WO2024084542A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2024084542A1
WO2024084542A1 PCT/JP2022/038543 JP2022038543W WO2024084542A1 WO 2024084542 A1 WO2024084542 A1 WO 2024084542A1 JP 2022038543 W JP2022038543 W JP 2022038543W WO 2024084542 A1 WO2024084542 A1 WO 2024084542A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux barrier
electric machine
rotating electric
flux
magnetic poles
Prior art date
Application number
PCT/JP2022/038543
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 茅野
仁志 磯田
貴之 飯田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/038543 priority Critical patent/WO2024084542A1/en
Publication of WO2024084542A1 publication Critical patent/WO2024084542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • This application relates to a rotating electric machine.
  • a traction motor as shown below has been disclosed as a rotating electric machine that uses a multi-slot stator structure to suppress magnetic flux fluctuations in the air gap between the stator and rotor, thereby reducing torque ripple, cogging torque, etc.
  • a first plurality of magnet pairs are configured in a laminate stack and arranged in a first V-shaped configuration.
  • a second plurality of permanent magnets larger than each of the first plurality of permanent magnets are configured as a second plurality of magnet pairs in the laminate stack and arranged in a second V-shaped configuration.
  • the separation angle of the second magnet pairs is configured to be smaller than the separation angle of the first magnet pairs (see, for example, Patent Document 1).
  • the rotating electric machine disclosed in the present application comprises: a stator having a plurality of teeth protruding radially inward from an annular yoke portion and an armature winding wound in a plurality of slots formed between the teeth; and a rotor having a rotor core on which a plurality of magnetic poles and flux barriers formed by permanent magnets are formed,
  • a rotating electric machine in which the number of slots per pole per phase obtained by dividing the total number of slots by the number of phases and the number of magnetic poles of the rotor is 4 or more, and the armature winding is configured as a distributed winding, a first flux barrier is formed adjacent to each of both circumferential ends of the first permanent magnet constituting each of the magnetic poles;
  • the rotating electric machine disclosed in this application provides a highly efficient rotating electric machine even in a multi-slot structure with a large number of slots per pole per phase.
  • 1 is a schematic diagram showing a cross section parallel to an axial direction in a rotating electric machine according to a first embodiment
  • 1 is a diagram showing a portion of a cross section perpendicular to an axial direction in a rotating electric machine according to a first embodiment
  • 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example.
  • 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example.
  • 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example.
  • FIG. 13 is a graph showing the iron loss characteristics of a rotating electric machine when the central angle ⁇ 1 is changed.
  • 1A and 1B are diagrams for explaining the principle of increase in iron loss in a rotating electric machine; 1 is a diagram showing a portion of a cross section perpendicular to an axial direction in a rotating electric machine according to a first embodiment; 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. FIG.
  • FIG. 13 is a graph showing the iron loss characteristics of a rotating electric machine when the central angle ⁇ 2 is changed.
  • 1A and 1B are diagrams for explaining the principle of increase in iron loss in a rotating electric machine;
  • FIG. 2 is a graph showing torque characteristics of a rotating electric machine.
  • 1 is a diagram showing a portion of a cross section perpendicular to an axial direction in a rotating electric machine according to a first embodiment;
  • 11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment.
  • FIG. 11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment.
  • FIG. 11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment.
  • FIG. 11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment.
  • FIG. 11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment.
  • FIG. 11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment.
  • FIG. FIG. 2 is a diagram showing magnetomotive force distribution in a rotating electric machine.
  • FIG. 2 is a diagram showing magnetomotive force distribution in a rotating electric machine.
  • FIG. 1 is a schematic diagram showing a cross section parallel to an axial direction Y in a rotating electric machine 100 according to a first embodiment.
  • the rotating electric machine 100 includes a cylindrical housing 70, a stator 50 accommodated therein, and a rotor 60 arranged coaxially with the stator 50 on the radial inside X1 of the stator 50.
  • the housing 70 has a cylindrical frame 71 with a bottom, and an end plate 72 that closes the opening of the frame 71 .
  • the stator 50 is fixed to the frame 71 in a fitted state on the radially inner side X1 of the frame 71 .
  • the rotor 60 is rotatably supported by a rotating shaft 74 provided via a bearing 73 at the center of an end plate 72 of a frame 71 .
  • the stator 50 has a stator core 51 formed by laminating electromagnetic steel sheets, and three-phase coils 55 of U, V, and W as armature windings wound around the stator core 51 .
  • the stator core 51 has an annular core back 51B, a plurality of teeth 51T extending radially inwardly X1 from the core back 51B, and a plurality of groove-shaped slots 51S formed by being surrounded by adjacent teeth 51T and the core back 51B. Coils 55 are housed in the slots 51S.
  • the coils 55 are connected in a distributed winding manner, and the coils 55 in each slot 51S are connected in series or in parallel to each other.
  • the rotor 60 has an annular rotor core 61 as a rotor core, and permanent magnets 62 (62IN, 62OUT) constituting each magnetic pole formed at set intervals in the circumferential direction of the rotor core 61.
  • the permanent magnets 62 (62IN, 62OUT) are embedded in magnet insertion holes of the rotor core 61.
  • Each magnetic pole has a two-layer structure in which a pair of permanent magnets 62IN as first permanent magnets are arranged on the radially inner side X1 and a pair of permanent magnets 62OUT as second permanent magnets are arranged on the radially outer side X2, and four permanent magnets 62 are embedded per pole.
  • the pair of permanent magnets 62 IN, 62 OUT are each arranged in a V shape so as to expand toward the outer circumferential surface 61 M of the rotor 60 .
  • flux barriers for preventing leakage of magnetic flux from the permanent magnets 62 are formed adjacent to both ends of the permanent magnets 62. That is, in the permanent magnets 62IN, a flux barrier 63IN is formed as a first flux barrier so as to communicate with both ends of the magnet insertion hole, and in the permanent magnets 62OUT, a flux barrier 63OUT is formed as a second flux barrier so as to communicate with both ends of the magnet insertion hole.
  • the flux barriers 63IN are formed to extend from both ends of the permanent magnet 62IN in the circumferential direction C toward the radially outward direction X2 at an extension angle ⁇ 3 set with respect to the permanent magnet 62IN.
  • the number of slots 51S that face the outer circumferential surface 61M of the rotor core 61 between adjacent magnetic poles in the circumferential direction C is increased.
  • the vicinity of the outer peripheral surface 61M of the rotor core 61 refers to the area within a set range radially inward X1 from the outer peripheral surface 61M, and this set range is set according to the range in which magnetic flux is short-circuited in the magnetic path from teeth 51T ⁇ between magnetic poles ⁇ teeth 51T, which will be described later.
  • FIG. 6 is a graph showing the iron loss characteristics of a rotating electric machine when the central angle ⁇ 1 is changed.
  • FIG. 7 is a diagram for explaining the principle of increase in iron loss in a rotating electric machine.
  • the central angle ⁇ 1 is designed to ensure the first condition as described above, so that both the quieting effect due to the reduction in torque ripple due to the multi-slot configuration and the high efficiency effect due to the reduction in stator iron loss can be obtained.
  • FIG. 8 is a diagram showing a part of a cross section perpendicular to the axial direction of the rotating electric machine 100A according to the first embodiment, and shows only a portion corresponding to about 1 ⁇ 4 of the circumference of the annular rotating electric machine 100A.
  • the region of the rotor core 61 where no flux barrier is formed near the outer peripheral surface 61M between the flux barrier 63IN and the flux barrier 63OUT is designated as J2, and the arc that constitutes the outer peripheral surface 61M on the radially outer side X2 of this region J2 is defined as the second arc portion 61M2.
  • FIG. 12 is a graph showing the iron loss characteristics of a rotating electric machine when ⁇ 2 is changed.
  • FIG. 13 is a diagram for explaining the principle of increase in iron loss in a rotating electric machine.
  • the magnetic resistance of the above path is increased and the magnetic flux concentrated in a specific tooth of the stator is dispersed, thereby alleviating the local concentration of the magnetic flux density in the teeth, reducing the stator iron loss, and enabling the rotating electric machine to be made more efficient.
  • FIG. 14 is a graph showing the torque characteristics of a rotating electrical machine when ⁇ 2 is changed while the first condition that ⁇ 2 is equal to or less than P1 ⁇ 1.65 is satisfied.
  • the magnetic resistance can be increased by reducing the central angle ⁇ 2, that is, by shortening the length of the second arc portion 61M2.
  • making this central angle ⁇ 2 extremely small leads to a decrease in torque as shown in FIG.
  • FIG. 15 is a diagram showing a part of a cross section perpendicular to the axial direction in the rotating electric machine 100B according to the first embodiment.
  • each magnetic pole has a two-layer structure including a pair of permanent magnets 62IN as first permanent magnets constituting the first layer, and a pair of permanent magnets 62OUT as second permanent magnets constituting the second layer.
  • the rotating electric machine 100B shown in FIG. 15 has a magnetic pole configuration of a total of three layers, including a pair of permanent magnets 62IN as first permanent magnets constituting the first layer, and two further layers of a pair of permanent magnets 62OUT as second permanent magnets.
  • each magnetic pole in a multi-layered configuration in the radial direction will be described.
  • a two-layer configuration in which the magnetic poles are arranged in two radial layers, it is possible to bring the magnetic circuit in the rotor closer to an arrangement along the excitation magnetic flux of the stator. This allows for effective use of reluctance torque, resulting in improved torque.
  • the two-layer configuration allows for a relatively small number of magnets to be used compared to other multi-layer arrangements that can effectively utilize reluctance torque, which reduces the number of magnets that need to be inserted during rotor manufacturing, leading to reduced manufacturing costs.
  • the pair of permanent magnets that constitute each layer of the magnetic pole are not limited to a V-shape expanding toward the outer peripheral surface of the rotor, but may be arranged in a flat plate or V-shape, and the shape and number of the magnet insertion holes, and the shape and number of the permanent magnets, are not important.
  • the central angle ⁇ 1 of the first arc portion constituting the radially outer outer peripheral surface of the rotor core where no flux barrier is formed is configured to ensure the first condition.
  • the flux barrier since the purpose of the flux barrier is to suppress leakage of magnetic flux, it may be made of a material having a lower relative magnetic permeability than the magnetic steel sheet, such as air or resin.
  • stator cores are configured with an outer diameter of ⁇ 150 to ⁇ 300 mm due to the constraints of the vehicle's mounting space and the requirements for torque and power density.
  • the optimum split ratio (outer diameter of rotor core/outer diameter of stator core) for high torque and high output design of motors needs to be about 60 to 80%.
  • the pole pitch the central angle relative to the arc length of the rotor core per pole
  • the amount of magnetic flux flowing through the core back of the stator increases.
  • it is necessary to design the core back thicker but if the number of poles is reduced, the proportion of the motor's radial length that is taken up by the core back thickness increases, making it impossible to ensure a split ratio of 60 to 80%. Therefore, in motors for electric vehicles, a design with fewer than four poles should be avoided, and a configuration with six poles or more is preferable.
  • the extension angle ⁇ 3 of the flux barrier 63IN shown in FIG. 2 may be adjusted, or, as shown in FIG. 2, the end of the flux barrier 63IN on the radially outer side X2 may be formed to extend along the outer peripheral surface 61M of the rotor core 61.
  • the rotating electric machine of this embodiment configured as described above has: a stator having a plurality of teeth protruding radially inward from an annular yoke portion and an armature winding wound in a plurality of slots formed between the teeth; and a rotor having a rotor core on which a plurality of magnetic poles and flux barriers formed by permanent magnets are formed,
  • a rotating electric machine in which the number of slots per pole per phase obtained by dividing the total number of slots by the number of phases and the number of magnetic poles of the rotor is 4 or more, and the armature winding is configured as a distributed winding, a first flux barrier is formed adjacent to each of both circumferential ends of the first permanent magnet constituting each of the magnetic poles;
  • P1 is the central angle of an arc connecting the circumferential centers of the slots adjacent in the circumferential direction. This makes it possible to provide a highly efficient rotating electric machine even in a multi-slot structure having a large number of slots per pole per phase.
  • the magnetic poles are configured in a plurality of layers by arranging second permanent magnets radially outwardly of the first permanent magnets, the second permanent magnets being adjacent to both ends in a circumferential direction and having second flux barriers formed thereon as the flux barriers,
  • the central angle ⁇ 2 is The first condition is ensured to be equal to or greater than P1 ⁇ 1. It is something. This makes it possible to reduce stator iron loss and suppress a decrease in torque.
  • the first flux barrier is formed so as to extend radially outward from both circumferential ends of the first permanent magnet at an extension angle ⁇ 3 set with respect to the first permanent magnet,
  • the extension angle ⁇ 3 is adjusted so as to ensure the first condition. It is something. By adjusting the extension angle ⁇ 3 in this manner, it becomes easier to adjust ⁇ 1 and ⁇ 2 to ensure the first condition.
  • FIG. 16 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200 according to the second embodiment, and in this drawing, only a portion corresponding to approximately 1 ⁇ 4 of the circumference of the annular rotating electric machine 200 is shown.
  • FIG. 17 is a partially enlarged cross-sectional view of the rotating electrical machine 200 of FIG. 16, illustrating an example in which the end portion of the flux barrier 63IN on the radially outer side X2 has a different shape.
  • FIG. 18 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200A according to the second embodiment.
  • the rotating electric machine 200, 200A is provided with a third flux barrier, flux barrier 263M, which is configured independently and not connected to flux barriers 63IN, 63OUT, near the outer circumferential surface 61M of the rotor core 61 between each magnetic pole.
  • flux barrier 263M is configured independently and not connected to flux barriers 63IN, 63OUT, near the outer circumferential surface 61M of the rotor core 61 between each magnetic pole.
  • the first arc portion 61M1 constituting ⁇ 1 is defined as the arc length of the rotor core 61 between adjacent flux barriers 63IN between each magnetic pole minus the circumferential length of the flux barrier 263M.
  • the first arc portion 61M1 in the rotating electric machine 200 of this embodiment is the sum of the arcs 61M1A, 61M1B constituting the outer peripheral surface of the radially outer side X2 of the rotor core 61 where no flux barrier 263M is formed, between the flux barriers 63IN between adjacent magnetic poles in the circumferential direction C.
  • a flux barrier 263M as a third flux barrier may be formed between one side of the flux barrier 63OUT in the circumferential direction C at each magnetic pole and the other side of the flux barrier 63IN in the circumferential direction C.
  • the second arc portion constituting ⁇ 2 is defined as the arc length of the outer peripheral surface 61M of the rotor core 61 between the flux barrier 63OUT and the flux barrier 63IN minus the circumferential length of the flux barrier 263M, which is the second arc portion 61M2.
  • the second arc portion 61M2 is the sum of the arcs 61M2C, 61M2D that constitute the outer peripheral surface of the radially outer side X2 of the rotor core 61 where the flux barrier 263M between the flux barrier 63OUT and the flux barrier 63IN is not formed.
  • the flux barrier 263M with an independent configuration, it is possible to increase the parameters that change the permeance, magnetomotive force, etc. of the rotor, thereby expanding the degree of freedom in design. For example, by adjusting the position, shape, etc., so as to cancel the fluctuation of the exciting magnetic flux of the stator 50, it is possible to reduce the torque ripple. Furthermore, an extremely large flux barrier increases the stress on the bridge portion 261B shown in Fig. 17 between the flux barrier and the outer circumferential surface 61M of the rotor during high speed rotation, which may reduce the centrifugal force resistance. Even in such a case, by arranging the independently formed flux barrier 263M, the rib 261R shown in Fig. 17 is formed between the flux barriers, so that the stress on the bridge portion 261B can be dispersed to the rib 261R. This contributes to improving the centrifugal force resistance.
  • the width of the bridge portion 261B may be set to 2% or less of the rotor diameter and further adjusted.
  • FIG. 19 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200B according to the second embodiment.
  • FIG. 20 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotary electric machine 200C according to the second embodiment.
  • FIG. 21 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200D according to the second embodiment.
  • the flux barriers 263M may be disposed both between adjacent flux barriers 63IN in the circumferential direction C and between the flux barriers 63OUT and 63IN at each magnetic pole.
  • the flux barrier 263M may be arranged so that its radially outermost portion X2 is located radially outer than the radially outermost portions X2 of the flux barriers 63IN and 63OUT. If the distance between the flux barrier 263M and the outer peripheral surface 61M of the rotor core 61 is long, magnetic flux is likely to short-circuit between the flux barrier 263M and the outer peripheral surface 61M, and the function as a flux barrier is reduced. Therefore, by configuring the distance between the flux barrier 263M and the outer peripheral surface 61M of the rotor core 61 to be short, as in the rotating electric machine 200C of Fig. 20, the function as a flux barrier is improved and the effect of reducing iron loss is increased.
  • a flux barrier 263M may be disposed on the outer circumferential surface 61M side of the rotor core 61 so as to cut out the outer circumferential surface 61M on the radially outer side X2 of the rotor core 61.
  • the effect of providing the flux barrier 263M described above can be obtained in the same manner.
  • FIG. 22 is a diagram showing magnetomotive force distribution in a rotating electric machine having a configuration in which the flux barrier 263M is not provided.
  • FIG. 23 is a diagram showing the magnetomotive force distribution in a rotating electric machine provided with a flux barrier 263M. As shown in FIGS. 22 and 23, by providing a flux barrier 263M and adjusting its position, it is possible to adjust the magnetomotive force distribution of the rotor 60 to approach a sine wave, thereby reducing torque ripple.
  • a third flux barrier formed independently of the first flux barrier and the second flux barrier;
  • the third flux barrier comprises: Between one side of the second flux barrier in the circumferential direction and the other side of the first flux barrier in the circumferential direction of each of the magnetic poles, or Between the magnetic poles adjacent in the circumferential direction, between the first flux barriers adjacent in the circumferential direction, and
  • the first arc portion is is the sum of arcs constituting the outer peripheral surface of the rotor core on the radially outer side where the third flux barrier is not formed between the magnetic poles adjacent in the circumferential direction
  • the second arc portion is a sum of arcs constituting a radially outer peripheral surface of the rotor core where the third flux barrier is not formed between the first flux barrier and the second flux barrier in each of the magnetic poles, It is something.
  • the third flux barrier comprises: The arrangement position of the rotor is adjusted so that the magnetomotive force distribution of the rotor approaches a sine wave. It is something. This provides a quiet rotating electric machine with reduced torque ripple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

