WO2015001601A1 - Rotating electric machine and manufacturing method thereof - Google Patents

Rotating electric machine and manufacturing method thereof Download PDF

Info

Publication number
WO2015001601A1
WO2015001601A1 PCT/JP2013/068032 JP2013068032W WO2015001601A1 WO 2015001601 A1 WO2015001601 A1 WO 2015001601A1 JP 2013068032 W JP2013068032 W JP 2013068032W WO 2015001601 A1 WO2015001601 A1 WO 2015001601A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter side
rotor
slot
inner diameter
rotor slot
Prior art date
Application number
PCT/JP2013/068032
Other languages
French (fr)
Japanese (ja)
Inventor
明仁 中原
菊地 聡
和雄 西濱
秀俊 江夏
三好 努
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2015524921A priority Critical patent/JP6129966B2/en
Priority to PCT/JP2013/068032 priority patent/WO2015001601A1/en
Priority to CN201380077356.9A priority patent/CN105284038B/en
Publication of WO2015001601A1 publication Critical patent/WO2015001601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots

Definitions

  • the present invention relates to a rotating electrical machine such as an induction motor having a cage rotor and a method for manufacturing the same.
  • a squirrel-cage rotor of a rotating electrical machine is formed of thin magnetic steel plates, and a plurality of rotor cores stacked in a thickness direction and a plurality of rotor slots formed in the circumferential direction of each rotor core are stacked. It is composed of a rotor conductor provided in series in each rotor slot of the rotor core.
  • a method of forming the rotor conductor there are a method of inserting a copper bar into the rotor slot and a method of die casting a molten metal such as aluminum or an aluminum alloy in the rotor slot.
  • harmonic flux caused by the ripple current at the time of driving the stator slot or inverter is linked to the cage rotor so that the rotor It has been pointed out that eddy current loss occurs in the conductor, leading to a reduction in efficiency. Since the harmonic magnetic flux passes through the relatively outer periphery of the squirrel-cage rotor, it is desirable that the dimension from the outer peripheral side end of the rotor slot to the outer periphery of the core be as small as possible in order to suppress the reduction in efficiency. .
  • Japanese Patent Laid-Open No. 2002-315282 discloses a configuration in which an insulator is loaded on the outer peripheral side of the rotor slot to reduce the loss by reducing the amount of linkage between the rotor conductor and the harmonic magnetic flux.
  • JP-A-8-140319 two slots, an inner peripheral side slot and an outer peripheral side slot, are provided in the radial direction of the rotor core, the conductor is filled only in the inner peripheral side slot, and an eddy current generation site is defined.
  • a configuration for reducing the loss by deleting is disclosed.
  • JP 2002-315282 A Japanese Patent Laid-Open No. 8-140319
  • the present invention has been made in order to solve such a problem of conventional typography, and the object of the present invention is to provide a rotating electrical machine that reduces loss due to harmonic magnetic flux and improves efficiency. There is. It is another object of the present invention to provide a rotating electrical machine that prevents leakage of main magnetic flux and does not impair torque, and improves efficiency during operation. Furthermore, it is providing the method of manufacturing such a rotary electric machine efficiently.
  • the present invention relates to a rotating electrical machine, and includes a stator and a rotor rotatably disposed in the stator, and the rotor is a laminate of a plurality of thin magnetic steel plates.
  • a rotor core consisting of: an inner diameter side rotor slot and an outer diameter side rotor slot of a sealed structure formed in the rotor core; an inner diameter side rotor conductor formed in the inner diameter side rotor slot; and It has a double cage structure with an outer diameter side rotor conductor formed in an outer diameter side rotor slot, and the outer diameter side rotor slot protrudes in the inner diameter direction on the left and right shoulders on the outer diameter side. It has a characteristic arcuate curved portion.
  • a step of forming a predetermined number of thin magnetic steel plates having an inner diameter side rotor slot and an outer diameter side rotor slot, and an inner diameter side rotor slot and an outer diameter side of each thin magnetic steel plate A step of superposing rotor slots and laminating a predetermined number of thin magnetic steel plates to form a rotor core, and among the inner diameter side rotor slot and the outer diameter side rotor slot formed in the rotor core And a step of inserting a copper bar into at least the inner diameter side rotor slot and a step of filling a gap between the inner diameter side rotor slot and the copper bar with aluminum or an aluminum alloy by die casting.
  • the rotating electrical machine of the present invention has arcuate curved portions convex in the inner diameter direction on the left and right shoulders on the outer diameter side of the outer diameter side rotor slot, the loss of the rotating electric machine is reduced and the efficiency is improved. Can do.
  • the manufacturing method of the rotating electrical machine of the present invention includes a step of inserting a copper bar into at least the inner diameter side rotor slot of the inner diameter side rotor slot and the outer diameter side rotor slot formed in the rotor core; Since the step of filling aluminum or aluminum alloy with die casting in the gap between the inner diameter side rotor slot and the copper bar is included, a rotor conductor excellent in conductivity can be easily manufactured.
  • FIG. 1 is an axial cross-sectional view of a double squirrel-cage rotor according to Embodiment 1.
  • FIG. It is a principal part enlarged view of FIG.
  • FIG. It is explanatory drawing of the slot part formed in the double cage rotor which concerns on Example 1.
  • FIG. It is explanatory drawing of the slot part formed in the double cage rotor based on Example 2.
  • FIG. It is explanatory drawing of the slot part formed in the double cage rotor which concerns on the modification 1.
  • FIG. 6 is a side view and an enlarged view of a double squirrel-cage rotor according to Embodiment 3.
  • FIG. 10 is a side view and an enlarged view showing another example of a double squirrel-cage rotor according to Embodiment 3. It is the side view and enlarged view which show the further another example of the double cage rotor which concerns on Example 3.
  • FIG. 6 is an enlarged view of a first thin magnetic steel plate according to Example 3.
  • FIG. It is an enlarged view of the 2nd thin plate magnetic steel plate concerning Example 3.
  • FIG. 6 is an enlarged view of a thin magnetic steel plate according to Example 4.
  • FIG. 6 is an enlarged view of a thin magnetic steel plate according to Example 5.
  • FIG. 6 is an enlarged view of a thin magnetic steel plate according to Example 5.
  • the rotating electrical machine 100 includes a cage rotor 1 and a stator 65 arranged concentrically.
  • the cage rotor 1 includes a shaft (output shaft) 9, a rotor core 2 fixed to the shaft 9, an inner diameter side rotor conductor 3 and an outer diameter side rotor conductor 5 provided on the rotor core 2, and A short-circuit ring 70 is provided to connect both ends of the inner diameter side rotor conductor 3 and the outer diameter side rotor conductor 5. Therefore, the cage rotor 1 of this example has a double cage structure.
  • the stator 65 includes a stator core 60, a stator slot 61 formed in the stator core 60, and a stator winding 62 wound around the stator slot 61.
  • the rotor core 2 is formed of a thin magnetic steel plate, and the entire shape is formed into a cylindrical shape by laminating a predetermined number of sheets in the thickness direction.
  • the predetermined number of rotor cores 2 are integrated by inserting a shaft 9 into the center hole thereof.
  • the rotor core 2 is formed with an inner diameter side rotor slot 4 and an outer diameter side rotor slot 6 at regular intervals on a circumference centered on the axis of the shaft 9.
  • Both the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 are formed in a sealed shape.
  • an inner diameter side bridge 7 having a predetermined dimension is formed, and the outer diameter side rotor slot 6 and the rotor core 2 are separated from each other.
  • an outer diameter side bridge 8 having a predetermined dimension is formed.
  • the widths of the inner diameter side bridge 7 and the outer diameter side bridge 8 are set to values capable of press punching the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 with high efficiency and high accuracy.
  • the inner diameter side rotor conductor 3 and the outer diameter side rotor conductor 5 are formed by die-casting aluminum or an aluminum alloy.
  • the die casting method for the inner diameter side rotor conductor 3 and the outer diameter side rotor conductor 5 is a well-known matter and is not the gist of the present invention.
  • both ends of each inner diameter side rotor conductor 3 and each outer diameter side rotor conductor 5 are connected by the short-circuit ring 70 (see FIG. 1).
  • the planar shape of the inner diameter side rotor slot 4 (the sectional shape of the inner diameter side rotor conductor 3) is formed in a substantially sector shape with rounded corners as shown in FIGS.
  • the outer diameter side end of the inner diameter side rotor slot 4 is formed in a linear shape.
  • the planar shape of the outer diameter side rotor slot 6 (the cross sectional shape of the outer diameter side rotor conductor 5) is the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 as shown in FIGS. Centering on the radial line XX of the rotor core 2 passing through the center of the core, arc-shaped curved portions 10 convex in the inner diameter direction are formed in left and right shoulders on the left and right sides thereof in a symmetrical manner. ing.
  • the inner diameter side end of the outer diameter side rotor slot 6 is formed in a straight line shape facing the outer diameter end of the inner diameter side rotor slot 4, and the straight line portion and the curved portion 10 are connected by an arc. .
  • the circumferential width of the outer diameter side rotor slot 6 is approximately raised to s1, s2, and s3 along the curved portion 10 as it reaches the outer diameter side of the cage rotor 1 as shown in FIG. Decrease.
  • FIG. 5 shows that the harmonic flux 33 having the highest frequency among the harmonic fluxes 31, 32, 33 caused by the influence of the stator slot and the ripple current when driving the inverter is the outer diameter of the outer diameter side rotor conductor 5.
  • the harmonic magnetic flux 31 having the lowest frequency passing through the portion close to the end on the side passes through the portion close to the end on the inner diameter side of the outer diameter side rotor conductor 5, and the harmonic magnetic flux 32 having an intermediate frequency between them.
  • the main magnetic flux 30 having a frequency lower than that of the harmonic magnetic fluxes 31, 32, 33 returns to the stator core 60 through the inner diameter side further than the inner diameter side rotor conductor 3.
  • the arc-shaped curved portion 10 convex in the inner diameter direction is formed on the shoulder portion on the outer diameter side in a bilaterally symmetrical manner.
  • the length across the outer diameter side rotor slot 6 is shortened.
  • the reluctance of the portion across the outer diameter side rotor slot 6 is inversely proportional to the length of the magnetic flux across the outer diameter side rotor slot 6, so that the higher the frequency of the harmonic current flowing through the outer diameter side rotor conductor 5, the higher the magnetic resistance.
  • the magnetic flux generated by the harmonic current is easy to pass. That is, the inductance increases with increasing frequency.
  • the current flowing through the rotor conductors 3 and 5 is divided into a fundamental wave component that flows through the entire conductor at the slip frequency and becomes the output of the rotating electrical machine, and a harmonic component that flows through the conductor due to the harmonic magnetic flux and becomes a loss.
