WO2022071105A1 - 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム - Google Patents

基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム Download PDF

Info

Publication number
WO2022071105A1
WO2022071105A1 PCT/JP2021/035034 JP2021035034W WO2022071105A1 WO 2022071105 A1 WO2022071105 A1 WO 2022071105A1 JP 2021035034 W JP2021035034 W JP 2021035034W WO 2022071105 A1 WO2022071105 A1 WO 2022071105A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
container
processing container
exhaust
pressure
Prior art date
Application number
PCT/JP2021/035034
Other languages
English (en)
French (fr)
Inventor
哲明 稲田
順也 小西
正季 室林
毅 保井
武夫 佐藤
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to CN202180063136.5A priority Critical patent/CN116195371A/zh
Priority to KR1020237008764A priority patent/KR20230048551A/ko
Priority to JP2022553893A priority patent/JP7478832B2/ja
Publication of WO2022071105A1 publication Critical patent/WO2022071105A1/ja
Priority to US18/182,862 priority patent/US20230212753A1/en
Priority to US18/183,090 priority patent/US20230230818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/182Obtaining or maintaining desired pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/186Valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/18Vacuum control means
    • H01J2237/188Differential pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24585Other variables, e.g. energy, mass, velocity, time, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate

Definitions

  • This disclosure relates to a substrate processing apparatus, a method for manufacturing a semiconductor apparatus, a substrate processing method, and a program.
  • a flow path for flowing a temperature adjusting gas between the processing container and the plasma generation unit, an exhaust passage for discharging the temperature adjusting gas from the flow path, and an adjusting valve provided in the exhaust passage are provided.
  • the structure is disclosed (see, for example, Japanese Patent Application Laid-Open No. 2014-170634).
  • the temperature control gas is discharged by an exhaust device provided in the exhaust passage or connected to the end of the exhaust passage.
  • the flow rate (exhaust air volume) of the temperature adjusting gas is controlled by adjusting the opening degree of the adjusting valve according to the temperature of the processing container, and the structure is such that the temperature of the processing container is maintained at a predetermined temperature. ..
  • the purpose of the present disclosure is to exhaust the space around the processing container with a stable air volume and maintain the temperature of the processing container in a stable manner.
  • a processing container for processing a substrate an outer container covering the outer periphery of the processing container, a gas flow path formed between the outer container and the outer periphery of the processing container, and the above.
  • An exhaust passage communicating with the gas flow path, a regulating valve configured to be able to adjust the conductance of the exhaust passage, a first exhaust device on the exhaust passage and downstream of the regulating valve, and the above.
  • a pressure sensor provided in the outer container for measuring the pressure in the outer container and a pressure sensor measured by the pressure sensor are used to control the first exhaust device to exhaust the first exhaust device.
  • a technique is provided that includes a control unit configured to be able to adjust the air volume.
  • the space around the processing container can be exhausted with a stable air volume, and the temperature of the processing container can be stably maintained.
  • the substrate processing apparatus 100 is configured to mainly perform an oxidation treatment on a film formed on a substrate surface.
  • the substrate processing apparatus 100 includes a processing container 203, a shielding plate 1223 as an example of an outer container covering the outer periphery of the processing container 203, a gas flow path 1000, an exhaust passage 1002, and a damper 1004 as an example of a regulating valve.
  • a fan 1010 as an example of the first exhaust device, a pressure sensor 1006, a controller 221 as a control unit, and a plasma generation unit 1008 are provided.
  • the substrate processing apparatus 100 includes a processing furnace 202 for plasma processing the wafer 200.
  • the processing furnace 202 is provided with a processing container 203 that constitutes a processing chamber 201 and processes a wafer 200 as an example of a substrate.
  • the processing container 203 includes a dome-shaped upper container 210 as a first container and a bowl-shaped lower container 211 as a second container.
  • the processing chamber 201 is formed by covering the upper container 210 on the lower container 211.
  • the upper container 210 is made of a non-metallic material such as aluminum oxide (Al 2 O 3 ) or quartz (SiO 2 ), and the lower container 211 is made of aluminum (Al), for example.
  • a gate valve 244 is provided on the lower side wall of the lower container 211.
  • the gate valve 244 When the gate valve 244 is open, the wafer 200 is carried into the processing chamber 201 or carried out of the processing chamber 201 via the carry-in outlet 245 by using a transport mechanism (not shown). It is configured so that it can be used.
  • the gate valve 244 is configured to be a sluice valve that maintains airtightness in the processing chamber 201 when it is closed.
  • the processing chamber 201 has a plasma generation space 201a in which a coil 212 is provided around it, and a substrate processing space 201b in which the wafer 200 is processed by communicating with the plasma generation space 201a.
  • the plasma generation space 201a is a space in which plasma is generated, which is above the lower end of the coil 212 and below the upper end of the coil 212 in the processing chamber.
  • the substrate processing space 201b is a space in which the substrate is processed by using plasma, and refers to a space below the lower end of the coil 212.
  • the diameters of the plasma generation space 201a and the substrate processing space 201b in the horizontal direction are configured to be substantially the same.
  • a susceptor 217 As a substrate mounting portion on which the wafer 200 is mounted is arranged.
  • a heater 217b as a heating mechanism is integrally embedded inside the susceptor 217.
  • the heater 217b is configured to be able to heat the surface of the wafer 200 from, for example, about 25 ° C to 750 ° C when electric power is supplied.
  • the susceptor 217 is electrically insulated from the lower container 211.
  • the impedance adjustment electrode 217c is provided inside the susceptor 217 in order to further improve the uniformity of the density of the plasma generated on the wafer 200 mounted on the susceptor 217, and is an impedance variable mechanism as an impedance adjustment unit. It is grounded via 275.
  • the susceptor 217 is provided with a susceptor elevating mechanism 268 provided with a drive mechanism for elevating and lowering the susceptor. Further, the susceptor 217 is provided with a through hole 217a, and a wafer push-up pin 266 is provided on the bottom surface of the lower container 211. When the susceptor 217 is lowered by the susceptor elevating mechanism 268, the wafer push-up pin 266 is configured to penetrate the through hole 217a in a non-contact state with the susceptor 217.
  • the substrate mounting portion according to the present embodiment is mainly composed of the susceptor 217, the heater 217b, and the electrodes 217c.
  • a gas supply head 236 is provided above the processing chamber 201, that is, above the upper container 210.
  • the gas supply head 236 includes a cap-shaped lid 233, a gas introduction port 234, a buffer chamber 237, an opening 238, a shielding plate 240, and a gas outlet 239, and allows the reaction gas to enter the processing chamber 201. It is configured to be able to supply.
  • the buffer chamber 237 has a function as a dispersion space for dispersing the reaction gas introduced from the gas introduction port 234.
  • the gas introduction port 234 has a downstream end of the oxygen-containing gas supply pipe 232a for supplying the oxygen-containing gas, a downstream end of the hydrogen-containing gas supply pipe 232b for supplying the hydrogen-containing gas, and an inert gas for supplying the inert gas. It is connected to the supply pipe 232c so as to merge.
  • the oxygen-containing gas supply pipe 232a is provided with an oxygen-containing gas supply source 250a, a mass flow controller (MFC) 252a as a flow control device, and a valve 253a as an on-off valve in this order from the upstream side.
  • MFC mass flow controller
  • the hydrogen-containing gas supply pipe 232b is provided with a hydrogen-containing gas supply source 250b, an MFC 252b, and a valve 253b in this order from the upstream side.
  • the inert gas supply pipe 232c is provided with an inert gas supply source 250c, an MFC 252c, and a valve 253c in this order from the upstream side.
  • a valve 243a is provided on the downstream side where the oxygen-containing gas supply pipe 232a, the hydrogen-containing gas supply pipe 232b, and the inert gas supply pipe 232c merge, and is connected to the upstream end of the gas introduction port 234.
  • the flow rates of the respective gases are adjusted by the MFC 252a, 252b, and 252c, and the oxygen-containing gas and the hydrogen gas-containing gas are adjusted through the gas supply pipes 232a, 232b, and 232c.
  • the treatment gas such as an inert gas can be supplied into the treatment chamber 201.
  • gas supply head 236 (lid 233, gas introduction port 234, buffer chamber 237, opening 238, shielding plate 240, gas outlet 239), oxygen-containing gas supply pipe 232a, hydrogen-containing gas supply pipe 232b, inertness.
  • the gas supply section (gas supply system) according to the present embodiment is configured by the gas supply pipes 232c, MFC252a, 252b, 252c, and valves 253a, 253b, 253c, 243a.
  • the gas supply head 236, the oxygen-containing gas supply pipe 232a, the MFC252a, and the valves 253a and 243a constitute the oxygen-containing gas supply system according to the present embodiment.
  • the gas supply head 236, the hydrogen-containing gas supply pipe 232b, the MFC252b, and the valves 253b, 243a constitute the hydrogen gas supply system according to the present embodiment.
  • the gas supply head 236, the inert gas supply pipe 232c, the MFC 252c, and the valves 253c and 243a constitute the inert gas supply system according to the present embodiment.
  • a gas exhaust port 235 for exhausting the reaction gas from the inside of the processing chamber 201 is provided on the side wall of the lower container 211.
  • the upstream end of the gas exhaust pipe 231 is connected to the gas exhaust port 235.
  • the gas exhaust pipe 231 is provided with an APC (Auto Pressure Controller) 242 as a pressure regulator (pressure regulator), a valve 243b as an on-off valve, and a vacuum pump 246 as a vacuum exhaust device in order from the upstream side.
  • the exhaust unit according to the present embodiment is mainly composed of the gas exhaust port 235, the gas exhaust pipe 231 and the APC242, and the valve 243b.
  • the vacuum pump 246 may be included in the exhaust unit.
  • the plasma generation unit 1008 is provided along the outer periphery of the processing container 203 between the shielding plate 1223 as the outer container and the outer periphery of the processing container 203, and resonates as an electrode configured to supply high-frequency power. It is composed of a coil 212 and plasma-excits the gas supplied into the processing container 203.
  • a spiral resonance coil 212 as a first electrode is provided on the outer peripheral portion of the processing chamber 201, that is, on the outside of the side wall of the upper container 210 so as to surround the processing chamber 201.
  • a matching device 274 that matches the impedance and output frequency of the RF sensor 272, the high frequency power supply 273, and the high frequency power supply 273 is connected to the resonance coil 212.
  • the high frequency power supply 273 supplies high frequency power (RF power) to the resonance coil 212.
  • the RF sensor 272 is provided on the output side of the high frequency power supply 273 and monitors the information of the high frequency traveling wave and the reflected wave supplied.
  • the reflected wave power monitored by the RF sensor 272 is input to the matching unit 274, and the matching unit 274 uses the high frequency power supply 273 to minimize the reflected wave based on the reflected wave information input from the RF sensor 272. It controls the impedance and the frequency of the output high frequency power.
  • the high frequency power supply 273 includes a power supply control means (control circuit) including a high frequency oscillation circuit and a preamplifier for defining an oscillation frequency and an output, and an amplifier (output circuit) for amplifying to a predetermined output.
  • the power supply control means controls the amplifier based on preset frequency and power output conditions through the control panel.
  • the amplifier supplies a constant high frequency power to the resonant coil 212 via a transmission line.
  • the resonance coil 212 forms a standing wave having a predetermined wavelength
  • the winding diameter, winding pitch, and number of turns are set so as to resonate at a constant wavelength. That is, the electrical length of the resonance coil 212 is set to a length corresponding to an integral multiple (1 times, 2 times, ...) Of one wavelength at a predetermined frequency of the high frequency power supplied from the high frequency power supply 273.
