therefore, the heat of the metal plate 1008 can be conducted to the manifold 1006 to suppress the temperature rise of the metal plate 1006.
  • the manifold 1006 is cooled by a cooling mechanism. Therefore, the temperature rise of the O-ring 1010 can be suppressed by cooling the O-ring 1010 and the metal plate 1008 that come into contact with the manifold 1006.
  • the seal structure 100 can be suitably used when the first buffer space 1018 and the second buffer space 1028 are depressurized. Even when the pressure that can be sealed is lowered by using the metal plate 1008, the first buffer space 1018 and the first buffer space 1018 and the first buffer space 1018 are set by making the first buffer space 1018 and the second buffer space 1028 a decompression (vacuum) space. Gas leakage between the two buffer spaces 1028 can be prevented and separation can be maintained.
  • reaction gas supply step S130 a mixed gas of oxygen-containing gas and hydrogen-containing gas is started to be supplied from the first gas supply unit to the outer peripheral region of the treatment chamber 201 as the first gas which is an oxygen-containing oxidation seed source gas.
  • the valves 253a and 253b are opened, and the supply of the first gas to the processing chamber 201 is started via the gas outlet 239 while the flow rates are controlled by the MFC 252a and the MFC 252b.
  • oxygen-containing gas examples include oxygen (O 2 ) gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, and water vapor (O 3) gas.
  • H2O gas nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, and water vapor (O 3) gas.
  • H2O gas nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, and water vapor (O 3) gas.
  • H2O gas nitrogen monoxide
  • CO 2 carbon dioxide
  • hydrogen-containing gas for example, hydrogen (H 2 ) gas, deuterium (D 2 ) gas, H 2 O gas, ammonia (NH 3 ) gas and the like can be used.
  • hydrogen-containing gas one or more of these can be used.
  • H 2 O gas When H 2 O gas is used as the oxygen-containing gas, it is preferable to use a gas other than H 2 O gas as the hydrogen-containing gas, and when H 2 O gas is used as the hydrogen-containing gas, H is used as the oxygen-containing gas. 2 It is preferable to use a gas other than O gas.
  • a gas other than O gas As the inert gas, for example, nitrogen (N 2 ) gas can be used, and in addition, a rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenone (Xe) gas can be used. Can be used. As the inert gas, one or more of these can be used.
  • the flow rate with MFC252a and MFC252b By controlling the flow rate with MFC252a and MFC252b, at least one of the total flow rate of the first gas and the composition of the first gas (particularly the hydrogen content) is adjusted.
  • the composition of the first gas can be easily adjusted by changing the mixing ratio (flow rate ratio) of the hydrogen-containing gas and the oxygen-containing gas.
  • the total flow rate of the first gas is set to, for example, 1000 to 10000 ccm
  • the flow rate of the oxygen-containing gas in the first gas is set to a predetermined value in the range of, for example, 20 to 4000 sccm.
  • the flow rate of the hydrogen-containing gas in the first gas is set to a predetermined value in the range of, for example, 20 to 1000 sccm.
  • the content ratio of the hydrogen-containing gas and the oxygen-containing gas contained in the first gas shall be a predetermined value in the range of 0: 100 to 95: 5.
  • the supply of the mixed gas of the oxygen-containing gas and the hydrogen-containing gas as the second gas is started from the second gas supply unit to the central region of the processing chamber 201.
  • the valve 253d and the valve 253e are opened, and while the flow rate is controlled by the MFC 252d and the MFC 252e, the supply of the second gas into the processing chamber 201 is started through the gas outlet hole 303 provided in the gas supply ring 300. do.
  • the flow rate with MFC252d and MFC252e By controlling the flow rate with MFC252d and MFC252e, at least one of the total flow rate of the second gas and the composition of the second gas (particularly the hydrogen content) is adjusted. Similar to the first gas, the composition of the second gas can be easily adjusted by changing the mixing ratio of the hydrogen-containing gas and the oxygen-containing gas.
  • the total flow rate of the second gas is equal to or less than the total flow rate of the first gas, for example, 100 to 5000 sccm, and the flow rate of the oxygen-containing gas in the second gas is, for example, in the range of 0 to 5000 sccm. It shall be a predetermined value within. Further, the flow rate of the hydrogen-containing gas in the second gas is set to a predetermined value in the range of, for example, 0 to 5000 sccm. In the present embodiment, the ratio of the hydrogen-containing gas contained in the second gas (that is, the hydrogen content of the first gas) is set to a predetermined value within the range of 0 to 100%. The total flow rate of the second gas is preferably equal to or less than that of the first gas.
  • Control of hydrogen concentration distribution it is possible to control the hydrogen concentration distribution in the processing chamber 201 by controlling at least one of the flow rate and the hydrogen content for each of the first gas and the second gas.
  • the hydrogen concentration distribution is controlled so that the density distribution of oxidized species in the plasma treatment step described later becomes desired. It is desirable that the hydrogen content of the second gas is adjusted so as to be different from the hydrogen content of the first gas. By using the second gas having a hydrogen content different from that of the first gas, it becomes easy to control the flow rates of the first gas and the second gas to adjust the hydrogen concentration distribution in the processing chamber 201.
  • the opening degree of the APC valve 242 is adjusted to control the exhaust gas in the processing chamber 201 so that the pressure in the processing chamber 201 becomes a predetermined pressure in the range of, for example, 5 to 260 Pa. In this way, while appropriately exhausting the inside of the processing chamber 201, the supply of the first gas and the second gas is continued until the end of the plasma processing step S140 described later.
  • the first gas is supplied to the plasma generation region, which is the region where plasma is generated at the second plasma density.
  • the first gas is supplied to the plasma generation region, which is the region in which the ring-shaped plasma is excited, in the outer peripheral region in the processing chamber 201 near the resonance coil 212, and is mainly the first.
  • the plasma excitation of the gas produces the above-mentioned oxidized species.
  • the second gas is a region where plasma is generated at a second plasma density lower than the first plasma density, or a region where plasma is not generated (the second plasma density is substantially 0). It is supplied to a non-plasma generation region (a region). That is, the second gas is supplied to a region where the plasma density is different from that of the first gas. In this embodiment, in particular, the second gas is supplied to the plasma non-generating region formed inside the ring-shaped plasma.
  • the oxidized species generated by the plasma loses or reduces (that is, inactivates) its ability as an oxidized species (oxidizing ability) when it reacts with hydrogen in the atmosphere. Therefore, the decay rate (attenuation amount) of the density (concentration) of the oxidized species in the atmosphere changes according to the hydrogen concentration in the atmosphere in which the oxidized species are present. The higher the hydrogen concentration, the higher the attenuation of the oxidized species, and the lower the hydrogen concentration, the lower the attenuation of the oxidized species.