In a rotary electric machine in which the number of slots in each pole and each phase is four or more and armature windings are configured as distributed windings, flux barriers (63IN) are formed as flux barriers adjacently to each of both ends, in the circumferential direction, of first permanent magnets (62IN) constituting each magnetic pole. Given P1 as the center angle of the arc connecting circumferential-direction centers of slots (51S) adjacent to each other in the circumferential direction, the rotary electric machine is configured to ensure a first condition that center angle θ1with respect to a rotation center O of a first arc portion (61M1) constituting an outer circumferential surface outward in a radial direction of a rotor core (61) in which the flux barrier (63IN) is not formed between the magnetic poles adjacent in the circumferential direction, is θ1= P1 x 2.1 or less. Note that P1 is the center angle of an arc connecting circumferential-direction centers of slots adjacent to each other in the circumferential direction.

Description

回転電機Rotating Electric Machine
 本願は、回転電機に関するものである。 This application relates to a rotating electric machine.
 EV(Electric Vehicle、電気自動車)/HEV(Hybrid Electric Vehicle、ハイブリッド自動車)用途のモータ、発電機等の回転電機では、省資源化、車両の航続距離拡大、静粛性の観点等から、小型化・高効率化・低NV(Noise Vibration)化が要求されている。従来より、NV低減を実現させるために、ステータを多スロット構造にすることでステータとロータとの間のエアギャップ部の磁束変動を抑制してトルクリプル、コギングトルク等の低減を図る、以下のような回転電機としてのトラクションモータが開示されている。 In rotating electric machines such as motors and generators for EV (Electric Vehicle)/HEV (Hybrid Electric Vehicle), there is a demand for miniaturization, high efficiency, and low NV (Noise Vibration) from the viewpoints of resource conservation, extending the vehicle's driving range, and quietness. To achieve NV reduction, a traction motor as shown below has been disclosed as a rotating electric machine that uses a multi-slot stator structure to suppress magnetic flux fluctuations in the air gap between the stator and rotor, thereby reducing torque ripple, cogging torque, etc.
 即ち、従来の回転電機としてのトラクションモータにおいては、積層スタックに、第1の複数の磁石対が構成され、第1のV字形の構成で配置される。また、積層スタックに、第1の複数の永久磁石の各永久磁石よりも大きい第2の複数の永久磁石が第2の複数の磁石対として構成され、第2のV字形の構成で配置される。そして、第2の磁石対の分離角度が、第1の磁石対の分離角度よりも小さく構成される(例えば、特許文献1参照)。 That is, in a traction motor as a conventional rotating electric machine, a first plurality of magnet pairs are configured in a laminate stack and arranged in a first V-shaped configuration. Also, a second plurality of permanent magnets larger than each of the first plurality of permanent magnets are configured as a second plurality of magnet pairs in the laminate stack and arranged in a second V-shaped configuration. The separation angle of the second magnet pairs is configured to be smaller than the separation angle of the first magnet pairs (see, for example, Patent Document 1).
特開2020-68654号公報 (図3、図4)JP 2020-68654 A (Figs. 3 and 4)
 上記従来のトラクションモータでは、ステータの毎極毎相のスロット数が4の多スロット構造を採用した上で、積層スタックであるロータに埋設された永久磁石の大きさ、配置角度を調整することでコギングトルクを低減する手法が提案されている。しかしながらこのようなモータではコギングトルクを低減することはできるものの、ステータ鉄損の増加を招きモータ効率が低下する恐れがある。特に、毎極毎相のスロット数が多い多スロット構造では、ロータの磁極間におけるティースの数が多くなるため、前述の鉄損の増加量が大きくなり、モータ効率が低下するという課題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、毎極毎相のスロット数が多い多スロット構造においても、高効率な回転電機を提供することを目的とする。
In the above-mentioned conventional traction motor, a method has been proposed in which a multi-slot structure with four slots per pole per phase of the stator is adopted, and the size and arrangement angle of the permanent magnets embedded in the rotor, which is a laminated stack, are adjusted to reduce the cogging torque. However, although such a motor can reduce the cogging torque, it may lead to an increase in stator iron loss and a decrease in motor efficiency. In particular, in a multi-slot structure with a large number of slots per pole per phase, the number of teeth between the magnetic poles of the rotor increases, resulting in a large increase in the aforementioned iron loss and a decrease in motor efficiency.
The present application discloses technology for solving the above-mentioned problems, and aims to provide a highly efficient rotating electric machine even in a multi-slot structure having a large number of slots per pole per phase.
 本願に開示される回転電機は、
環状のヨーク部から径方向内側に突出する複数のティースを有して、該ティース間に形成される複数のスロットに電機子巻線が巻回された固定子と、永久磁石により構成された複数の磁極およびフラックスバリアが形成された回転子鉄心を有する回転子と、を備え、
前記スロットの総数を、相数及び前記回転子の磁極数により除算した毎極毎相スロット数が4以上であって前記電機子巻線が分布巻きに構成される回転電機において、
各前記磁極を構成する第1永久磁石の周方向の両端にそれぞれ隣接して前記フラックスバリアとしての第1フラックスバリアが形成され、
周方向に隣接する前記磁極間において前記フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する第1弧部の中心角θ1が、
θ1=P1×2.1以下となる第1条件を確保して構成される、
ようにしたものである。
但し、P1は周方向に隣接する前記スロットの周方向中心間を繋ぐ弧の中心角。
The rotating electric machine disclosed in the present application comprises:
a stator having a plurality of teeth protruding radially inward from an annular yoke portion and an armature winding wound in a plurality of slots formed between the teeth; and a rotor having a rotor core on which a plurality of magnetic poles and flux barriers formed by permanent magnets are formed,
In a rotating electric machine in which the number of slots per pole per phase obtained by dividing the total number of slots by the number of phases and the number of magnetic poles of the rotor is 4 or more, and the armature winding is configured as a distributed winding,
a first flux barrier is formed adjacent to each of both circumferential ends of the first permanent magnet constituting each of the magnetic poles;
A central angle θ1 of a first arc portion constituting a radially outer outer peripheral surface of the rotor core on which the flux barrier is not formed between the magnetic poles adjacent in the circumferential direction is
The first condition is satisfied so that θ1=P1×2.1 or less.
This is what was done.
Here, P1 is the central angle of an arc connecting the circumferential centers of the slots adjacent in the circumferential direction.
 本願に開示される回転電機によれば、毎極毎相のスロット数が多い多スロット構造においても、高効率な回転電機が得られる。 The rotating electric machine disclosed in this application provides a highly efficient rotating electric machine even in a multi-slot structure with a large number of slots per pole per phase.
実施の形態1による回転電機における軸方向に平行な断面を示す模式図である。1 is a schematic diagram showing a cross section parallel to an axial direction in a rotating electric machine according to a first embodiment; 実施の形態1による回転電機における軸方向に垂直な断面の一部を示す図である。1 is a diagram showing a portion of a cross section perpendicular to an axial direction in a rotating electric machine according to a first embodiment; 比較例の回転電機における軸方向Yに垂直な断面図である。4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 比較例の回転電機における軸方向Yに垂直な断面図である。4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 比較例の回転電機における軸方向Yに垂直な断面図である。4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 中心角θ1を変化させた場合の回転電機の鉄損特性のグラフを示す図である。FIG. 13 is a graph showing the iron loss characteristics of a rotating electric machine when the central angle θ1 is changed. 回転電機における鉄損増加の原理を説明する図である。1A and 1B are diagrams for explaining the principle of increase in iron loss in a rotating electric machine; 実施の形態1による回転電機における軸方向に垂直な断面の一部を示す図である。1 is a diagram showing a portion of a cross section perpendicular to an axial direction in a rotating electric machine according to a first embodiment; 比較例の回転電機における軸方向Yに垂直な断面図である。4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 比較例の回転電機における軸方向Yに垂直な断面図である。4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 比較例の回転電機における軸方向Yに垂直な断面図である。4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine of a comparative example. 中心角θ2を変化させた場合の回転電機の鉄損特性のグラフを示す図である。FIG. 13 is a graph showing the iron loss characteristics of a rotating electric machine when the central angle θ2 is changed. 回転電機における鉄損増加の原理を説明する図である。1A and 1B are diagrams for explaining the principle of increase in iron loss in a rotating electric machine; 回転電機におけるトルク特性のグラフを示す図である。FIG. 2 is a graph showing torque characteristics of a rotating electric machine. 実施の形態1による回転電機における軸方向に垂直な断面の一部を示す図である。1 is a diagram showing a portion of a cross section perpendicular to an axial direction in a rotating electric machine according to a first embodiment; 実施の形態2による回転電機における軸方向に垂直な断面の一部を示す図である。11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment. FIG. 実施の形態2による回転電機における軸方向に垂直な断面の一部を示す図である。11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment. FIG. 実施の形態2による回転電機における軸方向に垂直な断面の一部を示す図である。11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment. FIG. 実施の形態2による回転電機における軸方向に垂直な断面の一部を示す図である。11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment. FIG. 実施の形態2による回転電機における軸方向に垂直な断面の一部を示す図である。11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment. FIG. 実施の形態2による回転電機における軸方向に垂直な断面の一部を示す図である。11 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine according to a second embodiment. FIG. 回転電機における起磁力分布を示す図である。FIG. 2 is a diagram showing magnetomotive force distribution in a rotating electric machine. 回転電機における起磁力分布を示す図である。FIG. 2 is a diagram showing magnetomotive force distribution in a rotating electric machine.
実施の形態1.
 以下、本実施の形態1に係る回転電機について図を用いて説明する。
 なお、図において、環状の回転電機における各方向を、周方向C、径方向X、軸方向Yとして示す。
 図1は、実施の形態1の回転電機100における軸方向Yに平行な断面を示す模式図である。
Embodiment 1.
Hereinafter, the rotating electric machine according to the first embodiment will be described with reference to the drawings.
In the figure, the directions in the annular rotating electric machine are indicated as a circumferential direction C, a radial direction X, and an axial direction Y.
FIG. 1 is a schematic diagram showing a cross section parallel to an axial direction Y in a rotating electric machine 100 according to a first embodiment.
 図1に示すように、回転電機100は、円筒状のハウジング70と、その内部に収容される固定子50と、固定子50の径方向内側X1においてこの固定子50と同軸上に配置される回転子60と、を備える。
 ハウジング70は、有底円筒状のフレーム71と、このフレーム71の開口部を塞口する端板72とを有する。
 固定子50は、フレーム71の径方向内側X1において内嵌状態でフレーム71に固着される。
 回転子60は、フレーム71の端板72の中心部においてベアリング73を介して設けられた回転軸74により回転可能に支持される。
As shown in FIG. 1, the rotating electric machine 100 includes a cylindrical housing 70, a stator 50 accommodated therein, and a rotor 60 arranged coaxially with the stator 50 on the radial inside X1 of the stator 50.
The housing 70 has a cylindrical frame 71 with a bottom, and an end plate 72 that closes the opening of the frame 71 .
The stator 50 is fixed to the frame 71 in a fitted state on the radially inner side X1 of the frame 71 .
The rotor 60 is rotatably supported by a rotating shaft 74 provided via a bearing 73 at the center of an end plate 72 of a frame 71 .