  • the resonance coil 212 is applied with high frequency power of, for example, 800 kHz to 50 MHz and 0.5 to 5 kW in consideration of the applied power, the generated magnetic field strength, the outer shape of the device to be applied, and the like, and is 200 to 500 mm. It is wound around the outer peripheral side of the room forming the plasma generation space 201a about 2 to 60 times.
  • the resonance coil 212 As the material constituting the resonance coil 212, for example, a metal such as copper or aluminum is used.
  • the resonance coil 212 is formed in a flat plate shape with an insulating material, and is supported by a plurality of supports (not shown) vertically erected on the upper end surface of the base plate 248.
  • the shielding plate 1223 is provided to shield the electric field outside the resonance coil 212 and to form a capacitance component (C component) necessary for forming the resonance circuit between the shielding coil 212 and the resonance coil 212.
  • the shielding plate 1223 is generally formed in a cylindrical shape using a conductive material such as an aluminum alloy.
  • the shielding plate 1223 is arranged at a distance of about 5 to 150 mm from the outer circumference of the resonance coil 212.
  • the resonance coil 212, the RF sensor 272, and the matching unit 274 constitute the plasma generation unit 1008 according to the present embodiment.
  • the high frequency power supply 273 may be included as the plasma generation unit 1008.
  • the gas flow path 1000 is formed between the shielding plate 1223 and the outer periphery of the processing container 203.
  • the shielding plate 1223 also covers the upper part of the processing container 203, and constitutes an outer container for accommodating the processing container 203.
  • the ceiling portion of the shielding plate 1223 and the lid 233 of the processing container 203 are separated from each other in the vertical direction, and the space between them is also the gas flow path 1000.
  • An outer container (not shown) that covers the shielding plate 1223 and the processing container 203 may be further provided so that the shielding plate 1223 does not cover the upper part of the processing container 203.
  • the shielding plate 1223 covering the side surface of the processing container 203 is provided with a gas introduction port 1223a for taking in gas for cooling (temperature adjustment) in the gas flow path 1000.
  • a plurality of gas introduction ports 1223a may be provided in the vicinity of a position facing the lower end of the processing container 203 (that is, the lower end of the shielding plate 1223 in the present embodiment) at equal intervals along the circumferential direction of the processing container 203.
  • the shape of the gas introduction port 1223a is not limited to a circle or a rectangle, and may be formed by one or a plurality of slits along the circumferential direction of the processing container 203.
  • the gas taken into the gas flow path 1000 may be air taken in from the atmosphere or may be another gas (for example, an inert gas).
  • the exhaust passage 1002 communicates with the gas flow path 1000, and is connected to, for example, the ceiling portion of the shielding plate 1223 and the blower 1020 as an example of the second exhaust device.
  • the gas flow path 1000 formed on the outer periphery of the processing container 203 is evenly exhausted in the circumferential direction of the processing container. It is preferable to connect to the center of the ceiling.
  • the blower 1020 is a common exhaust facility installed in a facility such as a factory, and is responsible for exhaust from various facilities.
  • the exhaust gas from the blower 1020 is, for example, open to the atmosphere.
  • the pressure sensor 1006 is a sensor provided inside the shielding plate 1223 as an outer container and measuring the pressure inside the shield plate 1223. That is, the pressure sensor 1006 is a sensor that measures the pressure in the gas flow path 1000. As shown in FIG. 1, when the exhaust passage 1002 is connected to the upper surface of the shielding plate 1223, the pressure sensor 1006 may be provided in the shielding plate 1223 and vertically below the exhaust passage 1002. In other words, the pressure sensor 1006 is provided in the connection portion between the gas flow path 1000 and the exhaust passage 1002 (the space vertically below the exhaust passage 1002 and the space above the processing container 203).
  • the arrangement of the pressure sensor 1006 is not limited to this, and the pressure sensor 1006 may be provided at another portion inside the shielding plate 1223. Since the pressure sensor 1006 is provided inside the shielding plate 1223 as the outer container, it is not easily affected by the turbulent flow generated before and after the damper 1004.
  • the controller 221 calculates and acquires the differential pressure (in other words, the gauge pressure) between the pressure in the gas flow path 100 and the atmospheric pressure measured by the pressure sensor 1006, and the differential pressure is a predetermined value.
  • the fan 1010 is controlled so as to have a differential pressure value.
  • a constant value may be used for the atmospheric pressure, or a measured value may be used.
  • the differential pressure corresponds to the exhaust air volume in the gas flow path 1000, and by setting a differential pressure value such that the exhaust air volume in the gas flow path 1000 becomes a desired air volume as a predetermined value, the gas flow path
  • the exhaust air volume in 1000 is controlled to be a desired air volume. That is, the differential pressure is controlled to be a predetermined differential pressure value corresponding to the exhaust air volume in the desired gas flow path 1000.
  • the damper 1004 as an example of the regulating valve is, for example, a butterfly valve, and is configured to be able to adjust the conductance (degree of ease of exhaust flow) of the exhaust passage 1002.
  • the regulating valve can also be paraphrased as a means for changing conductance.
  • the fan 1010 as an example of the first exhaust device is, for example, an axial fan on the exhaust passage 1002 and downstream of the damper 1004.
  • the fan 1010 is provided in the vicinity of the downstream side of the damper 1004 on the exhaust passage 1002.
  • the rotation of the fan 1010 is controlled by an inverter by the controller 221.
  • a predetermined opening degree is set in the damper 1004 according to a predetermined differential pressure value.
  • FIG. 4 shows the relationship between the air volume of the blower 1020 as the second exhaust device and the cover differential pressure (the differential pressure between the pressure measured by the pressure sensor 1006 and the atmospheric pressure) according to the opening degree of the damper 1004. .
  • the opening degree of the damper 1004 is 0 ° when fully closed and 90 ° when fully opened.
  • the horizontal axis is, to be exact, the air volume of the blower 1020 when the damper is fully opened, that is, when the opening degree of the damper 1004 is 90 °.
  • the “predetermined differential pressure value” is described as “target differential pressure”.
  • the target differential pressure is, for example, -13 to -5 Pa.
  • the target differential pressure predetermined differential pressure
  • the target differential pressure can be obtained in the range of the air volume of the blower 1020 of about 11 to 20 m 3 / min.
  • the cover differential pressure is about ⁇ 42 Pa. If it is desired to set the cover differential pressure to the target differential pressure (predetermined differential pressure) while minimizing the change range of the air volume of the blower 1020, the opening degree of the damper 1004 may be set to around 15 °.
  • the damper 1004 may be set to a predetermined opening degree according to a predetermined differential pressure value and the exhaust air volume of the blower 1020.
  • FIG. 5 shows the relationship between the opening degree of the damper 1004 and the cover differential pressure according to the operating frequencies of the fan 1010 and the blower 1020.
  • the magnitude of the operating frequency means the magnitude of the output.
  • the line in FIG. 5 is divided into four groups. The group located at the bottom is the group in which the operating frequency of the blower 1020 is 10 Hz. The second group from the bottom is the group in which the operating frequency of the blower 1020 is 20 Hz. The third group from the bottom is the group in which the operating frequency of the blower 1020 is 33 Hz. The fourth from the bottom, that is, the group located at the top, is the group in which the operating frequency of the blower 1020 is 45 Hz.
  • the operating frequencies of the fan 1010 are 0 Hz, 30 Hz, and 60 Hz, respectively.
  • the target differential pressure (predetermined differential pressure) is, for example, -13 to -5 Pa
  • the operating frequency of the blower 1020 is 10 Hz
  • the opening degree of the damper 1004 is, for example, about 75 °
  • the target differential pressure (predetermined differential pressure) is settled in.
  • the target differential pressure (predetermined differential pressure) falls within the control range of the fan 1010.
  • the lowest line in each group indicates that the operating frequency of the fan 1010 is 0 Hz, that is, the fan 1010 is not operated.
  • the cover differential pressure is about ⁇ 50 Pa.
  • the target differential pressure predetermined differential pressure
  • the air volume due to the blower 1020 decreases, and when the cover differential pressure decreases, the control range of the fan 1010 is exceeded.
  • the opening degree of the damper 1004 is set to a value smaller than 40 ° in which the differential pressure is smaller than ⁇ 50 Pa of the target differential pressure (predetermined differential pressure), for example, about 38 °.
  • the target differential pressure (predetermined differential pressure) falls within the control range between the lowermost line and the uppermost line, that is, the fan 1010.
  • the differential pressure between the pressure measured by the pressure sensor 1006 and the atmospheric pressure in the state where the fan 1010 is not operated is set to a predetermined differential pressure value. May be set to a small value.
  • the substrate processing apparatus 100 may include a temperature sensor 1012 that measures the temperature of the processing container 203.
  • a predetermined differential pressure may be set based on the temperature measured by the temperature sensor 1012.
  • the opening degree of the damper 1004 may be set manually or by control by the controller 221 and the actuator (not shown). That is, the controller 221 may control the fan 1010 and the damper 1004, or may control only the fan 1010.
  • the controller 221 as a control unit has an APC 242, a valve 243b and a vacuum pump 246 through the signal line A, a susceptor elevating mechanism 268 through the signal line B, a heater power adjustment mechanism 276 and an impedance variable mechanism 275 through the signal line C, and a signal line. It is configured so that the gate valve 244 can be controlled through D, the RF sensor 272, the high frequency power supply 273 and the matching unit 274 can be controlled through the signal line E, and the MFC 252a to 252c and the valves 253a to 253c, 243a can be controlled through the signal line F, respectively. Has been done.
  • the controller 221 which is a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 221a, a RAM (Random Access Memory) 221b, a storage device 221c, and an I / O port 221d.
  • the RAM 221b, the storage device 221c, and the I / O port 221d are configured so that data can be exchanged with the CPU 221a via the internal bus 221e.
  • An input / output device 222 configured as, for example, a touch panel or a display is connected to the controller 221.
  • the storage device 221c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like.
  • a control program that controls the operation of the board processing device, a program recipe that describes the procedure and conditions of the board processing described later, and the like are readablely stored.
  • the process recipes are combined so that each procedure in the substrate processing process described later is executed by the substrate processing apparatus 100 by the controller 221 so that a predetermined result can be obtained, and functions as a program.
  • this program recipe, control program, etc. are collectively referred to as a program.
  • the term program is used in the present specification, it may include only a program recipe alone, a control program alone, or both.
  • the RAM 221b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 221a are temporarily held.
  • the I / O port 221d includes the above-mentioned MFC 252a to 252c, valves 253a to 253c, 243a, 243b, gate valve 244, APC valve 242, vacuum pump 246, RF sensor 272, high frequency power supply 273, matching unit 274, and susceptor elevating mechanism 268. , The impedance variable mechanism 275, the heater power adjustment mechanism 276, and the like.
  • the CPU 221a is configured to read and execute a control program from the storage device 221c and read a process recipe from the storage device 221c in response to an input of an operation command from the input / output device 222 or the like. Then, the CPU 221a performs an opening adjustment operation of the APC valve 242, an opening / closing operation of the valve 243b, and a start of the vacuum pump 246 through the I / O port 221d and the signal line A so as to follow the contents of the read process recipe.
  • the controller 221 is stored in an external storage device (for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or SSD) 223. It can be configured by installing the above program on a computer.