  • the oxidized species generated in the plasma generation region diffuses in the plasma non-generation region, it reacts with hydrogen in the plasma non-generation region and is gradually deactivated. Therefore, the attenuation of the density of oxidized species diffused in the non-plasma region can be adjusted by the hydrogen concentration in the region. That is, the density distribution of oxidized species in the non-plasma generation region can be arbitrarily adjusted by controlling the hydrogen concentration distribution in the region.
  • the wafer 200 in the region is adjusted. Controls the hydrogen concentration distribution in the in-plane direction. Then, by controlling the hydrogen concentration distribution, the density distribution of the oxidized species diffused in the space above the wafer 200 is adjusted. Oxidized species whose density distribution in the in-plane direction of the wafer 200 is adjusted in this way is supplied to the surface of the wafer 200.
  • the output of the power from the high frequency power supply 273 is stopped, and the plasma discharge in the processing chamber 201 is stopped. Further, the valves 253a, 253b, 253d, 253e are closed to stop the supply of the first gas and the second gas into the processing chamber 201. As a result, the plasma processing step S140 is completed.
  • Substrate carry-out process S160 After that, the susceptor 217 is lowered to the transfer position of the wafer 200, and the wafer 200 is supported on the wafer push-up pin 266. Then, the gate valve 244 is opened, and the wafer 200 is carried out of the processing chamber 201 by using the wafer transfer mechanism. As described above, the substrate processing step according to the present embodiment is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

シール構造は、ヒータによって加熱される第1部材と、第1部材と対向して配置された第2部材との間を封止するシール構造であって、第1部材と接触して配置された金属プレートと、金属プレートと第2部材とに接触して配置された樹脂製の封止材と、を有し、金属プレート及び封止材により第1部材と第2部材との間を封止する。

Description

シール構造、基板処理装置及び半導体装置の製造方法
 本開示は、シール構造、基板処理装置及び半導体装置の製造方法に関する。
 フラッシュメモリ等の半導体装置のパターンを形成する際、製造工程の一工程として、基板に酸化処理や窒化処理等の所定の処理を行う工程が実施される場合がある。
 例えば、特開2014-75579号公報には、プラズマ励起した処理ガスを用いて基板上に形成されたパターン表面を改質処理することが開示されている。処理室の上部には、ガス供給部が設けられ、反応ガスを処理室内へ供給できるように構成されている。
 基板処理装置には、処理装置内のガスの混合やガスのリークなどを防ぐためのシール構造が設けられることがある。しかし、基板処理装置に設けられるヒータから放出される熱がシール構造の封止材に多く伝わることは、封止材の耐熱性の観点から望ましくない。
 本開示の目的は、ヒータの熱による封止材の加熱を抑制することにある。
 本開示の一態様によれば、ヒータによって加熱される第1部材と、前記第1部材と対向して配置された第2部材との間を封止するシール構造であって、前記第1部材と接触して配置された放熱用の金属プレートと、前記金属プレートと前記第2部材とに接触して配置された樹脂製の封止材と、を有し、前記金属プレート及び前記封止材により前記第1部材と前記第2部材との間を封止するシール構造が提供される。
 本開示によれば、ヒータの熱による封止材の加熱を抑制することができる。
本開示の一実施形態に係る基板処理装置の概略断面図である。 本開示の一実施形態に係る基板処理装置の制御部(制御手段)の構成を示す図である。 本開示の一実施形態に係る基板処理工程を示すフロー図である。 本開示の一実施形態に係るシール構造を示す拡大断面図である。 本開示の一実施形態に係るシール構造の変形例を示す拡大断面図である。
 以下、本開示を実施するための形態を図面に基づき説明する。各図面において同一の符号を用いて示される構成要素は、同一又は同様の構成要素であることを意味する。なお、以下に説明する実施形態において重複する説明及び符号については、省略する場合がある。また、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
(1)基板処理装置の構成
 本開示の第1実施形態に係る基板処理装置について、図1を用いて以下に説明する。本実施形態に係る基板処理装置100は、主に基板面上に形成された膜に対して例えば酸化処理を行うように構成されている。基板処理装置100は、処理室201と、ヒータと、第1部材としてのプレート1004と、マニホールド1006と、シール構造1000と、を備えている。
 ヒータは、処理室201内を加熱するように構成されている。ヒータは、例えば、後述するランプヒータ1002と、サセプタ217に設けられるヒータ217bである。ヒータ217bは、例えばヒータ217b自身の電気抵抗により発熱する抵抗ヒータである。
 プレート1004は、後述する第1ガス供給部及び第2ガス供給部を構成する部位である。このプレート1004は、例えばランプヒータ1002と、基板としてのウエハ200の処理室201との間に設けられ、ランプヒータ1002からの輻射熱を処理室201内に透過する部材である。プレート1004の少なくとも一部は、例えば非金属の透明材料である石英(透明石英)で構成されている。
 マニホールド1006は、プレート1004と対向して配置されている。プレート1004とマニホールド1006は、互いに非接触に配置されている。これにより、プレート1004が石英部材であり、マニホールド1006が金属部材である場合に、両者の接触によってプレート1004が破損することを防止することができる。
 シール構造1000は、プレート1004とマニホールド1006の間を封止する構造である。