  • a fundamental wave component that flows through the entire conductor at the slip frequency and becomes the output of the rotating electrical machine
  • a harmonic component that flows through the conductor due to the harmonic magnetic flux and becomes a loss.
  • the slip frequency is generally lower than the stator current, the influence of the inductance due to the rotor leakage magnetic flux is small on the fundamental wave component, and the influence of the resistance is large on the magnitude of the flowing current.
  • the harmonic current is generated by the harmonic magnetic flux resulting from the stator slot and the inverter drive, the harmonic frequency is often a relatively high frequency of several kHz or more, and the influence of the inductance is increased.
  • the harmonic current causing the loss can be selectively reduced.
  • An efficient rotating electrical machine can be provided. Further, since the flux linkage at the time of starting does not decrease, a sufficient torque can be obtained at the time of starting.
  • the rotating electrical machine according to the second embodiment will be described with reference to FIG.
  • the rotating electrical machine according to the second embodiment is characterized in that the dimensions of each part of the outer diameter side rotor slot 6 formed in the rotor core 2 of the rotating electric machine 100 according to the first embodiment are optimized.
  • the end portion 11 on the inner diameter side of the curved portion 10 formed in the outer diameter side rotor slot 6 is closer to the inner diameter side than half of the radial length 2d of the outer diameter side rotor slot 6.
  • the circumferential width e from the end portion 11 on the inner diameter side of the curved portion 10 to the end portion 13 on the outer diameter side is set to be larger than half the radial direction length of the outer diameter side rotor slot 6,
  • the ratio at which the circumferential width of the rotor slot 6 is reduced in the outer diameter direction is increased. Thereby, a harmonic current can be reduced efficiently and the loss of a rotary electric machine can be reduced.
  • the radial height 2d of the outer diameter side rotor slot 6 shown in FIG. 6 is preferably determined according to the skin depth that can be calculated from the frequency of the main harmonic.
  • the harmonic component of the current flowing through the rotor conductor is mainly an integer multiple of the number of stator slots or an integer multiple of the inverter carrier frequency with respect to the frequency of the current passed through the stator winding. . Therefore, the electrical conductivity of the rotor conductor is ⁇ (S / m), the relative permeability is ⁇ r (H / m), the rotational speed of the rotating electrical machine is N, the number of stator slots is Ns, and the rotating electrical machine is driven.
  • the radial height 2d of the outer diameter side slot 6 is Skin depth of stator slot harmonic obtained by ⁇ (1 / ⁇ ⁇ N ⁇ Ns ⁇ ⁇ r ⁇ ⁇ ), or skin depth of inverter carrier harmonic obtained by ⁇ (1 / ⁇ ⁇ fc ⁇ ⁇ r ⁇ ⁇ ) Set a value smaller than the one that has a large effect.
  • the radial height 2d of the outer diameter rotor slot 6 is set to the skin depth of the harmonic having the greatest influence, the magnetic flux generated by the harmonic current of the same frequency passes through the inner diameter bridge 7, and thus the inductance is large. Impedance can be increased for harmonics that have a great influence, and harmonic current can be effectively reduced. Further, as described above, when the end portion on the inner diameter side of the curved portion 10 is set closer to the inner diameter side than the half of the radial length 2d of the outer diameter side rotor slot 6 with respect to an integral multiple of harmonics, Since the circumferential width of the outer diameter side slot 6 can be made particularly small within the range of the skin depth of the harmonic current or less, it is more effective in reducing the harmonic current and hence the loss.
  • the curved portion 10 of the outer diameter side rotor slot 6 formed in the rotor core 2 is bilaterally symmetric, and is externally disposed between the left and right curved portions 10.
  • the land portion (s3 in FIG. 5) convex toward the radial side is provided, the gist of the present invention is not limited to this.
  • the shape of the outer diameter side rotor slot 6 can be variously changed as shown in FIGS.
  • the land portion is not formed between the left and right curved portions 10.
  • the land portion 10c is formed between the left and right curved portions 10, and the shape of the land portion 10c is a convex curve toward the inner diameter side.
  • the rotating electrical machine according to the third embodiment does not constitute a rotor core 2 by laminating a predetermined number of thin magnetic steel plates having the same configuration, but by laminating two types of thin magnetic steel plates having different rotor slot shapes, The rotor core 2 is configured.
  • FIG. 10 shows an example in which two types of thin magnetic steel plates 41 and 42 having different rotor slot shapes are alternately laminated one by one
  • FIG. 11 shows two types of thin magnetic steel plates 41 and 42 having different rotor slot shapes. This is an example in which three sheets are alternately stacked.
  • FIG. 12 shows an example in which two thin magnetic steel plates 41 are alternately laminated on each of the two types of thin magnetic steel plates 41 and 42 having different rotor slot shapes.
  • the thin magnetic steel plate 41 is similar to the thin magnetic steel plate used in the rotating electrical machine 65 according to the first and second embodiments, and the inner circumferential rotor slot 4 and the An outer rotor slot 6 is formed.
  • the thin magnetic steel plate 42 does not have the inner diameter side bridge 7, and corresponds to the portion corresponding to the inner peripheral side rotor slot 4 and the outer peripheral side rotor slot 6.
  • An unbridged slot 12 is formed in a series of portions.
  • the inner bridge 7 formed on the rotor core 2 serves as a path for magnetic flux generated by the harmonic current flowing through the outer rotor conductor 5, so as shown in FIG.
  • the radial width b of the circumferential bridge 7 plays an important role in increasing the self-inductance of the cage rotor 1 with respect to the harmonic magnetic flux flowing through the outer diameter rotor conductor 5.
  • the radial width b of the inner circumferential bridge 7 is too large, the main magnetic flux that should be linked to the entire rotor conductor passes through the inner circumferential bridge 7. The amount of magnetic flux decreases and the output of the rotating electrical machine decreases.
  • the radial width b of the inner peripheral bridge 7 is a limit value corresponding to the thickness of the steel plate in order to avoid deformation and breakage during punching. Is decided. Since the thickness of the thin magnetic steel plate that is generally used is generally about 0.3 to 0.5 mm, the limit value of the radial width b at the time of punching is often approximately equal to or greater than the thickness of the thin magnetic steel plate. For this reason, the limit dimension at the time of punching may become larger than the dimension which can avoid the reduction
  • the thin magnetic steel plates 41 having the inner diameter side bridges 7 are alternately laminated by two thin magnetic steel plates 42 each having the bridgeless slot 12 formed, for example, even if a steel plate prepared by setting the radial width b of the inner peripheral bridge 7 to 1.0 mm due to punching restrictions is used, the radial width of each thin magnetic steel plate is 0.00 mm in the entire magnetic circuit of the rotor core 2. This is equivalent to a structure in which a 33 mm inner diameter side bridge 7 is formed, and leakage of main magnetic flux can be reduced.
  • the number of the two types of thin magnetic steel plates with different rotor slot shapes can be appropriately set depending on the radial width b to be configured and the manufacturing convenience.
  • the rotating electrical machine according to the fourth embodiment does not constitute the rotor core 2 by laminating two kinds of thin magnetic steel plates having different rotor slot shapes, but the rotor slot having the inner diameter side bridge 7 and the inner diameter.
  • a rotor core 2 is configured by laminating thin magnetic steel plates formed in a predetermined arrangement in the circumferential direction with a rotor slot 12 having no side bridge 7.
  • each rotor slot is formed in such an arrangement in a thin magnetic steel plate, an inner circumferential rotor slot 4 and an outer circumferential rotor slot arranged radially on the bridgeless slot 12 via the inner bridge 7.
  • the rotor core 2 similar to that shown in FIG. 10 can be configured by adjusting the circumferential positions of the thin magnetic steel plates arranged in contact with each other so as to overlap each other.
  • bridging is alternately and fixed pitch one by one.
  • the present invention is not limited thereto, and a plurality of these rotor slots can be alternately formed at a constant pitch.
  • the rotor core 2 can be configured by stacking two types of thin magnetic steel plates having different rotor slot arrangements.
  • the rotating electrical machine according to the fourth embodiment has the same effect as the rotating electrical machine according to the third embodiment.
  • the rotating electrical machine according to the fifth embodiment is characterized in that a copper bar 51 is inserted into the inner diameter side rotor slot 4.
  • the inner circumferential rotor slot 4 and the outer circumferential rotor slot 6 arranged in the radial direction via the inner diameter bridge 7 are arranged in the circumferential direction.
  • the rotor core 2 is formed at a constant pitch.
  • a copper bar 51 is inserted into the inner circumferential rotor slot 4, and the gap between the inner surface of the inner circumferential rotor slot 4 and the outer surface of the copper bar 51 is filled with aluminum or an aluminum alloy by die casting. ing.
  • the outer rotor slot 6 is filled with aluminum or aluminum alloy by die casting.
  • the other parts are the same as those of the rotating electrical machine according to the first embodiment, and thus the corresponding parts are denoted by the same reference numerals and the description thereof is omitted.
  • Copper has a higher electrical conductivity than aluminum and is therefore suitable as a rotor conductor.
  • copper has a higher melting point than aluminum, it is difficult to costly fill the rotor slot by die casting. . Therefore, when a copper bar is used as the rotor conductor, a method of inserting a solid copper bar into a rotor slot formed in the rotor core is generally used.
  • the rotor core 2 according to the embodiment is not limited. Thus, it is difficult to insert a solid copper bar into a rotor slot having a relatively complicated shape without a gap. Therefore, as shown in FIG.
  • the electrical conductivity of the rotor conductor can be increased, and the efficiency of the rotating electrical machine is further improved. can do. Further, after inserting the solid copper bar 51 into the inner rotor slot 4, aluminum or an aluminum alloy is filled in the gap between the inner surface of the inner rotor slot 4 and the outer surface of the copper bar 51 by die casting. Therefore, the inner peripheral rotor conductor 3 having good conductivity can be easily manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided is a high-efficiency rotating electric machine which reduces loss due to harmonic flux. A radially inner rotor slot (4) and a radially outer rotor slot (6) are formed in the radial direction of the rotor core (2) with a radially inner bridge (7) therebetween. An arc-shape curved section (10) convex in the radially inward direction is formed on the radially outer shoulder portion of the radially outer rotor slot (6).