  • the storage device 221c and the external storage device 223 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. In the present specification, when the term recording medium is used, the storage device 221c alone may be included, the external storage device 223 alone may be included, or both of them may be included.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 223.
  • controller 221 is configured so that the fan 1010 can be controlled to adjust the exhaust air volume of the fan 1010 based on the pressure measured by the pressure sensor 1006. Further, the controller 221 can control the fan 1010 so that the differential pressure between the pressure measured by the pressure sensor 1006 and the atmospheric pressure becomes a predetermined differential pressure value.
  • the substrate processing apparatus 100 may include a temperature sensor 1012 for measuring the temperature of the processing container 203.
  • the controller 221 sets the fan 1010 so that the differential pressure between the pressure measured by the pressure sensor 1006 and the atmospheric pressure becomes a predetermined differential pressure set based on the temperature measured by the temperature sensor 1012. You may control it.
  • the opening degree of the damper 1004 can be set manually. Further, this opening degree can be set by control by the controller 221 and the actuator (not shown).
  • the controller 221 has, for example, an input unit (input device 222) that receives an input of a predetermined differential pressure value and an air volume of the blower 1020, and a predetermined opening degree according to the differential pressure value and the air volume of the blower 1020.
  • a table (RAM221, storage device 221c) for storing information about the device is provided.
  • the controller 221 acquires information on the opening degree corresponding to the predetermined differential pressure value input to the controller 221 and the air volume of the blower 1020 from the table, and determines the opening degree of the damper 1004 based on the acquired information on the opening degree. It is configured to be controllable.
  • the space around the processing container 203 can be maintained with a stable air volume.
  • Exhaust that is, the gas taken into the space around the processing container 203 from the gas introduction port 1223a
  • the fan 1010 compensates for the pressure fluctuation in the blower 1020 with the fan 1010, so that the exhaust air volume can be stably maintained.
  • the temperature of the processing container 203 can be adjusted by controlling the air volume, and a device having a small difference can be provided as a temperature adjusting knob other than the heating means.
  • the pressure sensor 1006 is provided not in the exhaust passage 1002 but in the shielding plate 1223 as an outer container, it is not easily affected by the turbulent flow generated when the opening degree of the damper 1004 changes, and is stable. Pressure measurement is possible.
  • the temperature of the processing container 203 can be monitored. Since the temperature of the processing container 203 is related to the temperature of the wafer 200, the temperature of the processing container 203 can be controlled by making the air volume changeable by the fan 1010 and the damper 1004.
  • the temperature of the processing container 203 varies depending on other factors such as the output of the heater 217b and the plasma intensity generated in the processing container 203, in addition to the exhaust air volume of the gas flow path 1000. Therefore, for example, when the temperature of the processing container 203 is monitored and at least one of the fan 1010 and the damper 1004 is feedback-controlled so that the measured temperature of the processing container 203 becomes a predetermined temperature, the temperature of the processing container 203 fluctuates. The air volume will fluctuate frequently accordingly, and it may be difficult to stabilize the temperature of the processing container 203. Therefore, from the viewpoint of emphasizing the temperature stability of the processing container 203, it is preferable to control at least one of the fan 1010 and the damper 1004 based on a predetermined air volume that does not depend on the measured temperature of the processing container 203.
  • FIG. 6 shows the differential pressure when the air volume of the second exhaust device (blower 1020) is varied, for example, between 13 and 15 m 3 / min, the operating frequency of the first exhaust device (fan 1010), and the processing container 203.
  • the broken line indicates the operating frequency of the fan 1010
  • the solid line (thick line) indicates the cover differential pressure
  • the solid line (thin line) indicates the temperature of the outer peripheral surface of the processing container 203 measured by the temperature sensor 1012.
  • the controller 221 reduces the operating frequency of the fan 1010 when the air volume of the blower 1020 rises, and increases the operating frequency of the fan 1010 when the air volume of the blower 1020 decreases.
  • the differential pressure can be maintained at a substantially constant value ( ⁇ 1 Pa), and the temperature of the processing container 203 can be maintained at a substantially constant level.
  • FIG. 7 is a diagram showing changes in the differential pressure, the frequency of the first exhaust device (fan 1010), and the temperature of the processing container 203 when the high frequency is continuously discharged at the output of 5 kW for 80 minutes in the plasma generation unit 1008.
  • the broken line indicates the operating frequency of the fan 1010
  • the solid line (thick line) indicates the cover differential pressure
  • the solid line (thin line) indicates the temperature of the outer peripheral surface of the processing container 203 measured by the temperature sensor 1012.
  • the processing container 203 even when the temperature of the processing container 203 fluctuates or the pressure of the blower 1020 connected to the end of the exhaust passage 1002 fluctuates, the processing container 203 has a stable air volume. The surrounding space can be exhausted and the temperature of the processing container 203 can be stably maintained.
  • the semiconductor device manufacturing method includes a step of heating the processing container 203 using the above-mentioned substrate processing device 100, a step of carrying the wafer 200 into the processing container 203, and a step of supplying gas into the processing container 203. It has a step of plasma-treating the wafer 200.
  • the program is a program for manufacturing a semiconductor device using the substrate processing device 100, and is a procedure for heating the processing container 203 (for example, the preheating step S100 in FIG. 3) and a procedure for carrying the wafer 200 into the processing container 203.
  • the substrate loading step S110 in FIG. 3 the procedure for supplying gas into the processing container 203 (for example, the reaction gas supply step S130 in FIG. 3), and the procedure for plasma processing the wafer 200 (for example, the plasma processing step in FIG. 3).
  • S140 are executed by the computer.
  • FIG. 3 is a flow chart showing a substrate processing process according to the present embodiment.
  • the substrate processing step according to the present embodiment is carried out by the above-mentioned substrate processing apparatus 100 as one step of a manufacturing process of a semiconductor device such as a flash memory.
  • the operation of each part constituting the substrate processing apparatus 100 is controlled by the controller 221.
  • a trench having an uneven portion having a high aspect ratio is formed in advance on the surface of the wafer 200 processed in the substrate processing step according to the present embodiment.
  • a layer of silicon (Si) exposed on the inner wall of the trench is subjected to an oxidation treatment as a treatment using plasma.
  • the trench is formed, for example, by forming a mask layer having a predetermined pattern on the wafer 200 and etching the surface of the wafer 200 to a predetermined depth.
  • thermoforming step (pretreatment step) S100) First, before carrying the wafer 200 into the processing chamber 201, a pretreatment for preheating the components in the processing container 203 and the processing chamber 201 is performed. Specifically, the susceptor 217 and the processing container 203 are heated to a predetermined temperature by heating the heater 217b to a predetermined temperature. At this time, the damper 1040 is opened to a predetermined opening degree based on the predetermined differential pressure, and the operation control of the fan 1010 is started so as to obtain the predetermined differential pressure. (That is, the exhaust of the gas flow path 1000 is started.) Since the blower 1020 is a shared exhaust facility, the exhaust operation has been continued before this process.
  • heating and exhausting of the gas flow path 1000 are continued, and when the temperature of the processing container 203 stabilizes, the subsequent processing on the wafer 200 is started. Even after the start of processing on the wafer 200 (that is, after S110), heating by the heater 217b and exhaust operation of the gas flow path 1000 are continuously performed until at least the end of plasma processing (that is, S140).
  • plasma is generated in the processing container 203 by supplying high-frequency power from the high-frequency power supply 273 to the resonance coil 212, and the generated plasma is used.
  • the processing container 203 can also be heated.
  • the wafer 200 is carried into the processing chamber 201. Specifically, the susceptor elevating mechanism 268 lowers the susceptor 217 to the transport position of the wafer 200, and causes the wafer push-up pin 266 to penetrate through the through hole 217a of the susceptor 217. As a result, the wafer push-up pin 266 is in a state of protruding from the surface of the susceptor 217 by a predetermined height.
  • the gate valve 244 is opened, and the wafer 200 is carried into the processing chamber 201 from the vacuum transfer chamber adjacent to the processing chamber 201 by using a wafer transfer mechanism (not shown).
  • the carried-in wafer 200 is supported in a horizontal posture on the wafer push-up pin 266 protruding from the surface of the susceptor 217.
  • the wafer transfer mechanism is retracted to the outside of the processing chamber 201, the gate valve 244 is closed, and the inside of the processing chamber 201 is sealed.
  • the susceptor elevating mechanism 268 raises the susceptor 217, so that the wafer 200 is supported on the upper surface of the susceptor 217.
  • the temperature of the wafer 200 carried into the processing chamber 201 is raised.
  • the heater 217b is preheated, and by holding the wafer 200 on the susceptor 217 in which the heater 217b is embedded, the wafer 200 is heated to a predetermined value in the range of, for example, 150 to 750 ° C.
  • the inside of the processing chamber 201 is evacuated by the vacuum pump 246 via the gas exhaust pipe 231, and the pressure in the processing chamber 201 is set to a predetermined value.
  • the vacuum pump 246 is operated at least until the substrate unloading step S160 described later is completed.
  • reaction gas supply step S130 Next, the supply of the oxygen-containing gas and the hydrogen-containing gas as the reaction gas is started. Specifically, the valves 253a and 253b are opened, and the supply of oxygen-containing gas and hydrogen-containing gas to the processing chamber 201 is started while the flow rate is controlled by the MFC 252a and 252b. At this time, the flow rate of the oxygen-containing gas is set to a predetermined value in the range of, for example, 20 to 2000 sccm. Further, the flow rate of the hydrogen-containing gas is set to a predetermined value in the range of, for example, 20 to 1000 sccm.
  • the opening degree of the APC 242 is adjusted to control the exhaust gas in the processing chamber 201 so that the pressure in the processing chamber 201 becomes a predetermined pressure in the range of, for example, 1 to 250 Pa. In this way, while appropriately exhausting the inside of the processing chamber 201, the supply of the oxygen-containing gas and the hydrogen-containing gas is continued until the end of the plasma processing step S140 described later.
  • oxygen-containing gas examples include oxygen (O 2 ) gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, and water vapor (O 3) gas.
  • oxygen (O 2 ) gas examples include oxygen (O 2 ) gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, and water vapor (O 3) gas.
  • H2O gas nitrogen monoxide
  • CO 2 carbon dioxide
  • the oxygen-containing gas one or more of these can be used.
  • the hydrogen-containing gas for example, hydrogen (H 2 ) gas, deuterium (D 2 ) gas, H 2 O gas, ammonia (NH 3 ) gas and the like can be used.
  • hydrogen-containing gas one or more of these can be used.
  • H 2 O gas is used as the oxygen-containing gas
  • H is used as the oxygen-containing gas. 2 It is preferable to use a gas other than O gas.
  • nitrogen (N 2 ) gas can be used, and in addition, a rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenone (Xe) gas can be used. Can be used. As the inert gas, one or more of these can be used.
  • Plasma-like oxygen-containing gas and hydrogen-containing gas dissociate to generate reactive species such as oxygen-containing oxygen radicals (oxygen-active species) and oxygen ions, hydrogen-containing hydrogen radicals (hydrogen-active species) and hydrogen ions. ..
  • Radicals generated by inductive plasma and unaccelerated ions are uniformly supplied to the wafer 200 held on the susceptor 217 in the substrate processing space 201b.
  • the supplied radicals and ions react uniformly with the side wall to reform the surface layer (eg Si layer) into an oxide layer with good step coverage (eg Si oxide layer).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