 (処理室)
 基板処理装置100は、基板としてのウエハ200をプラズマを用いて処理する処理炉202を備えている。処理炉202には、処理室201を構成する処理容器203が設けられている。処理容器203は、第1の容器であるドーム型の上側容器210と、第2の容器である碗型の下側容器211とを備えている。上側容器210が下側容器211の上に被さることにより、処理室201が形成される。上側容器210は、例えば酸化アルミニウム(Al23)または石英(SiO2)等の非金属材料で形成されており、下側容器211は、例えばアルミニウム(Al)で形成されている。
 また、下側容器211の下部側壁には、ゲートバルブ244が設けられている。ゲートバルブ244は、開いているとき、搬送機構(図示せず)を用いて、搬入出口245を介して、処理室201内へウエハ200を搬入したり、処理室201外へとウエハ200を搬出したりすることができるように構成されている。ゲートバルブ244は、閉まっているときには、処理室201内の気密性を保持する仕切弁となるように構成されている。
 処理室201は、周囲に共振コイル212が設けられているプラズマ生成空間201aと、プラズマ生成空間201aに連通し、ウエハ200が処理される基板処理空間201bを有する。プラズマ生成空間201aはプラズマが生成される空間であって、処理室の内、共振コイル212の下端より上方であって、且つ共振コイル212の上端より下方の空間を言う。一方、基板処理空間201bは、基板がプラズマを用いて処理される空間であって、共振コイル212の下端より下方の空間を言う。本実施形態では、プラズマ生成空間201aと基板処理空間201bの水平方向の径は略同一となるように構成されている。
 (サセプタ)
 処理室201の底側中央には、ウエハ200を載置する基板載置部(基板載置台)を構成するサセプタ217が配置されている。サセプタ217は例えば窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料から形成されている。
 サセプタ217の内部には、加熱機構としてのヒータ217bが一体的に埋め込まれている。ヒータ217bは、電力が供給されると、ウエハ200表面を例えば25℃から750℃程度まで加熱することができるように構成されている。
 サセプタ217は、下側容器211とは電気的に絶縁されている。インピーダンス調整電極217cはサセプタ217内部に設けられており、インピーダンス調整部としてのインピーダンス可変機構275を介して接地されている。インピーダンス可変機構275はコイルや可変コンデンサにより構成されており、コイルのインダクタンス及び抵抗並びに可変コンデンサの容量値を制御することにより、インピーダンスを変化させることができるように構成されている。これによって、インピーダンス調整電極217c及びサセプタ217を介して、ウエハ200の電位(バイアス電圧)を制御できる。なお、本実施形態においてインピーダンス調整電極217cを用いたバイアス電圧制御を行うか、もしくは行わないかは任意に選択することができる。
 サセプタ217には、サセプタを昇降させる駆動機構を備えるサセプタ昇降機構268が設けられている。また、サセプタ217には貫通孔217aが設けられるとともに、下側容器211の底面にはウエハ突上げピン266が設けられている。貫通孔217aとウエハ突上げピン266は互いに対向する位置に、少なくとも各3箇所ずつ設けられている。サセプタ昇降機構268によりサセプタ217が下降させられたときには、ウエハ突上げピン266が貫通孔217aを突き抜けるように構成されている。
 主に、サセプタ217及びヒータ217b、電極217cにより、本実施形態に係る基板載置部が構成されている。
 (第1ガス供給部)
 以下において、第1ガス供給部から供給されるガスを第1ガスと称する。処理室201の中央上方には、プレート1004が設けられている。図4に示されるように、プレート1004の周縁には、マニホールド1006が、プレート1004と上下方向に対向して配置されている。
 図4に示されるように、プレート1004は、処理容器203の上方の開口部203aの端縁203bに載置されている。具体的には、プレート1004の周縁にはフランジ部1004fが形成されており、該フランジ部1004fが端縁203bに係止されることで、プレート1004が端縁203bに載置されている。プレート1004のうち、フランジ部1004fを除く主な部分は、開口部203aを塞ぐように配置されている。
 マニホールド1006は、処理容器203の上に取り付けられている。マニホールド1006と処理容器203の間は、Oリング1014により封止されている。マニホールド1006の上方には、例えば透明石英で構成された蓋部1012が設けられている。マニホールド1006と蓋部1012の間は、Oリング1016により封止されている。蓋部1012の上には、ランプヒータ1002が設けられている。ランプヒータ1002からの輻射熱は、蓋部1012及びプレート1004を通じて処理室201内に届くようになっている。
 プレート1004は、ランプヒータ1002及びヒータ217bにより加熱される。また、接触する処理容器203からの熱伝導等によって間接的に加熱される場合もある。また、後述するプラズマ生成部により生成されるプラズマによって加熱され場合もある。
 プレート1004のフランジ部1004fと、処理容器203と、マニホールド1006と、後述する金属プレート1008とにより、第1ガスが供給される第1バッファ空間1018が区画されている。第1バッファ空間1018は、プレート1004の周囲に環状に形成されている。基板処理時には、第1バッファ空間1018は減圧された空間となる。第1バッファ空間1018には、マニホールド1006に形成されたガス導入路1020を通じて第1ガスが供給されるようになっている。また、プレート1004には第1ガス吹出し孔1022が形成されており、第1ガス吹出し孔1022を通じて第1バッファ空間1018から処理室201内に第1ガスを供給できるようになっている。
 ガス導入路1020には、酸素含有ガスを供給する酸素含有ガス供給管232aの下流端と、水素含有ガスを供給する水素含有ガス供給管232bの下流端と、不活性ガスを供給する不活性ガス供給管232cと、が合流するように接続されている。酸素含有ガス供給管232aには、酸素含有ガス供給源250a、流量制御装置としてのマスフローコントローラ(MFC)252a、開閉弁としてのバルブ253aが設けられている。水素含有ガス供給管232bには、水素含有ガス供給源250b、MFC252b、バルブ253bが設けられている。不活性ガス供給管232cには、不活性ガス供給源250c、MFC252c、バルブ253cが設けられている。酸素含有ガス供給管232aと水素含有ガス供給管232bと不活性ガス供給管232cとが合流した下流側には、バルブ243aが設けられ、ガス導入路1020の上流端に接続されている。バルブ253a,253b,253c,243aを開閉させ、MFC252a,252b,252cによりそれぞれのガスの流量を調整しつつ、酸素含有ガス供給管232a、水素含有ガス供給管232b、不活性ガス供給管232cを介して、酸素含有ガス、水素ガス含有ガス、不活性ガス等の処理ガスを処理室201内へ供給できるように構成されている。
 主に、第1ガス吹出し孔1022、酸素含有ガス供給管232a、水素含有ガス供給管232b、不活性ガス供給管232c、MFC252a,252b,252c、バルブ253a,253b,253c,243aにより、本実施形態に係る第1ガス供給部(第1ガス供給系)が構成されている。第1ガス供給部は、処理室201内に、酸素を含有する酸化種源としてのガスを供給するよう構成されている。
 (第2ガス供給部)
 以下において、第2ガス供給部から供給されるガスを第2ガスと称する。図1に示されるように、蓋部1012と、プレート1004と、マニホールド1006と、後述する金属プレート1008(図4)とにより、第2ガスが供給される第2バッファ空間1028が区画されている。基板処理時には、第2バッファ空間1028は減圧された空間となる。第2バッファ空間1028には、マニホールド1006に形成されたガス導入路1030を通じて第2ガスが供給されるようになっている。プレート1004の中央部には、第2ガス吹出し口1004aが形成されており、第2ガス吹出し口1004aを通じて第2バッファ空間1028から処理室201内に第2ガスを供給できるようになっている。