Description

回転電機及びその製造方法Rotating electric machine and manufacturing method thereof
 本発明は、かご形回転子を有する誘導電動機等の回転電機と、その製造方法に関するものである。 The present invention relates to a rotating electrical machine such as an induction motor having a cage rotor and a method for manufacturing the same.
 回転電機のかご形回転子は、薄板磁性鋼板をもって形成され、厚さ方向に所定数積層される回転子鉄心と、各回転子鉄心の周方向に複数形成された回転子スロットと、積層された回転子鉄心の各回転子スロット内に一連に設けられた回転子導体から構成される。回転子導体の形成方法としては、回転子スロット内に銅バーを挿入する方法と、回転子スロット内にアルミニウム又はアルミニウム合金等の溶融金属をダイカストする方法とがある。ダイカスト法による場合は、溶融金属の漏れを防ぐため、銅バー挿入法による場合とは異なり、回転子鉄心に開放スロットを形成することができず、回転子スロットの外周側端部を回転子鉄心の外周より内側に形成して、密閉形状とする必要がある。 A squirrel-cage rotor of a rotating electrical machine is formed of thin magnetic steel plates, and a plurality of rotor cores stacked in a thickness direction and a plurality of rotor slots formed in the circumferential direction of each rotor core are stacked. It is composed of a rotor conductor provided in series in each rotor slot of the rotor core. As a method of forming the rotor conductor, there are a method of inserting a copper bar into the rotor slot and a method of die casting a molten metal such as aluminum or an aluminum alloy in the rotor slot. In the case of the die casting method, in order to prevent the molten metal from leaking, unlike the case of the copper bar insertion method, an open slot cannot be formed in the rotor core, and the outer peripheral side end of the rotor slot is connected to the rotor core. It is necessary to form it inside from the outer periphery of and form a sealed shape.
 密閉形状の回転子スロットが形成されたかご形回転子を持つ回転電機については、固定子スロットやインバータ駆動時のリップル電流に起因する高調波磁束がかご形回転子に鎖交することで回転子導体に渦電流損を生じ、効率の低下を招くことが指摘されている。高調波磁束は、かご形回転子の比較的外周部を通ることから、効率の低下を抑制するためには、回転子スロットの外周側端部からコアの外周までの寸法はできるだけ小さい方が望ましい。しかしながら、回転子スロットは、プレス打ち抜きによって形成されるので、回転子スロットを高能率かつ高精密に形成するためには、回転子スロットの外周側端部と回転子鉄心の外周との間にある程度の間隔を設けざるを得ない。このような事情から、回転子スロットの外周側端部から回転子鉄心の外周までの間隔を小さくするのではなく、他の手段でこの種の回転電機の効率を高める方法が、従来種々提案されている。 For a rotating electrical machine having a cage rotor with a hermetic rotor slot formed, harmonic flux caused by the ripple current at the time of driving the stator slot or inverter is linked to the cage rotor so that the rotor It has been pointed out that eddy current loss occurs in the conductor, leading to a reduction in efficiency. Since the harmonic magnetic flux passes through the relatively outer periphery of the squirrel-cage rotor, it is desirable that the dimension from the outer peripheral side end of the rotor slot to the outer periphery of the core be as small as possible in order to suppress the reduction in efficiency. . However, since the rotor slot is formed by press punching, in order to form the rotor slot with high efficiency and high precision, a certain amount of space is formed between the outer peripheral end of the rotor slot and the outer periphery of the rotor core. There is no choice but to set an interval. Under these circumstances, various methods for improving the efficiency of this type of rotating electrical machine by other means have been proposed in place of reducing the distance from the outer peripheral end of the rotor slot to the outer periphery of the rotor core. ing.
 例えば、特開2002-315282号公報には、回転子スロットの外周側の頂部に絶縁物を装填し、回転子導体と高調波磁束の鎖交量を少なくすることで損失を低減する構成が開示されている。また、特開平8-140319号公報には、回転子鉄心の半径方向に内周側スロット及び外周側スロットの2つを設け、内周側スロットにのみ導体を充填し、渦電流の発生部位を削除することで損失の低減を図る構成が開示されている。 For example, Japanese Patent Laid-Open No. 2002-315282 discloses a configuration in which an insulator is loaded on the outer peripheral side of the rotor slot to reduce the loss by reducing the amount of linkage between the rotor conductor and the harmonic magnetic flux. Has been. In JP-A-8-140319, two slots, an inner peripheral side slot and an outer peripheral side slot, are provided in the radial direction of the rotor core, the conductor is filled only in the inner peripheral side slot, and an eddy current generation site is defined. A configuration for reducing the loss by deleting is disclosed.
特開2002-315282号公報JP 2002-315282 A 特開平8-140319号公報Japanese Patent Laid-Open No. 8-140319
 しかしながら、特許文献1,2に開示の手段によると、回転子導体の外周側の端部から回転子鉄心の外周までの距離が大きくなるので、本来回転子導体に鎖交させるべき、回転電機の出力となる主磁束についても回転子導体の外周側を通ってしまい、回転子導体への鎖交磁束量が減少してしまう可能性がある。 However, according to the means disclosed in Patent Documents 1 and 2, since the distance from the outer peripheral end of the rotor conductor to the outer periphery of the rotor core becomes large, The main magnetic flux as an output also passes through the outer peripheral side of the rotor conductor, and the amount of flux linkage to the rotor conductor may be reduced.
 また、回転電機を誘導電動機として駆動する場合、始動時には回転していない回転子に対して固定子からある回転速度で回転する磁界が作用するため、回転子から見ると高調波磁束となって導体に鎖交する。ただし、始動時の高調波磁束と運転時に回転子に作用し、損失発生要因となる高調波磁束は周波数が異なっている場合が多い。この場合、特許文献1,2に開示の技術のように、高調波磁束の鎖交量を低減する方法や導体自体を内周側に配置する構成とすると、始動時の鎖交磁束についても導体に鎖交する磁束自体が少なくなるため、始動時に十分なトルクが得られなくなる可能性がある。 In addition, when the rotating electrical machine is driven as an induction motor, a magnetic field that rotates at a certain rotational speed from the stator acts on the rotor that does not rotate at the time of starting. Interlink with. However, in many cases, the harmonic magnetic flux at the start and the harmonic magnetic flux acting on the rotor during operation and causing loss are different in frequency. In this case, as in the techniques disclosed in Patent Documents 1 and 2, if the method of reducing the interlinkage amount of the harmonic magnetic flux and the configuration in which the conductor itself is arranged on the inner peripheral side, the interlinkage magnetic flux at the start is also the conductor As a result, the magnetic flux itself interlinked with the magnetic flux decreases, and there is a possibility that sufficient torque cannot be obtained at the time of starting.
 本発明は、このような従来字術の課題を解決するためになされたものであり、その課題とするところは、高調波磁束に起因した損失を低減し、効率を向上した回転電機を提供することにある。また、主磁束の漏れを防いでトルクを損なわず、運転時の効率向上を図った回転電機を提供することにある。さらには、このような回転電機を高能率に製造する方法を提供することにある。 The present invention has been made in order to solve such a problem of conventional typography, and the object of the present invention is to provide a rotating electrical machine that reduces loss due to harmonic magnetic flux and improves efficiency. There is. It is another object of the present invention to provide a rotating electrical machine that prevents leakage of main magnetic flux and does not impair torque, and improves efficiency during operation. Furthermore, it is providing the method of manufacturing such a rotary electric machine efficiently.
 上記課題を解決するために本発明は、回転電機に関しては、固定子と、固定子内に回転可能に配置された回転子とを有し、前記回転子は、多数の薄板磁性鋼板の積層体からなる回転子鉄心と、該回転子鉄心に形成された密閉構造の内径側回転子スロット及び外径側回転子スロットと、前記内径側回転子スロット内に形成された内径側回転子導体及び前記外径側回転子スロット内に形成された外径側回転子導体を備えた二重かご構造を有し、前記外径側回転子スロットは、外径側の左右肩部に、内径方向に凸な円弧状の曲線部を有することを特徴とする。 In order to solve the above problems, the present invention relates to a rotating electrical machine, and includes a stator and a rotor rotatably disposed in the stator, and the rotor is a laminate of a plurality of thin magnetic steel plates. A rotor core consisting of: an inner diameter side rotor slot and an outer diameter side rotor slot of a sealed structure formed in the rotor core; an inner diameter side rotor conductor formed in the inner diameter side rotor slot; and It has a double cage structure with an outer diameter side rotor conductor formed in an outer diameter side rotor slot, and the outer diameter side rotor slot protrudes in the inner diameter direction on the left and right shoulders on the outer diameter side. It has a characteristic arcuate curved portion.
 また、回転電機の製造方法に関しては、内径側回転子スロット及び外径側回転子スロットを有する所定枚数の薄板磁性鋼板を形成する工程と、各薄板磁性鋼板の内径側回転子スロット及び外径側回転子スロットを重ね合わせて所定枚数の薄板磁性鋼板を積層し、回転子鉄心を構成する工程と、前記回転子鉄心に形成された前記内径側回転子スロット及び前記外径側回転子スロットのうち、少なくとも前記内径側回転子スロット内に銅バーを挿入する工程と、前記内径側回転子スロットと前記銅バーの隙間に、アルミニウム又はアルミニウム合金をダイカストにより充填する工程とを含むことを特徴とする。 In addition, regarding the method of manufacturing the rotating electrical machine, a step of forming a predetermined number of thin magnetic steel plates having an inner diameter side rotor slot and an outer diameter side rotor slot, and an inner diameter side rotor slot and an outer diameter side of each thin magnetic steel plate A step of superposing rotor slots and laminating a predetermined number of thin magnetic steel plates to form a rotor core, and among the inner diameter side rotor slot and the outer diameter side rotor slot formed in the rotor core And a step of inserting a copper bar into at least the inner diameter side rotor slot and a step of filling a gap between the inner diameter side rotor slot and the copper bar with aluminum or an aluminum alloy by die casting. .
 本発明の回転電機は、外径側回転子スロットの外径側の左右肩部に、内径方向に凸な円弧状の曲線部を有するので、回転電機の損失を低減し、効率を向上することができる。 Since the rotating electrical machine of the present invention has arcuate curved portions convex in the inner diameter direction on the left and right shoulders on the outer diameter side of the outer diameter side rotor slot, the loss of the rotating electric machine is reduced and the efficiency is improved. Can do.
 また、本発明の回転電機の製造方法は、回転子鉄心に形成された内径側回転子スロット及び外径側回転子スロットのうち、少なくとも内径側回転子スロット内に銅バーを挿入する工程と、内径側回転子スロットと銅バーの隙間に、アルミニウム又はアルミニウム合金をダイカストにより充填する工程を含むので、導電性に優れた回転子導体を容易に作製することができる。 Further, the manufacturing method of the rotating electrical machine of the present invention includes a step of inserting a copper bar into at least the inner diameter side rotor slot of the inner diameter side rotor slot and the outer diameter side rotor slot formed in the rotor core; Since the step of filling aluminum or aluminum alloy with die casting in the gap between the inner diameter side rotor slot and the copper bar is included, a rotor conductor excellent in conductivity can be easily manufactured.