基板を処理する処理容器と、処理容器の外周を覆う外側容器と、外側容器と処理容器の外周との間に形成されるガス流路と、ガス流路と連通する排気路と、排気路のコンダクタンスを調整可能に構成された調整弁と、排気路上であって、調整弁の下流に設けられた第1の排気装置と、外側容器内の圧力を測定する圧力センサと、圧力センサで測定された圧力に基づいて、第1の排気装置を制御して第1の排気装置の排気風量を調整することが可能なように構成された制御部と、を備える技術を提供する。

Description

基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
 本開示は、基板処理装置、半導体装置の製造方法、基板処理方法及びプログラムに関する。
 基板処理装置において、処理容器とプラズマ生成部との間に温度調整ガスを流す流路と、該流路から温度調整ガスを排出する排気路と、排気路に設けられた調整弁とを設けた構造が開示されている(例えば、特開2014-170634号公報参照)。この基板処理装置では、排気路に設けられ又は排気路の先に接続された排気装置により温度調整ガスを排出する。その際に、処理容器の温度に応じて調整弁の開度を調整することで温度調整ガスの流量(排気風量)を制御し、処理容器の温度を所定の温度に維持する構造となっている。
 しかしながら、処理容器の温度変動や、排気路の先に接続された排気装置での圧力変動等の要因によって、安定した排気風量を維持することが困難な場合がある。
 本開示の目的は、安定した風量で処理容器の周囲の空間を排気し、処理容器の温度を安定的に維持することにある。
 本開示の一態様によれば、基板を処理する処理容器と、前記処理容器の外周を覆う外側容器と、前記外側容器と前記処理容器の外周との間に形成されるガス流路と、前記ガス流路と連通する排気路と、前記排気路のコンダクタンスを調整可能に構成された調整弁と、前記排気路上であって、前記調整弁の下流に設けられた第1の排気装置と、前記外側容器内に設けられ、前記外側容器内の圧力を測定する圧力センサと、前記圧力センサで測定された圧力に基づいて、前記第1の排気装置を制御して前記第1の排気装置の排気風量を調整することが可能なように構成された制御部と、を備える技術が提供される。
 本開示によれば、安定した風量で処理容器の周囲の空間を排気し、処理容器の温度を安定的に維持することができる。
本開示の一実施形態に係る基板処理装置の概略断面図である。 本開示の一実施形態に係る基板処理装置の制御部(制御手段)の構成を示す図である。 本開示の一実施形態に係る基板処理工程を示すフロー図である。 ダンパの開度に応じた、第2排気装置の風量とカバー差圧の関係を示す線図である。 第1排気装置(ファン)及び第2排気装置(ブロア)の作動周波数に応じた、ダンパ開度とカバー差圧の関係を示す線図である。 第2排気装置(ブロア)の風量を変動させたときの差圧、第1排気装置(ファン)の作動周波数、及び処理容器の温度の変化を示す線図である。 プラズマ生成部において高周波を連続放電したときの、差圧、第1排気装置(ファン)の作動周波数、及び処理容器の温度の変化を示す線図である。
 以下、本開示を実施するための形態を図面に基づき説明する。各図面において同一の符号を用いて示される構成要素は、同一又は同様の構成要素であることを意味する。なお、以下に説明する実施形態において重複する説明及び符号については、省略する場合がある。また、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
<本開示の一実施形態>
(1)基板処理装置の構成
 本開示の第1実施形態に係る基板処理装置について、図1を用いて以下に説明する。本実施形態に係る基板処理装置100は、主に基板面上に形成された膜に対して酸化処理を行うように構成されている。この基板処理装置100は、処理容器203と、処理容器203の外周を覆う外側容器の一例としての遮蔽板1223と、ガス流路1000と、排気路1002と、調整弁の一例としてのダンパ1004と、第1の排気装置の一例としてのファン1010と、圧力センサ1006と、制御部としてのコントローラ221と、プラズマ生成部1008と、を備えている。
(処理室)
 基板処理装置100は、ウエハ200をプラズマ処理する処理炉202を備えている。処理炉202には、処理室201を構成し、基板の一例としてのウエハ200を処理する処理容器203が設けられている。処理容器203は、第1の容器であるドーム型の上側容器210と、第2の容器である碗型の下側容器211とを備えている。上側容器210が下側容器211の上に被さることにより、処理室201が形成される。上側容器210は、例えば酸化アルミニウム(Al)または石英(SiO)等の非金属材料で形成されており、下側容器211は、例えばアルミニウム(Al)で形成されている。
 また、下側容器211の下部側壁には、ゲートバルブ244が設けられている。ゲートバルブ244は、開いているとき、搬送機構(図示せず)を用いて、搬入出口245を介して、処理室201内へウエハ200を搬入したり、処理室201外へとウエハ200を搬出したりすることができるように構成されている。ゲートバルブ244は、閉まっているときには、処理室201内の気密性を保持する仕切弁となるように構成されている。
 処理室201は、周囲にコイル212が設けられているプラズマ生成空間201aと、プラズマ生成空間201aに連通し、ウエハ200が処理される基板処理空間201bを有する。プラズマ生成空間201aはプラズマが生成される空間であって、処理室の内、コイル212の下端より上方であって、且つコイル212の上端より下方の空間を言う。一方、基板処理空間201bは、基板がプラズマを用いて処理される空間であって、コイル212の下端より下方の空間を言う。本実施形態では、プラズマ生成空間201aと基板処理空間201bの水平方向の径は略同一となるように構成されている。
(サセプタ)
 処理室201の底側中央には、ウエハ200を載置する基板載置部としてのサセプタ217が配置されている。
 サセプタ217の内部には、加熱機構としてのヒータ217bが一体的に埋め込まれている。ヒータ217bは、電力が供給されると、ウエハ200表面を例えば25℃から750℃程度まで加熱することができるように構成されている。
 サセプタ217は、下側容器211とは電気的に絶縁されている。インピーダンス調整電極217cは、サセプタ217に載置されたウエハ200上に生成されるプラズマの密度の均一性をより向上させるために、サセプタ217内部に設けられており、インピーダンス調整部としてのインピーダンス可変機構275を介して接地されている。
 サセプタ217には、サセプタを昇降させる駆動機構を備えるサセプタ昇降機構268が設けられている。また、サセプタ217には貫通孔217aが設けられるとともに、下側容器211の底面にはウエハ突上げピン266が設けられている。サセプタ昇降機構268によりサセプタ217が下降させられたときには、ウエハ突上げピン266がサセプタ217とは非接触な状態で、貫通孔217aを突き抜けるように構成されている。主に、サセプタ217及びヒータ217b、電極217cにより、本実施形態に係る基板載置部が構成されている。
(ガス供給部)
 処理室201の上方、つまり上側容器210の上部には、ガス供給ヘッド236が設けられている。ガス供給ヘッド236は、キャップ状の蓋体233と、ガス導入口234と、バッファ室237と、開口238と、遮蔽プレート240と、ガス吹出口239とを備え、反応ガスを処理室201内へ供給できるように構成されている。バッファ室237は、ガス導入口234より導入される反応ガスを分散する分散空間としての機能を持つ。
 ガス導入口234には、酸素含有ガスを供給する酸素含有ガス供給管232aの下流端と、水素含有ガスを供給する水素含有ガス供給管232bの下流端と、不活性ガスを供給する不活性ガス供給管232cと、が合流するように接続されている。酸素含有ガス供給管232aには、上流側から順に、酸素含有ガス供給源250a、流量制御装置としてのマスフローコントローラ(MFC)252a、開閉弁としてのバルブ253aが設けられている。水素含有ガス供給管232bには、上流側から順に、水素含有ガス供給源250b、MFC252b、バルブ253bが設けられている。不活性ガス供給管232cには、上流側から順に、不活性ガス供給源250c、MFC252c、バルブ253cが設けられている。酸素含有ガス供給管232aと水素含有ガス供給管232bと不活性ガス供給管232cとが合流した下流側には、バルブ243aが設けられ、ガス導入口234の上流端に接続されている。バルブ253a、253b、253c、243aを開閉させることによって、MFC252a、252b、252cによりそれぞれのガスの流量を調整しつつ、ガス供給管232a、232b、232cを介して、酸素含有ガス、水素ガス含有ガス、不活性ガス等の処理ガスを処理室201内へ供給できるように構成されている。
 主に、ガス供給ヘッド236(蓋体233、ガス導入口234、バッファ室237、開口238、遮蔽プレート240、ガス吹出口239)、酸素含有ガス供給管232a、水素含有ガス供給管232b、不活性ガス供給管232c、MFC252a,252b,252c、バルブ253a,253b,253c,243aにより、本実施形態に係るガス供給部(ガス供給系)が構成されている。
 また、ガス供給ヘッド236、酸素含有ガス供給管232a、MFC252a、バルブ253a,243aにより、本実施形態に係る酸素含有ガス供給系が構成されている。さらに、ガス供給ヘッド236、水素含有ガス供給管232b、MFC252b、バルブ253b,243aにより、本実施形態に係る水素ガス供給系が構成されている。さらに、ガス供給ヘッド236、不活性ガス供給管232c、MFC252c、バルブ253c,243aにより、本実施形態に係る不活性ガス供給系が構成されている。
(排気部)
 下側容器211の側壁には、処理室201内から反応ガスを排気するガス排気口235が設けられている。ガス排気口235には、ガス排気管231の上流端が接続されている。ガス排気管231には、上流側から順に圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)242、開閉弁としてのバルブ243b、真空排気装置としての真空ポンプ246が設けられている。主に、ガス排気口235、ガス排気管231、APC242、バルブ243bにより、本実施形態に係る排気部が構成されている。尚、真空ポンプ246を排気部に含めても良い。
