WO2022064820A1 - Rotor - Google Patents
Rotor Download PDFInfo
- Publication number
- WO2022064820A1 WO2022064820A1 PCT/JP2021/026671 JP2021026671W WO2022064820A1 WO 2022064820 A1 WO2022064820 A1 WO 2022064820A1 JP 2021026671 W JP2021026671 W JP 2021026671W WO 2022064820 A1 WO2022064820 A1 WO 2022064820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- conductor
- rotor conductor
- outer peripheral
- peripheral end
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
- H02K17/02—Asynchronous induction motors
- H02K17/16—Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
Definitions
- the present invention relates to a rotor.
- the squirrel-cage induction motor can be started by directly turning on the commercial power, but the torque during starting is not a constant value, and a drop occurs at a certain rotation speed, which may cause stagnation of acceleration.
- a rotor structure is known that improves the torque characteristics during starting of a cage induction motor.
- a plurality of rotor conductors made of a material having a sequentially higher resistance value from the outer peripheral side and a storage hole (in which the rotor conductors are arranged) are arranged in the rotor.
- a slit is provided to connect the rotor slot) and the accommodating hole (rotor slot).
- the rotor of the cage-shaped induction motor described in Patent Document 2 is located on the outer peripheral surface side of the rotor core with respect to the first slot and the first slot, and is connected to the first slot. It has two slots, and the first slot is arranged on the side opposite to the outer peripheral surface side and the second slot is arranged on the outer peripheral surface side with respect to the skin depth of the current drive frequency component.
- the rotor of the cage-type induction motor of Patent Document 1 suppresses the drop in torque that occurs during starting, but the radial height and circumferential width of the slit depend on the material and shape of the rotor conductor and the frequency of the power supply. It is necessary to make appropriate adjustments.
- the rotor of the cage-type induction motor of Patent Document 2 can improve the drive efficiency while increasing the starting torque, but the positions where the first slot and the second slot are arranged are determined by the material of the rotor conductor and the position. It is necessary to adjust appropriately according to the drive frequency (power supply frequency).
- An object of the present invention is to suppress a drop in torque that occurs during starting while keeping the size ratio of the rotor conductor constant without adjusting the dimensions of the rotor conductor according to the material, shape, and power supply frequency. , To provide a rotor.
- a preferred example of the present invention is a rotor having a rotor conductor.
- the rotor conductor is A first portion where the circumferential width of the rotor conductor decreases toward the inner peripheral side of the rotor conductor, and It has a second portion that is continuous with the inner peripheral side of the first portion and whose circumferential width of the rotor conductor increases toward the inner peripheral side of the rotor conductor.
- the distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the rotor conductor is h0.
- the distance from the outer peripheral end of the rotor conductor to the outer peripheral end of the first portion is h1.
- h2 be the distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the second portion.
- the constant N is a constant calculated based on the depth of the eddy current penetrating the rotor conductor at the rotation speed at which the torque drops during startup.
- the rotor conductor is It is a rotor that satisfies the relationship of h1 / h0 ⁇ N ⁇ h2 / h0.
- the present invention it is possible to suppress a drop in torque that occurs during starting while keeping the size ratio of the rotor conductor constant without adjusting the dimensions of the rotor conductor according to the material, shape, and power supply frequency. ..
- FIG. It is a cage type induction motor and a partially enlarged view thereof as Example 1.
- FIG. It is a figure which shows the equivalent circuit of a squirrel-cage induction motor. It is a figure which shows the coefficient which shows the influence of the skin effect. It is a figure which shows the rotation speed ( ⁇ ) in which a drop of torque occurs. This is the result of a computer experiment of starting torque.
- It is a drive system for a squirrel-cage induction motor. It is a figure which shows one slot of the rotor of the cage type induction motor as Example 4.
- FIG. It is a figure which shows one slot of the rotor of the cage type induction motor as Example 5.
- FIG. It is a figure which shows one slot of the rotor of the cage type induction motor as Example 6.
- Example 7 It is a figure which shows one slot of the rotor of the cage type induction motor as Example 7. It is a figure which shows one slot of the rotor of the cage type induction motor as Example 8. It is a figure which shows one slot of the rotor of the cage type induction motor as Example 9.
- Example 1 will be described using a double cage rotor, which is an example of a rotor of a cage induction motor.
- the left side of FIG. 1 is a diagram showing a main part of a squirrel-cage induction motor, and the right side of FIG. 1 is an enlarged view of one slot of a rotor.
- the cage-shaped induction motor of the first embodiment is a rotary electric machine in which the stator 1 and the rotor 5 face each other in the radial direction R with a gap 10 interposed therebetween.
- the stator 1 includes a stator core 2 and a stator winding 4 wound around a stator slot 3 formed in the stator core 2.
- the rotor 5 includes a rotor core 6, a rotor conductor 8 arranged in a rotor slot 7 formed in the rotor core 6, and a shaft 9 arranged on the inner peripheral side of the rotor core 6.
- the width of the circumferential direction X of the rotor conductor 8 becomes smaller toward the inner peripheral side of the rotor conductor 8 first portion 81.
- a second portion 82 which is continuous with the inner peripheral side of the first portion 81 and whose circumferential width of the rotor conductor 8 increases toward the inner peripheral side of the rotor conductor 8.
- the inner peripheral side is the lower side in the figure on the right side of FIG.
- the distance from the outer peripheral end of the rotor conductor 8 to the inner peripheral end of the rotor conductor 8 is h0, and the rotor conductor 8 has a distance of h0.
- the distance from the outer peripheral end to the outer peripheral end of the first portion 81 is h1
- the distance from the outer peripheral end of the rotor conductor 8 to the inner peripheral end of the second portion 82 is h2.
- the relationship of h1 / h0 ⁇ N ⁇ h2 / h0 (N is a constant) is satisfied.
- the constant N is calculated based on the depth of the eddy current penetrating the rotor conductor 8 at the rotation speed at which the torque drops during startup.
- the outer peripheral side is the upper side in the figure on the right side of FIG. 1.
- the rotor conductor 8 is formed by press-fitting, for example, aluminum into the rotor slot 7 by a die casting method. Therefore, the rotor conductor 8 has an integral structure without being divided by a portion (for example, a slit) other than aluminum in the rotor slot 7. However, bubbles generated by die casting may be generated in the rotor conductor 8.
- the double cage rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a third portion 83 having a width in the circumferential direction of the rotor conductor 8 smaller than the outer peripheral end of the first portion 81 on the outer peripheral side of the first portion 81.
- a fourth portion 84 is provided, which is connected to the outer peripheral side of the portion 83 of 3 and whose circumferential width of the rotor conductor 8 increases toward the outer peripheral side of the rotor conductor 8.
- FIG. 2 is a diagram showing an equivalent circuit of a squirrel-cage induction motor. Using the equivalent circuit of the squirrel-cage induction motor, the relational expression between the torque and the equivalent circuit constant is derived.
- V is the phase voltage (V)
- I2' is the secondary current (A)
- r1 is the primary resistance ( ⁇ )
- r2' is the secondary resistance ( ⁇ )
- xM is the exciting reactance ( ⁇ )
- rM is the iron loss resistance (rM).
- x1 is the primary leakage reactance ( ⁇ )
- x2' is the secondary leakage reactance ( ⁇ )
- s is the slip (pu).
- the secondary input P2 (W) is represented by the following (Equation 1).
- P2 3 x I2'2 x r2' / s (Equation 1)
- the secondary copper loss W2 (W) is expressed by the following (Equation 2).
- W2 3 x I2'2 x r2'(Equation 2 )
- the output Pout (W) is a value obtained by subtracting the secondary copper loss from the secondary input, and is expressed by the following (Equation 3).
- the torque T (N ⁇ m) is the quotient obtained by dividing the output by the angular rotation speed ⁇ (rad / sec) of the rotor, and is expressed by the following (Equation 4).
- N rotational speed (r / min)
- Ns synchronous speed (r / min)
- FIG. 3 is a diagram showing a coefficient showing the influence of the skin effect.
- the vertical axis of FIG. 3 illustrates ⁇ 1 of (Equation 8) and ⁇ 2 of (Equation 9), which are coefficients representing the influence of the skin effect, and the unit is (p.u.).
- the horizontal axis of FIG. 3 is ⁇ (the reciprocal ratio of the equivalent rotor conductor heights), and the unit is (p.u.).
- the horizontal axis ⁇ in FIG. 3 is the reciprocal ratio of the rotor conductor heights that are electromagnetically equivalent when the skin effect is taken into consideration.
- Equation 11 when the rotation speed is high (slide s is small), ⁇ is small, and as in (Equation 10), when ⁇ is small, ⁇ is small.
- equation 10 when the rotation speed is low, ⁇ is large.
- the equivalent rotor conductor height decreases as the rotation speed decreases and increases as the rotation speed increases.
- the rotation speed is equal to the synchronization speed (slip is 0)
- ⁇ is 0 as in (Equation 11)
- ⁇ is 0 as in (Equation 10)
- ⁇ is 0.
- the coefficients ⁇ 1 and ⁇ 2 representing the influence of the skin effect are 1, indicating a state in which there is no influence of the skin effect.
- FIG. 3 shows a case where the resistance ⁇ of the rotor conductor is uniform in the rotor conductor 8, and the rotor is, for example, like the rotor of the cage induction motor described in Patent Document 1. This does not apply when a plurality of rotor conductors made of a material having a sequentially higher resistance value are provided from the outer peripheral side, or when a slit for connecting the rotor slots is provided.
- the rotor conductor 8 is made of the same material (aluminum), and has an integral structure in the rotor slot 7 without being divided by a portion other than aluminum (for example, a slit), and has a resistivity ⁇ of the rotor conductor. Is uniform in the rotor conductor 8.
- FIG. 4 is a diagram showing a rotation speed ( ⁇ ) at which a drop in torque occurs. It is the relationship between the power n ( ⁇ ) (vertical axis) and ⁇ (horizontal axis) when the torque T is proportional to the power of ⁇ . We will derive ⁇ at the rotational speed at which the torque drops.
- n ( ⁇ ) may become positive. That is, when the ratio K2 of the secondary slot leakage to the total leakage reactance becomes large, the torque tends to drop.
- n ( ⁇ ) when K2 is 0.5 or more, n ( ⁇ ) may become positive. That is, when K2 becomes 0.5 or more, the torque drops.
- n ( ⁇ ) is maximum when ⁇ is 2.2. K2 is at most 1, and when K2 is 1, n ( ⁇ ) is maximum when ⁇ is 2.6.