実施形態に係る回転電機の要部断面図である。It is principal part sectional drawing of the rotary electric machine which concerns on embodiment. 実施形態に係る二重かご形回転子の斜視図である。It is a perspective view of the double basket type rotor concerning an embodiment. 実施例1に係る二重かご形回転子の軸方向断面図である。1 is an axial cross-sectional view of a double squirrel-cage rotor according to Embodiment 1. FIG. 図3の要部拡大図である。It is a principal part enlarged view of FIG. 実施例1に係る二重かご形回転子に形成されるスロット部の説明図である。It is explanatory drawing of the slot part formed in the double cage rotor which concerns on Example 1. FIG. 実施例2に係る二重かご形回転子に形成されるスロット部の説明図である。It is explanatory drawing of the slot part formed in the double cage rotor based on Example 2. FIG. 変形例1に係る二重かご形回転子に形成されるスロット部の説明図である。It is explanatory drawing of the slot part formed in the double cage rotor which concerns on the modification 1. FIG. 変形例2に係る二重かご形回転子に形成されるスロット部の説明図である。It is explanatory drawing of the slot part formed in the double cage rotor which concerns on the modification 2. FIG. 変形例3に係る二重かご形回転子に形成されるスロット部の説明図である。It is explanatory drawing of the slot part formed in the double cage rotor which concerns on the modification 3. FIG. 実施例3に係る二重かご形回転子の側面図及び拡大図である。6 is a side view and an enlarged view of a double squirrel-cage rotor according to Embodiment 3. FIG. 実施例3に係る二重かご形回転子の他の例を示す側面図及び拡大図である。FIG. 10 is a side view and an enlarged view showing another example of a double squirrel-cage rotor according to Embodiment 3. 実施例3に係る二重かご形回転子のさらに他の例を示す側面図及び拡大図である。It is the side view and enlarged view which show the further another example of the double cage rotor which concerns on Example 3. FIG. 実施例3に係る第1薄板磁性鋼板の拡大図である。6 is an enlarged view of a first thin magnetic steel plate according to Example 3. FIG. 実施例3に係る第2薄板磁性鋼板の拡大図である。It is an enlarged view of the 2nd thin plate magnetic steel plate concerning Example 3. FIG. 実施例3に係る第2薄板磁性鋼板に形成される内径側ブリッジの寸法を示す図である。It is a figure which shows the dimension of the internal diameter side bridge | bridging formed in the 2nd thin plate magnetic steel plate which concerns on Example 3. FIG. 実施例4に係る薄板磁性鋼板の拡大図である。6 is an enlarged view of a thin magnetic steel plate according to Example 4. FIG. 実施例5に係る薄板磁性鋼板の拡大図である。6 is an enlarged view of a thin magnetic steel plate according to Example 5. FIG.
 以下、本発明に係る回転電機の実施の形態を、三相誘導電動機を例にとり、実施例毎に図面を用いて説明する。 Hereinafter, an embodiment of a rotating electrical machine according to the present invention will be described using a three-phase induction motor as an example and referring to the drawings for each example.
 図1に示すように、実施の形態に係る回転電機100は、同心に配置されたかご形回転子1及び固定子65を有する。かご形回転子1は、シャフト(出力軸)9と、シャフト9に固定された回転子鉄心2と、回転子鉄心2に設けられた内径側回転子導体3及び外径側回転子導体5と、これら内径側回転子導体3及び外径側回転子導体5の両端を接続する短絡環70を備えている。したがって、本例のかご形回転子1は、二重かご形構造となる。これに対して、固定子65は、固定子鉄心60と、固定子鉄心60に形成された固定子スロット61と、固定子スロット61に巻き回された固定子巻線62を備えている。 As shown in FIG. 1, the rotating electrical machine 100 according to the embodiment includes a cage rotor 1 and a stator 65 arranged concentrically. The cage rotor 1 includes a shaft (output shaft) 9, a rotor core 2 fixed to the shaft 9, an inner diameter side rotor conductor 3 and an outer diameter side rotor conductor 5 provided on the rotor core 2, and A short-circuit ring 70 is provided to connect both ends of the inner diameter side rotor conductor 3 and the outer diameter side rotor conductor 5. Therefore, the cage rotor 1 of this example has a double cage structure. On the other hand, the stator 65 includes a stator core 60, a stator slot 61 formed in the stator core 60, and a stator winding 62 wound around the stator slot 61.
 回転子鉄心2は、図2に示すように、薄板磁性鋼板をもって形成されており、所定枚数を厚さ方向に積層することにより、全体形状が円筒状に形成される。これら所定枚数の回転子鉄心2は、その中心孔内にシャフト9を挿入することにより、一体化される。 As shown in FIG. 2, the rotor core 2 is formed of a thin magnetic steel plate, and the entire shape is formed into a cylindrical shape by laminating a predetermined number of sheets in the thickness direction. The predetermined number of rotor cores 2 are integrated by inserting a shaft 9 into the center hole thereof.
 回転子鉄心2には、図3及び図4に示すように、シャフト9の軸心を中心とする円周上に、内径側回転子スロット4及び外径側回転子スロット6が一定間隔で形成されている。これら内径側回転子スロット4及び外径側回転子スロット6は、いずれも密閉形状に形成される。内径側回転子スロット4の外周端と外径側回転子スロット6の内周端の間には、所定寸法の内径側ブリッジ7が形成され、外径側回転子スロット6と回転子鉄心2の外周端の間には、所定寸法の外径側ブリッジ8が形成される。内径側ブリッジ7及び外径側ブリッジ8の幅は、内径側回転子スロット4及び外径側回転子スロット6を高能率かつ高精度にプレス打ち抜き可能な値に設定される。 As shown in FIGS. 3 and 4, the rotor core 2 is formed with an inner diameter side rotor slot 4 and an outer diameter side rotor slot 6 at regular intervals on a circumference centered on the axis of the shaft 9. Has been. Both the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 are formed in a sealed shape. Between the outer peripheral end of the inner diameter side rotor slot 4 and the inner peripheral end of the outer diameter side rotor slot 6, an inner diameter side bridge 7 having a predetermined dimension is formed, and the outer diameter side rotor slot 6 and the rotor core 2 are separated from each other. Between the outer peripheral ends, an outer diameter side bridge 8 having a predetermined dimension is formed. The widths of the inner diameter side bridge 7 and the outer diameter side bridge 8 are set to values capable of press punching the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 with high efficiency and high accuracy.
 内径側回転子スロット4内及び外径側回転子スロット6内には、アルミニウム又はアルミニウム合金をダイカストすることによって、内径側回転子導体3及び外径側回転子導体5が形成される。内径側回転子導体3及び外径側回転子導体5のダイカスト法については、公知に属する事項であり、かつ本発明の要旨でもないので説明を省略する。上述したように、各内径側回転子導体3及び各外径側回転子導体5の両端は、短絡環70(図1参照)により接続される。 In the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6, the inner diameter side rotor conductor 3 and the outer diameter side rotor conductor 5 are formed by die-casting aluminum or an aluminum alloy. The die casting method for the inner diameter side rotor conductor 3 and the outer diameter side rotor conductor 5 is a well-known matter and is not the gist of the present invention. As described above, both ends of each inner diameter side rotor conductor 3 and each outer diameter side rotor conductor 5 are connected by the short-circuit ring 70 (see FIG. 1).
 内径側回転子スロット4の平面形状(内径側回転子導体3の断面形状)は、図3及び図4に示すように、角部に丸みを有する略扇形に形成される。内径側回転子スロット4の外径側の端部は、直線形に形成される。 The planar shape of the inner diameter side rotor slot 4 (the sectional shape of the inner diameter side rotor conductor 3) is formed in a substantially sector shape with rounded corners as shown in FIGS. The outer diameter side end of the inner diameter side rotor slot 4 is formed in a linear shape.
 一方、外径側回転子スロット6の平面形状(外径側回転子導体5の断面形状)は、図3乃至図5に示すように、内径側回転子スロット4及び外径側回転子スロット6の中心を通る回転子鉄心2の半径方向線X-Xを中心として、その左右両側の外径側の肩部に、内径方向に凸な円弧状の曲線部10が、左右対称形に形成されている。外径側回転子スロット6の内径側の端部は、内径側回転子スロット4の外径端と対向する直線形に形成され、この直線部と曲線部10とは、円弧で繋がれている。これにより、外径側回転子スロット6の周方向幅は、図5に示すように、かご形回転子1の外径側に至るに従い、曲線部10に沿ってs1、s2、s3と概ね累乗で減少する。 On the other hand, the planar shape of the outer diameter side rotor slot 6 (the cross sectional shape of the outer diameter side rotor conductor 5) is the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 as shown in FIGS. Centering on the radial line XX of the rotor core 2 passing through the center of the core, arc-shaped curved portions 10 convex in the inner diameter direction are formed in left and right shoulders on the left and right sides thereof in a symmetrical manner. ing. The inner diameter side end of the outer diameter side rotor slot 6 is formed in a straight line shape facing the outer diameter end of the inner diameter side rotor slot 4, and the straight line portion and the curved portion 10 are connected by an arc. . As a result, the circumferential width of the outer diameter side rotor slot 6 is approximately raised to s1, s2, and s3 along the curved portion 10 as it reaches the outer diameter side of the cage rotor 1 as shown in FIG. Decrease.
 導体に流れる高調波電流は、その周波数が高くなるほど、表皮効果により導体の外径側に集中して流れるので、高調波電流が作る磁束も、高調波電流の周波数が高くなるほど、導体の外径側に集中して流れる。図5は、固定子スロットの影響やインバータ駆動時のリップル電流に起因する高調波磁束31、32、33のうち、最も周波数の高い高調波磁束33は、外径側回転子導体5の外径側の端部に近い部分を通り、最も周波数の低い高調波磁束31は、外径側回転子導体5の内径側の端部に近い部分を通り、それらの中間の周波数を有する高調波磁束32は、外径側回転子導体5の中央部分を通ることを示している。なお、高調波磁束31、32、33よりも周波数が低い主磁束30は、内径側回転子導体3よりもさらに内径側を通って固定子鉄心60に戻る。 The higher the frequency of the harmonic current flowing through the conductor, the more concentrated the current flows on the outer diameter side of the conductor due to the skin effect, so the higher the frequency of the harmonic current, the higher the frequency of the harmonic current. Concentrate on the side. FIG. 5 shows that the harmonic flux 33 having the highest frequency among the harmonic fluxes 31, 32, 33 caused by the influence of the stator slot and the ripple current when driving the inverter is the outer diameter of the outer diameter side rotor conductor 5. The harmonic magnetic flux 31 having the lowest frequency passing through the portion close to the end on the side passes through the portion close to the end on the inner diameter side of the outer diameter side rotor conductor 5, and the harmonic magnetic flux 32 having an intermediate frequency between them. Indicates passing through the central portion of the outer diameter side rotor conductor 5. The main magnetic flux 30 having a frequency lower than that of the harmonic magnetic fluxes 31, 32, 33 returns to the stator core 60 through the inner diameter side further than the inner diameter side rotor conductor 3.
 実施例1に係る外径側回転子スロット6は、外径側の肩部に、内径方向に凸な円弧状の曲線部10を左右対称形に形成したので、周波数の高い高調波磁束ほど、外径側回転子スロット6を横切る長さが短くなる。外径側回転子スロット6を横切る部分の磁気抵抗は、磁束が外径側回転子スロット6を横切る長さに反比例するから、外径側回転子導体5を流れる高調波電流の周波数が高いほど、高調波電流が作る磁束が通りやすくなる。即ち、インダクタンスが周波数増加に伴って大きくなる。 In the outer diameter side rotor slot 6 according to the first embodiment, the arc-shaped curved portion 10 convex in the inner diameter direction is formed on the shoulder portion on the outer diameter side in a bilaterally symmetrical manner. The length across the outer diameter side rotor slot 6 is shortened. The reluctance of the portion across the outer diameter side rotor slot 6 is inversely proportional to the length of the magnetic flux across the outer diameter side rotor slot 6, so that the higher the frequency of the harmonic current flowing through the outer diameter side rotor conductor 5, the higher the magnetic resistance. The magnetic flux generated by the harmonic current is easy to pass. That is, the inductance increases with increasing frequency.
 回転子導体3,5に流れる電流は、すべり周波数で導体全体に流れて回転電機の出力になる基本波成分と、高調波磁束に起因して導体に流れて損失となる高調波成分に分けて考えることができる。すべり周波数は一般に固定子電流に比べ低い周波数であることから、基本波成分については、回転子漏れ磁束によるインダクタンスの影響は小さく、流れる電流の大きさには抵抗の影響が大きい。一方、高調波電流は、固定子スロットやインバータ駆動に起因する高調波磁束によって生じるため、数kHz以上の比較的高い周波数となることが多く、インダクタンスの影響が大きくなる。したがって、本実施形態のように、外径側回転子導体6に流れる高調波電流によるインダクタンスを増加して、インピーダンスを高めると、損失の原因となる高調波電流を選択的に低減できるので、高効率な回転電機を提供することが可能となる。また、始動時の鎖交磁束についても減少することがないので、始動時に十分なトルクが得られる。 The current flowing through the rotor conductors 3 and 5 is divided into a fundamental wave component that flows through the entire conductor at the slip frequency and becomes the output of the rotating electrical machine, and a harmonic component that flows through the conductor due to the harmonic magnetic flux and becomes a loss. Can think. Since the slip frequency is generally lower than the stator current, the influence of the inductance due to the rotor leakage magnetic flux is small on the fundamental wave component, and the influence of the resistance is large on the magnitude of the flowing current. On the other hand, since the harmonic current is generated by the harmonic magnetic flux resulting from the stator slot and the inverter drive, the harmonic frequency is often a relatively high frequency of several kHz or more, and the influence of the inductance is increased. Therefore, when the impedance is increased by increasing the inductance due to the harmonic current flowing in the outer diameter side rotor conductor 6 as in this embodiment, the harmonic current causing the loss can be selectively reduced. An efficient rotating electrical machine can be provided. Further, since the flux linkage at the time of starting does not decrease, a sufficient torque can be obtained at the time of starting.