 ガス導入路1030には、酸素含有ガスを供給する酸素含有ガス供給管232dの下流端と、水素含有ガスを供給する水素含有ガス供給管232eの下流端と、不活性ガスを供給する不活性ガス供給管232fと、が合流するように接続されている。酸素含有ガス供給管232dには、酸素含有ガス供給源250d、MFC252d、バルブ253dが設けられている。水素含有ガス供給管232eには、水素含有ガス供給源250e、MFC252e、バルブ253eが設けられている。不活性ガス供給管232fには、不活性ガス供給源250f、MFC252f、バルブ253fが設けられている。酸素含有ガス供給管232dと水素含有ガス供給管232eと不活性ガス供給管232fとが合流した下流側には、バルブ243cが設けられ、ガス導入路1030の上流端に接続されている。バルブ253d,253e,253f,243cを開閉させ、MFC252d,252e,252fによりそれぞれのガスの流量を調整しつつ、酸素含有ガス供給管232d、水素含有ガス供給管232e、不活性ガス供給管232fを介して、酸素含有ガス、水素ガス含有ガス、不活性ガス等の処理ガスを処理室201内へ供給できるように構成されている。
 主に、第2ガス吹出し口1004a、酸素含有ガス供給管232d、水素含有ガス供給管232e、不活性ガス供給管232f、MFC252d,252e,252f、バルブ253d,253e,253f,243cにより、本実施形態に係る第2ガス供給部(第2ガス供給系)が構成されている。第2ガス供給部は、処理室201内に、水素を含有する水素濃度を調整するための水素濃度調整ガスを供給するよう構成されている。
 第2ガス供給部は、処理室201の内壁に沿ったプラズマ生成空間201a(後述)内の第1の領域である外周領域に、第2ガスを供給するよう構成されている。また、第1ガス供給部は、外周領域に囲まれた領域であって、プラズマ生成空間201a内の第2の領域である中央領域に、第1ガスを供給するよう構成されている。
 第1ガス供給部と第2ガス供給部によれば、第1ガスおよび第2ガスそれぞれについて、酸素含有ガスと水素含有ガスの混合比(流量比)やその総流量を調整することが可能である。よって、処理室201内の外周領域と中央領域との各領域に供給される酸素含有ガスと水素含有ガスの混合比やその総流量を調整することが可能である。
 (排気部)
 下側容器211の側壁には、処理室201内から反応ガスなどを排気するガス排気口235が設けられている。ガス排気口235には、ガス排気管231の上流端が接続されている。ガス排気管231には、圧力調整器としてのAPC(Auto Pressure Controller)バルブ242、開閉弁としてのバルブ243b、真空排気装置としての真空ポンプ246が設けられている。
 主に、ガス排気口235、ガス排気管231、APCバルブ242、バルブ243bにより、本実施形態に係る排気部が構成されている。尚、真空ポンプ246を排気部に含めても良い。
 (プラズマ生成部)
 処理室201の外周部、すなわち上側容器210の側壁の外側には、処理室201を囲うように、高周波電極としての、螺旋状の共振コイル212が設けられている。共振コイル212には、RFセンサ272、高周波電源273、高周波電源273のインピーダンスや出力周波数の整合を行う整合器274が接続される。
 高周波電源273は、共振コイル212に高周波電力(RF電力)を供給するものである。RFセンサ272は高周波電源273の出力側に設けられ、供給される高周波の進行波や反射波の情報をモニタする。RFセンサ272によってモニタされた反射波電力は整合器274に入力され、整合器274は、RFセンサ272から入力された反射波の情報に基づいて、反射波が最小となるよう、高周波電源273のインピーダンスや出力される高周波電力の周波数を制御する。
 共振コイル212は、所定の波長の定在波を形成するため、一定の波長で共振するように巻径、巻回ピッチ、巻数が設定される。すなわち、共振コイル212の電気的長さは、高周波電源273から供給される高周波電力の所定周波数における1波長の整数倍に相当する長さに設定される。
 具体的には、印加する電力や発生させる磁界強度または適用する装置の外形などを勘案し、共振コイル212は、例えば、800kHz~50MHz、0.1~5KWの高周波電力が印加され、200~500mmのコイル直径とされ、プラズマ生成空間201aの外周側に2~60回程度巻回される。なお、本明細書における「800kHz~50MHz」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。例えば、「800kHz~50MHz」とは「800kHz以上50MHz以下」を意味する。他の数値範囲についても同様である。
 遮蔽板223は、共振コイル212の外側の電界を遮蔽するために設けられる。
 主に、共振コイル212、RFセンサ272、整合器274により、本実施形態に係るプラズマ生成部が構成されている。尚、プラズマ生成部として高周波電源273を含めても良い。
 かかる構成により、共振コイル212に高周波電力が供給されることにより、共振コイル212に近傍であって、処理室201の内周に沿った領域にリング状のプラズマが生成される。すなわち、このリング状のプラズマは処理室201内の外周領域内に生成される。特に本実施形態では、共振コイル212の電気的中点が位置する高さ、すなわち共振コイル212の上端と下端の中間高さ位置にこのリング状のプラズマが生成される。
 (シール構造)
 図4において、シール構造1000は、プレート1004(第1部材)とマニホールド1006(第2部材)の間を封止する構造であり、金属プレート1008と、樹脂製の封止材としてのOリング1010とを有している。この金属プレート1008とOリング1010により、プレート1004とマニホールド1006の間が封止されている。プレート1004のフランジ部1004fは、金属プレート1008と接触する接触部でもある。マニホールド1006は、例えば金属部材である。
 なお、Oリング1010を形成する樹脂材料としては、シリコンゴムやフッ素ゴム等のゴム素材が例示されるが、ゴム素材に限らず、封止材として機能する弾性を有する他の樹脂材料を用いることもできる。また、本形態では封止材としてOリングを用いているが、封止材として機能する形状であれば、リング形状に限らず、板状や棒状など、他の形状であってもよい。
 金属プレート1008は環状に形成され、Oリング1010から離れた位置でマニホールド1006に接触して固定されている。具体的には、例えば金属製のボルト1024により、マニホールド1006に固定されている。ボルト1024の中心部は、ねじ穴内の真空引きを可能とするため、軸方向に貫通している。図示の例では、金属プレート1008とマニホールド1006との間にシールスペーサ1026が配置されている。この場合でも、金属プレート1008とマニホールド1006とが、ボルト1024を介して接触している。金属プレート1008、マニホールド1006及びボルト1024は、何れも金属部材であるので、金属プレート1008の熱がボルト1024を介してマニホールド1006に伝わるようになっている。また、金属プレート1008は、Oリング1010から離れた位置でマニホールド1006に接触して固定されているため、金属プレート1008からマニホールド1006に伝わった熱により、Oリング1010が加熱されることを防ぐことができる。
 プレート1004が石英部材である場合の破損防止のため、金属プレート1008は薄い方が望ましい。具体的には、金属プレート1008の厚さは、例えば0.1~1.0mmの範囲の所定の値である。金属プレート1008の厚さが0.1mm未満の場合、プレート1004やボルト1024との接触により金属プレート1008自体が破損する可能性が高まるとともに、マニホールド1006及びボルト1024に熱を伝導させて、Oリング1010の温度上昇を抑制することが困難となる。0.1mm以上とすることにより、金属プレート1008自体が破損することを防止できるとともに、Oリング1010の温度上昇を抑制することが可能となる。金属プレート1008の厚さが1.0mmを超える場合、金属プレート1008の弾性が小さくなるため、接触する石英部材であるプレート1004を破損させる可能性がある。1.0mm以下とすることにより、金属プレート1008の弾性を維持し、プレート1004の破損を抑制することができる。また、金属プレート1008は、アルミニウム、ニッケル合金、ステンレスの少なくともいずれかにより形成されてもよい。