 図2は、実施の形態1による回転電機100における軸方向に垂直な断面の一部を示す図である。本図では円環状の回転電機100の円周の約1/4に相当する部分のみを示す。
 図2に示すように、固定子50は、電磁鋼板を積層して構成されたステータコア51と、ステータコア51に巻装された電機子巻線としてのU、V、Wの3相のコイル55と、を有する。
 ステータコア51は、円環状のコアバック51Bと、このコアバック51Bから径方向内側X1に延伸する複数のティース51Tと、隣り合うティース51Tとコアバック51Bとに囲まれて形成された溝状の複数のスロット51Sと、を有する。これらスロット51S内にコイル55が収納されている。
2 is a diagram showing a part of a cross section perpendicular to the axial direction of the rotating electric machine 100 according to the embodiment 1. In this figure, only a portion corresponding to about ¼ of the circumference of the annular rotating electric machine 100 is shown.
As shown in FIG. 2 , the stator 50 has a stator core 51 formed by laminating electromagnetic steel sheets, and three-phase coils 55 of U, V, and W as armature windings wound around the stator core 51 .
The stator core 51 has an annular core back 51B, a plurality of teeth 51T extending radially inwardly X1 from the core back 51B, and a plurality of groove-shaped slots 51S formed by being surrounded by adjacent teeth 51T and the core back 51B. Coils 55 are housed in the slots 51S.
 本実施の形態の固定子50では、スロット51Sは、周方向Cに等間隔に96スロット形成されている。ここで、周方向に隣接するスロット51Sの周方向中心間を繋ぐ弧61MSの、回転子60の中心点Oに対する中心角をP1とすると、この中心角P1は、360°/96=3.75°となる。
 なお、コイル55の結線方式は分布巻であり、各スロット51S内のコイル55は互いに直列もしくは並列に接続されている。
In the stator 50 of the present embodiment, 96 slots 51S are formed at equal intervals in the circumferential direction C. If the central angle of an arc 61MS connecting the circumferential centers of circumferentially adjacent slots 51S with respect to the center point O of the rotor 60 is defined as P1, then this central angle P1 is 360°/96=3.75°.
The coils 55 are connected in a distributed winding manner, and the coils 55 in each slot 51S are connected in series or in parallel to each other.
 回転子60は、回転子鉄心としての円環状のロータコア61と、このロータコア61において周方向に設定された間隔で形成される各磁極を構成する永久磁石62(62IN、62OUT)と、を有する。永久磁石62(62IN、62OUT)は、ロータコア61の磁石挿入孔に埋設されている。
 各磁極は、第1永久磁石としての一対の永久磁石62INを径方向内側X1に配設し、第2永久磁石としての一対の永久磁石62OUTを径方向外側X2に配設した2層構造であり、1極あたり4つの永久磁石62が埋設されている。
 一対の永久磁石62IN、62OUTはそれぞれ、回転子60の外周面61Mに向かって拡開するようにV字形状に配設されている。
The rotor 60 has an annular rotor core 61 as a rotor core, and permanent magnets 62 (62IN, 62OUT) constituting each magnetic pole formed at set intervals in the circumferential direction of the rotor core 61. The permanent magnets 62 (62IN, 62OUT) are embedded in magnet insertion holes of the rotor core 61.
Each magnetic pole has a two-layer structure in which a pair of permanent magnets 62IN as first permanent magnets are arranged on the radially inner side X1 and a pair of permanent magnets 62OUT as second permanent magnets are arranged on the radially outer side X2, and four permanent magnets 62 are embedded per pole.
The pair of permanent magnets 62 IN, 62 OUT are each arranged in a V shape so as to expand toward the outer circumferential surface 61 M of the rotor 60 .
 ロータコア61には、永久磁石62からの磁束の漏洩防止のためのフラックスバリアが、永久磁石62の両端にそれぞれ隣接して形成されている。即ち、永久磁石62INには、磁石挿入孔の両端に連通するように第1フラックスバリアとしてのフラックスバリア63INが形成されており、永久磁石62OUTには、磁石挿入孔の両端に連通するように第2フラックスバリアとしてのフラックスバリア63OUTが形成されている。
 なお、フラックスバリア63INは、永久磁石62INの周方向Cの両端から、この永久磁石62INに対して設定された延出角度θ3を有して径方向外側X2に向かって延びるように形成されている。
In the rotor core 61, flux barriers for preventing leakage of magnetic flux from the permanent magnets 62 are formed adjacent to both ends of the permanent magnets 62. That is, in the permanent magnets 62IN, a flux barrier 63IN is formed as a first flux barrier so as to communicate with both ends of the magnet insertion hole, and in the permanent magnets 62OUT, a flux barrier 63OUT is formed as a second flux barrier so as to communicate with both ends of the magnet insertion hole.
The flux barriers 63IN are formed to extend from both ends of the permanent magnet 62IN in the circumferential direction C toward the radially outward direction X2 at an extension angle θ3 set with respect to the permanent magnet 62IN.
 本実施の形態では、回転子60の磁極数は8であり、スロットの総数96を相数3および磁極数8により除算した毎極毎相のスロット数qは、96/(8*3)=4である。この毎極毎相のスロット数qが大きいほど固定子50は多スロット構造になる。
 このように多スロット構造の回転電機100では、周方向Cに隣接する磁極間においてロータコア61の外周面61Mに対向するスロット51Sの数が多くなる。
In this embodiment, the number of magnetic poles of rotor 60 is 8, and the number of slots q per pole per phase obtained by dividing the total number of slots 96 by the number of phases 3 and the number of magnetic poles 8 is 96/(8*3)=4. The larger the number of slots q per pole per phase, the more slots stator 50 has.
In this manner, in the rotating electric machine 100 having a multi-slot structure, the number of slots 51S that face the outer circumferential surface 61M of the rotor core 61 between adjacent magnetic poles in the circumferential direction C is increased.
 ここで、図2に示すように、周方向Cに隣接する磁極間において、外周面61M近傍においてフラックスバリアが形成されていないロータコア61の領域をJ1とし、この領域J1の径方向外側X2の外周面61Mを構成する弧を、第1弧部61M1と定義する。
 そして、この第1弧部61M1の、回転子60の回転中心0に対する中心角をθ1とすると、本実施の形態では、中心角θ1は、θ1=P1×2.1以下となる第1条件を確保するように構成されている。
 なお、上記ロータコア61の外周面61Mの近傍とは、外周面61Mから径方向内側X1の設定された範囲内の領域であり、この設定された範囲とは、後述するティース51T→磁極間→ティース51Tの磁路で短絡する磁束が生じる範囲に応じて設定される。
Here, as shown in Figure 2, the region of the rotor core 61 between adjacent magnetic poles in the circumferential direction C where no flux barrier is formed near the outer peripheral surface 61M is defined as J1, and the arc that constitutes the outer peripheral surface 61M on the radially outer side X2 of this region J1 is defined as the first arc portion 61M1.
If the central angle of this first arc portion 61M1 with respect to the center of rotation 0 of the rotor 60 is θ1, in this embodiment, the central angle θ1 is configured to ensure the first condition that θ1 = P1 x 2.1 or less.
The vicinity of the outer peripheral surface 61M of the rotor core 61 refers to the area within a set range radially inward X1 from the outer peripheral surface 61M, and this set range is set according to the range in which magnetic flux is short-circuited in the magnetic path from teeth 51T → between magnetic poles → teeth 51T, which will be described later.
 ここで、第1弧部61M1の回転中心0に対する中心角θ1をP1×2.1以下とすることによる効果を、θ1の値を変化させた比較例の回転電機としてのモータを用いた実験結果を用いて説明する。
 図3は、θ1=P1×0.85とした場合の比較例の回転電機100EX1における軸方向Yに垂直な断面図である。
 図4は、θ1=P1×2.08とした場合の比較例の回転電機100EX2における軸方向Yに垂直な断面図である。
 図5は、θ1=P1×2.32とした場合の比較例の回転電機100EX3における軸方向Yに垂直な断面図である。
 図6は、中心角θ1を変化させた場合の回転電機の鉄損特性のグラフを示す図である。
 図7は、回転電機における鉄損増加の原理を説明する図である。
Here, the effect of setting the central angle θ1 of the first arc portion 61M1 relative to the center of rotation 0 to be P1×2.1 or less will be explained using the results of an experiment using a motor as a comparative rotating electric machine in which the value of θ1 was changed.
FIG. 3 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine 100EX1 of the comparative example when θ1=P1×0.85.
FIG. 4 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine 100EX2 of the comparative example when θ1=P1×2.08.
FIG. 5 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine 100EX3 of a comparative example when θ1=P1×2.32.
FIG. 6 is a graph showing the iron loss characteristics of a rotating electric machine when the central angle θ1 is changed.
FIG. 7 is a diagram for explaining the principle of increase in iron loss in a rotating electric machine.
 回転電機としての電動車両向けのモータでは、市街地走行における中速域かつ低負荷域の効率が重要視されるため、低電流かつ電流位相90°の条件で、各回転電機100EX1、EX2、EX3と、これら各回転電機100EX1、EX2、EX3以外の中心角θ1の値を持つ回転電機と、を用いて電磁界解析を実施した。
 なお、図6において、鉄損はθ1=P1×2.08の条件において正規化している。
For motors for electric vehicles as rotating electric machines, efficiency in the medium speed and low load ranges when driving in urban areas is important, so electromagnetic field analysis was performed under conditions of low current and current phase of 90° using each of the rotating electric machines 100EX1, EX2, EX3 and a rotating electric machine having a value of central angle θ1 other than these rotating electric machines 100EX1, EX2, EX3.
In FIG. 6, the iron loss is normalized under the condition θ1=P1×2.08.
 図6より、中心角θ1に対する鉄損変化が急峻に変わる変曲点は、θ1=P1×2.08にあることがわかる。これは、中心角θ1を構成する第1弧部61M1に対向する固定子50のスロット51Sの数が多くなると、図7中の矢印に示されるパスのように、ロータコア61の外周面61Mの近傍のフラックスバリアが形成されていない領域を介して、ティース51T→磁極間→ティース51Tの磁路で短絡する磁束が増大し、ティース51T内の磁束密度が増加することでステータ鉄損の増加を招くからである。よって、第1弧部61M1を構成する中心角θ1を、P1の2.1倍以下に設定する第1条件を確保するように構成すれば、ステータ鉄損を低減して、回転電機を高効率化することが可能となる。 From FIG. 6, it can be seen that the inflection point where the change in iron loss with respect to the central angle θ1 changes sharply is at θ1 = P1 x 2.08. This is because, as the number of slots 51S of the stator 50 facing the first arc portion 61M1 that constitutes the central angle θ1 increases, the magnetic flux that short-circuits in the magnetic path from teeth 51T to between magnetic poles to teeth 51T increases through the area where no flux barrier is formed near the outer circumferential surface 61M of the rotor core 61, as shown by the arrow in FIG. 7, and the magnetic flux density in the teeth 51T increases, leading to an increase in stator iron loss. Therefore, if the central angle θ1 that constitutes the first arc portion 61M1 is configured to ensure the first condition of being set to 2.1 times or less than P1, it is possible to reduce stator iron loss and increase the efficiency of the rotating electric machine.
 ここで、毎極毎相のスロット数q=2の回転電機と、q=4の回転電機とでは、中心角θ1の角度が同一であっても、q=4の回転電機はq=2の回転電機に対して第1弧部61M1に対向するスロット51Sの数が2倍になる。多スロット化により固定子と回転子との間のエアギャップ部の磁束の変動が抑制され、トルクリプル、コギングトルクを低減する効果を得られるものの、第1弧部61M1に対向するスロット数が多いと鉄損が増加する。特に、電動車両向けのモータで一般的な極毎相のスロット数q=2~3の固定子向けに設計された回転子を、構成を変えずにそのままq=4以上の固定子に適用すると、前述のような原理で鉄損増加を招く可能性が高くなる。本実施の形態の回転電機では、多スロット構成とした場合でも、上記のように中心角θ1が第1条件を確保するように設計されているため、多スロット化でのトルクリプル低減による静粛化効果と、ステータ鉄損を低減することによる高効率化との両方の効果を得られる。 Here, even if the central angle θ1 is the same between a rotating electric machine with q=2 slots per pole per phase and a rotating electric machine with q=4, the number of slots 51S facing the first arc portion 61M1 is twice as many as that of the rotating electric machine with q=2. Although the effect of suppressing the fluctuation of the magnetic flux in the air gap between the stator and the rotor by increasing the number of slots and reducing the torque ripple and cogging torque can be obtained, the iron loss increases if the number of slots facing the first arc portion 61M1 is large. In particular, if a rotor designed for a stator with q=2 to 3 slots per pole per phase, which is typical for motors for electric vehicles, is applied to a stator with q=4 or more without changing the configuration, there is a high possibility that the iron loss will increase due to the principle described above. In the rotating electric machine of this embodiment, even if it has a multi-slot configuration, the central angle θ1 is designed to ensure the first condition as described above, so that both the quieting effect due to the reduction in torque ripple due to the multi-slot configuration and the high efficiency effect due to the reduction in stator iron loss can be obtained.