- the constant N (skin depth ⁇ ) calculated based on the depth of the eddy current penetrating the rotor conductor at the rotation speed at which the torque drops during startup is in the range of 0.38 or more and 0.45 or less. As a typical example of the range, the case where the constant N (skin depth ⁇ ) is 0.42 will be described.
- the torque drop can be improved by providing a constriction at a position 0.42 times that of h0, and this dimensional ratio can be determined when the material and shape of the rotor conductor and the power supply frequency are changed. However, it may be kept at a constant value without adjustment.
- Patent Document 1 in order to improve the torque characteristics during starting, for example, as in Patent Document 1, the radial height and the circumferential width of the slit are set according to the material and shape of the rotor conductor and the frequency of the power supply. , Need to be adjusted appropriately. Further, as in Patent Document 2, it is necessary to appropriately adjust the positions where the first slot and the second slot are arranged according to the material of the rotor conductor and the drive frequency (power supply frequency). From Patent Document 1 and Patent Document 2, even when the material and shape of the rotor conductor and the power supply frequency are changed, the torque characteristics during starting are maintained at a constant value without adjusting the dimensional ratio of the rotor conductor. There is no idea of this example that it can be improved.
- FIG. 5 is a computer experiment result of the starting torque.
- both h1 / h0 and h2 / h0 are smaller than 0.42 (when the constriction position is shallow on the outer peripheral side)
- both h1 / h0 and h2 / h0 are from 0.42. It also indicates when the size is large (when the constriction position is deep on the inner peripheral side) and when the constriction is not provided.
- the target machine has 4 poles, the rotor conductor 8 is assumed to be aluminum, the resistivity ⁇ is 3.65 ⁇ 10 -8 ⁇ ⁇ m, the rotor conductor height h0 is 51 mm, and the power supply frequency f is 50 Hz.
- the torque is rated at 100%.
- the drop in torque is improved, the torque is larger on the high rotation speed side than when the constriction position is shallow on the outer peripheral side, and the torque is larger on the low rotation speed side than when the constriction position is deep on the inner peripheral side. Is getting bigger.
- the minimum torque value is large in both the case where the constriction position is shallow on the outer peripheral side and the case where the constriction position is deep on the inner peripheral side.
- Example 2 will be described. The points common to the first embodiment will be omitted. Most cage induction motors are used in the range of rotational speeds from 0 to synchronous speeds. The slip s is 1 when the rotation speed is 0, and 0 when the rotation speed is equal to the synchronization speed.
- Equation 17 When the slip is greater than 1, (Equation 17) is expressed by the following (Equation 18). 1 ⁇ 2 / (4 ⁇ 2 ⁇ 10 -7 ⁇ f ⁇ h0 2 ) (Equation 18) When h0 is derived from (Equation 18), it is expressed by the following (Equation 19).
- Equation 19 The ⁇ at which the torque drop occurs is 2.2 to 2.6, and when 2.4, which is the average value thereof, is substituted into (Equation 19), it is expressed by the following (Equation 20). h0 ⁇ 1200 ( ⁇ / f) 0.5 (Equation 20)
- the torque is obtained by adjusting the rotor conductor height h0 according to the resistivity ⁇ of the rotor conductor 8 whose unit is ⁇ ⁇ m and the power supply frequency f whose unit is Hz.
- the slip s at which the dip occurs can be made larger than 1. As a result, the drop in torque can be suppressed.
- FIG. 6 is a diagram showing a drive system of a squirrel-cage induction motor as the third embodiment. The points common to the above examples will be omitted.
- the commercial voltage and frequency are directly input from the power supply 101 to the cage induction motor 100 and started.
- the cage induction motor 100 is mechanically connected to the load equipment 102.
- the squirrel-cage induction motor can be started by directly turning on the commercial power supply, but the current during starting is as large as 6 to 10 times the rated current, and the capacity of the power supply equipment is the current at the time of starting. It depends on the starting time.
- the squirrel-cage induction motor according to the present invention the drop in torque can be suppressed, the starting time can be shortened, and the capacity of the power supply equipment can be reduced.
- FIG. 7 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the fourth embodiment. The points common to the above examples will be omitted.
- the positions of the first portion 81 and the second portion 82 of the rotor conductor 8 are the boundary positions between the first portion 81 and the second portion 82 (the circumferential width of the first portion 81 and the second portion 82). Is not always required to be 0.42 times the rotor conductor height h0). For example, even if the second portion 82 has a position of 0.42 times as shown in FIG. 7 (a), the first portion 81 has a position of 0.42 times as shown in FIG. 7 (b). There may be a position.
- the rotor conductors 8 shown in FIGS. 7 (a) and 7 (b) may be arranged alternately in the circumferential direction. By arranging them alternately, the effect of suppressing the drop in torque can be obtained in a wider rotation speed range.
- FIG. 8 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the fifth embodiment. The points common to the above examples will be omitted.
- the rotor conductor 8 has a section in which the width in the circumferential direction is constant between the end on the inner peripheral side of the first portion 81 and the end on the outer peripheral side of the second portion 82. Since the section with a small width in the circumferential direction becomes large, the effect of suppressing the drop in torque is enhanced.
- FIG. 9 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the sixth embodiment. The points common to the above examples will be omitted.
- the rotor conductor 8 has a stepwise width in the circumferential direction. Since the section having a small width in the circumferential direction becomes larger than the gradual change, the effect of suppressing the drop in torque is enhanced.
- FIG. 10 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the seventh embodiment. The points common to the above examples will be omitted.
- Example 7 will be described using a convex rotor, which is an example of a rotor of a cage induction motor.
- the convex rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a third portion 83 having a circumferential width of the rotor conductor 8 smaller than the outer peripheral end of the first portion 81 on the outer peripheral side of the first portion 81. ..
- a seventh portion 87 which is continuous with the inner peripheral side of the third portion and whose circumferential width of the rotor conductor 8 increases toward the inner peripheral side of the rotor conductor.
- the current when the slip is large is reduced. Since the position where the circumferential width of the rotor conductor 8 is reduced is larger toward the outer peripheral side of the rotor conductor 8, the effect is greater. By providing the portion 82 of 2, the current when the slip is large is reduced.
- FIG. 11 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the eighth embodiment. The points common to the above examples will be omitted.
- Example 8 will be described using a diamond-shaped rotor, which is an example of a rotor of a squirrel-cage induction motor.
- the diamond-shaped rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a fifth portion 85 on the outer peripheral side of the first portion 81 in which the width in the circumferential direction of the rotor conductor 8 gradually decreases toward the outer peripheral side.
- the circumferential width at the outer peripheral end of the fifth portion 85 is smaller than the circumferential width at the outer peripheral end of the first portion 81.
- the current when the slip is large is reduced. Since the position where the circumferential width of the rotor conductor 8 is reduced is larger toward the outer peripheral side of the rotor conductor 8, the effect is greater. By providing the portion 82 of the above, the current when the slip is large is reduced.
- FIG. 12 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the ninth embodiment. The points common to the above examples will be omitted.
- Example 9 will be described using an eggplant-shaped rotor, which is an example of a rotor of a cage-shaped induction motor.
- the eggplant-shaped rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a sixth portion 86 on the outer peripheral side of the first portion 81 in which the width in the circumferential direction of the rotor conductor 8 gradually increases toward the outer peripheral side.
- the circumferential width at the outer peripheral end of the sixth portion 86 is larger than the circumferential width at the outer peripheral end of the first portion 81.
- the first portion 81 and the second portion 82 are provided on the squirrel-cage rotor having a smaller circumferential width section of the rotor conductor 8 than the double cage rotor, the convex rotor, and the rhombic rotor. As a result, the power ratio when the slip is small is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Induction Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Types And Forms Of Lifts (AREA)
- Control Of Multiple Motors (AREA)
Abstract
This rotor has a rotor conductor, wherein the rotor conductor has: a first region in which the width of the rotor conductor in the circumferential direction decreases toward the inner circumferential side of the rotor conductor; and a second region which continues into the inner circumferential side of the first region and in which the width of the rotor conductor in the circumferential direction increases toward the inner circumferential side of the rotor conductor. When the distance from the outer circumferential side edge of the rotor conductor to the inner circumferential side edge of the rotor conductor is denoted by h0, the distance from the outer circumferential side edge of the rotor conductor to the outer circumferential side edge of the first region is denoted by h1, the distance from the outer circumferential side edge of the rotor conductor to the inner circumferential side edge of the second region is denoted by h2, and a constant N is a constant calculated on the basis of the depth of eddy current penetrating into the rotor conductor at a rotational speed at which a torque drop occurs during start-up, the rotor conductor satisfies the relationship of h1/h0 < N < h2/h0.
Description
本発明は、回転子に関する。
The present invention relates to a rotor.
かご形誘導電動機は、商用電源を直に投入して始動できるが、始動中のトルクは一定値ではなく、ある回転速度で落ち込みが発生し、加速の停滞を引き起こす場合がある。かご形誘導電動機の始動中のトルク特性が改善される回転子構造が知られている。
The squirrel-cage induction motor can be started by directly turning on the commercial power, but the torque during starting is not a constant value, and a drop occurs at a certain rotation speed, which may cause stagnation of acceleration. A rotor structure is known that improves the torque characteristics during starting of a cage induction motor.
例えば、特許文献1に記載されるかご形誘導電動機の回転子は、回転子に、外周側より順次抵抗値の高い材質から成る複数の回転子導体と、回転子導体が配置される収容孔(回転子スロット)と、収容孔(回転子スロット)を連結するスリットが設けられている。
For example, in the rotor of the cage induction motor described in Patent Document 1, a plurality of rotor conductors made of a material having a sequentially higher resistance value from the outer peripheral side and a storage hole (in which the rotor conductors are arranged) are arranged in the rotor. A slit is provided to connect the rotor slot) and the accommodating hole (rotor slot).
特許文献2に記載されているかご形誘導電動機の回転子は、第1のスロットと、第1のスロットよりも回転子鉄心の外周面の側に位置して第1のスロットと繋がれた第2のスロットを有し、電流の駆動周波数成分の表皮深さよりも、第1のスロットは外周面の側とは逆側に、第2のスロットは外周面の側に配置されている。
The rotor of the cage-shaped induction motor described in Patent Document 2 is located on the outer peripheral surface side of the rotor core with respect to the first slot and the first slot, and is connected to the first slot. It has two slots, and the first slot is arranged on the side opposite to the outer peripheral surface side and the second slot is arranged on the outer peripheral surface side with respect to the skin depth of the current drive frequency component.