(プラズマ生成部)
 プラズマ生成部1008は、外側容器としての遮蔽板1223と処理容器203の外周との間において処理容器203の外周に沿うように設けられ、高周波電力が供給されるように構成された電極としての共振コイル212により構成され、処理容器203内に供給されたガスをプラズマ励起する。
 処理室201の外周部、すなわち上側容器210の側壁の外側には、処理室201を囲うように、第1の電極としての、螺旋状の共振コイル212が設けられている。共振コイル212には、RFセンサ272、高周波電源273、高周波電源273のインピーダンスや出力周波数の整合を行う整合器274が接続される。
 高周波電源273は、共振コイル212に高周波電力(RF電力)を供給するものである。RFセンサ272は高周波電源273の出力側に設けられ、供給される高周波の進行波や反射波の情報をモニタするものである。RFセンサ272によってモニタされた反射波電力は整合器274に入力され、整合器274は、RFセンサ272から入力された反射波の情報に基づいて、反射波が最小となるよう、高周波電源273のインピーダンスや出力される高周波電力の周波数を制御するものである。
 高周波電源273は、発振周波数および出力を規定するための高周波発振回路およびプリアンプを含む電源制御手段(コントロール回路)と、所定の出力に増幅するための増幅器(出力回路)とを備えている。電源制御手段は、操作パネルを通じて予め設定された周波数および電力に関する出力条件に基づいて増幅器を制御する。増幅器は、共振コイル212に伝送線路を介して一定の高周波電力を供給する。
 共振コイル212は、所定の波長の定在波を形成するため、一定の波長で共振するように巻径、巻回ピッチ、巻数が設定される。すなわち、共振コイル212の電気的長さは、高周波電源273から供給される高周波電力の所定周波数における1波長の整数倍(1倍、2倍、…)に相当する長さに設定される。
 具体的には、印加する電力や発生させる磁界強度または適用する装置の外形などを勘案し、共振コイル212は、例えば、800kHz~50MHz、0.5~5KWの高周波電力が印加され、200~500mmのコイル直径とされ、プラズマ生成空間201aを形成する部屋の外周側に2~60回程度巻回される。
 共振コイル212を構成する素材としては、例えば銅やアルミニウムなどの金属が使用される。共振コイル212は、絶縁性材料にて平板状に形成され、且つベースプレート248の上端面に鉛直に立設された複数のサポート(図示せず)によって支持される。
 遮蔽板1223は、共振コイル212の外側の電界を遮蔽すると共に、共振回路を構成するのに必要な容量成分(C成分)を共振コイル212との間に形成するために設けられる。遮蔽板1223は、一般的には、アルミニウム合金などの導電性材料を使用して円筒状に構成される。遮蔽板1223は、共振コイル212の外周から5~150mm程度隔てて配置される。
 主に、共振コイル212、RFセンサ272、整合器274により、本実施形態に係るプラズマ生成部1008が構成されている。尚、プラズマ生成部1008として高周波電源273を含めても良い。
 なお、ガス流路1000は、遮蔽板1223と処理容器203の外周との間に形成されている。本実施形態では、遮蔽板1223が、処理容器203の上方も覆っており、処理容器203を収容する外側容器を構成している。遮蔽板1223の天井部と、処理容器203の蓋体233とは、互いに上下方向に離間しており、その間の空間もガス流路1000となっている。なお、遮蔽板1223が処理容器203の上方を覆わない構成として、遮蔽板1223及び処理容器203を覆う外側容器(図示せず)を更に設けてもよい。
(ガス導入口)
 処理容器203の側面を覆う遮蔽板1223には、ガス流路1000に冷却(温度調整)のためのガスを取り込むためのガス導入口1223aが設けられている。ガス導入口1223aは、処理容器203の下端に対向する位置(即ち、本実施形態では遮蔽板1223の下端)の近傍に、処理容器203の周方向に沿って均等な間隔をもって複数設けられることが好ましい。また、ガス導入口1223aの形状は、円形や矩形に限らず、処理容器203の周方向に沿って1又は複数のスリットにより構成されていてもよい。ガス流路1000に取り込まれるガスは、大気から取り込んだ空気であってもよく、他のガス(例えば不活性ガス)であってもよい。
(排気路)
 排気路1002は、ガス流路1000と連通しており、例えば遮蔽板1223の天井部と、第2排気装置の一例としてのブロア1020に接続されている。処理容器203が例えば円筒形に形成されている場合、処理容器203の外周に形成されたガス流路1000を処理容器の円周方向において均等に排気するため、排気路1002は、遮蔽板1223の天井部の中央に接続することが好ましい。ブロア1020は、工場等の施設に設けられる共用の排気設備であり、様々な設備からの排気を担っている。ブロア1020からの排気は、例えば大気開放されるようになっている。
(圧力センサ)
 圧力センサ1006は、外側容器としての遮蔽板1223の内側に設けられ、該内側の圧力を測定するセンサである。すなわち、圧力センサ1006は、ガス流路1000内の圧力を測定するセンサである。図1に示されるように、排気路1002が遮蔽板1223の上面に接続されている場合、圧力センサ1006は、遮蔽板1223内であって排気路1002の鉛直下方に設けられてもよい。換言すれば、圧力センサ1006は、ガス流路1000と排気路1002との接続部分(排気路1002の鉛直下方空間であって処理容器203の上方空間)に設けられている。
 なお、圧力センサ1006の配置はこれに限られず、遮蔽板1223の内側における他の部位に圧力センサ1006が設けられていてもよい。圧力センサ1006が外側容器としての遮蔽板1223の内側に設けられることで、ダンパ1004の前後に発生する乱流の影響を受け難い。
 後述するように、コントローラ221は、圧力センサ1006で測定されたガス流路100内の圧力と大気圧との差圧(換言すれば、ゲージ圧)を算出・取得し、当該差圧が所定の差圧値となるようにファン1010を制御する。大気圧は一定値を用いてもよいし、測定した数値を用いてもよい。当該差圧は、ガス流路1000内の排気風量に対応しており、ガス流路1000内の排気風量が所望の風量となるような差圧値を所定値として設定することにより、ガス流路1000内の排気風量を所望の風量となるように制御する。すなわち、当該差圧が所望のガス流路1000内の排気風量に対応する所定の差圧値となるように制御する。
(ダンパ)
 調整弁の一例としてのダンパ1004は、例えばバタフライバルブであり、排気路1002のコンダクタンス(排気の流れ易さの度合い)を調整可能に構成されている。調整弁をコンダクタンス変更手段と言い換えることもできる。
(ファン)
 第1の排気装置の一例としてのファン1010は、排気路1002上であって、ダンパ1004の下流に設けられた、例えば軸流ファンである。図1に示される例では、ファン1010は、排気路1002上におけるダンパ1004の下流側の近傍に設けられている。ファン1010の回転は、コントローラ221によりインバータ制御される。
 ダンパ1004には、所定の差圧値に応じてあらかじめ定められた開度が設定される。ここで、その開度の決め方について説明する。図4は、ダンパ1004の開度に応じた、第2排気装置としてのブロア1020の風量とカバー差圧(圧力センサ1006で測定された圧力と大気圧との差圧)の関係を示している。ダンパ1004の開度は、全閉で0°、全開で90°である。横軸は、正確にはダンパフルオープン時、つまりダンパ1004の開度が90°のときのブロア1020の風量である。また、図4では、「所定の差圧値」が「ターゲット差圧」と記載されている。
 ブロア1020の風量が比較的小さい領域では、ダンパ1004の開度が変化してもカバー差圧の変化は比較的少ない。ブロア1020の風量が大きくなるに連れて、ダンパ1004の開度の変化によるカバー差圧の変化が大きくなる。このことから、ブロア1020の風量が大きい領域では、ダンパ1004の開度調整のみによるカバー差圧の微調整は難しいことがわかる。
 ここで、図4において網掛けで示されるように、ターゲット差圧(所定の差圧)が例えば-13~-5Paであるものとする。この場合、ダンパ1004の開度を15°とすることで、ブロア1020の風量が約11~20m/minの範囲でターゲット差圧(所定の差圧)を得ることができる。また、例えばダンパ1004の開度を90°とし、ブロア1020の風量が約14m/minのときのカバー差圧は約-42Paである。ブロア1020の風量の変更範囲を最小限に抑えながらカバー差圧をターゲット差圧(所定の差圧)に設定したい場合には、ダンパ1004の開度を15°前後に設定すればよい。
 また、ダンパ1004に、所定の差圧値と、ブロア1020の排気風量とに応じて、あらかじめ定められた開度が設定されてもよい。図5は、ファン1010及びブロア1020の作動周波数に応じた、ダンパ1004の開度とカバー差圧の関係を示している。作動周波数の大小は、出力の大小を意味する。図5の線は、4つのグループに分かれている。最も下に位置するグループは、ブロア1020の作動周波数が10Hzのグループである。下から2番目のグループは、ブロア1020の作動周波数が20Hzのグループである。下から3番目のグループは、ブロア1020の作動周波数が33Hzのグループである。下から4番目、つまり最も上に位置するグループは、ブロア1020の作動周波数が45Hzのグループである。ファン1010の作動周波数は、それぞれ0Hz、30Hz、60Hzの3通りとなっている。
 各々のグループにおける3本の線における最も下側の線(ファン1010の周波数が0Hz)と最も上側の線(ファン1010の作動周波数が60Hz)との間が、ファン1010により制御可能なカバー差圧の範囲を示している。各々のグループにおいて、ダンパ1004の開度をあらかじめ定めた状態で、ブロア1020の風量(出力)が若干変動しても、ファン1010の制御によりカバー差圧の変動を抑制できる。具体的には、ブロア1020による風量(出力)が減少したときには、ファン1010による風量(出力)を増加させ、ブロア1020による風量(出力)が増加したときには、ファン1010による風量(出力)を減少させるようにする。