 図6を用いて、実施例2に係る回転電機を説明する。実施例2に係る回転電機は、実施例1に係る回転電機100の回転子鉄心2に形成される外径側回転子スロット6の各部の寸法を最適化したことを特徴とする。 The rotating electrical machine according to the second embodiment will be described with reference to FIG. The rotating electrical machine according to the second embodiment is characterized in that the dimensions of each part of the outer diameter side rotor slot 6 formed in the rotor core 2 of the rotating electric machine 100 according to the first embodiment are optimized.
 外径側回転子スロット6に形成される曲線部10の内径側の端部11は、図6に示すように、外径側回転子スロット6の径方向長さ2dの半分よりも内径側に配置する。また、曲線部10の内径側の端部11から外径側の端部13までの周方向幅eは、外径側回転子スロット6の径方向長さの半分dより大きく取り、外径側回転子スロット6の周方向幅が外径方向に向かって縮小する比率を高くする。これにより、高調波電流を効率的に低減することができ、回転電機の損失を軽減することができる。 As shown in FIG. 6, the end portion 11 on the inner diameter side of the curved portion 10 formed in the outer diameter side rotor slot 6 is closer to the inner diameter side than half of the radial length 2d of the outer diameter side rotor slot 6. Deploy. Further, the circumferential width e from the end portion 11 on the inner diameter side of the curved portion 10 to the end portion 13 on the outer diameter side is set to be larger than half the radial direction length of the outer diameter side rotor slot 6, The ratio at which the circumferential width of the rotor slot 6 is reduced in the outer diameter direction is increased. Thereby, a harmonic current can be reduced efficiently and the loss of a rotary electric machine can be reduced.
 なお、図6に示す外径側回転子スロット6の径方向高さ2dは、主要高調波の周波数から算出できる表皮深さに応じて決めることが望ましい。一般に、回転子導体に流れる電流の高調波成分は、固定子巻線に通電される電流の周波数に対して固定子スロット数の整数倍、あるいはインバータキャリア周波数の整数倍が主要となることが多い。したがって、回転子導体の導電率をσ(S/m)、比透磁率をμr(H/m)、回転電機の1秒当たりの回転数をN、固定子スロット数をNs、回転電機を駆動するインバータのキャリア周波数をfc(Hz)とすると、外径側スロット6の径方向高さ2dは、
√(1/π・N・Ns・μr・σ)で求められる固定子スロット高調波の表皮深さ、又は√(1/π・fc・μr・σ)で求められるインバータキャリア高調波の表皮深さのいずれか影響が大きいものよりも小さく設定する。
The radial height 2d of the outer diameter side rotor slot 6 shown in FIG. 6 is preferably determined according to the skin depth that can be calculated from the frequency of the main harmonic. In general, the harmonic component of the current flowing through the rotor conductor is mainly an integer multiple of the number of stator slots or an integer multiple of the inverter carrier frequency with respect to the frequency of the current passed through the stator winding. . Therefore, the electrical conductivity of the rotor conductor is σ (S / m), the relative permeability is μr (H / m), the rotational speed of the rotating electrical machine is N, the number of stator slots is Ns, and the rotating electrical machine is driven. When the carrier frequency of the inverter to be operated is fc (Hz), the radial height 2d of the outer diameter side slot 6 is
Skin depth of stator slot harmonic obtained by √ (1 / π · N · Ns · μr · σ), or skin depth of inverter carrier harmonic obtained by √ (1 / π · fc · μr · σ) Set a value smaller than the one that has a large effect.
 最も影響の大きい高調波の表皮深さ程度に外径側回転子スロット6の径方向高さ2dを設定すると、同周波数の高調波電流が作る磁束は内径側ブリッジ7を通るから、インダクタンスが大きく影響の大きな高調波に対してインピーダンスを高め、効果的に高調波電流を低減できる。また、上述のように高調波の整数倍の成分に対して、曲線部10の内径側の端部を外径側回転子スロット6の径方向長さ2dの半分よりも内径側に設定すると、高調波電流の表皮深さ以下の範囲で特に外径側スロット6の周方向幅を小さくできるので、高調波電流の低減、ひいては損失低減により効果的である。 When the radial height 2d of the outer diameter rotor slot 6 is set to the skin depth of the harmonic having the greatest influence, the magnetic flux generated by the harmonic current of the same frequency passes through the inner diameter bridge 7, and thus the inductance is large. Impedance can be increased for harmonics that have a great influence, and harmonic current can be effectively reduced. Further, as described above, when the end portion on the inner diameter side of the curved portion 10 is set closer to the inner diameter side than the half of the radial length 2d of the outer diameter side rotor slot 6 with respect to an integral multiple of harmonics, Since the circumferential width of the outer diameter side slot 6 can be made particularly small within the range of the skin depth of the harmonic current or less, it is more effective in reducing the harmonic current and hence the loss.
 なお、実施例1及び実施例2に係る回転電機においては、回転子鉄心2に形成される外径側回転子スロット6の曲線部10を左右対称とし、かつ左右の曲線部10の間に外径側に向けて凸なランド部(図5のs3)を設けたが、本発明の要旨はこれに限定されるものではない。外径側回転子スロット6の形状については、図7~図9に示すように種々変更することができる。 In the rotating electrical machines according to the first and second embodiments, the curved portion 10 of the outer diameter side rotor slot 6 formed in the rotor core 2 is bilaterally symmetric, and is externally disposed between the left and right curved portions 10. Although the land portion (s3 in FIG. 5) convex toward the radial side is provided, the gist of the present invention is not limited to this. The shape of the outer diameter side rotor slot 6 can be variously changed as shown in FIGS.
(1)図7の例においては、左右の曲線部10の間にランド部が形成されない形状としている。 (1) In the example of FIG. 7, the land portion is not formed between the left and right curved portions 10.
(2)図8の例においては、左側の曲線部10aと右側の曲線部10bを、内径側回転子スロット4及び外径側回転子スロット6の中心を通る回転子鉄心2の半径方向線X-Xに対して、左右非対称な形状としている。 (2) In the example of FIG. 8, the radial line X of the rotor core 2 passing through the center of the inner diameter side rotor slot 4 and the outer diameter side rotor slot 6 through the left curved portion 10a and the right curved portion 10b. The shape is asymmetric with respect to −X.
(3)図9の例においては、左右の曲線部10の間にランド部10cを形成し、かつ、そのランド部10cの形状を、内径側に向けて凸な曲線としている。 (3) In the example of FIG. 9, the land portion 10c is formed between the left and right curved portions 10, and the shape of the land portion 10c is a convex curve toward the inner diameter side.
 次に、図10乃至図14を用いて、実施例3に係る回転電機を説明する。実施例3に係る回転電機は、同一構成の薄板磁性鋼板を所定枚数積層して回転子鉄心2を構成するのではなく、回転子スロットの形状が異なる2種類の薄板磁性鋼板を積層して、回転子鉄心2を構成することを特徴とする。 Next, the rotating electrical machine according to the third embodiment will be described with reference to FIGS. 10 to 14. The rotating electrical machine according to the third embodiment does not constitute a rotor core 2 by laminating a predetermined number of thin magnetic steel plates having the same configuration, but by laminating two types of thin magnetic steel plates having different rotor slot shapes, The rotor core 2 is configured.
 図10は回転子スロットの形状が異なる2種類の薄板磁性鋼板41,42を1枚ずつ交互に積層した例であり、図11は回転子スロットの形状が異なる2種類の薄板磁性鋼板41,42を3枚ずつ交互に積層した例である。また、図12は回転子スロットの形状が異なる2種類の薄板磁性鋼板41,42のうち、薄板磁性鋼板41を1枚につき、薄板磁性鋼板42を2枚ずつ交互に積層した例である。 FIG. 10 shows an example in which two types of thin magnetic steel plates 41 and 42 having different rotor slot shapes are alternately laminated one by one, and FIG. 11 shows two types of thin magnetic steel plates 41 and 42 having different rotor slot shapes. This is an example in which three sheets are alternately stacked. Further, FIG. 12 shows an example in which two thin magnetic steel plates 41 are alternately laminated on each of the two types of thin magnetic steel plates 41 and 42 having different rotor slot shapes.
 薄板磁性鋼板41は、図13に示すように、実施例1及び実施例2に係る回転電機65に用いられる薄板磁性鋼板と同様に、内径側ブリッジ7を介して内周側回転子スロット4及び外周側回転子スロット6が形成されている。これに対して、薄板磁性鋼板42は、図14に示すように、内径側ブリッジ7を有しておらず、内周側回転子スロット4に相当する部分及び外周側回転子スロット6に相当する部分が一連となったブリッジ無しスロット12が形成されている。 As shown in FIG. 13, the thin magnetic steel plate 41 is similar to the thin magnetic steel plate used in the rotating electrical machine 65 according to the first and second embodiments, and the inner circumferential rotor slot 4 and the An outer rotor slot 6 is formed. On the other hand, as shown in FIG. 14, the thin magnetic steel plate 42 does not have the inner diameter side bridge 7, and corresponds to the portion corresponding to the inner peripheral side rotor slot 4 and the outer peripheral side rotor slot 6. An unbridged slot 12 is formed in a series of portions.
 上述したように、回転子鉄心2に形成される内周側ブリッジ7は、外径側回転子導体5を流れる高調波電流が作る磁束の経路となることから、図15に示すように、内周側ブリッジ7の径方向幅bは、外径側回転子導体5を流れる高調波磁束に対してかご形回転子1の自己インダクタンスを高める上で重要な役割を果たしている。しかし、内周側ブリッジ7の径方向幅bが大きすぎると、回転子導体全体を鎖交すべき主磁束が当該内周側ブリッジ7を通ってしまうため、内径側回転子導体3の鎖交磁束量が減少して、回転電機の出力が低下する。一方、薄板磁性鋼板をパンチにより打ち抜いて回転子鉄心2を製作する場合、打ち抜き時の変形や破断を避けるため、内周側ブリッジ7の径方向幅bについては、鋼板の厚みに応じた制限値が決まる。一般的に多く用いられる薄板磁性鋼板の厚みは概ね0.3~0.5mm程度であるから、打ち抜き時による径方向幅bの制限値も概ね薄板磁性鋼板の厚み以上であることが多い。このため、主磁束の減少を避けられる寸法よりも打ち抜き時の制限寸法の方が大きくなる場合がある。 As described above, the inner bridge 7 formed on the rotor core 2 serves as a path for magnetic flux generated by the harmonic current flowing through the outer rotor conductor 5, so as shown in FIG. The radial width b of the circumferential bridge 7 plays an important role in increasing the self-inductance of the cage rotor 1 with respect to the harmonic magnetic flux flowing through the outer diameter rotor conductor 5. However, if the radial width b of the inner circumferential bridge 7 is too large, the main magnetic flux that should be linked to the entire rotor conductor passes through the inner circumferential bridge 7. The amount of magnetic flux decreases and the output of the rotating electrical machine decreases. On the other hand, when the rotor core 2 is manufactured by punching a thin magnetic steel plate with a punch, the radial width b of the inner peripheral bridge 7 is a limit value corresponding to the thickness of the steel plate in order to avoid deformation and breakage during punching. Is decided. Since the thickness of the thin magnetic steel plate that is generally used is generally about 0.3 to 0.5 mm, the limit value of the radial width b at the time of punching is often approximately equal to or greater than the thickness of the thin magnetic steel plate. For this reason, the limit dimension at the time of punching may become larger than the dimension which can avoid the reduction | decrease of a main magnetic flux.