 更に、回転電機は以下のような構成を有していてもよい。
 図8は、実施の形態1による回転電機100Aにおける軸方向に垂直な断面の一部を示す図であり、円環状の回転電機100Aの円周の約1/4に相当する部分のみを示す。
 各磁極において、フラックスバリア63INとフラックスバリア63OUTとの間の外周面61M近傍においてフラックスバリアが形成されていないロータコア61の領域をJ2とし、この領域J2の径方向外側X2の外周面61Mを構成する弧を、第2弧部61M2と定義する。
Furthermore, the rotating electric machine may have the following configuration.
FIG. 8 is a diagram showing a part of a cross section perpendicular to the axial direction of the rotating electric machine 100A according to the first embodiment, and shows only a portion corresponding to about ¼ of the circumference of the annular rotating electric machine 100A.
In each magnetic pole, the region of the rotor core 61 where no flux barrier is formed near the outer peripheral surface 61M between the flux barrier 63IN and the flux barrier 63OUT is designated as J2, and the arc that constitutes the outer peripheral surface 61M on the radially outer side X2 of this region J2 is defined as the second arc portion 61M2.
 なお、上記ロータコア61の外周面61Mの近傍とは、外周面61Mから径方向内側X1の設定された範囲内の領域であり、この設定された範囲とは、後述する磁石層間→固定子50→磁極間の磁路で短絡する磁束が生じる範囲に応じて設定される。
 そして、この第2弧部61M2の回転中心0に対する中心角をθ2とすると、本実施の形態では、中心角θ2は、θ2=P1×1.65以下となる第1条件を確保するように構成されている。
The vicinity of the outer peripheral surface 61M of the rotor core 61 refers to the area within a set range radially inward X1 from the outer peripheral surface 61M, and this set range is set according to the range in which magnetic flux is short-circuited in the magnetic path between the magnet layers → the stator 50 → the magnetic poles, as described below.
If the central angle of this second arc portion 61M2 with respect to the center of rotation 0 is θ2, in this embodiment, the central angle θ2 is configured to ensure the first condition that θ2 = P1 × 1.65 or less.
 ここで、第2弧部61M2の回転中心0に対する中心角θ2をP1×1.65以下とすることによる効果を、θ2の値を変化させた比較例の回転電機としてのモータを用いた実験結果を用いて説明する。
 図9は、θ2=P1×0.75とした場合の比較例の回転電機100EX4における軸方向Yに垂直な断面図である。
 図10は、θ2=P1×1.62とした場合の比較例の回転電機100EX5における軸方向Yに垂直な断面図である。
 図11は、θ2=P1×2.32とした場合の比較例の回転電機100EX6における軸方向Yに垂直な断面図である。
 図12は、θ2を変化させた場合の回転電機の鉄損特性のグラフを示す図である。
 図13は、回転電機における鉄損増加の原理を説明する図である。
Here, the effect of setting the central angle θ2 of the second arc portion 61M2 relative to the center of rotation 0 to be equal to or less than P1×1.65 will be explained using the results of an experiment using a motor as a comparative rotating electric machine in which the value of θ2 was changed.
FIG. 9 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine 100EX4 of a comparative example when θ2=P1×0.75.
FIG. 10 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine 100EX5 of the comparative example when θ2=P1×1.62.
FIG. 11 is a cross-sectional view perpendicular to the axial direction Y in a rotating electric machine 100EX6 of the comparative example when θ2=P1×2.32.
FIG. 12 is a graph showing the iron loss characteristics of a rotating electric machine when θ2 is changed.
FIG. 13 is a diagram for explaining the principle of increase in iron loss in a rotating electric machine.
 前述のθ1を変化させた場合と同様に、低電流かつ電流位相90°の条件で、各回転電機100EX4、EX5、EX6を用いて電磁界解析を実施した。θ1をP1×2.1以下とする第1条件を確保した状態で、θ2を変化させて解析している。
 なお、図12において、鉄損はθ2=P1×1.62の条件において正規化している。
As in the case where θ1 was changed, electromagnetic field analysis was performed using each of the rotating electric machines 100EX4, EX5, and EX6 under the condition of low current and current phase of 90°. While the first condition of θ1 being equal to or less than P1×2.1 was ensured, analysis was performed by changing θ2.
In FIG. 12, the iron loss is normalized under the condition θ2=P1×1.62.
 図12より、中心角θ2がP1×1.65以下の領域で、中心角θ2に対してモータの鉄損が急峻に減少していることがわかる。これは、中心角θ2を構成する第2弧部61M2に対向する固定子50のスロット51Sの数が多くなると、図13中の矢印に示されるパスのように、磁石層間→固定子50→磁極間で短絡する磁束が増大し、ティース51T内の磁束密度が増加することでステータ鉄損の増加を招くからである。よって、第2弧部61M2を構成する中心角θ2を、P1の1.65倍以下に設定する第1条件を確保する。こうして上記パスの磁気抵抗を増加させて、固定子の特定のティースに集中する磁束を分散させることで、ティースの磁束密度の局所集中を緩和させてステータ鉄損を低減でき、回転電機の高効率化が可能となる。 From FIG. 12, it can be seen that the iron loss of the motor decreases sharply with respect to the central angle θ2 in the region where the central angle θ2 is equal to or less than P1×1.65. This is because, as the number of slots 51S of the stator 50 facing the second arc portion 61M2 that constitutes the central angle θ2 increases, the magnetic flux that short-circuits between the magnet layers → the stator 50 → the magnetic poles increases, as shown by the arrow in FIG. 13, and the magnetic flux density in the teeth 51T increases, leading to an increase in stator iron loss. Therefore, the first condition is ensured, in which the central angle θ2 that constitutes the second arc portion 61M2 is set to 1.65 times P1 or less. In this way, the magnetic resistance of the above path is increased and the magnetic flux concentrated in a specific tooth of the stator is dispersed, thereby alleviating the local concentration of the magnetic flux density in the teeth, reducing the stator iron loss, and enabling the rotating electric machine to be made more efficient.
 上記ではθ2を変化させた場合の鉄損特性について説明したが、以下にて、θ2を変化させた場合のトルク特性について説明する。
 図14は、θ2がP1×1.65以下の第1条件を確保した状態で、θ2を変化させた場合の回転電機のトルク特性のグラフを示す図である。
 前述のように中心角θ2を縮小、即ち第2弧部61M2の長さを小さくする事によって磁気抵抗を増加させることができる一方、この中心角θ2を極端に小さくすると図14に示すようにトルク低下に繋がる。
The above describes the iron loss characteristics when θ2 is changed. Below, the following describes the torque characteristics when θ2 is changed.
FIG. 14 is a graph showing the torque characteristics of a rotating electrical machine when θ2 is changed while the first condition that θ2 is equal to or less than P1×1.65 is satisfied.
As described above, the magnetic resistance can be increased by reducing the central angle θ2, that is, by shortening the length of the second arc portion 61M2. However, making this central angle θ2 extremely small leads to a decrease in torque as shown in FIG.
 よって、中心角θ2は、θ1=P1×1以上としつつ、P1×1.65以下となる第1条件を確保するように構成することで、トルク低下を最小限、即ち、基準のθ2=P1×1.62の構成の回転電機に比較してトルク低下を1%以下、に抑制しつつ、回転電機の高効率化が可能となる。 Therefore, by configuring the central angle θ2 to satisfy the first condition of θ1 = P1 x 1 or more, but not exceeding P1 x 1.65, it is possible to minimize torque reduction, i.e., to suppress torque reduction to 1% or less compared to a rotating electric machine with a standard configuration of θ2 = P1 x 1.62, while achieving high efficiency in the rotating electric machine.
 また、回転電機は、以下に説明するように構成してもよい。
 図15は、実施の形態1による回転電機100Bにおける軸方向に垂直な断面の一部を示す図である。
 前述の図2に示す回転電機100では、各磁極は、1層目を構成する第1永久磁石としての一対の永久磁石62INと、2層目を構成する第2永久磁石としての一対の永久磁石62OUTとを備えた2層構成であった。
 図15に示す回転電機100Bは、磁極は、1層目を構成する第1永久磁石としての一対の永久磁石62INと、第2永久磁石としての一対の永久磁石62OUTを更に2層備えた、合計3層の構成を有する。
The rotating electric machine may also be configured as described below.
FIG. 15 is a diagram showing a part of a cross section perpendicular to the axial direction in the rotating electric machine 100B according to the first embodiment.
In the rotating electric machine 100 shown in Figure 2 described above, each magnetic pole has a two-layer structure including a pair of permanent magnets 62IN as first permanent magnets constituting the first layer, and a pair of permanent magnets 62OUT as second permanent magnets constituting the second layer.
The rotating electric machine 100B shown in FIG. 15 has a magnetic pole configuration of a total of three layers, including a pair of permanent magnets 62IN as first permanent magnets constituting the first layer, and two further layers of a pair of permanent magnets 62OUT as second permanent magnets.
 各磁極を径方向に多層構成にすることの効果について説明する。
 磁極を径方向に2層配置した2層構成では、回転子内の磁気回路を固定子の励磁磁束に沿った配置に近づけることが可能になる。そのため、リラクタンストルクを有効活用でき、トルク向上の効果が得られる。また、2層構成はリラクタンストルクを有効活用できる多層配置の中では磁石の使用個数を比較的抑えることができるため、ロータ製造時の磁石挿入回数を削減でき、製造コストの抑制に繋がる。
The effect of forming each magnetic pole in a multi-layered configuration in the radial direction will be described.
In a two-layer configuration in which the magnetic poles are arranged in two radial layers, it is possible to bring the magnetic circuit in the rotor closer to an arrangement along the excitation magnetic flux of the stator. This allows for effective use of reluctance torque, resulting in improved torque. In addition, the two-layer configuration allows for a relatively small number of magnets to be used compared to other multi-layer arrangements that can effectively utilize reluctance torque, which reduces the number of magnets that need to be inserted during rotor manufacturing, leading to reduced manufacturing costs.
 しかしながら磁極が2層構成では、使用する磁石層数が少ないためにθ1あるいはθ2が大きい構成になりやすい。例えば、磁極が2層構成の8極でq=4未満の24スロット(q=1)、48スロット(q=2)、あるいは、72スロット(q=3)向けに設計した回転子を、そのまま96スロット(q=4)に流用すると、θ1あるいはθ2の、P1の値に対する配慮が不十分なため鉄損の増加を招きやすい。そのような構成の場合に、図15に示すような回転電機100Bが有効となる。
 磁極を2層構成から3層構成に層数を増加させることで、磁極形状の自由度が拡がり、より一層リラクタンストルクを有効活用でき、トルクを向上させることができる。
However, in the case of a two-layer magnetic pole configuration, the number of magnet layers used is small, so θ1 or θ2 tends to be large. For example, if a rotor designed for 24 slots (q=1), 48 slots (q=2), or 72 slots (q=3) with 8 poles and two-layer magnetic poles (q=4 or less) is used as is for 96 slots (q=4), it is likely to lead to an increase in iron loss due to insufficient consideration given to the value of P1 for θ1 or θ2. In such a configuration, a rotating electric machine 100B as shown in FIG. 15 is effective.
By increasing the number of layers of the magnetic poles from a two-layer structure to a three-layer structure, the degree of freedom in the magnetic pole shape is expanded, making it possible to more effectively utilize the reluctance torque and improving the torque.
 なお、磁極の各層を構成する一対の永久磁石は、回転子の外周面に向かって拡開するV字形状に限定するものではなく、平板配置、∇型配置などの磁石配置でもよく、磁石挿入孔の形状、個数、永久磁石の形状、個数などは問わない。
 例えば、平板配置の磁極を有する回転子では、それぞれ1つの第1永久磁石としての永久磁石のみを備えた磁極間において、フラックスバリアが形成されていない回転子鉄心の径方向外側の外周面を構成する第1弧部の中心角θ1が第1条件を確保するように構成される。
Furthermore, the pair of permanent magnets that constitute each layer of the magnetic pole are not limited to a V-shape expanding toward the outer peripheral surface of the rotor, but may be arranged in a flat plate or V-shape, and the shape and number of the magnet insertion holes, and the shape and number of the permanent magnets, are not important.