 ターゲット差圧(所定の差圧)が例えば-13~-5Paである場合、ブロア1020の作動周波数が10Hzであれば、ダンパ1004の開度を例えば約75°とすれば、ファン1010による制御範囲にターゲット差圧(所定の差圧)が収まる。同様に、ブロア1020の作動周波数が20Hzであれば、ダンパ1004の開度を例えば約30°とすれば、ファン1010による制御範囲にターゲット差圧(所定の差圧)が収まる。ブロア1020の出力が小さいと、ダンパ1004の開度の自由度が高くなる。
 上記したように、各グループにおいて最も下側の線は、ファン1010の作動周波数が0Hz、つまりファン1010を作動させない場合を示している。例えばブロア1020の作動周波数が45Hzのグループでダンパ1004の開度が40°、ファン1010の作動周波数が0Hzの場合、カバー差圧は約-50Paである。ターゲット差圧(所定の差圧)を-50Paとした場合において、ブロア1020による風量が低下し、カバー差圧が減少すると、ファン1010による制御範囲を外れてしまう。そこで、ダンパ1004の開度を、差圧がターゲット差圧(所定の差圧)の-50Paより小さくなる40°より小さい値、例えば約38°に設定する。これにより、ターゲット差圧(所定の差圧)が、最も下側の線と最も上側の線の間、つまりファン1010による制御範囲に入る。
 このように、ダンパ1004についてのあらかじめ定められた開度には、ファン1010を動作させない状態において圧力センサ1006で測定された圧力と大気圧との差圧が、所定の差圧値となる値よりも小さい値が設定されてもよい。
 基板処理装置100は、処理容器203の温度を測定する温度センサ1012を備えていてもよい。この場合、所定の差圧が、温度センサ1012により測定された温度に基づいて設定されてもよい。
 このようなダンパ1004の開度の設定は、手動で行ってもよいし、コントローラ221及びアクチュエータ(図示せず)による制御により行ってもよい。つまり、コントローラ221により、ファン1010及びダンパ1004の制御を行ってもよいし、ファン1010のみの制御を行ってもよい。
(制御部)
 制御部としてのコントローラ221は、信号線Aを通じてAPC242、バルブ243b及び真空ポンプ246を、信号線Bを通じてサセプタ昇降機構268を、信号線Cを通じてヒータ電力調整機構276及びインピーダンス可変機構275を、信号線Dを通じてゲートバルブ244を、信号線Eを通じてRFセンサ272、高周波電源273及び整合器274を、信号線Fを通じてMFC252a~252c及びバルブ253a~253c,243aを、それぞれ制御することが可能なように構成されている。
 図2に示すように、制御部(制御手段)であるコントローラ221は、CPU(Central Processing Unit)221a、RAM(Random Access Memory)221b、記憶装置221c、I/Oポート221dを備えたコンピュータとして構成されている。RAM221b、記憶装置221c、I/Oポート221dは、内部バス221eを介して、CPU221aとデータ交換可能なように構成されている。コントローラ221には、例えばタッチパネルやディスプレイ等として構成された入出力装置222が接続されている。
 記憶装置221cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)等で構成されている。記憶装置221c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプログラムレシピ等が読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ221によって基板処理装置100に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM221bは、CPU221aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート221dは、上述のMFC252a~252c、バルブ253a~253c、243a、243b、ゲートバルブ244、APCバルブ242、真空ポンプ246、RFセンサ272、高周波電源273、整合器274、サセプタ昇降機構268、インピーダンス可変機構275、ヒータ電力調整機構276、等に接続されている。
 CPU221aは、記憶装置221cからの制御プログラムを読み出して実行すると共に、入出力装置222からの操作コマンドの入力等に応じて記憶装置221cからプロセスレシピを読み出すように構成されている。そして、CPU221aは、読み出されたプロセスレシピの内容に沿うように、I/Oポート221d及び信号線Aを通じてAPCバルブ242の開度調整動作、バルブ243bの開閉動作、及び真空ポンプ246の起動・停止を、信号線Bを通じてサセプタ昇降機構268の昇降動作を、信号線Cを通じてヒータ電力調整機構276によるヒータ217bへの供給電力量調整動作(温度調整動作)や、インピーダンス可変機構275によるインピーダンス値調整動作を、信号線Dを通じてゲートバルブ244の開閉動作を、信号線Eを通じてRFセンサ272、整合器274及び高周波電源273の動作を、信号線Fを通じてMFC252a~252cによる各種ガスの流量調整動作、及びバルブ253a~253c、243aの開閉動作、等を制御することが可能なように構成されている。
 コントローラ221は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやSSD等の半導体メモリ)223に格納された上述のプログラムをコンピュータにインストールすることにより構成することができる。記憶装置221cや外部記憶装置223は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に記録媒体ともいう。本明細書において、記録媒体という言葉を用いた場合は、記憶装置221c単体のみを含む場合、外部記憶装置223単体のみを含む場合、または、その両方を含む場合が有る。なお、コンピュータへのプログラムの提供は、外部記憶装置223を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
 また、コントローラ221は、圧力センサ1006で測定された圧力に基づいて、ファン1010を制御してファン1010の排気風量を調整することが可能なように構成されている。また、コントローラ221は、圧力センサ1006で測定された圧力と大気圧との差圧が所定の差圧値となるようにファン1010を制御することが可能なようになっている。
 なお、上記したように、基板処理装置100が処理容器203の温度を測定する温度センサ1012を備えていてもよい。この場合、コントローラ221は、圧力センサ1006で測定された圧力と大気圧との差圧が、温度センサ1012により測定された温度に基づいて設定された所定の差圧となるように、ファン1010を制御してもよい。
 ダンパ1004の開度の設定は、手動で行うことができる。また、この開度の設定を、コントローラ221及びアクチュエータ(図示せず)による制御により行うこともできる。この場合、コントローラ221は、例えば、所定の差圧値及びブロア1020の風量の入力を受け付ける入力部(入力装置222)と、差圧値、及びブロア1020の風量に応じてあらかじめ定められた開度に関する情報を格納するテーブル(RAM221、記憶装置221c)と、を備える。コントローラ221は、該コントローラ221に入力された所定の差圧値、及びブロア1020の風量に対応する開度に関する情報をテーブルから取得し、取得した開度に関する情報に基づいてダンパ1004の開度を制御することが可能なように構成されている。
(作用)
 本実施形態によれば、処理容器203の温度変動や、排気路1002の先に接続されたブロア1020での圧力変動が生じる場合であっても、安定した風量で処理容器203の周囲の空間を排気(即ち、ガス導入口1223aから処理容器203の周囲の空間内に取り込まれたガスを排気)し、処理容器203の温度を安定的に維持することができる。具体的には、ファン1010により、ブロア1020での圧力変動をファン1010で補償することで、排気風量を安定的に維持することができる。
 またこれによって、ウエハ200等の半導体の歩留まりを向上させることができる。また、風量を制御することにより処理容器203の温度を調整することができ、加熱手段以外に温度調整ノブとして機差の少ない装置を提供できる。
 また、圧力センサ1006が排気路1002内でなく、外側容器としての遮蔽板1223内に設けられているので、ダンパ1004の開度が変わった際に発生する乱流の影響を受け難く、安定した圧力測定が可能となる。
 処理容器203に温度センサ1012を設置した場合には、処理容器203の温度モニタが可能になる。処理容器203の温度はウエハ200の温度と関連があるため、ファン1010及びダンパ1004により風量を変更可能とすることで、処理容器203の温度制御が可能となる。
 なお、処理容器203の温度は、ガス流路1000の排気風量の他にも、ヒータ217bの出力や処理容器203内で生成されるプラズマ強度等の他の要素によって変動する。そのため、例えば処理容器203の温度をモニタし、測定した処理容器203の温度が所定の温度となるように、ファン1010及びダンパ1004の少なくとも一方をフィードバック制御する場合、処理容器203の温度の変動に応じて風量が頻繁に変動することとなり、処理容器203の温度を安定させることが困難となる場合がある。したがって、処理容器203の温度の安定性を重視する観点からは、処理容器203の測定温度に拠らない所定の風量に基づいて、ファン1010及びダンパ1004の少なくとも一方を制御することが好ましい。
 図6は、第2排気装置(ブロア1020)の風量を例えば13~15m/minの間で変動させたときの差圧、第1排気装置(ファン1010)の作動周波数、及び処理容器203の温度の変化を示す線図である。破線はファン1010の動作周波数、実線(太線)はカバー差圧を、実線(細線)は温度センサ1012で測定した処理容器203の外周面の温度を、それぞれ示している。コントローラ221により、ブロア1020の風量が上昇したときはファン1010の作動周波数を減少させ、ブロア1020の風量が低下したときはファン1010の作動周波数を増加させる。これにより、差圧を略一定(±1Pa)に維持し、かつ処理容器203の温度を略一定に維持することができる。