特許文献1のかご形誘導電動機の回転子は、始動中に生じるトルクの落ち込みが抑制されるが、スリットの径方向高さと周方向幅を、回転子導体の材質や形状、電源の周波数に応じて、適切に調整する必要がある。
The rotor of the cage-type induction motor of Patent Document 1 suppresses the drop in torque that occurs during starting, but the radial height and circumferential width of the slit depend on the material and shape of the rotor conductor and the frequency of the power supply. It is necessary to make appropriate adjustments.
特許文献2のかご形誘導電動機の回転子は、始動トルクを増大しつつ、駆動効率を向上させられるが、第1のスロットと第2のスロットの配置する位置を、回転子導体の材質や、駆動周波数(電源周波数)に応じて、適切に調整する必要がある。
The rotor of the cage-type induction motor of Patent Document 2 can improve the drive efficiency while increasing the starting torque, but the positions where the first slot and the second slot are arranged are determined by the material of the rotor conductor and the position. It is necessary to adjust appropriately according to the drive frequency (power supply frequency).
本発明の目的は、回転子導体の寸法を、材質や形状並びに電源周波数に応じて調整することなく、回転子導体の寸法比を一定値としたまま、始動中に生じるトルクの落ち込みを抑制できる、回転子を提供することにある。
An object of the present invention is to suppress a drop in torque that occurs during starting while keeping the size ratio of the rotor conductor constant without adjusting the dimensions of the rotor conductor according to the material, shape, and power supply frequency. , To provide a rotor.
本発明の好ましい一例としては、回転子導体を有する回転子であって、
前記回転子導体は、
前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって小さくなる第1の部位と、
前記第1の部位の内周側と連なって前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって大きくなる第2の部位とを有し、
前記回転子導体の外周側の端から前記回転子導体の内周側の端までの距離をh0、
前記回転子導体の外周側の端から前記第1の部位の外周側の端までの距離をh1、
前記回転子導体の外周側の端から前記第2の部位の内周側の端までの距離をh2とし、
定数Nは、起動中にトルクの落ち込みが生じる回転速度において前記回転子導体に浸透する渦電流の深さに基づいて算出される定数である場合において、
前記回転子導体は、
h1/h0<N<h2/h0の関係を満たす回転子である。 A preferred example of the present invention is a rotor having a rotor conductor.
The rotor conductor is
A first portion where the circumferential width of the rotor conductor decreases toward the inner peripheral side of the rotor conductor, and
It has a second portion that is continuous with the inner peripheral side of the first portion and whose circumferential width of the rotor conductor increases toward the inner peripheral side of the rotor conductor.
The distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the rotor conductor is h0.
The distance from the outer peripheral end of the rotor conductor to the outer peripheral end of the first portion is h1.
Let h2 be the distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the second portion.
The constant N is a constant calculated based on the depth of the eddy current penetrating the rotor conductor at the rotation speed at which the torque drops during startup.
The rotor conductor is
It is a rotor that satisfies the relationship of h1 / h0 <N <h2 / h0.
前記回転子導体は、
前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって小さくなる第1の部位と、
前記第1の部位の内周側と連なって前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって大きくなる第2の部位とを有し、
前記回転子導体の外周側の端から前記回転子導体の内周側の端までの距離をh0、
前記回転子導体の外周側の端から前記第1の部位の外周側の端までの距離をh1、
前記回転子導体の外周側の端から前記第2の部位の内周側の端までの距離をh2とし、
定数Nは、起動中にトルクの落ち込みが生じる回転速度において前記回転子導体に浸透する渦電流の深さに基づいて算出される定数である場合において、
前記回転子導体は、
h1/h0<N<h2/h0の関係を満たす回転子である。 A preferred example of the present invention is a rotor having a rotor conductor.
The rotor conductor is
A first portion where the circumferential width of the rotor conductor decreases toward the inner peripheral side of the rotor conductor, and
It has a second portion that is continuous with the inner peripheral side of the first portion and whose circumferential width of the rotor conductor increases toward the inner peripheral side of the rotor conductor.
The distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the rotor conductor is h0.
The distance from the outer peripheral end of the rotor conductor to the outer peripheral end of the first portion is h1.
Let h2 be the distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the second portion.
The constant N is a constant calculated based on the depth of the eddy current penetrating the rotor conductor at the rotation speed at which the torque drops during startup.
The rotor conductor is
It is a rotor that satisfies the relationship of h1 / h0 <N <h2 / h0.
本発明によれば、回転子導体の寸法を、材質や形状並びに電源周波数に応じて調整することなく、回転子導体の寸法比を一定値としたまま、始動中に生じるトルクの落ち込みを抑制できる。
According to the present invention, it is possible to suppress a drop in torque that occurs during starting while keeping the size ratio of the rotor conductor constant without adjusting the dimensions of the rotor conductor according to the material, shape, and power supply frequency. ..
以下、実施例について図面を参照しながら説明する。
Hereinafter, examples will be described with reference to the drawings.
かご形誘導電動機の回転子の一例である二重かご形回転子を用いて実施例1を説明する。図1の左側は、かご形誘導電動機の主要部を示す図であり、図1の右側は回転子の1スロット分の拡大図である。実施例1のかご形誘導電動機は、固定子1と回転子5とがギャップ10を隔てて径方向Rに対向する回転電機である。
Example 1 will be described using a double cage rotor, which is an example of a rotor of a cage induction motor. The left side of FIG. 1 is a diagram showing a main part of a squirrel-cage induction motor, and the right side of FIG. 1 is an enlarged view of one slot of a rotor. The cage-shaped induction motor of the first embodiment is a rotary electric machine in which the stator 1 and the rotor 5 face each other in the radial direction R with a gap 10 interposed therebetween.
固定子1は、固定子鉄心2と、固定子鉄心2に形成される固定子スロット3に巻装された固定子巻線4を備える。
The stator 1 includes a stator core 2 and a stator winding 4 wound around a stator slot 3 formed in the stator core 2.
回転子5は、回転子鉄心6と、回転子鉄心6に形成される回転子スロット7に配置される回転子導体8と、回転子鉄心6の内周側に配置されたシャフト9を備える。
The rotor 5 includes a rotor core 6, a rotor conductor 8 arranged in a rotor slot 7 formed in the rotor core 6, and a shaft 9 arranged on the inner peripheral side of the rotor core 6.
図1の右側に示すように、径方向Rに延びた回転子導体8は、回転子導体8の周方向Xの幅が回転子導体8の内周側に向かって小さくなる第1の部位81と、第1の部位81の内周側と連なって回転子導体8の周方向の幅が回転子導体8の内周側に向かって大きくなる第2の部位82とを備える。内周側とは、図1の右側の図において、下方の側である。
As shown on the right side of FIG. 1, in the rotor conductor 8 extending in the radial direction R, the width of the circumferential direction X of the rotor conductor 8 becomes smaller toward the inner peripheral side of the rotor conductor 8 first portion 81. And a second portion 82 which is continuous with the inner peripheral side of the first portion 81 and whose circumferential width of the rotor conductor 8 increases toward the inner peripheral side of the rotor conductor 8. The inner peripheral side is the lower side in the figure on the right side of FIG.
第1の部位81と第2の部位82を含む回転子導体8は、回転子導体8の外周側の端から回転子導体8の内周側の端までの距離をh0、回転子導体8の外周側の端から第1の部位81の外周側の端までの距離をh1、回転子導体8の外周側の端から第2の部位82の内周側の端までの距離をh2とした場合に、h1/h0<N<h2/h0(Nは定数)の関係を満たす。ここで、定数Nは、起動中にトルクの落ち込みが生じる回転速度において回転子導体8に浸透する渦電流の深さに基づいて算出される。また、外周側とは、図1の右側の図において、上方の側である。
In the rotor conductor 8 including the first portion 81 and the second portion 82, the distance from the outer peripheral end of the rotor conductor 8 to the inner peripheral end of the rotor conductor 8 is h0, and the rotor conductor 8 has a distance of h0. When the distance from the outer peripheral end to the outer peripheral end of the first portion 81 is h1, and the distance from the outer peripheral end of the rotor conductor 8 to the inner peripheral end of the second portion 82 is h2. In addition, the relationship of h1 / h0 <N <h2 / h0 (N is a constant) is satisfied. Here, the constant N is calculated based on the depth of the eddy current penetrating the rotor conductor 8 at the rotation speed at which the torque drops during startup. Further, the outer peripheral side is the upper side in the figure on the right side of FIG. 1.
回転子導体8は、回転子スロット7にダイカスト製法によって例えばアルミを圧入して成形される。したがって、回転子導体8は、回転子スロット7の中でアルミ以外の部位(例えばスリット)により分断されることなく一体の構造となる。ただし、ダイカストで生まれる気泡は、回転子導体8に発生することもある。
The rotor conductor 8 is formed by press-fitting, for example, aluminum into the rotor slot 7 by a die casting method. Therefore, the rotor conductor 8 has an integral structure without being divided by a portion (for example, a slit) other than aluminum in the rotor slot 7. However, bubbles generated by die casting may be generated in the rotor conductor 8.
実施例1では、二重かご形回転子に、第1の部位81と第2の部位82を設けている。すなわち、回転子導体8は、第1の部位81よりも外周側に回転子導体8の周方向の幅が第1の部位81の外周側の端よりも小さい第3の部位83を備え、第3の部位83の外周側と連なって回転子導体8の周方向の幅が回転子導体8の外周側に向かって大きくなる第4の部位84を備えている。
In the first embodiment, the double cage rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a third portion 83 having a width in the circumferential direction of the rotor conductor 8 smaller than the outer peripheral end of the first portion 81 on the outer peripheral side of the first portion 81. A fourth portion 84 is provided, which is connected to the outer peripheral side of the portion 83 of 3 and whose circumferential width of the rotor conductor 8 increases toward the outer peripheral side of the rotor conductor 8.
図2は、かご形誘導電動機の等価回路を示す図である。かご形誘導電動機の等価回路を用いて、トルクと等価回路定数の関係式を導出する。
FIG. 2 is a diagram showing an equivalent circuit of a squirrel-cage induction motor. Using the equivalent circuit of the squirrel-cage induction motor, the relational expression between the torque and the equivalent circuit constant is derived.
Vは相電圧(V)、I2’は二次電流(A)、r1は一次抵抗(Ω)、r2’は二次抵抗(Ω)、xMは励磁リアクタンス(Ω)、rMは鉄損抵抗(Ω)、x1は一次漏れリアクタンス(Ω)、x2’は二次漏れリアクタンス(Ω)、sはすべり(p.u.)である。
V is the phase voltage (V), I2'is the secondary current (A), r1 is the primary resistance (Ω), r2'is the secondary resistance (Ω), xM is the exciting reactance (Ω), and rM is the iron loss resistance (rM). Ω), x1 is the primary leakage reactance (Ω), x2'is the secondary leakage reactance (Ω), and s is the slip (pu).