 なお、シールスペーサ1026は、省略されていてもよい。この場合、金属プレート1008がマニホールド1006に直接面状に接触するので、金属プレート1008の熱がマニホールド1006に伝わり易い。
 Oリング1010は、金属プレート1008が設けられていない場合、主に(a)ランプヒータ1002及びヒータ217bの少なくともいずれかから放射され、プレート1004及び処理容器203の少なくともいずれかを透過した輻射熱、(b)加熱されたプレート1004及び処理容器203の少なくともいずれかから放射される輻射熱、(c)加熱されたプレート1004との接触面から伝わる伝導熱、などにより加熱される。
 金属プレート1008は、ヒータ217bとOリング1010の間に配置され、Oリング1010を、下方からOリング1010へ向けて直接又は間接的に放射されるヒータ217bの輻射熱から遮蔽するように配置されている。また、金属プレート1008は、Oリング1010を、ランプヒータ1002(図1)からOリング1010へ向けて直接又は間接的に放射される輻射熱を遮蔽するように配置されている。すなわち、金属プレート1008は、上述の熱源(a)及び(b)からOリングを遮蔽するように配置されている。
 マニホールド1006は、冷却機構により冷却されている。具体的には、マニホールド1006には、冷却機構としての冷媒流路1032が設けられており、冷媒流路1032に冷媒を流すことにより、マニホールド1006の熱を除去できるようになっている。したがって、金属プレート1008の熱は、マニホールド1006を介して効率的に除去される。すなわち、金属プレート1008は、上述の熱源(c)からOリング1010を絶縁するように配置されている。
 なお、図5に示されるように、プレート1004は、例えば内周部1004bと、外周部1004cとが組み合わされて構成されていてもよい。内周部1004bは、例えば透明石英で構成された透明部である。外周部1004cは筒状又はリング状に形成され、処理容器203の開口部203aの端縁203bに係止されるように載置されている。内周部1004bは円板状に形成され、外周部1004cの段差部1004dに接触して配置されている。外周部1004cは、金属プレート1008と接触する接触部でもある。
 また、外周部1004cは、ランプヒータ1002の輻射熱の透過を妨げる不透明材料、例えば不透明石英で構成された不透明部である。接触部である外周部1004cを不透明材料で構成することにより、外周部1004cを透過して金属プレート1008やOリング1010、マニホールド1006に到達する輻射熱を低減することができる。また、不透明部を金属プレート1008と接触させることにより、輻射熱により加熱された不透明部によってOリング1010が加熱されることを防ぐことができる。
 (制御部)
 制御部としてのコントローラ221は、信号線Aを通じてAPCバルブ242、バルブ243b及び真空ポンプ246を、信号線Bを通じてサセプタ昇降機構268を、信号線Cを通じてヒータ電力調整機構276及びインピーダンス可変機構275を、信号線Dを通じてゲートバルブ244を、信号線Eを通じてRFセンサ272、高周波電源273及び整合器274を、信号線Fを通じてMFC252a~252f及びバルブ253a~253f,243a,243cを、それぞれ制御することが可能なように構成されている。
 図2に示すように、制御部(制御手段)であるコントローラ221は、CPU(Central Processing Unit)221a、RAM(Random Access Memory)221b、記憶装置221c、I/Oポート221dを備えたコンピュータとして構成されている。RAM221b、記憶装置221c、I/Oポート221dは、内部バス221eを介して、CPU221aとデータ交換可能なように構成されている。コントローラ221には、例えばタッチパネルやディスプレイ等として構成された入出力装置222が接続されている。
 記憶装置221cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置221c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプログラムレシピ等が読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ221に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM221bは、CPU221aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート221dは、上述のMFC252a~252f、バルブ253a~253f,243a,243b,243c、ゲートバルブ244、APCバルブ242、真空ポンプ246、RFセンサ272、高周波電源273、整合器274、サセプタ昇降機構268、インピーダンス可変機構275、ヒータ電力調整機構276、等に接続されている。
 CPU221aは、記憶装置221cからの制御プログラムを読み出して実行すると共に、入出力装置222からの操作コマンドの入力等に応じて記憶装置221cからプロセスレシピを読み出すように構成されている。そして、CPU221aは、読み出されたプロセスレシピの内容に沿うように、I/Oポート221d及び信号線Aを通じてAPCバルブ242の開度調整動作、バルブ243bの開閉動作、及び真空ポンプ246の起動・停止を、信号線Bを通じてサセプタ昇降機構268の昇降動作を、信号線Cを通じてヒータ電力調整機構276によるヒータ217bへの供給電力量調整動作や、インピーダンス可変機構275によるインピーダンス値調整動作を、信号線Dを通じてゲートバルブ244の開閉動作を、信号線Eを通じてRFセンサ272、整合器274及び高周波電源273の動作を、信号線Fを通じてMFC252a~252fによる各種ガスの流量調整動作、及びバルブ253a~253f,243a,243cの開閉動作、等を制御するように構成されている。
 コントローラ221は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)223に格納された上述のプログラムをコンピュータにインストールすることにより構成することができる。記憶装置221cや外部記憶装置223は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に記録媒体ともいう。本明細書において、記録媒体という言葉を用いた場合は、記憶装置221c単体のみを含む場合、外部記憶装置223単体のみを含む場合、または、その両方を含む場合が有る。なお、コンピュータへのプログラムの提供は、外部記憶装置223を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
 (半導体装置の製造方法)
 半導体装置の製造方法は、基板処理装置100の処理室201に基板を搬入する工程(例えば図3の基板搬入工程S110)と、ヒータとしてのランプヒータ1002等によりウエハ200を加熱する工程(例えば図3の昇温・真空排気工程S120)と、を有する。
 基板処理装置100は、ウエハ200を処理する処理室201と、処理室201内を加熱するように構成されたランプとしてのランプヒータ1002と、ランプヒータ1002によって加熱される第1部材としてのプレート1004と、プレート1004と対向して配置されたマニホールド1006と、プレート1000とマニホールド1006の間を封止するシール構造1000と、を備えている。シール構造1000は、プレート1000と接触して配置された放熱用の金属プレート1008と、金属プレート1008とマニホールド1006とに接触して配置された樹脂製の封止材としてのOリング1010と、を有し、プレート1000とマニホールド1006との間が、金属プレート1008及びOリング1010により封止されている。