 そこで、図10に示すように、内径側ブリッジ7を有する薄板磁性鋼板41とブリッジ無しスロット12が形成された薄板磁性鋼板42とを1枚ずつ交互に積層すると、例えば内周側ブリッジ7の径方向幅bを打ち抜き上の制約で1.0mmとして作成した鋼板を用いても、回転子鉄心2の磁気回路全体では、各薄板磁性鋼板毎に径方向幅が0.5mmの内径側ブリッジ7を形成したものと等価となり、主磁束の漏れを低減できる。また、図11に例示するように、内径側ブリッジ7を有する薄板磁性鋼板41とブリッジ無しスロット12が形成された薄板磁性鋼板42とを複数枚ずつ交互に積層した場合にも、同様の効果が得られる。さらに、図12に例示するように、内径側ブリッジ7を有する薄板磁性鋼板41を1枚につき、ブリッジ無しスロット12が形成された薄板磁性鋼板42を2枚ずつ交互に積層した場合には、例えば内周側ブリッジ7の径方向幅bを打ち抜き上の制約で1.0mmとして作成した鋼板を用いても、回転子鉄心2の磁気回路全体では、各薄板磁性鋼板毎に径方向幅が0.33mmの内径側ブリッジ7を形成したものと等価となり、主磁束の漏れを低減できる。回転子スロットの形状が異なる2種類の薄板磁性鋼板を何枚ずつ積層するかは、構成したい径方向幅bや製作上の都合により適宜設定できる。 Therefore, as shown in FIG. 10, when the thin magnetic steel plates 41 having the inner bridges 7 and the thin magnetic steel plates 42 having the bridgeless slots 12 are alternately laminated one by one, for example, the diameter of the inner bridge 7 Even if a steel plate made with a direction width b of 1.0 mm due to punching restrictions is used, the entire magnetic circuit of the rotor core 2 has an inner diameter side bridge 7 with a radial width of 0.5 mm for each thin magnetic steel plate. It becomes equivalent to what was formed, and leakage of the main magnetic flux can be reduced. In addition, as illustrated in FIG. 11, the same effect can be obtained when a plurality of thin magnetic steel plates 42 having the inner bridge 7 and thin magnetic steel plates 42 having the bridgeless slots 12 are alternately laminated. can get. Furthermore, as illustrated in FIG. 12, when the thin magnetic steel plates 41 having the inner diameter side bridges 7 are alternately laminated by two thin magnetic steel plates 42 each having the bridgeless slot 12 formed, for example, Even if a steel plate prepared by setting the radial width b of the inner peripheral bridge 7 to 1.0 mm due to punching restrictions is used, the radial width of each thin magnetic steel plate is 0.00 mm in the entire magnetic circuit of the rotor core 2. This is equivalent to a structure in which a 33 mm inner diameter side bridge 7 is formed, and leakage of main magnetic flux can be reduced. The number of the two types of thin magnetic steel plates with different rotor slot shapes can be appropriately set depending on the radial width b to be configured and the manufacturing convenience.
 このように、実施例3に係る回転電機は、回転子スロットの形状が異なる2種類の薄板磁性鋼板を適宜積層することにより、回転子鉄心2に形成される内周側ブリッジ7の径方向幅bを最適化するので、内周側ブリッジ7における主磁束の漏れを低減できて、回転電機の出力低下を最小化することができる。 As described above, in the rotating electrical machine according to the third embodiment, the radial width of the inner peripheral bridge 7 formed on the rotor core 2 by appropriately stacking two kinds of thin magnetic steel plates having different rotor slot shapes. Since b is optimized, the leakage of the main magnetic flux in the inner peripheral bridge 7 can be reduced, and the output reduction of the rotating electrical machine can be minimized.
 次に、図16を用いて、実施例4に係る回転電機を説明する。実施例4に係る回転電機は、回転子スロットの形状が異なる2種類の薄板磁性鋼板を積層して、回転子鉄心2を構成するのではなく、内径側ブリッジ7を有する回転子スロットと、内径側ブリッジ7を有しない回転子スロット12とが周方向に所要の配列で形成された薄板磁性鋼板を積層して、回転子鉄心2を構成することを特徴とする。 Next, the rotating electrical machine according to the fourth embodiment will be described with reference to FIG. The rotating electrical machine according to the fourth embodiment does not constitute the rotor core 2 by laminating two kinds of thin magnetic steel plates having different rotor slot shapes, but the rotor slot having the inner diameter side bridge 7 and the inner diameter. A rotor core 2 is configured by laminating thin magnetic steel plates formed in a predetermined arrangement in the circumferential direction with a rotor slot 12 having no side bridge 7.
 図16の例では、薄板磁性鋼板の周方向に、内径側ブリッジ7を介して径方向に配置された内周側回転子スロット4及び外周側回転子スロット6と、内径側ブリッジ7を有しておらず、内周側回転子スロット4に相当する部分及び外周側回転子スロット6に相当する部分が一連となったブリッジ無しスロット12とが、1つずつ交互にかつ一定ピッチで形成されている。 In the example of FIG. 16, in the circumferential direction of the thin magnetic steel plate, there are an inner peripheral side rotor slot 4 and an outer peripheral side rotor slot 6 that are arranged radially via an inner diameter side bridge 7, and an inner diameter side bridge 7. However, the bridge-less slots 12 in which a portion corresponding to the inner rotor slot 4 and a portion corresponding to the outer rotor slot 6 are formed in series are alternately formed at a constant pitch. Yes.
 薄板磁性鋼板にこのような配列で各回転子スロットを形成すると、ブリッジ無しスロット12上に、内径側ブリッジ7を介して径方向に配置された内周側回転子スロット4及び外周側回転子スロット6を重ねるように、互いに接して配置される各薄板磁性鋼板の周方向位置を調整することにより、図10と同様の回転子鉄心2を構成することができる。なお、内径側ブリッジ7を介して径方向に配置された内周側回転子スロット4及び外周側回転子スロット6と、ブリッジ無しスロット12との配列は、1つずつ交互にかつ一定ピッチであることに限定されるものではなく、これらの各回転子スロットを複数個ずつ交互に一定ピッチで形成することもできる。また、実施例3に係る回転電機と同様に、各回転子スロットの配列が異なる2種類の薄板磁性鋼板を積層して、回転子鉄心2を構成することもできる。 When each rotor slot is formed in such an arrangement in a thin magnetic steel plate, an inner circumferential rotor slot 4 and an outer circumferential rotor slot arranged radially on the bridgeless slot 12 via the inner bridge 7. The rotor core 2 similar to that shown in FIG. 10 can be configured by adjusting the circumferential positions of the thin magnetic steel plates arranged in contact with each other so as to overlap each other. In addition, the arrangement | sequence of the inner peripheral side rotor slot 4 and the outer peripheral side rotor slot 6 which are arrange | positioned radially via the inner diameter side bridge | bridging 7, and the slot 12 without a bridge | bridging is alternately and fixed pitch one by one. However, the present invention is not limited thereto, and a plurality of these rotor slots can be alternately formed at a constant pitch. Similarly to the rotating electrical machine according to the third embodiment, the rotor core 2 can be configured by stacking two types of thin magnetic steel plates having different rotor slot arrangements.
 実施例4に係る回転電機も、実施例3に係る回転電機と同様の効果を有する。 The rotating electrical machine according to the fourth embodiment has the same effect as the rotating electrical machine according to the third embodiment.
 次に、図17を用いて、実施例5に係る回転電機を説明する。実施例5に係る回転電機は、内径側回転子スロット4内に銅バー51を挿入したことを特徴とする。 Next, the rotating electrical machine according to the fifth embodiment will be described with reference to FIG. The rotating electrical machine according to the fifth embodiment is characterized in that a copper bar 51 is inserted into the inner diameter side rotor slot 4.
 即ち、実施例5に係る回転電機は、図17に示すように、内径側ブリッジ7を介して径方向に配置された内周側回転子スロット4及び外周側回転子スロット6が、周方向に一定ピッチで形成された回転子鉄心2を有している。内周側回転子スロット4内には、銅バー51が挿入されており、内周側回転子スロット4の内面と銅バー51の外面との隙間には、アルミニウム又はアルミニウム合金がダイカストにより充填されている。また、外周側回転子スロット6内にも、アルミニウム又はアルミニウム合金がダイカストにより充填されている。その他については、実施例1に係る回転電機と同じであるので、対応する部分に同一の符号を付して、説明を省略する。 That is, in the rotating electrical machine according to the fifth embodiment, as shown in FIG. 17, the inner circumferential rotor slot 4 and the outer circumferential rotor slot 6 arranged in the radial direction via the inner diameter bridge 7 are arranged in the circumferential direction. The rotor core 2 is formed at a constant pitch. A copper bar 51 is inserted into the inner circumferential rotor slot 4, and the gap between the inner surface of the inner circumferential rotor slot 4 and the outer surface of the copper bar 51 is filled with aluminum or an aluminum alloy by die casting. ing. The outer rotor slot 6 is filled with aluminum or aluminum alloy by die casting. The other parts are the same as those of the rotating electrical machine according to the first embodiment, and thus the corresponding parts are denoted by the same reference numerals and the description thereof is omitted.
 銅はアルミニウムに比べて導電率が高いので、回転子導体として好適である、しかしながら、銅はアルミニウムに比べて融点が高いので、ダイカストにより回転子スロット内に充填することがコスト的に困難である。したがって、回転子導体として銅バーを用いる場合には、回転子鉄心に形成された回転子スロット内に固体の銅バーを挿入するという方法が一般にとられるが、実施形態に係る回転子鉄心2のように、比較的複雑な形状を有する回転子スロット内に固体の銅バーを隙間なく挿入することは困難である。そこで、図16に示すように、内周側回転子スロット4内に固体の銅バー51を挿入した後に、内周側回転子スロット4の内面と銅バー51の外面との隙間に、アルミニウム又はアルミニウム合金をダイカストにより充填すると、複雑な形状の内周側回転子スロット4の内面と銅バー51の外面とを電気的に確実に接続できる。なお、図示は省略するが、外周側回転子スロット6についても、銅バー51を挿入することができる。 Copper has a higher electrical conductivity than aluminum and is therefore suitable as a rotor conductor. However, since copper has a higher melting point than aluminum, it is difficult to costly fill the rotor slot by die casting. . Therefore, when a copper bar is used as the rotor conductor, a method of inserting a solid copper bar into a rotor slot formed in the rotor core is generally used. However, the rotor core 2 according to the embodiment is not limited. Thus, it is difficult to insert a solid copper bar into a rotor slot having a relatively complicated shape without a gap. Therefore, as shown in FIG. 16, after inserting the solid copper bar 51 into the inner rotor slot 4, aluminum or aluminum is formed in the gap between the inner surface of the inner rotor slot 4 and the outer surface of the copper bar 51. When the aluminum alloy is filled by die casting, the inner surface of the inner peripheral rotor slot 4 having a complicated shape and the outer surface of the copper bar 51 can be electrically and reliably connected. Although illustration is omitted, the copper bar 51 can also be inserted into the outer rotor slot 6.
 実施例5に係る回転電機は、回転子鉄心2に形成された回転子スロット4内に銅バー51を挿入したので、回転子導体の導電率を高めることができ、回転電機の効率を更に改善することができる。また、内周側回転子スロット4内に固体の銅バー51を挿入した後に、内周側回転子スロット4の内面と銅バー51の外面との隙間に、アルミニウム又はアルミニウム合金をダイカストにより充填するので、導電性が良好な内周側回転子導体3を容易に作製することができる。 In the rotating electrical machine according to the fifth embodiment, since the copper bar 51 is inserted into the rotor slot 4 formed in the rotor core 2, the electrical conductivity of the rotor conductor can be increased, and the efficiency of the rotating electrical machine is further improved. can do. Further, after inserting the solid copper bar 51 into the inner rotor slot 4, aluminum or an aluminum alloy is filled in the gap between the inner surface of the inner rotor slot 4 and the outer surface of the copper bar 51 by die casting. Therefore, the inner peripheral rotor conductor 3 having good conductivity can be easily manufactured.
  1 回転子
  2 回転子鉄心
  3 内径側回転子導体
  4 内径側回転子スロット
  5 外径側回転子導体
  6 外径側回転子スロット
  7 内径側ブリッジ
  8 外径側ブリッジ
  9 シャフト
  10、10a~10c 曲線部
  11 曲線部の内径側端部
  12 ブリッジ無しスロット
  13 曲線部の外径側端部
  30 主磁束
  31~33 高調波磁束
  41、42 薄板磁性鋼板
  51 銅バー
  60 固定子鉄心
  61 固定子スロット
  62 固定子巻線
  65 固定子
  70 短絡環
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotor core 3 Inner diameter side rotor conductor 4 Inner diameter side rotor slot 5 Outer diameter side rotor conductor 6 Outer diameter side rotor slot 7 Inner diameter side bridge 8 Outer diameter side bridge 9 Shaft 10, 10a to 10c Curve Part 11 Curved part inner diameter side edge 12 Bridgeless slot 13 Curved part outer diameter side edge part 30 Main magnetic flux 31 to 33 Harmonic magnetic flux 41, 42 Thin magnetic steel sheet 51 Copper bar 60 Stator core 61 Stator slot 62 Fixed Child winding 65 Stator 70 Short circuit ring