二次入力P2(W)は、次の(式1)で表される。
P2 = 3 × I2'2 × r2'/ s (式1) The secondary input P2 (W) is represented by the following (Equation 1).
P2 = 3 x I2'2 x r2' / s (Equation 1)
P2 = 3 × I2'2 × r2'/ s (式1) The secondary input P2 (W) is represented by the following (Equation 1).
P2 = 3 x I2'2 x r2' / s (Equation 1)
二次銅損W2(W)は次の(式2)で表される。
W2 = 3 × I2'2 × r2' (式2) The secondary copper loss W2 (W) is expressed by the following (Equation 2).
W2 = 3 x I2'2 x r2'(Equation 2 )
W2 = 3 × I2'2 × r2' (式2) The secondary copper loss W2 (W) is expressed by the following (Equation 2).
W2 = 3 x I2'2 x r2'(Equation 2 )
出力Pout(W)は、二次入力から二次銅損を差し引いた値であり、次の(式3)で表される。
Pout = P2 - W2
= 3 × I2'2 × r2'/ s - 3 × I2'2 × r2'
= 3 × I2'2 × r2' (1 / s - 1)
= 3 × I2'2 × r2' (1 - s) / s (式3) The output Pout (W) is a value obtained by subtracting the secondary copper loss from the secondary input, and is expressed by the following (Equation 3).
Pout = P2-W2
= 3 × I2'2 × r2' / s - 3 × I2' 2 × r2'
= 3 × I2'2 × r2'(1 / s - 1)
= 3 × I2'2 × r2' (1 - s) / s (Equation 3)
Pout = P2 - W2
= 3 × I2'2 × r2'/ s - 3 × I2'2 × r2'
= 3 × I2'2 × r2' (1 / s - 1)
= 3 × I2'2 × r2' (1 - s) / s (式3) The output Pout (W) is a value obtained by subtracting the secondary copper loss from the secondary input, and is expressed by the following (Equation 3).
Pout = P2-W2
= 3 × I2'2 × r2' / s - 3 × I2' 2 × r2'
= 3 × I2'2 × r2'(1 / s - 1)
= 3 × I2'2 × r2' (1 - s) / s (Equation 3)
トルクT(N・m)は、出力を回転子の角回転速度ω(rad/sec)で割った商であり、次の(式4)で表される。
T = Pout / ω
= Pout / (2πN / 60)
= Pout / (2πNs (1 - s) / 60)
= (3 × I2'2 × r2' (1 - s) / s) / (2πNs (1 - s) / 60)
= (3 × I2'2 × r2' / s) / (2πNs / 60)
= (90 × I2'2 × r2' / s) / (πNs)
∝ I2'2 × (r2' / s) (式4)
ここに、N: 回転速度 (r/min)、Ns: 同期速度 (r/min)
トルクの落ち込みを改善させたいすべりsの範囲では、I2’はx1+x2’に概ね反比例する。したがって、トルクTの比例関係は、次の(式5)で表される。
T ∝ (r2' / s) / (x1 + x2')2 (式5) The torque T (N · m) is the quotient obtained by dividing the output by the angular rotation speed ω (rad / sec) of the rotor, and is expressed by the following (Equation 4).
T = Pout / ω
= Pout / (2πN / 60)
= Pout / (2πNs (1-s) / 60)
= (3 × I2'2 × r2' (1 - s) / s) / (2πNs (1 - s) / 60)
= (3 x I2'2 x r2' / s) / (2πNs / 60)
= (90 x I2'2 x r2' / s) / (πNs)
∝ I2'2 × (r2' / s) (Expression 4)
Here, N: rotational speed (r / min), Ns: synchronous speed (r / min)
In the range of slip s that improves the torque drop, I2'is approximately inversely proportional to x1 + x2'. Therefore, the proportional relationship of the torque T is expressed by the following (Equation 5).
T ∝ (r2'/ s) / (x1 + x2') 2 (Equation 5)
T = Pout / ω
= Pout / (2πN / 60)
= Pout / (2πNs (1 - s) / 60)
= (3 × I2'2 × r2' (1 - s) / s) / (2πNs (1 - s) / 60)
= (3 × I2'2 × r2' / s) / (2πNs / 60)
= (90 × I2'2 × r2' / s) / (πNs)
∝ I2'2 × (r2' / s) (式4)
ここに、N: 回転速度 (r/min)、Ns: 同期速度 (r/min)
トルクの落ち込みを改善させたいすべりsの範囲では、I2’はx1+x2’に概ね反比例する。したがって、トルクTの比例関係は、次の(式5)で表される。
T ∝ (r2' / s) / (x1 + x2')2 (式5) The torque T (N · m) is the quotient obtained by dividing the output by the angular rotation speed ω (rad / sec) of the rotor, and is expressed by the following (Equation 4).
T = Pout / ω
= Pout / (2πN / 60)
= Pout / (2πNs (1-s) / 60)
= (3 × I2'2 × r2' (1 - s) / s) / (2πNs (1 - s) / 60)
= (3 x I2'2 x r2' / s) / (2πNs / 60)
= (90 x I2'2 x r2' / s) / (πNs)
∝ I2'2 × (r2' / s) (Expression 4)
Here, N: rotational speed (r / min), Ns: synchronous speed (r / min)
In the range of slip s that improves the torque drop, I2'is approximately inversely proportional to x1 + x2'. Therefore, the proportional relationship of the torque T is expressed by the following (Equation 5).
T ∝ (r2'/ s) / (x1 + x2') 2 (Equation 5)
図3は、表皮効果の影響を表す係数を示す図である。図3の縦軸は、表皮効果の影響を表す係数である後述する(式8)のφ1と(式9)のφ2を図示したものであり、単位は(p.u.)である。図3の横軸はξ(等価的な回転子導体高さの逆数比 )で単位は(p.u.)である。
FIG. 3 is a diagram showing a coefficient showing the influence of the skin effect. The vertical axis of FIG. 3 illustrates φ1 of (Equation 8) and φ2 of (Equation 9), which are coefficients representing the influence of the skin effect, and the unit is (p.u.). The horizontal axis of FIG. 3 is ξ (the reciprocal ratio of the equivalent rotor conductor heights), and the unit is (p.u.).
トルクの落ち込みを改善させたいすべりsの範囲では、回転子導体8に浸透する渦電流の深さは、表皮効果によって回転子導体8のh0よりも浅くなる。表皮効果の影響を考慮すると、二次抵抗r2’と漏れリアクタンスxは、次の(式6)と(式7)で表される。
In the range of slip s that improves the drop in torque, the depth of the eddy current that penetrates the rotor conductor 8 becomes shallower than h0 of the rotor conductor 8 due to the skin effect. Considering the influence of the skin effect, the secondary resistance r2'and the leak reactance x are expressed by the following (Equation 6) and (Equation 7).
r2' = φ1 × r2'dc (式6)
x = x1 + x2’
= φ2 × xdc × K2 + xdc × (1 - K2)
= ((φ2 - 1) K2 + 1) × xdc (式7)
φ1 = ξ(sinh(2ξ) + sin(2ξ)) / (cosh(2ξ) - cos(2ξ)) (式8)
φ2 = 3(sinh(2ξ) - sin(2ξ)) / (cosh(2ξ) - cos(2ξ)) / (2ξ) (式9)
ξ = α × h0 (式10)
α = 2π(10-7 × sf/ρ)0.5 (式11)
ここに、
φ1、φ2: 表皮効果の影響を表す係数 (p.u.)
r2'dc: すべり0の二次抵抗 (Ω)
xdc: すべり0の漏れリアクタンス (Ω)
K2: 漏れリアクタンス全体に占める二次スロット漏れの比 (p.u.)
ξ: 等価的な回転子導体高さの逆数比 (p.u.)
α: 表皮深さを表す数 (1/m)
h0: 回転子導体高さ (m)
s: すべり (p.u.)
f: 電源周波数 (Hz)
ρ: 回転子導体の抵抗率 (Ω・m) r2'= φ1 × r2'dc (Equation 6)
x = x1 + x2'
= φ2 × xdc × K2 + xdc × (1 - K2)
= ((φ2-1) K2 + 1) × xdc (Equation 7)
φ1 = ξ (sinh (2ξ) + sin (2ξ)) / (cosh (2ξ) - cos (2ξ)) (Equation 8)
φ2 = 3 (sinh (2ξ) - sin (2ξ)) / (cosh (2ξ) - cos (2ξ)) / (2ξ) (Equation 9)
ξ = α × h0 (Equation 10)
α = 2π (10 -7 × sf / ρ) 0.5 (Equation 11)
Here,
φ1, φ2: Coefficient representing the effect of skin effect (pu)
r2'dc: Secondary resistance with zero slip (Ω)
xdc: Leakage reactance with zero slip (Ω)
K2: Ratio of secondary slot leakage to total leakage reactance (pu)
ξ: Reciprocal ratio of equivalent rotor conductor heights (pu)
α: Number representing the depth of the epidermis (1 / m)
h0: Rotor conductor height (m)
s: slip (pu)
f: Power frequency (Hz)
ρ: resistivity of rotor conductor (Ω ・ m)
x = x1 + x2’
= φ2 × xdc × K2 + xdc × (1 - K2)
= ((φ2 - 1) K2 + 1) × xdc (式7)
φ1 = ξ(sinh(2ξ) + sin(2ξ)) / (cosh(2ξ) - cos(2ξ)) (式8)
φ2 = 3(sinh(2ξ) - sin(2ξ)) / (cosh(2ξ) - cos(2ξ)) / (2ξ) (式9)
ξ = α × h0 (式10)
α = 2π(10-7 × sf/ρ)0.5 (式11)
ここに、
φ1、φ2: 表皮効果の影響を表す係数 (p.u.)
r2'dc: すべり0の二次抵抗 (Ω)
xdc: すべり0の漏れリアクタンス (Ω)
K2: 漏れリアクタンス全体に占める二次スロット漏れの比 (p.u.)
ξ: 等価的な回転子導体高さの逆数比 (p.u.)