For example, in a rotor having magnetic poles arranged in a flat plate, between magnetic poles each having only one permanent magnet as a first permanent magnet, the central angle θ1 of the first arc portion constituting the radially outer outer peripheral surface of the rotor core where no flux barrier is formed is configured to ensure the first condition.
 また、8極96スロットの構成を示したが、極数とスロット数はこれに限定しなくとも上記の効果が得られる。またqは4以上の数であり、整数に限定しない。
 また、フラックスバリアは磁束の漏洩を抑制することが目的のため、電磁鋼板よりも比透磁率の低い材料の例えば、空気、樹脂などで構成してもよい。
Although the 8-pole, 96-slot configuration is shown, the above effects can be obtained even if the number of poles and slots are not limited to this. Also, q is a number equal to or greater than 4, and is not limited to an integer.
Furthermore, since the purpose of the flux barrier is to suppress leakage of magnetic flux, it may be made of a material having a lower relative magnetic permeability than the magnetic steel sheet, such as air or resin.
 また、電動車両向けモータでは高出力化が求められているため、車両の搭載スペースの制約とトルク・出力密度の要求より、ステータコア外径はφ150~φ300mmに構成されるものが大半である。φ150mm以上で高出力なモータを設計する場合では、以下に説明するようにロータの極数は6極以上を選択するのが望ましい。 In addition, because high output is required for motors for electric vehicles, most stator cores are configured with an outer diameter of φ150 to φ300 mm due to the constraints of the vehicle's mounting space and the requirements for torque and power density. When designing a high-output motor with an outer diameter of φ150 mm or more, it is desirable to select a rotor with six or more poles, as explained below.
 モータの高トルク・高出力設計に最適なスプリット比(ロータコア外径/ステータコア外径)は60~80%程度を確保する必要がある。極数が小さくなるほど極ピッチ(1極あたりのロータコアの弧長に対する中心角度)が大きくなり、固定子のコアバックを流れる磁束量が増加する。
 コアバックの磁気飽和を回避するためにはコアバックを厚く設計する必要があるが、極数を小さくするとモータの径方向長さのうちコアバック厚が占める割合が増加するので60~80%のスプリット比が確保できなくなる。よって、電動車両向けモータでは、4極未満の少極設計は避け、6極以上の構成が望ましい。
The optimum split ratio (outer diameter of rotor core/outer diameter of stator core) for high torque and high output design of motors needs to be about 60 to 80%. As the number of poles decreases, the pole pitch (the central angle relative to the arc length of the rotor core per pole) increases, and the amount of magnetic flux flowing through the core back of the stator increases.
To avoid magnetic saturation of the core back, it is necessary to design the core back thicker, but if the number of poles is reduced, the proportion of the motor's radial length that is taken up by the core back thickness increases, making it impossible to ensure a split ratio of 60 to 80%. Therefore, in motors for electric vehicles, a design with fewer than four poles should be avoided, and a configuration with six poles or more is preferable.
 なお、第1条件を確保するためのθ1の調整においては、例えば、図2に示したフラックスバリア63INの延出角度θ3を調整してもよいし、あるいは、図2に示されるように、フラックスバリア63INの径方向外側X2の端部を、ロータコア61の外周面61Mに沿って延びるように形成してもよい。 In adjusting θ1 to ensure the first condition, for example, the extension angle θ3 of the flux barrier 63IN shown in FIG. 2 may be adjusted, or, as shown in FIG. 2, the end of the flux barrier 63IN on the radially outer side X2 may be formed to extend along the outer peripheral surface 61M of the rotor core 61.
 上記のように構成された本実施の形態の回転電機は、
環状のヨーク部から径方向内側に突出する複数のティースを有して、該ティース間に形成される複数のスロットに電機子巻線が巻回された固定子と、永久磁石により構成された複数の磁極およびフラックスバリアが形成された回転子鉄心を有する回転子と、を備え、
前記スロットの総数を、相数及び前記回転子の磁極数により除算した毎極毎相スロット数が4以上であって前記電機子巻線が分布巻きに構成される回転電機において、
各前記磁極を構成する第1永久磁石の周方向の両端にそれぞれ隣接して前記フラックスバリアとしての第1フラックスバリアが形成され、
周方向に隣接する前記磁極間において前記フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する第1弧部の中心角θ1が、
θ1=P1×2.1以下となる第1条件を確保して構成される、
ものである。
但し、P1は周方向に隣接する前記スロットの周方向中心間を繋ぐ弧の中心角。
 これにより、毎極毎相のスロット数が多い多スロット構造においても、高効率な回転電機を提供できる。
The rotating electric machine of this embodiment configured as described above has:
a stator having a plurality of teeth protruding radially inward from an annular yoke portion and an armature winding wound in a plurality of slots formed between the teeth; and a rotor having a rotor core on which a plurality of magnetic poles and flux barriers formed by permanent magnets are formed,
In a rotating electric machine in which the number of slots per pole per phase obtained by dividing the total number of slots by the number of phases and the number of magnetic poles of the rotor is 4 or more, and the armature winding is configured as a distributed winding,
a first flux barrier is formed adjacent to each of both circumferential ends of the first permanent magnet constituting each of the magnetic poles;
A central angle θ1 of a first arc portion constituting a radially outer outer peripheral surface of the rotor core on which the flux barrier is not formed between the magnetic poles adjacent in the circumferential direction is
The first condition is satisfied so that θ1=P1×2.1 or less.
It is something.
Here, P1 is the central angle of an arc connecting the circumferential centers of the slots adjacent in the circumferential direction.
This makes it possible to provide a highly efficient rotating electric machine even in a multi-slot structure having a large number of slots per pole per phase.
 また、上記のように構成された本実施の形態の回転電機においては、
前記磁極は、周方向の両端にそれぞれ隣接して前記フラックスバリアとしての第2フラックスバリアが形成される第2永久磁石を、前記第1永久磁石よりも径方向外側に配設して複数層に構成され、
各前記磁極において、前記第1フラックスバリアと前記第2フラックスバリアとの間において前記フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する第2弧部の中心角θ2が、
θ2=P1×1.65以下となる前記第1条件を確保して構成される、
ものである。
 これにより、第1永久磁石と第2永久磁石との間→ステータ→磁極間の磁気抵抗を増加させて、ティースに鎖交する磁束を分散させることで磁束密度の局所集中を緩和させてステータ鉄損を低減できる。
In the rotating electric machine of the present embodiment configured as described above,
The magnetic poles are configured in a plurality of layers by arranging second permanent magnets radially outwardly of the first permanent magnets, the second permanent magnets being adjacent to both ends in a circumferential direction and having second flux barriers formed thereon as the flux barriers,
In each of the magnetic poles, a central angle θ2 of a second arc portion constituting a radially outer outer peripheral surface of the rotor core where the flux barrier is not formed between the first flux barrier and the second flux barrier is
The first condition is ensured so that θ2=P1×1.65 or less.
It is something.
This increases the magnetic resistance between the first permanent magnet and the second permanent magnet → the stator → between the magnetic poles, and disperses the magnetic flux linking the teeth, thereby alleviating local concentration of magnetic flux density and reducing stator iron loss.
 また、上記のように構成された本実施の形態の回転電機においては、
前記中心角θ2は、
P1×1以上となる前記第1条件を確保して構成される、
ものである。
 これにより、ステータ鉄損を低減できると共にトルクの低下を抑制できる。
In the rotating electric machine of the present embodiment configured as described above,
The central angle θ2 is
The first condition is ensured to be equal to or greater than P1×1.
It is something.
This makes it possible to reduce stator iron loss and suppress a decrease in torque.
 また、上記のように構成された本実施の形態の回転電機においては、
前記第1フラックスバリアは、前記第1永久磁石の周方向の両端から、該第1永久磁石に対して設定された延出角度θ3を有して径方向外側に向かって延びるように形成され、
前記第1条件を確保するように前記延出角度θ3が調整される、
ものである。
 このように延出角度θ3を調整することにより、第1条件を確保するためのθ1、θ2の調整が容易になる。
In the rotating electric machine of the present embodiment configured as described above,
the first flux barrier is formed so as to extend radially outward from both circumferential ends of the first permanent magnet at an extension angle θ3 set with respect to the first permanent magnet,
The extension angle θ3 is adjusted so as to ensure the first condition.
It is something.
By adjusting the extension angle θ3 in this manner, it becomes easier to adjust θ1 and θ2 to ensure the first condition.
実施の形態2.
 以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
 図16は、実施の形態2による回転電機200における軸方向に垂直な断面の一部を示す図であり、本図では円環状の回転電機200の円周の約1/4に相当する部分のみを示す。
 図17は、図16の回転電機200の一部拡大断面図であるが、フラックスバリア63INの径方向外側X2の端部の形状の異なるものを一例として図示している。
 図18は、実施の形態2による回転電機200Aにおける軸方向に垂直な断面の一部を示す図である。
Embodiment 2.
Hereinafter, the second embodiment of the present invention will be described with reference to the drawings, focusing on the differences from the first embodiment. The same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
FIG. 16 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200 according to the second embodiment, and in this drawing, only a portion corresponding to approximately ¼ of the circumference of the annular rotating electric machine 200 is shown.
FIG. 17 is a partially enlarged cross-sectional view of the rotating electrical machine 200 of FIG. 16, illustrating an example in which the end portion of the flux barrier 63IN on the radially outer side X2 has a different shape.
FIG. 18 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200A according to the second embodiment.
 本実施の形態の回転電機200、200Aでは、各磁極間のロータコア61の外周面61Mの近傍において、フラックスバリア63IN、63OUTに連結されずに独立して構成される第3フラックスバリアとしてのフラックスバリア263Mを備える。 In the present embodiment, the rotating electric machine 200, 200A is provided with a third flux barrier, flux barrier 263M, which is configured independently and not connected to flux barriers 63IN, 63OUT, near the outer circumferential surface 61M of the rotor core 61 between each magnetic pole.
 図16に示される回転電機200において、θ1を構成する第1弧部61M1の定義は、各磁極間において、隣り合うフラックスバリア63IN間のロータコア61の弧の長さから、フラックスバリア263Mの周方向の長さを差し引いた弧を第1弧部61M1とする。即ち、本実施の形態の回転電機200における第1弧部61M1は、周方向Cに隣接する磁極間におけるフラックスバリア63IN間において、フラックスバリア263Mが形成されていないロータコア61の径方向外側X2の外周面を構成する各円弧61M1A、61M1Bを足し合わせたものとなる。 In the rotating electric machine 200 shown in FIG. 16, the first arc portion 61M1 constituting θ1 is defined as the arc length of the rotor core 61 between adjacent flux barriers 63IN between each magnetic pole minus the circumferential length of the flux barrier 263M. In other words, the first arc portion 61M1 in the rotating electric machine 200 of this embodiment is the sum of the arcs 61M1A, 61M1B constituting the outer peripheral surface of the radially outer side X2 of the rotor core 61 where no flux barrier 263M is formed, between the flux barriers 63IN between adjacent magnetic poles in the circumferential direction C.
 また、図18に示される回転電機200Aのように、第3フラックスバリアとしてのフラックスバリア263Mは、各磁極におけるフラックスバリア63OUTの周方向Cの一方側と、フラックスバリア63INの周方向Cの他方側との間に形成してもよい。
 この場合のθ2を構成する第2弧部の定義は、フラックスバリア63OUTとフラックスバリア63INとの間のロータコア61の外周面61Mの弧の長さから、フラックスバリア263Mの周方向の長さを差し引いた弧を第2弧部61M2とする。
 即ち、本実施の形態における第2弧部61M2は、フラックスバリア63OUTとフラックスバリア63INとの間のフラックスバリア263Mが形成されていないロータコア61の径方向外側X2の外周面を構成する各円弧61M2C、61M2Dを足し合わせたものとなる。