 図7は、プラズマ生成部1008において高周波を80分間、出力5kWで連続放電したときの、差圧、第1排気装置(ファン1010)の周波数、及び処理容器203の温度の変化を示す線図である。破線はファン1010の動作周波数、実線(太線)はカバー差圧を、実線(細線)は温度センサ1012で測定した処理容器203の外周面の温度を、それぞれ示している。処理容器203の温度が上昇すると、外側容器としての遮蔽板1223内の圧力が上昇して大気圧との差圧が低下するため、ファン1010の作動周波数(出力)が変動する。これにより、差圧が略一定(±1Pa)に維持される。このように、温度変化によって遮蔽板1223内の圧力が変化しても、差圧が略一定となるように対応することができる。
 このように、本実施形態によれば、処理容器203の温度変動や、排気路1002の先に接続されたブロア1020での圧力変動が生じる場合であっても、安定した風量で処理容器203の周囲の空間を排気し、処理容器203の温度を安定的に維持することができる。
 (半導体装置の製造方法)
 半導体装置の製造方法は、上記した基板処理装置100を用い、処理容器203を加熱する工程と、処理容器203内にウエハ200を搬入する工程と、処理容器203内にガスを供給する工程と、ウエハ200をプラズマ処理する工程と、を有する。
 (プログラム)
 プログラムは、基板処理装置100を用いて半導体装置を製造するプログラムであって、処理容器203を加熱する手順(例えば図3の予備加熱工程S100)と、処理容器203内にウエハ200を搬入する手順(例えば図3の基板搬入工程S110)と、処理容器203内にガスを供給する手順(例えば図3の反応ガス供給工程S130)と、ウエハ200をプラズマ処理する手順(例えば図3のプラズマ処理工程S140)と、をコンピュータに実行させる。
(2)基板処理工程
 次に、本実施形態に係る基板処理工程について、主に図3を用いて説明する。図3は、本実施形態に係る基板処理工程を示すフロー図である。本実施形態に係る基板処理工程は、例えばフラッシュメモリ等の半導体デバイスの製造工程の一工程として、上述の基板処理装置100により実施される。以下の説明において、基板処理装置100を構成する各部の動作は、コントローラ221により制御される。
 なお、図示は省略するが、本実施形態に係る基板処理工程で処理されるウエハ200の表面には、アスペクト比の高い凹凸部を有するトレンチが予め形成されている。本実施形態においては、トレンチの内壁に露出した例えばシリコン(Si)の層に対して、プラズマを用いた処理として酸化処理を行う。トレンチは、例えばウエハ200上に所定のパターンを施したマスク層を形成し、ウエハ200表面を所定深さまでエッチングすることで形成されている。
(予備加熱工程(前処理工程)S100)
 まず、上記のウエハ200を処理室201内に搬入する前に、処理容器203や処理室201内の構成物を予備加熱する前処理を行う。具体的には、ヒータ217bを所定の温度まで加熱しすることでサセプタ217や処理容器203を所定の温度まで加熱する。この際、所定の差圧に基づいてダンパ1040を所定の開度まで開くとともに、所定の差圧となるようにファン1010の動作制御を開始する。(即ち、ガス流路1000の排気を開始する。)なお、ブロア1020は、共用の排気設備であるため、本工程以前から排気動作を継続している。
 加熱開始後、加熱とガス流路1000の排気を継続し、処理容器203の温度が安定したら、以降のウエハ200に対する処理を開始する。ウエハ200に対する処理開始後(即ちS110以降)も、少なくともプラズマ処理終了(即ちS140)までは、ヒータ217bによる加熱と、ガス流路1000の排気動作は継続して行う。
 なお、処理容器203等を加熱する手段としては、ヒータ217bを用いる他に、高周波電源273から共振コイル212に高周波電力を供給することで処理容器203内にプラズマを生成し、生成されたプラズマに処理容器203を加熱することもできる。
(基板搬入工程S110)
 まず、上記のウエハ200を処理室201内に搬入する。具体的には、サセプタ昇降機構268がウエハ200の搬送位置までサセプタ217を下降させて、サセプタ217の貫通孔217aにウエハ突上げピン266を貫通させる。その結果、ウエハ突き上げピン266が、サセプタ217表面よりも所定の高さ分だけ突出した状態となる。
 続いて、ゲートバルブ244を開き、処理室201に隣接する真空搬送室から、ウエハ搬送機構(図示せず)を用いて処理室201内にウエハ200を搬入する。搬入されたウエハ200は、サセプタ217の表面から突出したウエハ突上げピン266上に水平姿勢で支持される。処理室201内にウエハ200を搬入したら、ウエハ搬送機構を処理室201外へ退避させ、ゲートバルブ244を閉じて処理室201内を密閉する。そして、サセプタ昇降機構268がサセプタ217を上昇させることにより、ウエハ200はサセプタ217の上面に支持される。
(昇温・真空排気工程S120)
 続いて、処理室201内に搬入されたウエハ200の昇温を行う。ヒータ217bは予め加熱されており、ヒータ217bが埋め込まれたサセプタ217上にウエハ200を保持することで、例えば150~750℃の範囲内の所定値にウエハ200を加熱する。また、ウエハ200の昇温を行う間、真空ポンプ246によりガス排気管231を介して処理室201内を真空排気し、処理室201内の圧力を所定の値とする。真空ポンプ246は、少なくとも後述の基板搬出工程S160が終了するまで作動させておく。
(反応ガス供給工程S130)
 次に、反応ガスとして、酸素含有ガスと水素含有ガスの供給を開始する。具体的には、バルブ253a及び253bを開け、MFC252a及び252bにて流量制御しながら、処理室201内へ酸素含有ガス及び水素含有ガスの供給を開始する。このとき、酸素含有ガスの流量を、例えば20~2000sccmの範囲内の所定値とする。また、水素含有ガスの流量を、例えば20~1000sccmの範囲内の所定値とする。また、処理室201内の圧力が、例えば1~250Paの範囲内の所定圧力となるように、APC242の開度を調整して処理室201内の排気を制御する。このように、処理室201内を適度に排気しつつ、後述のプラズマ処理工程S140の終了時まで酸素含有ガス及び水素含有ガスの供給を継続する。
 酸素含有ガスとしては、例えば、酸素(O)ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水蒸気(HOガス)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いることができる。酸素含有ガスとしては、これらのうち1以上を用いることができる。
 また、水素含有ガスとしては、例えば、水素(H)ガス、重水素(D)ガス、H Oガス、アンモニア(NH)ガス等を用いることができる。水素含有ガスとしては、これらのうち1以上を用いることができる。なお、酸素含有ガスとしてHOガスを用いる場合は、水素含有ガスとしてHOガス以外のガスを用いることが好ましく、水素含有ガスとしてHOガスを用いる場合は、酸素含有ガスとしてHOガス以外のガスを用いることが好ましい。
 不活性ガスとしては、例えば、窒素(N)ガスを用いることができ、この他、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。
(プラズマ処理工程S140)
 処理室201内の圧力が安定したら、共振コイル212に対して高周波電源273からRFセンサ272を介して、高周波電力の印加を開始する。
 これにより、酸素含有ガス及び水素含有ガスが供給されているプラズマ生成空間201a内に高周波電界が形成され、係る電界により、プラズマ生成空間の共振コイル212の電気的中点に相当する高さ位置に、最も高いプラズマ密度を有するドーナツ状の誘導プラズマが励起される。プラズマ状の酸素含有ガス及び水素含有ガスは解離し、酸素を含む酸素ラジカル(酸素活性種)や酸素イオン、水素を含む水素ラジカル(水素活性種)や水素イオン、等の反応種が生成される。
 基板処理空間201bでサセプタ217上に保持されているウエハ200には、誘導プラズマにより生成されたラジカルと加速されない状態のイオンがトレンチ内に均一に供給される。供給されたラジカル及びイオンは側壁と均一に反応し、表面の層(例えばSi層)をステップカバレッジが良好な酸化層(例えばSi酸化層)へと改質する。
 その後、所定の処理時間、例えば10~300秒が経過したら、高周波電源273からの電力の出力を停止して、処理室201内におけるプラズマ放電を停止する。また、バルブ253a及び253bを閉めて、酸素含有ガス及び水素含有ガスの処理室201内への供給を停止する。以上により、プラズマ処理工程S140が終了する。
(真空排気工程S150)
 酸素含有ガス及び水素含有ガスの供給を停止したら、ガス排気管231を介して処理室201内を真空排気する。これにより、処理室201内の酸素含有ガスや水素含有ガス、これらガスの反応により発生した排ガス等を処理室201外へと排気する。その後、APC242の開度を調整し、処理室201内の圧力を処理室201に隣接する真空搬送室(ウエハ200の搬出先。図示せず)と同じ圧力に調整する。
(基板搬出工程S160)
 処理室201内が所定の圧力となったら、サセプタ217をウエハ200の搬送位置まで下降させ、ウエハ突上げピン266上にウエハ200を支持させる。そして、ゲートバルブ244を開き、ウエハ搬送機構を用いてウエハ200を処理室201外へ搬出する。以上により、本実施形態に係る基板処理工程を終了する。
<本開示の他の実施形態>
 上述の実施形態では、プラズマを用いて基板表面に対して酸化処理や窒化処理を行う例について説明したが、これらの処理に限らず、プラズマを用いて基板に対して処理を施すあらゆる技術に適用することができる。例えば、プラズマを用いて行う基板表面に形成された膜に対する改質処理やドーピング処理、酸化膜の還元処理、当該膜に対するエッチング処理、レジストのアッシング処理、等に適用することができる。
 100 基板処理装置
 200 ウエハ(基板)
 203 処理容器
 221 コントローラ(制御部)
1000 ガス流路
1002 排気路
1004 ダンパ(調整弁)
1006 圧力センサ
1010 ファン(第1の排気装置)
1223 遮蔽板(外側容器)