α: 表皮深さを表す数 (1/m)
h0: 回転子導体高さ (m)
s: すべり (p.u.)
f: 電源周波数 (Hz)
ρ: 回転子導体の抵抗率 (Ω・m) r2'= φ1 × r2'dc (Equation 6)
x = x1 + x2'
= φ2 × xdc × K2 + xdc × (1 - K2)
= ((φ2-1) K2 + 1) × xdc (Equation 7)
φ1 = ξ (sinh (2ξ) + sin (2ξ)) / (cosh (2ξ) - cos (2ξ)) (Equation 8)
φ2 = 3 (sinh (2ξ) - sin (2ξ)) / (cosh (2ξ) - cos (2ξ)) / (2ξ) (Equation 9)
ξ = α × h0 (Equation 10)
α = 2π (10 -7 × sf / ρ) 0.5 (Equation 11)
Here,
φ1, φ2: Coefficient representing the effect of skin effect (pu)
r2'dc: Secondary resistance with zero slip (Ω)
xdc: Leakage reactance with zero slip (Ω)
K2: Ratio of secondary slot leakage to total leakage reactance (pu)
ξ: Reciprocal ratio of equivalent rotor conductor heights (pu)
α: Number representing the depth of the epidermis (1 / m)
h0: Rotor conductor height (m)
s: slip (pu)
f: Power frequency (Hz)
ρ: resistivity of rotor conductor (Ω ・ m)
図3の横軸ξは、表皮効果を考慮したときに電磁気的に等価になる回転子導体高さの逆数比である。(式11)のように、回転速度が高い(すべりsが小さい)とαが小さく、(式10)のように、αが小さいとξは小さい。同様に、回転速度が低いとξは大きい。
The horizontal axis ξ in FIG. 3 is the reciprocal ratio of the rotor conductor heights that are electromagnetically equivalent when the skin effect is taken into consideration. As in (Equation 11), when the rotation speed is high (slide s is small), α is small, and as in (Equation 10), when α is small, ξ is small. Similarly, when the rotation speed is low, ξ is large.
すなわち、等価的な回転子導体高さは、回転速度の減少に伴い小さくなり、回転速度の増加に伴い大きくなる。回転速度が同期速度に等しい(すべりが0)ときに、(式11)のようにαは0で、(式10)のようにαが0であればξは0となる。ξが0のときは、表皮効果の影響を表す係数φ1とφ2は1であり、表皮効果の影響がない状態を表す。
That is, the equivalent rotor conductor height decreases as the rotation speed decreases and increases as the rotation speed increases. When the rotation speed is equal to the synchronization speed (slip is 0), α is 0 as in (Equation 11), and if α is 0 as in (Equation 10), ξ is 0. When ξ is 0, the coefficients φ1 and φ2 representing the influence of the skin effect are 1, indicating a state in which there is no influence of the skin effect.
図3は、回転子導体の抵抗率ρが、回転子導体8の中で均一な場合を表しており、例えば、特許文献1に記載されるかご形誘導電動機の回転子のように、回転子に、外周側より順次抵抗値の高い材質から成る複数の回転子導体が設けられている場合や、回転子スロットを連結するスリットが設けられている場合は、当てはまらない。
FIG. 3 shows a case where the resistance ρ of the rotor conductor is uniform in the rotor conductor 8, and the rotor is, for example, like the rotor of the cage induction motor described in Patent Document 1. This does not apply when a plurality of rotor conductors made of a material having a sequentially higher resistance value are provided from the outer peripheral side, or when a slit for connecting the rotor slots is provided.
回転子導体8は、全て同じ材質(アルミ)で構成され、回転子スロット7の中でアルミ以外の部位(例えばスリット)により分断されることなく一体の構造であり、回転子導体の抵抗率ρが、回転子導体8の中で均一となる。
The rotor conductor 8 is made of the same material (aluminum), and has an integral structure in the rotor slot 7 without being divided by a portion other than aluminum (for example, a slit), and has a resistivity ρ of the rotor conductor. Is uniform in the rotor conductor 8.
図4は、トルクの落ち込みが生じる回転速度(ξ)を示す図である。トルクTがξの累乗に比例するとしたときの累乗数n(ξ)(縦軸)と、ξ(横軸)の関係である。トルクの落ち込みが生じる回転速度でのξを導出していく。
FIG. 4 is a diagram showing a rotation speed (ξ) at which a drop in torque occurs. It is the relationship between the power n (ξ) (vertical axis) and ξ (horizontal axis) when the torque T is proportional to the power of ξ. We will derive ξ at the rotational speed at which the torque drops.
(式5)に(式6)と(式7)を代入すると、トルクTの比例関係は、次の(式12)で表される。
T ∝ (r2' / s) / (x1 + x2')2
∝ (φ1 / ξ2) / ((φ2 - 1) K2 + 1)2 (式12)
(式12)のトルクTがξの累乗に比例するとしたとき、トルクTの比例関係は、次の(式13)で表される。
T ∝ ξn(ξ) (式13)
(式13)のn(ξ)が正の数のとき、回転速度の増加(ξの減少)に従いトルクTは減少し、n(ξ)が負の数のとき、回転速度の増加(ξの減少)に従いトルクTは増加する。したがって、(式13)のn(ξ)が正の数になる範囲が存在すると、トルクに落ち込みが生じることになる。 Substituting (Equation 6) and (Equation 7) into (Equation 5), the proportional relationship of the torque T is expressed by the following (Equation 12).
T ∝ (r2'/ s) / (x1 + x2') 2
∝ (φ1 / ξ 2 ) / ((φ2-1) K2 + 1) 2 (Equation 12)
Assuming that the torque T in (Equation 12) is proportional to the power of ξ, the proportional relationship of the torque T is expressed by the following (Equation 13).
T ∝ ξ n (ξ) (Equation 13)
When n (ξ) in (Equation 13) is a positive number, the torque T decreases as the rotation speed increases (decrease in ξ), and when n (ξ) is a negative number, the rotation speed increases (ξ). (Decrease), the torque T increases. Therefore, if there is a range in which n (ξ) in (Equation 13) is a positive number, the torque will drop.
T ∝ (r2' / s) / (x1 + x2')2
∝ (φ1 / ξ2) / ((φ2 - 1) K2 + 1)2 (式12)
(式12)のトルクTがξの累乗に比例するとしたとき、トルクTの比例関係は、次の(式13)で表される。
T ∝ ξn(ξ) (式13)
(式13)のn(ξ)が正の数のとき、回転速度の増加(ξの減少)に従いトルクTは減少し、n(ξ)が負の数のとき、回転速度の増加(ξの減少)に従いトルクTは増加する。したがって、(式13)のn(ξ)が正の数になる範囲が存在すると、トルクに落ち込みが生じることになる。 Substituting (Equation 6) and (Equation 7) into (Equation 5), the proportional relationship of the torque T is expressed by the following (Equation 12).
T ∝ (r2'/ s) / (x1 + x2') 2
∝ (φ1 / ξ 2 ) / ((φ2-1) K2 + 1) 2 (Equation 12)
Assuming that the torque T in (Equation 12) is proportional to the power of ξ, the proportional relationship of the torque T is expressed by the following (Equation 13).
T ∝ ξ n (ξ) (Equation 13)
When n (ξ) in (Equation 13) is a positive number, the torque T decreases as the rotation speed increases (decrease in ξ), and when n (ξ) is a negative number, the rotation speed increases (ξ). (Decrease), the torque T increases. Therefore, if there is a range in which n (ξ) in (Equation 13) is a positive number, the torque will drop.
図4のように、漏れリアクタンス全体に占める二次スロット漏れの比K2が大きくなると、n(ξ)が正になることがある。すなわち、漏れリアクタンス全体に占める二次スロット漏れの比K2が大きくなると、トルクに落ち込みが生じやすくなる。
As shown in FIG. 4, when the ratio K2 of the secondary slot leakage to the total leakage reactance becomes large, n (ξ) may become positive. That is, when the ratio K2 of the secondary slot leakage to the total leakage reactance becomes large, the torque tends to drop.
図4では、K2が0.5以上になると、n(ξ)が正になることがある。すなわち、K2が0.5以上になると、トルクに落ち込みが生じる。K2が0.5のとき、n(ξ)が最大となるのは、ξが2.2のときである。K2は最大でも1であり、K2が1のとき、n(ξ)が最大となるのは、ξが2.6のときである。
In Fig. 4, when K2 is 0.5 or more, n (ξ) may become positive. That is, when K2 becomes 0.5 or more, the torque drops. When K2 is 0.5, n (ξ) is maximum when ξ is 2.2. K2 is at most 1, and when K2 is 1, n (ξ) is maximum when ξ is 2.6.
このように、K2が0.5~1.0であり、ξが2.2~2.6のとき、n(ξ)が大きい(トルクの減少が大きい)。すなわち、ξが2.2~2.6となる回転速度でのトルクを優先して増加させられれば、トルクの落ち込みを効果的に改善できる。
回転子導体高さh0を1.0としたとき、表皮深さδは、次の(式14)で表される。
δ = 1/(αh0) = 1/ξ (式14)
K2が0.5~1.0であり、ξが2.2~2.6のとき、トルクの減少が大きくなり、ξが2.2のときの表皮深さは、(式14)にξが2.2を代入すると0.45であり、同様にξが2.6のときは0.38であり、ξが平均の2.4のときは0.42となる。 Thus, when K2 is 0.5 to 1.0 and ξ is 2.2 to 2.6, n (ξ) is large (the torque decrease is large). That is, if the torque at the rotation speed at which ξ is 2.2 to 2.6 is given priority and increased, the drop in torque can be effectively improved.
When the rotor conductor height h0 is 1.0, the skin depth δ is expressed by the following (Equation 14).
δ = 1 / (αh0) = 1 / ξ (Equation 14)
When K2 is 0.5 to 1.0 and ξ is 2.2 to 2.6, the decrease in torque becomes large, and when ξ is 2.2, the skin depth is 0.45 when ξ is substituted for 2.2 in (Equation 14). When ξ is 2.6, it is 0.38, and when ξ is 2.4 on average, it is 0.42.
回転子導体高さh0を1.0としたとき、表皮深さδは、次の(式14)で表される。
δ = 1/(αh0) = 1/ξ (式14)
K2が0.5~1.0であり、ξが2.2~2.6のとき、トルクの減少が大きくなり、ξが2.2のときの表皮深さは、(式14)にξが2.2を代入すると0.45であり、同様にξが2.6のときは0.38であり、ξが平均の2.4のときは0.42となる。 Thus, when K2 is 0.5 to 1.0 and ξ is 2.2 to 2.6, n (ξ) is large (the torque decrease is large). That is, if the torque at the rotation speed at which ξ is 2.2 to 2.6 is given priority and increased, the drop in torque can be effectively improved.
When the rotor conductor height h0 is 1.0, the skin depth δ is expressed by the following (Equation 14).