 (2)基板処理工程
 次に、本実施形態に係る基板処理工程について、上述の基板処理装置100を用いて、例えばフラッシュメモリ等の半導体デバイスの製造工程の一工程として、ウエハ200の表面に形成された膜を酸化して酸化膜を形成する方法の例について説明する。以下の説明において、基板処理装置100を構成する各部の動作は、コントローラ221により制御される。
 (基板搬入工程S110)
 まず、上記のウエハ200を処理室201内に搬入して収容する。具体的には、サセプタ昇降機構268がウエハ200の搬送位置までサセプタ217を下降させる。その結果、ウエハ突き上げピン266が、サセプタ217表面よりも所定の高さ分だけ貫通孔217aから突出した状態となる。
 続いて、ゲートバルブ244を開き、処理室201に隣接する真空搬送室から、ウエハ搬送機構(図示せず)を用いて処理室201内にウエハ200を搬入する。搬入されたウエハ200は、ウエハ突上げピン266上に水平姿勢で支持される。処理室201内にウエハ200を搬入したら、ゲートバルブ244を閉じて処理室201内を密閉する。そして、サセプタ昇降機構268がサセプタ217を上昇させることにより、ウエハ200はサセプタ217の上面に支持される。
 (昇温・真空排気工程S120)
 続いて、処理室201内に搬入されたウエハ200の昇温を行う。ヒータ217bは予め加熱されており、ヒータ217bが埋め込まれたサセプタ217上にウエハ200を保持することで、例えば150~750℃の範囲内の所定値にウエハ200を加熱する。また、ランプヒータ1002によっても処理室201が加熱される。また、ウエハ200の昇温を行う間、真空ポンプ246によりガス排気管231を介して処理室201内を真空排気し、処理室201内の圧力を所定の値とする。真空ポンプ246は、少なくとも後述の基板搬出工程S160が終了するまで作動させておく。
 このとき、図4に示されるように、シール構造1000における金属プレート1008とOリング1010により、プレート1004とマニホールド1006の間が封止されている。したがって、ランプヒータ1002等のヒータによって加熱されるプレート1004とOリング1010との間に金属プレート1008が配置されているので、ヒータ及びプレート1004からOリング1010への輻射熱を遮蔽し、Oリング1010の温度上昇やそれに伴う劣化を抑制することができる。
 また、金属プレート1008は環状に形成され、Oリング1010から離れた位置でマニホールド1006に接触して固定されている。したがって、金属プレート1008の熱をマニホールド1006に伝導させて、金属プレート1006の温度上昇を抑制することができる。
 更に、マニホールド1006は、冷却機構により冷却されている。したがって、マニホールド1006と接触するOリング1010と金属プレート1008を冷却して、Oリング1010の温度上昇を抑制することができる。
 また、シール構造100は、第1バッファ空間1018と第2バッファ空間1028を減圧した場合において好適に用いることができる。金属プレート1008を用いることで封止可能な圧力が低下する場合であっても、第1バッファ空間1018と第2バッファ空間1028を減圧(真空)空間とすることにより、第1バッファ空間1018と第2バッファ空間1028の間でのガスのリークを防ぎ、分離を維持することができる。
 (反応ガス供給工程S130)
 次に、第1ガス供給部から処理室201の外周領域に、酸素を含有する酸化種源ガスである第1ガスとして、酸素含有ガスと水素含有ガスの混合ガスの供給を開始する。具体的には、バルブ253a及びバルブ253bを開け、MFC252a及びMFC252bにて流量制御しながら、ガス吹出口239を介して処理室201内へ第1ガスの供給を開始する。
 酸素含有ガスとしては、例えば、酸素(O)ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水蒸気(HOガス)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いることができる。酸素含有ガスとしては、これらのうち1以上を用いることができる。また、水素含有ガスとしては、例えば、水素(H)ガス、重水素(D)ガス、HOガス、アンモニア(NH)ガス等を用いることができる。水素含有ガスとしては、これらのうち1以上を用いることができる。なお、酸素含有ガスとしてHOガスを用いる場合は、水素含有ガスとしてHOガス以外のガスを用いることが好ましく、水素含有ガスとしてHOガスを用いる場合は、酸素含有ガスとしてHOガス以外のガスを用いることが好ましい。不活性ガスとしては、例えば、窒素(N)ガスを用いることができ、この他、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。
 MFC252a及びMFC252bにて流量制御を行うことにより、第1ガスの総流量および第1ガスの組成(特に水素の含有率)の少なくとも一方が調整される。本実施形態では、水素含有ガスと酸素含有ガスの混合比(流量比)を変えることで第1ガスの組成を容易に調整することが可能である。
 このとき、第1ガスの総流量を、例えば1000~10000ccmとし、第1ガス中の酸素含有ガスの流量を、例えば20~4000sccmの範囲内の所定値とする。また、第1ガス中の水素含有ガスの流量を、例えば20~1000sccmの範囲内の所定値とする。第1ガスに含まれる水素含有ガスと酸素含有ガスの含有比率は、0:100~95:5の範囲の所定の値とする。
 処理室201の外周領域であって、後述するプラズマ処理工程S140において形成されるリング状のプラズマが生成される領域に対して直接第1ガスを供給することが望ましい。
 同時に、第2ガス供給部から処理室201の中央領域に、水素濃度調整ガスである第2ガスとしての酸素含有ガスと水素含有ガスの混合ガスの供給を開始する。具体的には、バルブ253d及びバルブ253eを開け、MFC252d及びMFC252eにて流量制御しながら、ガス供給リング300に設けられたガス吹出孔303を介して処理室201内へ第2ガスの供給を開始する。
 MFC252d及びMFC252eにて流量制御を行うことにより、第2ガスの総流量および第2ガスの組成(特に水素の含有率)の少なくとも一方が調整される。第1ガスと同様に、水素含有ガスと酸素含有ガスの混合比を変えることで第2ガスの組成を容易に調整することが可能である。
 このとき、第2ガスの総流量を、第1ガスの総流量と同等又はそれ以下であって、例えば100~5000sccmとし、第2ガス中の酸素含有ガスの流量を、例えば0~5000sccmの範囲内の所定値とする。また、第2ガス中の水素含有ガスの流量を、例えば0~5000sccmの範囲内の所定値とする。本実施形態では、第2ガスに含まれる水素含有ガスの比率(すなわち第1ガスの水素含有率)を0~100%の範囲内の所定値とする。第2ガスの総流量は、第1ガスと同等、又はそれ以下であることが好ましい。
 (水素の濃度分布制御)
 本工程においては、第1ガス、第2ガスのそれぞれについて、流量および水素含有率の少なくとも一方を制御することにより、処理室201内の水素濃度分布を制御することが可能である。水素濃度分布は、後述するプラズマ処理工程における酸化種の密度分布が所望のものとなるように制御される。第2ガスの水素含有率は、第1ガスの水素含有率と異なるように調整されることが望ましい。第1ガスとは水素含有率が異なる第2ガスを用いることにより、第1ガスと第2ガスの流量をそれぞれ制御して、処理室201内の水素濃度分布を調整することが容易になる。
 処理室201内の圧力は、例えば5~260Paの範囲内の所定圧力となるように、APCバルブ242の開度を調整して処理室201内の排気を制御する。このように、処理室201内を適度に排気しつつ、後述のプラズマ処理工程S140の終了時まで第1ガスおよび第2ガスの供給を継続する。
 (プラズマ処理工程S140)