Claims (19)

  1.  基板を処理する処理容器と、
     前記処理容器の外周を覆う外側容器と、
     前記外側容器と前記処理容器の外周との間に形成されるガス流路と、
     前記ガス流路と連通する排気路と、
     前記排気路のコンダクタンスを調整可能に構成された調整弁と、
     前記排気路上であって、前記調整弁の下流に設けられた第1の排気装置と、
     前記外側容器内の圧力を測定する圧力センサと、
     前記圧力センサで測定された圧力に基づいて、前記第1の排気装置を制御して前記第1の排気装置の排気風量を調整することが可能なように構成された制御部と、
     を備えた基板処理装置。
  2.  前記外側容器と前記処理容器の外周との間において前記処理容器の外周に沿うように設けられ、高周波電力が供給されるように構成された電極により構成され、前記処理容器内に供給されたガスをプラズマ励起するプラズマ生成部を備え、
     前記電極は、前記処理容器の外周に巻回するように設けられたコイルにより構成される、請求項1に記載の基板処理装置。
  3.  前記制御部は、前記圧力センサで測定された圧力と大気圧との差圧が所定の差圧値となるように前記第1の排気装置を制御することが可能なように構成されている、請求項1又は2に記載の基板処理装置。
  4.  前記調整弁には、前記所定の差圧値に応じてあらかじめ定められた開度が設定される、 請求項3に記載の基板処理装置。
  5.  前記調整弁は、前記所定の差圧値と、前記排気路の下流側に接続される第2の排気装置の排気風量と、に応じてあらかじめ定められた開度が設定される、請求項4に記載の基板処理装置。
  6.  前記あらかじめ定められた開度には、前記第1の排気装置を動作させない状態において前記圧力センサで測定された圧力と大気圧との差圧が、前記所定の差圧値となる値よりも小さい値が設定される、請求項5に記載の基板処理装置。
  7.  前記制御部は、前記所定の差圧値に応じて、前記調整弁の開度があらかじめ定められた開度となるように制御することが可能なよう構成されている、請求項3に記載の基板処理装置。
  8.  前記制御部は、前記所定の差圧値と、前記排気路の下流側に接続される第2の排気装置の排気風量とに応じて、前記調整弁の開度があらかじめ定められた開度となるように制御することが可能なように構成されている、請求項7に記載の基板処理装置。
  9.  前記あらかじめ定められた開度は、前記第1の排気装置を動作させない状態において前記圧力センサで測定された圧力と大気圧との差圧が、前記所定の差圧値となる値よりも小さくなるように設定される、請求項8に記載の基板処理装置。
  10.  前記処理容器の温度を測定する温度センサを備え、
     前記所定の差圧は、前記温度センサにより測定された温度に基づいて設定される、請求項3に記載の基板処理装置。
  11.  前記制御部は、前記圧力センサで測定された圧力と大気圧との前記差圧が、前記温度センサにより測定された温度に基づいて設定された前記所定の差圧となるように、前記第1の排気装置を制御することが可能なように構成されている、請求項10に記載の基板処理装置。
  12.  前記圧力センサは、前記外側容器内であって前記ガス流路と前記排気路の間に設けられる、請求項1~11の何れか1項に記載の基板処理装置。
  13.  前記排気路は前記外側容器の上面に接続され、
     前記圧力センサは、前記外側容器内であって前記排気路の鉛直下方に設けられる、請求項12に記載の基板処理装置。
  14.  処理容器と、
     前記処理容器の外周を覆う外側容器と、
     前記外側容器と前記処理容器の外周との間に形成されるガス流路と、
     前記ガス流路と連通する排気路と、
     前記排気路のコンダクタンスを調整可能に構成された調整弁と、
     前記排気路上であって、前記調整弁の下流に設けられた第1の排気装置と、
     前記外側容器内の圧力を測定する圧力センサと、を備えた基板処理装置を用いた半導体装置の製造方法であって、
     前記処理容器内を加熱する工程と、
     前記処理容器内に基板を搬入する工程と、
     加熱された前記処理容器内において前記基板を処理する工程と、
     を有し、
     前記処理容器内を加熱する工程では、前記圧力センサで測定された圧力に基づいて前記第1の排気装置の排気風量を調整する半導体装置の製造方法。
  15.  前記基板を処理する工程は、前記処理容器内に供給されたガスをプラズマ励起する工程を含む、請求項14に記載の半導体装置の製造方法。
  16.  処理容器と、
     前記処理容器の外周を覆う外側容器と、
     前記外側容器と前記処理容器の外周との間に形成されるガス流路と、
     前記ガス流路と連通する排気路と、
     前記排気路のコンダクタンスを調整可能に構成された調整弁と、
     前記排気路上であって、前記調整弁の下流に設けられた第1の排気装置と、
     前記外側容器内の圧力を測定する圧力センサと、を備えた基板処理装置を用いた基板処理方法であって、
     前記処理容器内を加熱する工程と、
     前記処理容器内に基板を搬入する工程と、
     加熱された前記処理容器内において前記基板を処理する工程と、
     を有し、
     前記処理容器内を加熱する工程では、前記圧力センサで測定された圧力に基づいて前記第1の排気装置の排気風量を調整する基板処理方法。
  17.  前記基板を処理する工程は、前記処理容器内に供給されたガスをプラズマ励起する工程を含む、請求項16に記載の基板処理方法。
  18.  処理容器と、
     前記処理容器の外周を覆う外側容器と、
     前記外側容器と前記処理容器の外周との間に形成されるガス流路と、
     前記ガス流路と連通する排気路と、
     前記排気路のコンダクタンスを調整可能に構成された調整弁と、
     前記排気路上であって、前記調整弁の下流に設けられた第1の排気装置と、
     前記外側容器内の圧力を測定する圧力センサと、を備えた基板処理装置をコンピュータに制御させるプログラムであって、
     前記処理容器内を加熱する手順と、
     前記処理容器内に基板を搬入する手順と、
     加熱された前記処理容器内において前記基板を処理する手順と、
     前記処理容器内を加熱する手順において、前記圧力センサで測定された圧力に基づいて前記第1の排気装置の排気風量を調整する手順と、
     をコンピュータにより前記基板処理装置に実行させるプログラム。
  19.  前記基板を処理する手順は、前記処理容器内に供給されたガスをプラズマ励起する手順を含む、請求項18に記載のプログラム。  
PCT/JP2021/035034 2020-09-29 2021-09-24 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム WO2022071105A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180063136.5A CN116195371A (zh) 2020-09-29 2021-09-24 基板处理装置、半导体装置的制造方法、基板处理方法及程序
KR1020237008764A KR20230048551A (ko) 2020-09-29 2021-09-24 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP2022553893A JP7478832B2 (ja) 2020-09-29 2021-09-24 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
US18/182,862 US20230212753A1 (en) 2020-09-29 2023-03-13 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US18/183,090 US20230230818A1 (en) 2020-09-29 2023-03-13 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163933 2020-09-29
JP2020163933 2020-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/183,090 Continuation US20230230818A1 (en) 2020-09-29 2023-03-13 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US18/182,862 Continuation US20230212753A1 (en) 2020-09-29 2023-03-13 Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2022071105A1 true WO2022071105A1 (ja) 2022-04-07

Family

ID=80950280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035034 WO2022071105A1 (ja) 2020-09-29 2021-09-24 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム

Country Status (5)

Country Link
US (2) US20230212753A1 (ja)
JP (1) JP7478832B2 (ja)
KR (1) KR20230048551A (ja)
CN (1) CN116195371A (ja)
WO (1) WO2022071105A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045195A (ja) * 2008-08-13 2010-02-25 Covalent Materials Corp 熱処理装置
JP2010283331A (ja) * 2009-05-01 2010-12-16 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2018117141A (ja) * 2014-03-20 2018-07-26 株式会社日立国際電気 加熱冷却装置及び半導体デバイスの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045195A (ja) * 2008-08-13 2010-02-25 Covalent Materials Corp 熱処理装置
JP2010283331A (ja) * 2009-05-01 2010-12-16 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2018117141A (ja) * 2014-03-20 2018-07-26 株式会社日立国際電気 加熱冷却装置及び半導体デバイスの製造方法

Also Published As

Publication number Publication date
US20230230818A1 (en) 2023-07-20
CN116195371A (zh) 2023-05-30
JP7478832B2 (ja) 2024-05-07
KR20230048551A (ko) 2023-04-11
US20230212753A1 (en) 2023-07-06
JPWO2022071105A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
US11905596B2 (en) Method of manufacturing semiconductor device, and recording medium
JP6552780B1 (ja) 基板処理装置、半導体装置の製造方法、及び静電シールド
KR102409337B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
US11908682B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP6636677B2 (ja) 基板処理装置、半導体装置の製造方法及び記録媒体
JP2023067273A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2022071105A1 (ja) 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム
JP2024041538A (ja) 基板処理装置、半導体装置の製造方法、及びプログラム
JP6883620B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP6976279B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP6870103B2 (ja) 半導体装置の製造方法、基板処理装置及び記録媒体
JP7203869B2 (ja) 基板処理装置、半導体装置の製造方法、およびプログラム
WO2023095374A1 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
JP7393376B2 (ja) 半導体装置の製造方法、基板処理方法、プログラム及び基板処理装置
US20220328289A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP7203950B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553893

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008764

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875407

Country of ref document: EP

Kind code of ref document: A1