δ = 1 / (αh0) = 1 / ξ (Equation 14)
When K2 is 0.5 to 1.0 and ξ is 2.2 to 2.6, the decrease in torque becomes large, and when ξ is 2.2, the skin depth is 0.45 when ξ is substituted for 2.2 in (Equation 14). When ξ is 2.6, it is 0.38, and when ξ is 2.4 on average, it is 0.42.
起動中にトルクの落ち込みが生じる回転速度において、回転子導体に浸透する渦電流の深さに基づいて算出される定数N(表皮深さδ)は、0.38以上0.45以下の範囲となる。その範囲の典型例として定数N(表皮深さδ)が、0.42の場合について説明する。
The constant N (skin depth δ) calculated based on the depth of the eddy current penetrating the rotor conductor at the rotation speed at which the torque drops during startup is in the range of 0.38 or more and 0.45 or less. As a typical example of the range, the case where the constant N (skin depth δ) is 0.42 will be described.
以上より、本実施例は、表皮深さδが0.42となる回転速度でのトルクを優先して増加させるために、回転子導体8の外周側の端から回転子導体8の内周側の端までの距離h0に対して0.42倍の位置にくびれを設けて、r2’を効果的に大きくしてトルクの落ち込みを改善させる。
From the above, in this embodiment, in order to preferentially increase the torque at the rotation speed at which the skin depth δ is 0.42, the end on the outer peripheral side of the rotor conductor 8 to the end on the inner peripheral side of the rotor conductor 8 A constriction is provided at a position 0.42 times the distance h0 to effectively increase r2'to improve the torque drop.
本実施例は、h0に対して0.42倍の位置にくびれを設けることで、トルクの落ち込みを改善させることができ、この寸法比は、回転子導体の材質や形状並びに電源周波数を変更した場合においても、調整することなく一定値としたままで良い。
In this embodiment, the torque drop can be improved by providing a constriction at a position 0.42 times that of h0, and this dimensional ratio can be determined when the material and shape of the rotor conductor and the power supply frequency are changed. However, it may be kept at a constant value without adjustment.
一方、一般には、始動中のトルク特性を改善させるためには、例えば特許文献1のように、スリットの径方向高さと周方向幅を、回転子導体の材質や形状、電源の周波数に応じて、適切に調整する必要がある。また、特許文献2のように、第1のスロットと第2のスロットの配置する位置を、回転子導体の材質や、駆動周波数(電源周波数)に応じて、適切に調整する必要がある。特許文献1および特許文献2からは、回転子導体の材質や形状並びに電源周波数を変更した場合においても、回転子導体の寸法比を調整することなく一定値としたまま、始動中のトルク特性を改善できるという本実施例の発想はない。
On the other hand, in general, in order to improve the torque characteristics during starting, for example, as in Patent Document 1, the radial height and the circumferential width of the slit are set according to the material and shape of the rotor conductor and the frequency of the power supply. , Need to be adjusted appropriately. Further, as in Patent Document 2, it is necessary to appropriately adjust the positions where the first slot and the second slot are arranged according to the material of the rotor conductor and the drive frequency (power supply frequency). From Patent Document 1 and Patent Document 2, even when the material and shape of the rotor conductor and the power supply frequency are changed, the torque characteristics during starting are maintained at a constant value without adjusting the dimensional ratio of the rotor conductor. There is no idea of this example that it can be improved.
図5は、起動トルクの計算機実験結果である。図1の本実施例1のときと、h1/h0とh2/h0のどちらも0.42よりも小さいとき(くびれ位置が外周側に浅い場合)と、h1/h0とh2/h0のどちらも0.42よりも大きいとき(くびれ位置が内周側に深い場合)と、くびれを設けていないときを示している。対象機は4極で、回転子導体8はアルミを想定しており抵抗率ρは3.65×10-8Ω・mで、回転子導体高さh0は51mm、電源周波数fは50Hzである。トルクは定格を100%としている。
FIG. 5 is a computer experiment result of the starting torque. In the case of the first embodiment of FIG. 1, when both h1 / h0 and h2 / h0 are smaller than 0.42 (when the constriction position is shallow on the outer peripheral side), both h1 / h0 and h2 / h0 are from 0.42. It also indicates when the size is large (when the constriction position is deep on the inner peripheral side) and when the constriction is not provided. The target machine has 4 poles, the rotor conductor 8 is assumed to be aluminum, the resistivity ρ is 3.65 × 10 -8 Ω · m, the rotor conductor height h0 is 51 mm, and the power supply frequency f is 50 Hz. The torque is rated at 100%.
本実施例は、トルクの落ち込みが改善されており、くびれ位置が外周側に浅い場合よりも高回転速度側でトルクが大きく、くびれ位置が内周側に深い場合よりも低回転速度側でトルクが大きくなっている。それによって、本実施例は、くびれの位置が外周側に浅い場合と、くびれの位置が内周側に深い場合のどちらに対しても、トルクの最小値が大きくなっている。
In this embodiment, the drop in torque is improved, the torque is larger on the high rotation speed side than when the constriction position is shallow on the outer peripheral side, and the torque is larger on the low rotation speed side than when the constriction position is deep on the inner peripheral side. Is getting bigger. As a result, in this embodiment, the minimum torque value is large in both the case where the constriction position is shallow on the outer peripheral side and the case where the constriction position is deep on the inner peripheral side.
実施例2について説明する。実施例1と共通する点は説明を省略する。かご形誘導電動機の多くは、回転速度が0から同期速度までの範囲で使われる。すべりsは、回転速度が0のとき1で、回転速度が同期速度と等しいときは0である。
Example 2 will be described. The points common to the first embodiment will be omitted. Most cage induction motors are used in the range of rotational speeds from 0 to synchronous speeds. The slip s is 1 when the rotation speed is 0, and 0 when the rotation speed is equal to the synchronization speed.
したがって、トルクの落ち込みが生じるすべりsを1よりも大きくすることでも、トルクの落ち込みを抑制することができ、以下の様に、導出できる。
(式10)より、αは次の(式15)で表される。
α = ξ / h0 (式15)
(式11)より、すべりsは次の(式16)で表される。
s = ρα2 / (4π2×10-7×f) (式16)
(式16)に(式15)を代入すると、次の(式17)で表される。
s = ρξ2 / (4π2×10-7×f×h02) (式17)
すべりが1よりも大きいとき、(式17)は次の(式18)で表される。
1 < ρξ2 / (4π2×10-7×f×h02) (式18)
(式18)からh0を導出すると、次の(式19)で表される。
h0 < ρ0.5×ξ/ (2π×10-3.5×f0.5) (式19)
トルクの落ち込みが生じるξは2.2~2.6であり、その平均値となる2.4を(式19)に代入すると、次の(式20)で表される。
h0 < 1200(ρ/f)0.5 (式20) Therefore, even if the slip s at which the torque drop occurs is made larger than 1, the torque drop can be suppressed and can be derived as follows.
From (Equation 10), α is represented by the following (Equation 15).
α = ξ / h0 (Equation 15)
From (Equation 11), the slip s is represented by the following (Equation 16).
s = ρα 2 / (4π 2 × 10 -7 × f) (Equation 16)
Substituting (Equation 15) into (Equation 16), it is expressed by the following (Equation 17).
s = ρξ 2 / (4π 2 × 10 -7 × f × h0 2 ) (Equation 17)
When the slip is greater than 1, (Equation 17) is expressed by the following (Equation 18).
1 <ρξ 2 / (4π 2 × 10 -7 × f × h0 2 ) (Equation 18)
When h0 is derived from (Equation 18), it is expressed by the following (Equation 19).
h0 <ρ 0.5 × ξ / (2π × 10 -3.5 × f 0.5 ) (Equation 19)
The ξ at which the torque drop occurs is 2.2 to 2.6, and when 2.4, which is the average value thereof, is substituted into (Equation 19), it is expressed by the following (Equation 20).
h0 <1200 (ρ / f) 0.5 (Equation 20)
(式10)より、αは次の(式15)で表される。
α = ξ / h0 (式15)
(式11)より、すべりsは次の(式16)で表される。
s = ρα2 / (4π2×10-7×f) (式16)
(式16)に(式15)を代入すると、次の(式17)で表される。
s = ρξ2 / (4π2×10-7×f×h02) (式17)
すべりが1よりも大きいとき、(式17)は次の(式18)で表される。
1 < ρξ2 / (4π2×10-7×f×h02) (式18)
(式18)からh0を導出すると、次の(式19)で表される。
h0 < ρ0.5×ξ/ (2π×10-3.5×f0.5) (式19)
トルクの落ち込みが生じるξは2.2~2.6であり、その平均値となる2.4を(式19)に代入すると、次の(式20)で表される。
h0 < 1200(ρ/f)0.5 (式20) Therefore, even if the slip s at which the torque drop occurs is made larger than 1, the torque drop can be suppressed and can be derived as follows.
From (Equation 10), α is represented by the following (Equation 15).
α = ξ / h0 (Equation 15)
From (Equation 11), the slip s is represented by the following (Equation 16).
s = ρα 2 / (4π 2 × 10 -7 × f) (Equation 16)
Substituting (Equation 15) into (Equation 16), it is expressed by the following (Equation 17).
s = ρξ 2 / (4π 2 × 10 -7 × f × h0 2 ) (Equation 17)
When the slip is greater than 1, (Equation 17) is expressed by the following (Equation 18).
1 <ρξ 2 / (4π 2 × 10 -7 × f × h0 2 ) (Equation 18)
When h0 is derived from (Equation 18), it is expressed by the following (Equation 19).
h0 <ρ 0.5 × ξ / (2π × 10 -3.5 × f 0.5 ) (Equation 19)
The ξ at which the torque drop occurs is 2.2 to 2.6, and when 2.4, which is the average value thereof, is substituted into (Equation 19), it is expressed by the following (Equation 20).
h0 <1200 (ρ / f) 0.5 (Equation 20)
したがって、(式20)によって、単位をΩ・mとする回転子導体8の抵抗率ρと、単位をHzとする電源周波数fに応じて、回転子導体高さh0を調整することで、トルクの落ち込みが生じるすべりsを1よりも大きくすることができる。その結果、トルクの落ち込みを抑制することができる。
Therefore, according to (Equation 20), the torque is obtained by adjusting the rotor conductor height h0 according to the resistivity ρ of the rotor conductor 8 whose unit is Ω · m and the power supply frequency f whose unit is Hz. The slip s at which the dip occurs can be made larger than 1. As a result, the drop in torque can be suppressed.
図6は、実施例3としての、かご形誘導電動機のドライブシステムを示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 6 is a diagram showing a drive system of a squirrel-cage induction motor as the third embodiment. The points common to the above examples will be omitted.