Furthermore, as in the rotating electric machine 200A shown in FIG. 18, a flux barrier 263M as a third flux barrier may be formed between one side of the flux barrier 63OUT in the circumferential direction C at each magnetic pole and the other side of the flux barrier 63IN in the circumferential direction C.
In this case, the second arc portion constituting θ2 is defined as the arc length of the outer peripheral surface 61M of the rotor core 61 between the flux barrier 63OUT and the flux barrier 63IN minus the circumferential length of the flux barrier 263M, which is the second arc portion 61M2.
That is, in this embodiment, the second arc portion 61M2 is the sum of the arcs 61M2C, 61M2D that constitute the outer peripheral surface of the radially outer side X2 of the rotor core 61 where the flux barrier 263M between the flux barrier 63OUT and the flux barrier 63IN is not formed.
 このように、独立した構成のフラックスバリア263Mを配置することで、回転子のパーミアンス、起磁力等を変化させるパラメータを増やすことができるため、設計自由度を拡げることができる。例えば、固定子50の励磁磁束の変動を打ち消すようにその位置、形状等を調整することで、トルクリプルを低減できる。
 また、極端にサイズの大きなフラックスバリアは、高回転時にロータのフラックスバリアと外周面61Mとの間の図17に示すブリッジ部261Bにかかる応力が増大させるため、耐遠心力強度が低下する懸念がある。このような場合でも、独立して形成されるフラックスバリア263Mを配置することで、図17に示すリブ261Rがフラックスバリア間に形成されるため、ブリッジ部261Bにかかる応力をリブ261Rに分散させることができる。これにより、耐遠心力強度の向上に寄与する。
In this way, by arranging the flux barrier 263M with an independent configuration, it is possible to increase the parameters that change the permeance, magnetomotive force, etc. of the rotor, thereby expanding the degree of freedom in design. For example, by adjusting the position, shape, etc., so as to cancel the fluctuation of the exciting magnetic flux of the stator 50, it is possible to reduce the torque ripple.
Furthermore, an extremely large flux barrier increases the stress on the bridge portion 261B shown in Fig. 17 between the flux barrier and the outer circumferential surface 61M of the rotor during high speed rotation, which may reduce the centrifugal force resistance. Even in such a case, by arranging the independently formed flux barrier 263M, the rib 261R shown in Fig. 17 is formed between the flux barriers, so that the stress on the bridge portion 261B can be dispersed to the rib 261R. This contributes to improving the centrifugal force resistance.
 遠心力によるロータコア61の変形等を防ぐためには、ブリッジ部261Bの応力緩和のためその径方向Xの幅を広くすることが考えられる。しかしながら、ブリッジ部261Bの幅を広くすると漏れ磁束の増加によりトルクの低下を招く。よって、耐遠心力強度を確保しつつ高トルクを実現するためには、ブリッジ部261Bの径方向Xの幅を、例えばロータ直径の2%以下のように、可能な限り狭く設定しておく必要がある。一方で、ブリッジ部261Bの幅を狭くし過ぎると磁束がステータコア51に流れやすくなり、ステータ鉄損の増加に繋がるため、ブリッジ部261Bの径方向Xの幅をロータ直径の2%以下として更にその値を調整してもよい。 In order to prevent deformation of the rotor core 61 due to centrifugal force, it is possible to widen the width in the radial direction X of the bridge portion 261B to relieve stress. However, widening the width of the bridge portion 261B leads to a decrease in torque due to an increase in leakage flux. Therefore, in order to achieve high torque while ensuring centrifugal force resistance, it is necessary to set the width in the radial direction X of the bridge portion 261B as narrow as possible, for example, to 2% or less of the rotor diameter. On the other hand, if the width of the bridge portion 261B is made too narrow, magnetic flux will easily flow into the stator core 51, leading to an increase in stator iron loss, so the width in the radial direction X of the bridge portion 261B may be set to 2% or less of the rotor diameter and further adjusted.
 以下、フラックスバリア263Mの配設位置を調整した更なる変形例を示す。
 図19は、実施の形態2による回転電機200Bにおける軸方向に垂直な断面の一部を示す図である。
 図20は、実施の形態2による回転電機200Cにおける軸方向に垂直な断面の一部を示す図である。
 図21は、実施の形態2による回転電機200Dにおける軸方向に垂直な断面の一部を示す図である。
A further modified example in which the position of the flux barrier 263M is adjusted will be described below.
FIG. 19 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200B according to the second embodiment.
FIG. 20 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotary electric machine 200C according to the second embodiment.
FIG. 21 is a diagram showing a part of a cross section perpendicular to the axial direction in a rotating electric machine 200D according to the second embodiment.
 図19に示すように、フラックスバリア263Mを、周方向Cに隣り合うフラックスバリア63IN間と、各磁極におけるフラックスバリア63OUTとフラックスバリア63INとの間の、双方に配設する構成としてもよい。 As shown in FIG. 19, the flux barriers 263M may be disposed both between adjacent flux barriers 63IN in the circumferential direction C and between the flux barriers 63OUT and 63IN at each magnetic pole.
 また、図20に示すように、より効果の得られる形態としては、フラックスバリア263Mは、その最も径方向外側X2の部分が、フラックスバリア63IN、63OUTの最も径方向外側X2の部分よりも径方向外側X2に配設されるようにしてもよい。
 フラックスバリア263Mとロータコア61の外周面61Mとの間の距離が長い場合では、フラックスバリア263Mと外周面61Mとの間で磁束が短絡し易くなり、フラックスバリアとしての機能が低下する。よって、図20の回転電機200Cのように、フラックスバリア263Mとロータコア61の外周面61Mとの間の距離を近くなるように構成することで、フラックスバリアとしての機能が向上し、鉄損低減の効果が増大する。
Furthermore, as shown in FIG. 20, in a more effective configuration, the flux barrier 263M may be arranged so that its radially outermost portion X2 is located radially outer than the radially outermost portions X2 of the flux barriers 63IN and 63OUT.
If the distance between the flux barrier 263M and the outer peripheral surface 61M of the rotor core 61 is long, magnetic flux is likely to short-circuit between the flux barrier 263M and the outer peripheral surface 61M, and the function as a flux barrier is reduced. Therefore, by configuring the distance between the flux barrier 263M and the outer peripheral surface 61M of the rotor core 61 to be short, as in the rotating electric machine 200C of Fig. 20, the function as a flux barrier is improved and the effect of reducing iron loss is increased.
 さらに、図21に示すように、フラックスバリア263Mは、ロータコア61の径方向外側X2の外周面61Mを切り欠くように、ロータコア61の外周面61M側に配設してもよい。
 この場合においても、前述のフラックスバリア263Mを設ける効果を同様に得られる。
Furthermore, as shown in FIG. 21 , a flux barrier 263M may be disposed on the outer circumferential surface 61M side of the rotor core 61 so as to cut out the outer circumferential surface 61M on the radially outer side X2 of the rotor core 61.
In this case as well, the effect of providing the flux barrier 263M described above can be obtained in the same manner.
 図22は、フラックスバリア263Mを設けていない構成の回転電機における起磁力分布を示す図である。
 図23は、フラックスバリア263Mを設けたことによる回転電機における起磁力分布を示す図である。
 図22、23に示すように、フラックスバリア263Mを設け、その配設位置を調整することで、回転子60の起磁力分布が正弦波状に近づくように調整することが可能となり、トルクリプルを低減できる。
FIG. 22 is a diagram showing magnetomotive force distribution in a rotating electric machine having a configuration in which the flux barrier 263M is not provided.
FIG. 23 is a diagram showing the magnetomotive force distribution in a rotating electric machine provided with a flux barrier 263M.
As shown in FIGS. 22 and 23, by providing a flux barrier 263M and adjusting its position, it is possible to adjust the magnetomotive force distribution of the rotor 60 to approach a sine wave, thereby reducing torque ripple.
 上記のように構成された本実施の形態の回転電機においては、
前記第1フラックスバリアおよび前記第2フラックスバリアから独立して形成される前記フラックスバリアとしての第3フラックスバリアを備え、
前記第3フラックスバリアは、
各前記磁極における前記第2フラックスバリアの周方向の一方側と前記第1フラックスバリアの周方向の他方側との間、あるいは、
周方向に隣接する各前記磁極間において、周方向に隣接する前記第1フラックスバリア間、
の少なくとも一方に配設され、
前記第1弧部は、
周方向に隣接する前記磁極間において、前記第3フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する円弧の合計であり、
前記第2弧部は、
各前記磁極において、前記第1フラックスバリアと前記第2フラックスバリアとの間において前記第3フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する円弧の合計である、
ものである。
 このように、第3フラックスバリアを設けて中心角θ2が第1条件を確保するように構成することで、トルクリプルを低下させ、耐遠心力強度を向上させつつ、ティースの磁束密度の局所集中を緩和させてステータ鉄損を低減でき、回転電機を高効率化させることが可能となる。
In the rotating electric machine of this embodiment configured as described above,
a third flux barrier formed independently of the first flux barrier and the second flux barrier;
The third flux barrier comprises:
Between one side of the second flux barrier in the circumferential direction and the other side of the first flux barrier in the circumferential direction of each of the magnetic poles, or
Between the magnetic poles adjacent in the circumferential direction, between the first flux barriers adjacent in the circumferential direction,
and
The first arc portion is
is the sum of arcs constituting the outer peripheral surface of the rotor core on the radially outer side where the third flux barrier is not formed between the magnetic poles adjacent in the circumferential direction,
The second arc portion is
a sum of arcs constituting a radially outer peripheral surface of the rotor core where the third flux barrier is not formed between the first flux barrier and the second flux barrier in each of the magnetic poles,
It is something.
In this way, by providing a third flux barrier and configuring the central angle θ2 to ensure the first condition, it is possible to reduce torque ripple and improve centrifugal force resistance while mitigating local concentration of magnetic flux density in the teeth, thereby reducing stator iron loss and making it possible to increase the efficiency of the rotating electric machine.
 また、上記のように構成された本実施の形態の回転電機においては、
前記第3フラックスバリアは、
前記回転子の起磁力分布が正弦波状に近づくように配設位置が調整される、
ものである。
これにより、トルクリプルを低減した静粛化された回転電機が得られる。
In the rotating electric machine of the present embodiment configured as described above,
The third flux barrier comprises:
The arrangement position of the rotor is adjusted so that the magnetomotive force distribution of the rotor approaches a sine wave.
It is something.
This provides a quiet rotating electric machine with reduced torque ripple.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments are not limited to application to a particular embodiment, but may be applied to the embodiments alone or in various combinations.
Therefore, countless modifications not illustrated are conceivable within the scope of the technology disclosed in the present application, including, for example, modifying, adding, or omitting at least one component, and further, extracting at least one component and combining it with a component of another embodiment.
50 固定子、51 ステータコア、51B ヨーク部、51T ティース、51S スロット、61 ロータコア(回転子鉄心)、62IN 永久磁石(第1永久磁石)、62OUT 永久磁石(第2永久磁石)、63IN フラックスバリア(第1フラックスバリア)、63OUT フラックスバリア(第2フラックスバリア)、263M 第3フラックスバリア(フラックスバリア)、55 コイル(電機子巻線)、100,100A,100B,200A,200B,200C,200D 回転電機。 50 Stator, 51 Stator core, 51B Yoke, 51T Teeth, 51S Slot, 61 Rotor core (rotor core), 62IN Permanent magnet (first permanent magnet), 62OUT Permanent magnet (second permanent magnet), 63IN Flux barrier (first flux barrier), 63OUT Flux barrier (second flux barrier), 263M Third flux barrier (flux barrier), 55 Coil (armature winding), 100, 100A, 100B, 200A, 200B, 200C, 200D Rotating motor.