 処理室201内の圧力が安定したら、共振コイル212に対して高周波電源273から高周波電力の印加を開始する。これにより、第1ガスが供給されているプラズマ生成空間201a内に高周波電磁界が形成され、係る電磁界により、プラズマ生成空間の共振コイル212の電気的中点に相当する高さ位置に、最も高いプラズマ密度を有するリング状の誘導プラズマが励起される。プラズマ状の第1ガスは解離し、Oを含むOラジカルやヒドロキシラジカル(OHラジカル)等の酸素ラジカル、原子状酸素(O)、O3、酸素イオン等の酸化種が生成される。
 本工程において、第1ガスは、プラズマが第2のプラズマ密度で生成される領域であるプラズマ生成領域に供給される。本実施形態では、共振コイル212に近い処理室201内の外周領域内であって、リング状のプラズマが励起される領域であるプラズマ生成領域に対して第1ガスが供給され、主に第1ガスがプラズマ励起されることによって、上述の酸化種が生成される。
 一方、本工程において、第2ガスは、プラズマが第1のプラズマ密度よりも低い第2のプラズマ密度で生成される領域、又はプラズマが生成されない領域(第2のプラズマ密度が実質的に0である領域)であるプラズマ非生成領域に供給される。すなわち、第2ガスは、第1ガスとはプラズマの密度が異なる領域に供給される。本実施形態では特に、リング状のプラズマの内側に形成されるプラズマ非生成領域に第2ガスが供給される。
 (酸化種の密度分布制御)
 ここで、プラズマによって生成された酸化種は、雰囲気中の水素と反応するとその酸化種としての能力(酸化能力)を失うか、又は低下させる(すなわち失活する)。そのため、酸化種が存在する雰囲気中の水素濃度に応じて、その雰囲気中における酸化種の密度(濃度)の減衰速度(減衰量)が変化する。水素濃度が高いほど酸化種の減衰量は増大し、水素濃度が低いほど酸化種の減衰量は低下する。
 本実施形態では、プラズマ生成領域で生成された酸化種がプラズマ非生成領域において拡散する際に、プラズマ非生成領域中の水素と反応して徐々に失活していく。したがって、プラズマ非生成領域で拡散する酸化種の密度は、当該領域内の水素濃度によってその減衰量が調整されうる。すなわち、プラズマ非生成領域における酸化種の密度分布は、当該領域内の水素濃度分布を制御することによって任意に調整されうる。
 具体的には、上述の反応ガス供給工程において、プラズマ非生成領域に主に供給される第2ガスの流量又は水素の含有率の少なくともいずれかを調整することにより、当該領域内におけるウエハ200の面内方向における水素濃度分布を制御する。そして、この水素濃度分布を制御することにより、ウエハ200の上方空間で拡散する酸化種の密度分布を調整する。このようにしてウエハ200の面内方向における密度分布が調整された酸化種がウエハ200表面に供給される。
 その後、所定の処理時間、例えば10~900秒が経過したら、高周波電源273からの電力の出力を停止して、処理室201内におけるプラズマ放電を停止する。また、バルブ253a,253b,253d,253eを閉めて、第1ガス及び第2ガスの処理室201内への供給を停止する。以上により、プラズマ処理工程S140が終了する。
 (真空排気工程S150)
 第1ガス及び第2ガスの供給を停止したら、ガス排気管231を介して処理室201内を真空排気する。これにより、処理室201内の酸素含有ガスや水素含有ガス、これらガスの反応により発生した排ガス等を処理室201外へと排気する。その後、APCバルブ242の開度を調整し、処理室201内の圧力を処理室201に隣接する真空搬送室と同じ圧力に調整する。
 (基板搬出工程S160)
 その後、サセプタ217をウエハ200の搬送位置まで下降させ、ウエハ突上げピン266上にウエハ200を支持させる。そして、ゲートバルブ244を開き、ウエハ搬送機構を用いてウエハ200を処理室201外へ搬出する。以上により、本実施形態に係る基板処理工程を終了する。
[他の実施形態]
 以上、本開示の実施形態の一例について説明したが、本開示の実施形態は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 2020年9月23日に出願された日本国特許出願2020-159107号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (20)

  1.  ヒータによって加熱される第1部材と、前記第1部材と対向して配置された第2部材との間を封止するシール構造であって、
     前記第1部材と接触して配置された金属プレートと、
     前記金属プレートと前記第2部材とに接触して配置された樹脂製の封止材と、
     を有し、
     前記金属プレート及び前記封止材により前記第1部材と前記第2部材との間を封止するシール構造。
  2.  前記金属プレートは、前記封止材から離れた位置で前記第2部材に接触して固定されている請求項1に記載のシール構造。
  3.  第2部材は冷却機構により冷却されている請求項1又は請求項2に記載のシール構造。
  4.  金属プレートは、前記ヒータから前記封止材への輻射熱を遮蔽するように配置されている請求項1に記載のシール構造。
  5.  前記ヒータはランプヒータを含む、請求項1~4の何れか1項に記載のシール構造。
  6.  前記ヒータは抵抗ヒータを含む、請求項5に記載のシール構造。
  7.  前記第1部材は、前記ヒータと基板の処理室との間に設けられ、前記ヒータからの輻射熱を処理室内に透過するプレートにより構成されている、請求項1~6の何れか1項に記載のシール構造。
  8.  前記第1部材は、前記プレートと、前記金属プレートと接触する接触部とにより構成されている、請求項7に記載のシール構造。
  9.  前記シール構造は、前記第1部材の上方に形成され第1ガスが供給される第1バッファ空間と、第1部材と第2部材の間に形成され第2ガスが供給される第2バッファ空間との間を封止するように構成されている、請求項1~8の何れか1項に記載のシール構造。
  10.  前記シール構造は、減圧された前記第1バッファ空間と減圧された前記第2バッファ空間との間を封止するように構成されている、請求項9に記載のシール構造。
  11.  前記第1部材と前記第2部材は、互いに非接触に配置されている、請求項1~10の何れか1項に記載のシール構造。
  12.  前記第2部材は金属で構成されている、請求項1~11の何れか1項に記載のシール構造。
  13.  前記第1部材は非金属で構成されている、請求項1~12の何れか1項に記載のシール構造。
  14.  前記第1部材の少なくとも一部は、透明材料で構成されている、請求項13に記載のシール構造。
  15.  前記第1部材は、前記ヒータの輻射熱を透過する透明材料で形成された透明部と、前記ヒータの輻射熱の透過を妨げる不透明材料で形成された不透明部と、によって構成される、請求項14に記載のシール構造。
  16.  前記金属プレートは前記不透明部と接触するように配置されている、請求項15に記載のシール構造。
  17.  前記金属プレートの厚さは、0.1~1.0mmの範囲の所定の値である、請求項1~16の何れか1項に記載のシール構造。
  18.  基板を処理する処理室と、
     前記処理室内を加熱するように構成されたヒータと、
     前記ヒータによって加熱される第1部材と、
     前記第1部材と対向して配置された第2部材と、
     前記第1部材と第2部材の間を封止するシール構造と、を備え、
     前記シール構造は、
     前記第1部材と接触して配置された金属プレートと、
     前記金属プレートと前記第2部材とに接触して配置された樹脂製の封止材と、
     を有し、
     前記第1部材と前記第2部材との間が、前記金属プレート及び前記封止材により封止されている、基板処理装置。
  19.  基板処理装置の処理室に基板を搬入する工程と、
     ヒータにより前記基板を加熱する工程と、
     を有し、
     前記基板処理装置は、
     前記ヒータによって加熱される第1部材と、
     前記第1部材と対向して配置された第2部材と、
     前記第1部材と第2部材の間を封止するシール構造と、を備え、
     前記シール構造は、
     前記第1部材と接触して配置された金属プレートと、