電源101から商用電圧・商用周波数をかご形誘導電動機100に直に投入して始動される。かご形誘導電動機100は、負荷設備102に機械的に接続されている。
The commercial voltage and frequency are directly input from the power supply 101 to the cage induction motor 100 and started. The cage induction motor 100 is mechanically connected to the load equipment 102.
かご形誘導電動機は、商用電源を直に投入して始動できるが、始動中の電流は、定格電流の6倍から10倍程度もの大きさにもなり、電源設備の容量は、始動時の電流と、始動時間で決まる。本発明によるかご形誘導電動機を用いることで、トルクの落ち込みが抑制され、始動時間が短くなり、電源設備の容量を削減できる。
The squirrel-cage induction motor can be started by directly turning on the commercial power supply, but the current during starting is as large as 6 to 10 times the rated current, and the capacity of the power supply equipment is the current at the time of starting. It depends on the starting time. By using the squirrel-cage induction motor according to the present invention, the drop in torque can be suppressed, the starting time can be shortened, and the capacity of the power supply equipment can be reduced.
図7は、実施例4としての、かご形誘導電動機の回転子の1スロット分を示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 7 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the fourth embodiment. The points common to the above examples will be omitted.
回転子導体8の第1の部位81と第2の部位82の位置は、第1の部位81と第2の部位82の境界位置(第1の部位81と第2の部位82の周方向幅が最小となる位置)が、回転子導体高さh0の0.42倍になることは必ずしも必要はない。例えば、図7(a)のように、第2の部位82に0.42倍となる位置があっても、図7(b)のように、第1の部位81に0.42倍となる位置があっても良い。
The positions of the first portion 81 and the second portion 82 of the rotor conductor 8 are the boundary positions between the first portion 81 and the second portion 82 (the circumferential width of the first portion 81 and the second portion 82). Is not always required to be 0.42 times the rotor conductor height h0). For example, even if the second portion 82 has a position of 0.42 times as shown in FIG. 7 (a), the first portion 81 has a position of 0.42 times as shown in FIG. 7 (b). There may be a position.
また、図7(a)と図7(b)の回転子導体8を、周方向に交互に配置しても良い。交互に配置することで、より広い回転速度の範囲で、トルクの落ち込みを抑制する効果が得られる。
Further, the rotor conductors 8 shown in FIGS. 7 (a) and 7 (b) may be arranged alternately in the circumferential direction. By arranging them alternately, the effect of suppressing the drop in torque can be obtained in a wider rotation speed range.
図8は、実施例5としての、かご形誘導電動機の回転子の1スロット分を示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 8 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the fifth embodiment. The points common to the above examples will be omitted.
回転子導体8は、第1の部位81の内周側の端と第2の部位82の外周側の端との間に、周方向の幅が一定となる区間を有する。周方向の幅の小さい区間が大きくなるため、トルクの落ち込みを抑制する効果が高まる。
The rotor conductor 8 has a section in which the width in the circumferential direction is constant between the end on the inner peripheral side of the first portion 81 and the end on the outer peripheral side of the second portion 82. Since the section with a small width in the circumferential direction becomes large, the effect of suppressing the drop in torque is enhanced.
図9は、実施例6としての、かご形誘導電動機の回転子の1スロット分を示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 9 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the sixth embodiment. The points common to the above examples will be omitted.
第1の部位81の外周側の端と第2の部位82の内周側の端において、周方向の幅が階段状に変化した回転子導体8となっている。徐々に変化させるよりも、周方向の幅の小さい区間が大きくなるため、トルクの落ち込みを抑制する効果が高まる。
At the outer peripheral end of the first portion 81 and the inner peripheral end of the second portion 82, the rotor conductor 8 has a stepwise width in the circumferential direction. Since the section having a small width in the circumferential direction becomes larger than the gradual change, the effect of suppressing the drop in torque is enhanced.
図10は、実施例7としての、かご形誘導電動機の回転子の1スロット分を示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 10 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the seventh embodiment. The points common to the above examples will be omitted.
かご形誘導電動機の回転子の一例である凸形回転子を用いて実施例7を説明する。実施例7では、凸形回転子に、第1の部位81と第2の部位82を設けている。すなわち、回転子導体8は、第1の部位81よりも外周側に回転子導体8の周方向の幅が第1の部位81の外周側の端よりも小さい第3の部位83を備えている。
Example 7 will be described using a convex rotor, which is an example of a rotor of a cage induction motor. In Example 7, the convex rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a third portion 83 having a circumferential width of the rotor conductor 8 smaller than the outer peripheral end of the first portion 81 on the outer peripheral side of the first portion 81. ..
また、第3の部位の内周側に連なって回転子導体8の周方向の幅が回転子導体の内周側に向かって大きくなる第7の部位87を備えている。
Further, it is provided with a seventh portion 87 which is continuous with the inner peripheral side of the third portion and whose circumferential width of the rotor conductor 8 increases toward the inner peripheral side of the rotor conductor.
回転子導体8の周方向幅を小さくすると、すべりが大きいときの電流が低減される。回転子導体8の周方向幅を小さくする位置が、回転子導体8の外周側ほど、その効果が大きいため、二重かご形回転子よりも、凸形回転子に第1の部位81と第2の部位82を設けることで、すべりが大きいときの電流が低減される。
If the circumferential width of the rotor conductor 8 is reduced, the current when the slip is large is reduced. Since the position where the circumferential width of the rotor conductor 8 is reduced is larger toward the outer peripheral side of the rotor conductor 8, the effect is greater. By providing the portion 82 of 2, the current when the slip is large is reduced.
図11は、実施例8としての、かご形誘導電動機の回転子の1スロット分を示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 11 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the eighth embodiment. The points common to the above examples will be omitted.
かご形誘導電動機の回転子の一例である菱形回転子を用いて実施例8を説明する。実施例8では、菱形回転子に、第1の部位81と第2の部位82を設けている。すなわち、回転子導体8は、第1の部位81よりも外周側に回転子導体8の周方向の幅が外周側に向かって徐々に小さくなる第5の部位85を備える。第5の部位85の外周側の端における周方向の幅は、第1の部位81の外周側の端における周方向の幅よりも小さくしている。
Example 8 will be described using a diamond-shaped rotor, which is an example of a rotor of a squirrel-cage induction motor. In Example 8, the diamond-shaped rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a fifth portion 85 on the outer peripheral side of the first portion 81 in which the width in the circumferential direction of the rotor conductor 8 gradually decreases toward the outer peripheral side. The circumferential width at the outer peripheral end of the fifth portion 85 is smaller than the circumferential width at the outer peripheral end of the first portion 81.
回転子導体8の周方向幅を小さくすると、すべりが大きいときの電流が低減される。回転子導体8の周方向幅を小さくする位置が、回転子導体8の外周側ほど、その効果が大きいため、二重かご形回転子よりも、菱形回転子に第1の部位81と第2の部位82を設けることで、すべりが大きいときの電流が低減される。
If the circumferential width of the rotor conductor 8 is reduced, the current when the slip is large is reduced. Since the position where the circumferential width of the rotor conductor 8 is reduced is larger toward the outer peripheral side of the rotor conductor 8, the effect is greater. By providing the portion 82 of the above, the current when the slip is large is reduced.
図12は、実施例9としての、かご形誘導電動機の回転子の1スロット分を示す図である。上記の実施例と共通する点は説明を省略する。
FIG. 12 is a diagram showing one slot of the rotor of the squirrel-cage induction motor as the ninth embodiment. The points common to the above examples will be omitted.
かご形誘導電動機の回転子の一例である茄子形回転子を用いて実施例9を説明する。実施例9では、茄子形回転子に、第1の部位81と第2の部位82を設けている。すなわち、回転子導体8は、第1の部位81よりも外周側に回転子導体8の周方向の幅が外周側に向かって徐々に大きくなる第6の部位86を備える。
Example 9 will be described using an eggplant-shaped rotor, which is an example of a rotor of a cage-shaped induction motor. In Example 9, the eggplant-shaped rotor is provided with a first portion 81 and a second portion 82. That is, the rotor conductor 8 includes a sixth portion 86 on the outer peripheral side of the first portion 81 in which the width in the circumferential direction of the rotor conductor 8 gradually increases toward the outer peripheral side.
第6の部位86の外周側の端における周方向の幅は、第1の部位81の外周側の端における周方向の幅よりも大きくしている。
The circumferential width at the outer peripheral end of the sixth portion 86 is larger than the circumferential width at the outer peripheral end of the first portion 81.
回転子導体8の周方向の幅を小さくすると、すべりの小さい定常運転時の力率が低下する。回転子導体8の周方向幅の小さい区間が、二重かご形回転子や凸形回転子並びに菱形回転子よりも少ない茄子形回転子に、第1の部位81と第2の部位82を設けることで、すべりが小さいときの力率が向上する。
If the width of the rotor conductor 8 in the circumferential direction is reduced, the power factor during steady operation with small slippage decreases. The first portion 81 and the second portion 82 are provided on the squirrel-cage rotor having a smaller circumferential width section of the rotor conductor 8 than the double cage rotor, the convex rotor, and the rhombic rotor. As a result, the power ratio when the slip is small is improved.
以上、実施例について説明したが、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
Although the examples have been described above, the examples are not limited to the above-mentioned examples, and various modifications are included. For example, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1…固定子、2…固定子鉄心、3…固定子スロット、4…固定子巻線、5…回転子、6…回転子鉄心、7…回転子スロット、8…回転子導体、9…シャフト、10…ギャップ、100…かご形誘導電動機、101…電源、102…負荷設備
1 ... stator, 2 ... stator core, 3 ... stator slot, 4 ... stator winding, 5 ... rotor, 6 ... rotor core, 7 ... rotor slot, 8 ... rotor conductor, 9 ... shaft 10 ... Gap, 100 ... Cage-shaped induction motor, 101 ... Power supply, 102 ... Load equipment
Claims (12)
- 回転子導体を有する回転子であって、
前記回転子導体は、
前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって小さくなる第1の部位と、
前記第1の部位の内周側と連なって前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって大きくなる第2の部位とを有し、
前記回転子導体の外周側の端から前記回転子導体の内周側の端までの距離をh0、
前記回転子導体の外周側の端から前記第1の部位の外周側の端までの距離をh1、
前記回転子導体の外周側の端から前記第2の部位の内周側の端までの距離をh2とし、
定数Nは、起動中にトルクの落ち込みが生じる回転速度において前記回転子導体に浸透する渦電流の深さに基づいて算出される定数である場合において、
前記回転子導体は、
h1/h0<N<h2/h0の関係を満たす回転子。 A rotor with a rotor conductor,
The rotor conductor is
A first portion where the circumferential width of the rotor conductor decreases toward the inner peripheral side of the rotor conductor, and
It has a second portion that is continuous with the inner peripheral side of the first portion and whose circumferential width of the rotor conductor increases toward the inner peripheral side of the rotor conductor.
The distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the rotor conductor is h0.
The distance from the outer peripheral end of the rotor conductor to the outer peripheral end of the first portion is h1.
Let h2 be the distance from the outer peripheral end of the rotor conductor to the inner peripheral end of the second portion.
The constant N is a constant calculated based on the depth of the eddy current penetrating the rotor conductor at the rotation speed at which the torque drops during startup.
The rotor conductor is
A rotor that satisfies the relationship h1 / h0 <N <h2 / h0. - 請求項1に記載の回転子において、
前記回転子導体は同じ材料で構成され、
前記Nは0.38以上0.45以下の範囲である回転子。 In the rotor according to claim 1,
The rotor conductor is made of the same material
The N is a rotor in the range of 0.38 or more and 0.45 or less. - 請求項1に記載の回転子において、
前記回転子導体は同じ材料で構成され、
前記Nは0.42である回転子。 In the rotor according to claim 1,
The rotor conductor is made of the same material
The rotor whose N is 0.42. - 請求項1に記載の回転子において、
前記回転子導体は、
前記第1の部位の内周側の端と前記第2の部位の外周側の端との間に、
周方向の幅が一定となる区間を有する回転子。 In the rotor according to claim 1,
The rotor conductor is
Between the inner peripheral end of the first portion and the outer peripheral end of the second portion,
A rotor having a section having a constant width in the circumferential direction. - 請求項1に記載の回転子において、
前記回転子導体は、
前記第1の部位の外周側の端および前記第2の部位の内周側の端において、
周方向の幅が階段状に変化した回転子。 In the rotor according to claim 1,
The rotor conductor is
At the outer peripheral end of the first portion and the inner peripheral end of the second portion
A rotor whose width in the circumferential direction changes in a staircase pattern. - 請求項1に記載の回転子において、
前記回転子導体は、
前記第1の部位よりも外周側に前記回転子導体の周方向の幅が前記第1の部位の外周側の端よりも小さい第3の部位と、
前記第3の部位の内周側に連なって前記回転子導体の周方向の幅が前記回転子導体の内周側に向かって大きくなる第7の部位とを有する回転子。 In the rotor according to claim 1,
The rotor conductor is
A third portion whose circumferential width of the rotor conductor is smaller than the outer peripheral end of the first portion on the outer peripheral side of the first portion.
A rotor having a seventh portion that is continuous with the inner peripheral side of the third portion and whose circumferential width of the rotor conductor increases toward the inner peripheral side of the rotor conductor. - 請求項1に記載の回転子において、
前記回転子導体は、
前記第1の部位よりも外周側に前記回転子導体の周方向の幅が外周側に向かって徐々に小さくなる第5の部位を有し、
前記第5の部位の外周側の端における周方向の幅は、
前記第1の部位の外周側の端における周方向の幅より小さくした回転子。 In the rotor according to claim 1,
The rotor conductor is
It has a fifth portion on the outer peripheral side of the first portion, in which the width in the circumferential direction of the rotor conductor gradually decreases toward the outer peripheral side.
The width in the circumferential direction at the outer peripheral end of the fifth portion is
A rotor smaller than the width in the circumferential direction at the outer peripheral end of the first portion. - 請求項1に記載の回転子において、
前記回転子導体は、
前記第1の部位よりも外周側に前記回転子導体の周方向の幅が外周側に向かって徐々に大きくなる第6の部位を有し、
前記第6の部位の外周側の端における周方向の幅は、前記第1の部位の外周側の端における周方向の幅よりも大きくした回転子。 In the rotor according to claim 1,
The rotor conductor is
It has a sixth portion on the outer peripheral side of the first portion, in which the width in the circumferential direction of the rotor conductor gradually increases toward the outer peripheral side.
A rotor whose circumferential width at the outer peripheral end of the sixth portion is larger than the circumferential width at the outer peripheral end of the first portion. - 請求項1に記載の回転子において、
単位をΩ・mとする前記回転子導体の抵抗率をρ、単位をHzとする電源周波数をfとした場合に、
前記h0は、
h0<1200(ρ/f)0.5の関係を満たす回転子。 In the rotor according to claim 1,
When the resistivity of the rotor conductor whose unit is Ω · m is ρ and the power frequency whose unit is Hz is f
The h0 is
A rotor that satisfies the relationship of h0 <1200 (ρ / f) 0.5 . - 請求項1に記載の回転子において、
回転子鉄心を有し、
前記回転子導体は、
前記回転子鉄心に形成される回転子スロットに配置され、
前記回転子鉄心の内周側にシャフトを有する回転子。 In the rotor according to claim 1,
Has a rotor core,
The rotor conductor is
Arranged in the rotor slot formed in the rotor core,
A rotor having a shaft on the inner peripheral side of the rotor core. - 請求項1に記載の回転子を有するかご形誘導電動機。 The cage-shaped induction motor having the rotor according to claim 1.
- 請求項11に記載のかご形誘導電動機と、電源と、負荷設備とを有するドライブシステム。 A drive system including the squirrel-cage induction motor according to claim 11, a power source, and load equipment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-161508 | 2020-09-25 | ||
JP2020161508A JP7419205B2 (en) | 2020-09-25 | 2020-09-25 | Rotor, squirrel cage induction motor and drive system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022064820A1 true WO2022064820A1 (en) | 2022-03-31 |
Family
ID=80845048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026671 WO2022064820A1 (en) | 2020-09-25 | 2021-07-15 | Rotor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7419205B2 (en) |
TW (1) | TWI806115B (en) |
WO (1) | WO2022064820A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015001601A1 (en) * | 2013-07-01 | 2015-01-08 | 株式会社日立産機システム | Rotating electric machine and manufacturing method thereof |
WO2019244238A1 (en) * | 2018-06-19 | 2019-12-26 | 三菱電機株式会社 | Rotor and rotary electric machine |
WO2019244240A1 (en) * | 2018-06-19 | 2019-12-26 | 三菱電機株式会社 | Rotor and rotary electric machine |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT402771B (en) * | 1992-12-01 | 1997-08-25 | Elin Motoren Gmbh | ROTORNUT |
CN102843009A (en) * | 2012-09-29 | 2012-12-26 | 无锡市中达电机有限公司 | Rotor punching sheet of double-squirrel-cage induction motor |
WO2015093433A1 (en) * | 2013-12-16 | 2015-06-25 | 三菱電機株式会社 | Basket-type rotor production method and basket-type rotor |
CN205081590U (en) * | 2015-10-28 | 2016-03-09 | 上海电机系统节能工程技术研究中心有限公司 | A rotor cell type for three -phase cage modle induction machine |
CN105429408A (en) * | 2015-12-22 | 2016-03-23 | 佛山市威灵洗涤电机制造有限公司 | Squirrel-cage type rotor, motor and washing machine |
CN105790464A (en) * | 2016-04-05 | 2016-07-20 | 中国船舶重工集团公司第七〇二研究所 | Induction motor |
JP6844957B2 (en) * | 2016-05-19 | 2021-03-17 | 東海旅客鉄道株式会社 | Squirrel-cage induction motor |
CN106849576A (en) * | 2017-03-23 | 2017-06-13 | 哈尔滨理工大学 | A kind of high-starting torque cage-type asynchronous motor rotor punching |
JP6914742B2 (en) * | 2017-06-16 | 2021-08-04 | 株式会社東芝 | Induction motor rotor |
CN107370269A (en) * | 2017-09-15 | 2017-11-21 | 青岛理工大学 | Permanent magnet rotor and asynchronous starting permanent magnet synchronous motor |
-
2020
- 2020-09-25 JP JP2020161508A patent/JP7419205B2/en active Active
-
2021
- 2021-07-15 WO PCT/JP2021/026671 patent/WO2022064820A1/en active Application Filing
- 2021-08-02 TW TW110128347A patent/TWI806115B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015001601A1 (en) * | 2013-07-01 | 2015-01-08 | 株式会社日立産機システム | Rotating electric machine and manufacturing method thereof |
WO2019244238A1 (en) * | 2018-06-19 | 2019-12-26 | 三菱電機株式会社 | Rotor and rotary electric machine |
WO2019244240A1 (en) * | 2018-06-19 | 2019-12-26 | 三菱電機株式会社 | Rotor and rotary electric machine |
Also Published As
Publication number | Publication date |
---|---|
JP2022054355A (en) | 2022-04-06 |
TW202213916A (en) | 2022-04-01 |
JP7419205B2 (en) | 2024-01-22 |
TWI806115B (en) | 2023-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101233110B1 (en) | Reduction of harmonics in an electric motor | |
US3597646A (en) | Dynamoelectric machines | |
WO2009093345A1 (en) | Induction electric motor and hermetic comporessor | |
US20140306565A1 (en) | Coaxial Motor | |
US9559557B2 (en) | Rotating electrical machine | |
US20180212501A1 (en) | Line-start single-phase induction motor | |
CN108886277B (en) | Permanent magnet rotating device for minimizing cogging torque, and permanent magnet generator and permanent magnet motor using the same | |
US4135107A (en) | Multi-phase alternating current machine with stepped stator | |
KR20050035195A (en) | Electric motor windings | |
WO2022064820A1 (en) | Rotor | |
EP3011662B1 (en) | Rotor for a rotating electrical machine | |
EP3179608B1 (en) | Rotating machinery | |
JP4019838B2 (en) | Synchronous induction motor and compressor | |
JP2002272067A (en) | Squirrel-cage rotor and motor using the squirrel-cage rotor | |
JP2002247816A (en) | Induction starting synchronous motor | |
US9843247B2 (en) | Rotating electric machine | |
JPH08294242A (en) | Skew of rotor core or stator core in electric rotating machine | |
CN113574772B (en) | induction motor | |
US11075570B2 (en) | Rotary electric machine and drive system using same | |
JP2004248361A (en) | Rotary electric machine and squirrel-cage induction motor drive system | |
JP4495443B2 (en) | Synchronous motor, its rotation control method, and synchronous motor inverter | |
EP3863152A1 (en) | Stator for an electric motor or generator and motor or generator comprising such a stator | |
JP2002345219A (en) | Reluctance motor | |
JP2005057939A (en) | Rotary electric machine | |
JP2010035329A (en) | Rotor, electric motor using the same and compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21871952 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21871952 Country of ref document: EP Kind code of ref document: A1 |