Claims (10)

  1.  固定子と、固定子内に回転可能に配置された回転子とを有し、
     前記回転子は、多数の薄板磁性鋼板の積層体からなる回転子鉄心と、該回転子鉄心に形成された密閉構造の内径側回転子スロット及び外径側回転子スロットと、前記内径側回転子スロット内に形成された内径側回転子導体及び前記外径側回転子スロット内に形成された外径側回転子導体を備えた二重かご構造を有し、
     前記外径側回転子スロットは、外径側の左右肩部に、内径方向に凸な円弧状の曲線部を有することを特徴とする回転電機。
    A stator and a rotor rotatably disposed in the stator;
    The rotor includes a rotor core made of a laminate of a large number of thin magnetic steel sheets, an inner diameter side rotor slot and an outer diameter side rotor slot having a sealed structure formed on the rotor core, and the inner diameter side rotor. A double cage structure having an inner diameter side rotor conductor formed in the slot and an outer diameter side rotor conductor formed in the outer diameter side rotor slot;
    The rotating machine according to claim 1, wherein the outer-diameter-side rotor slot has arcuate curved portions convex in the inner-diameter direction at left and right shoulders on the outer-diameter side.
  2.  前記曲線部は、前記外径側回転子スロットの周方向幅が、前記回転子鉄心の外径方向に至るにしたがって漸減するように形成することを特徴とする請求項1記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein the curved portion is formed such that a circumferential width of the outer-diameter side rotor slot gradually decreases as the outer-diameter direction of the rotor core is reached.
  3.  前記曲線部の内径側の端部は、前記外径側回転子スロットの径方向長さの半分よりも内径側に配置することを特徴とする請求項1に記載の回転電機。 2. The rotating electrical machine according to claim 1, wherein an end portion on an inner diameter side of the curved portion is arranged on an inner diameter side with respect to a half of a radial length of the outer diameter rotor slot.
  4.  前記曲線部の内径側の端部から外径側の端部までの周方向幅は、前記外径側回転子スロットの径方向長さの半分より大きく取ることを特徴とする請求項1に記載の回転電機。 The circumferential width from the inner diameter side end portion to the outer diameter side end portion of the curved portion is set to be larger than half of the radial length of the outer diameter side rotor slot. Rotating electric machine.
  5.  前記内径側回転子導体及び前記外径側回転子導体の導電率をσ(S/m)、比透磁率をμr(H/m)、回転電機の1秒当たりの回転数をN、固定子スロット数をNsとしたとき、前記外径側回転子スロットの径方向高さを、√(1/π・N・Ns・μr・σ)で表される固定子スロット高調波の表皮深さよりも小さくしたことを特徴とする請求項1に記載の回転電機。 The electrical conductivity of the inner diameter side rotor conductor and the outer diameter side rotor conductor is σ (S / m), the relative permeability is μr (H / m), the number of rotations per second of the rotating electrical machine is N, and the stator When the number of slots is Ns, the radial height of the outer-diameter-side rotor slot is greater than the skin depth of the stator slot harmonic represented by √ (1 / π · N · Ns · μr · σ). The rotating electrical machine according to claim 1, wherein the rotating electrical machine is reduced in size.
  6.  回転電機を駆動するインバータのキャリア周波数をfc、前記内径側回転子導体及び前記外径側回転子導体の導電率をσ(S/m)、比透磁率をμr(H/m)としたとき、前記外径側回転子スロットの径方向高さを、√(1/π・fc・μr・σ)で表されるインバータキャリア高調波の表皮深さよりも小さくしたことを特徴とする請求項1に記載の回転電機。 When the carrier frequency of the inverter driving the rotating electrical machine is fc, the conductivity of the inner diameter side rotor conductor and the outer diameter side rotor conductor is σ (S / m), and the relative permeability is μr (H / m). The radial height of the outer-diameter side rotor slot is made smaller than the skin depth of the inverter carrier harmonic expressed by √ (1 / π · fc · μr · σ). The rotating electrical machine described in 1.
  7.  前記回転子鉄心が、前記内径側ブリッジを介して前記内周側回転子スロット及び前記外周側回転子スロットが形成された第1の薄板磁性鋼板と、前記内径側ブリッジを有しておらず、前記内周側回転子スロットに相当する部分及び前記外周側回転子スロットに相当する部分が一連となったブリッジ無しスロットが形成された第2の薄板磁性鋼板との積層体をもって構成され、前記第1の薄板磁性鋼板に形成された前記内径側ブリッジ、前記内周側回転子スロット及び前記外周側回転子スロットが、前記第2の薄板磁性鋼板に形成された前記ブリッジ無しスロットに重ね合わされていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の回転電機。 The rotor iron core does not have the first thin-plate magnetic steel plate in which the inner peripheral rotor slot and the outer peripheral rotor slot are formed via the inner diameter bridge, and the inner diameter bridge, A portion corresponding to the inner rotor slot and a portion corresponding to the outer rotor slot are formed of a laminated body with a second thin sheet magnetic steel plate in which a bridge-less slot is formed; The inner bridge, the inner rotor slot, and the outer rotor slot formed in one thin magnetic steel plate are overlapped with the non-bridge slot formed in the second thin magnetic steel plate. The rotating electrical machine according to any one of claims 1 to 6, wherein the rotating electrical machine is characterized in that:
  8.  前記回転子鉄心が、複数の薄板磁性鋼板の積層体をもって構成されており、前記薄板磁性鋼板の周方向には、前記内径側ブリッジを介して前記薄板磁性鋼板の径方向に形成された前記内周側回転子スロット及び前記外周側回転子スロットと、前記内径側ブリッジを有しておらず、前記内周側回転子スロットに相当する部分及び前記外周側回転子スロットに相当する部分が一連となったブリッジ無しスロットとが一定ピッチで形成され、互いに接して配置された2枚の前記薄板磁性鋼板の一方に形成された前記内径側ブリッジ、前記内周側回転子スロット及び前記外周側回転子スロットを、他方の薄板磁性鋼板に形成された前記ブリッジ無しスロットに重ね合わせたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の回転電機。 The rotor iron core is configured with a laminate of a plurality of thin magnetic steel plates, and the inner side formed in the radial direction of the thin magnetic steel plates via the inner diameter side bridge in the circumferential direction of the thin magnetic steel plates. A peripheral rotor slot, the outer peripheral rotor slot, and the inner diameter bridge are not provided, and a portion corresponding to the inner peripheral rotor slot and a portion corresponding to the outer peripheral rotor slot are a series. The inner bridge, the inner rotor slot, and the outer rotor formed on one of the two thin magnetic steel plates that are formed at a constant pitch and are arranged in contact with each other. The rotating electrical machine according to any one of claims 1 to 6, wherein the slot is overlapped with the slot without bridge formed in the other thin magnetic steel plate.
  9.  前記内径側回転子スロット内に形成された内径側回転子導体、及び、前記外径側回転子スロット内に形成された外径側回転子導体のうち、少なくとも前記内径側回転子スロット内に形成された内径側回転子導体を、前記内径側回転子スロット内に挿入された銅バーと、前記内径側回転子スロットと前記銅バーとの間に充填されたアルミニウム又はアルミニウム合金からなることを特徴とする請求項1に記載の回転電機。 Of the inner diameter side rotor conductor formed in the inner diameter side rotor slot and the outer diameter side rotor conductor formed in the outer diameter side rotor slot, formed in at least the inner diameter side rotor slot. The inner diameter side rotor conductor is made of a copper bar inserted into the inner diameter side rotor slot and aluminum or an aluminum alloy filled between the inner diameter side rotor slot and the copper bar. The rotating electrical machine according to claim 1.
  10.  内径側回転子スロット及び外径側回転子スロットを有する所定枚数の薄板磁性鋼板を形成する工程と、各薄板磁性鋼板の内径側回転子スロット及び外径側回転子スロットを重ね合わせて所定枚数の薄板磁性鋼板を積層し、回転子鉄心を構成する工程と、前記回転子鉄心に形成された前記内径側回転子スロット及び前記外径側回転子スロットのうち、少なくとも前記内径側回転子スロット内に銅バーを挿入する工程と、前記内径側回転子スロットと前記銅バーの隙間に、アルミニウム又はアルミニウム合金をダイカストにより充填する工程とを含むことを特徴とする回転電機の製造方法。 A process of forming a predetermined number of thin magnetic steel plates having an inner diameter side rotor slot and an outer diameter side rotor slot, and a predetermined number of sheets by superimposing the inner diameter side rotor slots and the outer diameter side rotor slots of each thin plate magnetic steel sheet. Laminating thin magnetic steel plates to form a rotor core, and among the inner diameter side rotor slot and the outer diameter side rotor slot formed in the rotor core, at least in the inner diameter side rotor slot A method of manufacturing a rotating electrical machine, comprising: a step of inserting a copper bar; and a step of filling aluminum or an aluminum alloy into a gap between the inner diameter side rotor slot and the copper bar by die casting.
PCT/JP2013/068032 2013-07-01 2013-07-01 Rotating electric machine and manufacturing method thereof WO2015001601A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015524921A JP6129966B2 (en) 2013-07-01 2013-07-01 Rotating electric machine and manufacturing method thereof
PCT/JP2013/068032 WO2015001601A1 (en) 2013-07-01 2013-07-01 Rotating electric machine and manufacturing method thereof
CN201380077356.9A CN105284038B (en) 2013-07-01 2013-07-01 Electric rotating machine and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068032 WO2015001601A1 (en) 2013-07-01 2013-07-01 Rotating electric machine and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2015001601A1 true WO2015001601A1 (en) 2015-01-08