Claims (13)

  1. 環状のヨーク部から径方向内側に突出する複数のティースを有して、該ティース間に形成される複数のスロットに電機子巻線が巻回された固定子と、永久磁石により構成された複数の磁極およびフラックスバリアが形成された回転子鉄心を有する回転子と、を備え、
    前記スロットの総数を、相数及び前記回転子の磁極数により除算した毎極毎相スロット数が4以上であって前記電機子巻線が分布巻きに構成される回転電機において、
    各前記磁極を構成する第1永久磁石の周方向の両端にそれぞれ隣接して前記フラックスバリアとしての第1フラックスバリアが形成され、
    周方向に隣接する前記磁極間において前記フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する第1弧部の中心角θ1が、
    θ1=P1×2.1以下となる第1条件を確保して構成される、
    回転電機。
    但し、P1は周方向に隣接する前記スロットの周方向中心間を繋ぐ弧の中心角。
    a stator having a plurality of teeth protruding radially inward from an annular yoke portion and an armature winding wound in a plurality of slots formed between the teeth; and a rotor having a rotor core on which a plurality of magnetic poles and flux barriers formed by permanent magnets are formed,
    In a rotating electric machine in which the number of slots per pole per phase obtained by dividing the total number of slots by the number of phases and the number of magnetic poles of the rotor is 4 or more, and the armature winding is configured as a distributed winding,
    a first flux barrier is formed adjacent to each of both circumferential ends of the first permanent magnet constituting each of the magnetic poles;
    A central angle θ1 of a first arc portion constituting a radially outer outer peripheral surface of the rotor core on which the flux barrier is not formed between the magnetic poles adjacent in the circumferential direction is
    The first condition is satisfied so that θ1=P1×2.1 or less.
    Rotating electric motor.
    Here, P1 is the central angle of an arc connecting the circumferential centers of the slots adjacent in the circumferential direction.
  2. 前記磁極は、周方向の両端にそれぞれ隣接して前記フラックスバリアとしての第2フラックスバリアが形成される第2永久磁石を、前記第1永久磁石よりも径方向外側に配設して複数層に構成され、
    各前記磁極において、前記第1フラックスバリアと前記第2フラックスバリアとの間において前記フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する第2弧部の中心角θ2が、
    θ2=P1×1.65以下となる前記第1条件を確保して構成される、
    請求項1に記載の回転電機。
    The magnetic poles are configured in a plurality of layers by arranging second permanent magnets radially outwardly of the first permanent magnets, the second permanent magnets being adjacent to both ends in a circumferential direction and having second flux barriers formed thereon as the flux barriers,
    In each of the magnetic poles, a central angle θ2 of a second arc portion constituting a radially outer outer peripheral surface of the rotor core where the flux barrier is not formed between the first flux barrier and the second flux barrier is
    The first condition is ensured so that θ2=P1×1.65 or less.
    The rotating electric machine according to claim 1 .
  3. 前記中心角θ2は、
    P1×1以上となる前記第1条件を確保して構成される、
    請求項2に記載の回転電機。
    The central angle θ2 is
    The first condition is ensured to be equal to or greater than P1×1.
    The rotating electric machine according to claim 2 .
  4. 前記第1フラックスバリアは、前記第1永久磁石の周方向の両端から、該第1永久磁石に対して設定された延出角度θ3を有して径方向外側に向かって延びるように形成され、
    前記第1条件を確保するように前記延出角度θ3が調整される、
    請求項2または請求項3に記載の回転電機。
    the first flux barrier is formed so as to extend radially outward from both circumferential ends of the first permanent magnet at an extension angle θ3 set with respect to the first permanent magnet,
    The extension angle θ3 is adjusted so as to ensure the first condition.
    The rotating electric machine according to claim 2 or 3.
  5. 前記第1フラックスバリアおよび前記第2フラックスバリアから独立して形成される前記フラックスバリアとしての第3フラックスバリアを備え、
    前記第3フラックスバリアは、
    各前記磁極における前記第2フラックスバリアの周方向の一方側と前記第1フラックスバリアの周方向の他方側との間、あるいは、
    周方向に隣接する各前記磁極間において、周方向に隣接する前記第1フラックスバリア間、
    の少なくとも一方に配設され、
    前記第1弧部は、
    周方向に隣接する前記磁極間において、前記第3フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する円弧の合計であり、
    前記第2弧部は、
    各前記磁極において、前記第1フラックスバリアと前記第2フラックスバリアとの間において前記第3フラックスバリアが形成されていない前記回転子鉄心の径方向外側の外周面を構成する円弧の合計である、
    請求項2から請求項4のいずれか1項に記載の回転電機。
    a third flux barrier formed independently of the first flux barrier and the second flux barrier;
    The third flux barrier comprises:
    Between one side of the second flux barrier in the circumferential direction and the other side of the first flux barrier in the circumferential direction of each of the magnetic poles, or
    Between the magnetic poles adjacent in the circumferential direction, between the first flux barriers adjacent in the circumferential direction,
    and
    The first arc portion is
    is the sum of arcs constituting the outer peripheral surface of the rotor core on the radially outer side where the third flux barrier is not formed between the magnetic poles adjacent in the circumferential direction,
    The second arc portion is
    a sum of arcs constituting a radially outer peripheral surface of the rotor core where the third flux barrier is not formed between the first flux barrier and the second flux barrier in each of the magnetic poles,
    The rotating electric machine according to any one of claims 2 to 4.
  6. 前記第3フラックスバリアは、
    前記回転子の起磁力分布が正弦波状に近づくように配設位置が調整される、
    請求項5に記載の回転電機。
    The third flux barrier comprises:
    The arrangement position of the rotor is adjusted so that the magnetomotive force distribution of the rotor approaches a sine wave.
    The rotating electric machine according to claim 5 .
  7. 前記第3フラックスバリアは、その径方向外側部が、前記第1フラックスバリアおよび前記第2フラックスバリアの径方向外側部よりも径方向外側に配設される、
    請求項5または請求項6に記載の回転電機。
    a radially outer portion of the third flux barrier is disposed radially outward of radially outer portions of the first flux barrier and the second flux barrier;
    7. The rotating electric machine according to claim 5 or 6.
  8. 前記第3フラックスバリアは、前記回転子鉄心の径方向外側を切り欠くように前記回転子鉄心の外周面側に配設される、
    請求項5から請求項7のいずれか1項に記載の回転電機。
    the third flux barrier is disposed on an outer circumferential surface side of the rotor core so as to cut out a radially outer side of the rotor core;
    The rotating electric machine according to any one of claims 5 to 7.
  9. 複数層の構成の前記磁極は、1層目を構成する第1フラックスバリアと、2層目を構成する前記第2フラックスバリアとの2層構成である、
    請求項2から請求項8のいずれか1項に記載の回転電機。
    The magnetic pole having a multi-layer structure has a two-layer structure including a first flux barrier constituting a first layer and the second flux barrier constituting a second layer.
    The rotating electric machine according to any one of claims 2 to 8.
  10. 複数層の前記磁極は、1層目を構成する第1フラックスバリアと、2層目以降を構成する複数の前記第2フラックスバリアとの3層以上の構成である、
    請求項2から請求項8のいずれか1項に記載の回転電機。
    The magnetic pole having a plurality of layers is configured of three or more layers, including a first flux barrier constituting a first layer and a plurality of second flux barriers constituting second and subsequent layers.
    The rotating electric machine according to any one of claims 2 to 8.
  11. 前記第1フラックスバリアおよび前記第2フラックスバリアと、前記回転子鉄心の外周面との間にそれぞれ形成されるブリッジ部の少なくとも一方は、該ブリッジ部の径方向の幅が、前記回転子の直径の2%以下の長さに形成される、
    請求項2から請求項10のいずれか1項に記載の回転電機。
    At least one of the bridge portions formed between the first flux barrier and the outer circumferential surface of the rotor core and the second flux barrier has a radial width that is 2% or less of a diameter of the rotor.
    The rotating electric machine according to any one of claims 2 to 10.
  12. 前記第1永久磁石および前記第2永久磁石は、前記回転子の外周面側に向かって拡開するV字型に配設される一対の磁石を有して構成される、
    請求項2から請求項11のいずれか1項に記載の回転電機。
    The first permanent magnet and the second permanent magnet are configured to have a pair of magnets arranged in a V shape expanding toward the outer circumferential surface side of the rotor.
    The rotating electric machine according to any one of claims 2 to 11.
  13. 前記磁極数は6極以上に構成される、
    請求項1から請求項12のいずれか1項に記載の回転電機。
    The number of magnetic poles is six or more.
    The rotating electric machine according to any one of claims 1 to 12.
PCT/JP2022/038543 2022-10-17 2022-10-17 Rotary electric machine WO2024084542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038543 WO2024084542A1 (en) 2022-10-17 2022-10-17 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038543 WO2024084542A1 (en) 2022-10-17 2022-10-17 Rotary electric machine