     前記金属プレートと前記第2部材とに接触して配置された樹脂製の封止材と、
     を有し、
     前記第1部材と前記第2部材との間が、前記金属プレート及び前記封止材により封止されている、半導体装置の製造方法。
  20.  前記処理室内に第1ガスと第2ガスを供給する工程を有し、
     前記シール構造は、前記第1部材の上方に形成され第1ガスが供給される第1バッファ空間と、前記第1部材と前記第2部材の間に形成され第2ガスが供給される第2バッファ空間との間を封止するように構成されている、請求項19に記載の半導体装置の製造方法。
PCT/JP2021/033341 2020-09-23 2021-09-10 シール構造、基板処理装置及び半導体装置の製造方法 WO2022065079A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180052087.5A CN115885370A (zh) 2020-09-23 2021-09-10 密封构造、基板处理装置以及半导体装置的制造方法
KR1020237008161A KR20230048129A (ko) 2020-09-23 2021-09-10 씰 구조, 기판 처리 장치 및 반도체 장치의 제조 방법
JP2022551881A JP7418603B2 (ja) 2020-09-23 2021-09-10 シール構造、基板処理装置及び半導体装置の製造方法
US18/181,620 US20230274916A1 (en) 2020-09-23 2023-03-10 Seal structure, substrate processing apparatus and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020159107 2020-09-23
JP2020-159107 2020-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/181,620 Continuation US20230274916A1 (en) 2020-09-23 2023-03-10 Seal structure, substrate processing apparatus and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2022065079A1 true WO2022065079A1 (ja) 2022-03-31

Family

ID=80846578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033341 WO2022065079A1 (ja) 2020-09-23 2021-09-10 シール構造、基板処理装置及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20230274916A1 (ja)
JP (1) JP7418603B2 (ja)
KR (1) KR20230048129A (ja)
CN (1) CN115885370A (ja)
WO (1) WO2022065079A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149433A (ja) * 1991-11-25 1993-06-15 Kobe Steel Ltd 半導体製造装置用真空チヤンバのシール構造
JP2003124206A (ja) * 2001-10-18 2003-04-25 Tokyo Electron Ltd 熱処理装置
JP2005183645A (ja) * 2003-12-19 2005-07-07 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2008177524A (ja) * 2006-10-13 2008-07-31 Tokyo Electron Ltd 熱処理装置
JP2009117373A (ja) * 1997-01-29 2009-05-28 Foundation For Advancement Of International Science プラズマ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149433A (ja) * 1991-11-25 1993-06-15 Kobe Steel Ltd 半導体製造装置用真空チヤンバのシール構造
JP2009117373A (ja) * 1997-01-29 2009-05-28 Foundation For Advancement Of International Science プラズマ装置
JP2003124206A (ja) * 2001-10-18 2003-04-25 Tokyo Electron Ltd 熱処理装置
JP2005183645A (ja) * 2003-12-19 2005-07-07 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2008177524A (ja) * 2006-10-13 2008-07-31 Tokyo Electron Ltd 熱処理装置

Also Published As

Publication number Publication date
US20230274916A1 (en) 2023-08-31
JP7418603B2 (ja) 2024-01-19
CN115885370A (zh) 2023-03-31
JPWO2022065079A1 (ja) 2022-03-31
KR20230048129A (ko) 2023-04-10
TW202228207A (zh) 2022-07-16

Similar Documents

Publication Publication Date Title
KR101464867B1 (ko) 반도체 장치 제조 방법, 기판 처리 장치 및 기록 매체
WO2022065079A1 (ja) シール構造、基板処理装置及び半導体装置の製造方法
KR20230098012A (ko) 클리닝 방법, 반도체 장치의 제조 방법, 기록 매체 및 기판 처리 장치
TWI836257B (zh) 密封構造、基板處理裝置及半導體裝置之製造方法
KR20230062333A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
WO2022059163A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP5918574B2 (ja) 基板処理装置及び半導体装置の製造方法
JP7203950B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置及びプログラム
WO2022071105A1 (ja) 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
JP7203869B2 (ja) 基板処理装置、半導体装置の製造方法、およびプログラム
JP7393376B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置
JP7297149B2 (ja) 基板処理装置、基板載置台カバー、半導体装置の製造方法及びプログラム
WO2023095374A1 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
KR20230140380A (ko) 메인터넌스 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551881

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008161

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872210

Country of ref document: EP

Kind code of ref document: A1