Family

ID=52143224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068032 WO2015001601A1 (en) 2013-07-01 2013-07-01 Rotating electric machine and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6129966B2 (en)
CN (1) CN105284038B (en)
WO (1) WO2015001601A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116089A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Induction motor rotor structure
FR3069731A1 (en) * 2017-07-31 2019-02-01 Moteurs Leroy-Somer CAGE ROTOR INJECTED
CN110581631A (en) * 2019-09-29 2019-12-17 北京融信雅德科技有限公司 Energy-saving three-phase asynchronous motor
WO2019244238A1 (en) * 2018-06-19 2019-12-26 三菱電機株式会社 Rotor and rotary electric machine
WO2019244240A1 (en) * 2018-06-19 2019-12-26 三菱電機株式会社 Rotor and rotary electric machine
WO2019244205A1 (en) * 2018-06-18 2019-12-26 三菱電機株式会社 Rotor for induction motor, induction motor, and method for manufacturing rotor
JP2020137151A (en) * 2019-02-13 2020-08-31 東芝三菱電機産業システム株式会社 Squirrel-cage induction motor and squirrel-cage rotator
WO2022064820A1 (en) * 2020-09-25 2022-03-31 株式会社日立産機システム Rotor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301794A1 (en) * 2016-09-30 2018-04-04 Siemens Aktiengesellschaft Production of a rotor of a rotating electric machine
CN106849575A (en) * 2017-02-24 2017-06-13 康富科技股份有限公司 A kind of motor rotor
JP6914742B2 (en) * 2017-06-16 2021-08-04 株式会社東芝 Induction motor rotor
CN109599970A (en) * 2017-09-30 2019-04-09 上海海立电器有限公司 A kind of rotor and motor
CN108964387B (en) * 2018-06-06 2019-10-11 东南大学 The double-deck standard squirrel cage conductor rotor high torque density permanent-magnet speed governor
JP7057745B6 (en) * 2018-12-13 2022-05-16 株式会社日立産機システム Manufacturing method of stator of rotary electric machine and rotary electric machine
JP7344850B2 (en) * 2020-07-10 2023-09-14 東芝三菱電機産業システム株式会社 Rotor and rotating electric machine
RU2747273C1 (en) * 2020-12-10 2021-05-04 Сергей Сергеевич Лагутин Asynchronous electric machine rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124879A (en) * 2007-11-15 2009-06-04 Toshiba Corp Rotor
WO2009093345A1 (en) * 2008-01-25 2009-07-30 Mitsubishi Electric Corporation Induction electric motor and hermetic comporessor
JP2009278701A (en) * 2008-05-12 2009-11-26 Toyota Industries Corp Cage-type induction machine and rotor of cage-type induction machine
WO2012053064A1 (en) * 2010-10-19 2012-04-26 三菱電機株式会社 Induction motor rotor, induction motor, compressor, blower, and air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274190B2 (en) * 2010-05-28 2012-09-25 General Electric Company Electric machine rotor bar and method of making same
CN201726295U (en) * 2010-07-01 2011-01-26 大连三洋压缩机有限公司 Two-electrode asynchronous starting permanent magnet synchronous motor for scroll compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124879A (en) * 2007-11-15 2009-06-04 Toshiba Corp Rotor
WO2009093345A1 (en) * 2008-01-25 2009-07-30 Mitsubishi Electric Corporation Induction electric motor and hermetic comporessor
JP2009278701A (en) * 2008-05-12 2009-11-26 Toyota Industries Corp Cage-type induction machine and rotor of cage-type induction machine
WO2012053064A1 (en) * 2010-10-19 2012-04-26 三菱電機株式会社 Induction motor rotor, induction motor, compressor, blower, and air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116089A1 (en) * 2015-12-30 2017-07-06 주식회사 효성 Induction motor rotor structure
KR101801125B1 (en) * 2015-12-30 2017-12-20 주식회사 효성 Structure of induction motor rotor
FR3069731A1 (en) * 2017-07-31 2019-02-01 Moteurs Leroy-Somer CAGE ROTOR INJECTED
WO2019025349A1 (en) 2017-07-31 2019-02-07 Moteurs Leroy-Somer Injected-cage rotor
JPWO2019244205A1 (en) * 2018-06-18 2020-06-25 三菱電機株式会社 Induction motor rotor, induction motor and rotor manufacturing method
WO2019244205A1 (en) * 2018-06-18 2019-12-26 三菱電機株式会社 Rotor for induction motor, induction motor, and method for manufacturing rotor
WO2019244238A1 (en) * 2018-06-19 2019-12-26 三菱電機株式会社 Rotor and rotary electric machine
WO2019244240A1 (en) * 2018-06-19 2019-12-26 三菱電機株式会社 Rotor and rotary electric machine
JP6647464B1 (en) * 2018-06-19 2020-02-14 三菱電機株式会社 Rotor and rotating electric machine
JPWO2019244240A1 (en) * 2018-06-19 2020-12-17 三菱電機株式会社 Rotor and rotating machine
JP2020137151A (en) * 2019-02-13 2020-08-31 東芝三菱電機産業システム株式会社 Squirrel-cage induction motor and squirrel-cage rotator
JP7085501B2 (en) 2019-02-13 2022-06-16 東芝三菱電機産業システム株式会社 Squirrel-cage induction motor and squirrel-cage rotor
CN110581631A (en) * 2019-09-29 2019-12-17 北京融信雅德科技有限公司 Energy-saving three-phase asynchronous motor
WO2022064820A1 (en) * 2020-09-25 2022-03-31 株式会社日立産機システム Rotor
JP7419205B2 (en) 2020-09-25 2024-01-22 株式会社日立産機システム Rotor, squirrel cage induction motor and drive system

Also Published As

Publication number Publication date
JP6129966B2 (en) 2017-05-17
CN105284038B (en) 2018-04-10
JPWO2015001601A1 (en) 2017-02-23
CN105284038A (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP6129966B2 (en) Rotating electric machine and manufacturing method thereof
US9800103B2 (en) Mechanically stabilized rotor for a reluctance motor
EP2200160B1 (en) Rotator for induction electric motor, induction electric motor, compressor, blower, and air-conditioning device
US8030812B2 (en) Rotating electric apparatus and method for connecting stator coils thereof
JP4682100B2 (en) Rotating electric machine
CN109906545B (en) Synchronous reluctance type rotating electric machine
WO2015019948A1 (en) Brushless motor
US10749385B2 (en) Dual magnetic phase material rings for AC electric machines
JP2011147224A (en) Rotary electric machine
JP2010041786A (en) Stator windings and electric rotary machine
JP4588255B2 (en) Self-starting reluctance motor rotor
CN207612135U (en) A kind of permasyn morot stator core structure
JP5084980B1 (en) Double cage rotor
JP5175126B2 (en) Rotating electrical machine rotor and rotating electrical machine
CN112655141B (en) Cage rotor and rotating electrical machine
KR100434289B1 (en) rotor of squirrel cage induction motor
JP5900319B2 (en) Induction motor
WO2022259839A1 (en) Rotating electric machine
JP2010268573A (en) Squirrel-cage induction machine and rotor for squirrel-cage induction machines
WO2024084542A1 (en) Rotary electric machine
JP2002345219A (en) Reluctance motor
JP2004297990A (en) Permanent magnet type synchronous motor
RU2643529C2 (en) Rotor for electric motor
US20180006510A1 (en) Electrical machine
JP6016722B2 (en) Electric motor core, rotary electric motor, and linear motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077356.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888712

Country of ref document: EP

Kind code of ref document: A1