Publications (1)

Publication Number Publication Date
WO2024084542A1 true WO2024084542A1 (en) 2024-04-25

Family

ID=90737320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038543 WO2024084542A1 (en) 2022-10-17 2022-10-17 Rotary electric machine

Country Status (1)

Country Link
WO (1) WO2024084542A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121765A (en) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp Reluctance rotary electric machine
JP2011050179A (en) * 2009-08-27 2011-03-10 Honda Motor Co Ltd Rotor and motor
US20170063187A1 (en) * 2015-08-24 2017-03-02 GM Global Technology Operations LLC Electric machine for hybrid powertrain with engine belt drive
JP2021097550A (en) * 2019-12-19 2021-06-24 株式会社明電舎 Embedded magnet type rotor and rotating machine
JP2021145515A (en) * 2020-03-13 2021-09-24 日立Astemo株式会社 Rotary electric machine and rotator of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121765A (en) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp Reluctance rotary electric machine
JP2011050179A (en) * 2009-08-27 2011-03-10 Honda Motor Co Ltd Rotor and motor
US20170063187A1 (en) * 2015-08-24 2017-03-02 GM Global Technology Operations LLC Electric machine for hybrid powertrain with engine belt drive
JP2021097550A (en) * 2019-12-19 2021-06-24 株式会社明電舎 Embedded magnet type rotor and rotating machine
JP2021145515A (en) * 2020-03-13 2021-09-24 日立Astemo株式会社 Rotary electric machine and rotator of the same

Similar Documents

Publication Publication Date Title
US7804216B2 (en) Permanent-magnet reluctance electrical rotary machine
US7764001B2 (en) Rotating electric machine
EP1289101B1 (en) Motor with three axially coupled reluctance and permanent magnet rotors
US9071118B2 (en) Axial motor
US9407116B2 (en) Multi-gap rotary machine with dual stator and one rotor with dual permanent magnets and salient poles with dimensions and ratios for torque maximization
JP5260563B2 (en) Permanent magnet generator or motor
US6987343B2 (en) Motor
JP5259927B2 (en) Permanent magnet rotating electric machine
WO2002031947A1 (en) Electric motor
CN110663158B (en) Dual magnetic phase material ring for AC motor
JP6048191B2 (en) Multi-gap rotating electric machine
WO2019215853A1 (en) Rotor structure of rotating electric machine
WO2007123057A1 (en) Motor
CN113273057B (en) Interior permanent magnet electric machine with flux distribution gap
EP3499686A2 (en) Switched reluctance electric machine including pole flux barriers
WO2024084542A1 (en) Rotary electric machine
JP5679695B2 (en) Permanent magnet rotating electric machine
JP2004254354A (en) Reluctance motor
JP7254215B2 (en) Rotating electric machine and elevator hoist
KR101628150B1 (en) Rotor structure of wrsm motor
JP7270806B1 (en) Rotating electric machine
JP3671928B2 (en) Outer rotor structure of rotating electrical machine
CN213661407U (en) Built-in permanent magnet synchronous wind driven generator based on magnetic sleeve structure weakening cogging torque
EP4329152A1 (en) Rotor
JP2011083114A (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962654

Country of ref document: EP

Kind code of ref document: A1