WO2022064814A1 - 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置 - Google Patents

半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置 Download PDF

Info

Publication number
WO2022064814A1
WO2022064814A1 PCT/JP2021/026139 JP2021026139W WO2022064814A1 WO 2022064814 A1 WO2022064814 A1 WO 2022064814A1 JP 2021026139 W JP2021026139 W JP 2021026139W WO 2022064814 A1 WO2022064814 A1 WO 2022064814A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vibration
vibration data
processing
abnormality sign
Prior art date
Application number
PCT/JP2021/026139
Other languages
English (en)
French (fr)
Inventor
祐太 舘
隆之 川岸
一良 山本
隆一 鍛治
正憲 境
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2022551153A priority Critical patent/JPWO2022064814A1/ja
Priority to KR1020237005560A priority patent/KR20230041051A/ko
Priority to CN202180052376.5A priority patent/CN115989559A/zh
Priority to TW110128660A priority patent/TW202224047A/zh
Publication of WO2022064814A1 publication Critical patent/WO2022064814A1/ja
Priority to US18/124,799 priority patent/US20230223285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, an abnormality sign detection method, an abnormality sign detection program, and a substrate processing device.
  • a substrate processing device for manufacturing a semiconductor device by forming a thin film on a substrate such as a silicon wafer and a manufacturing method for the semiconductor device are known.
  • a raw material gas and a reaction gas that reacts with the raw material gas are sequentially supplied to a processing chamber containing the substrate to form a thin film on the substrate accommodated in the processing chamber.
  • a method for manufacturing a semiconductor device is disclosed.
  • such a substrate processing apparatus includes a vacuum pump that evacuates the processing chamber, a mass flow controller that controls the flow rate of reactive gas, an on-off valve, a pressure gauge, a heater that heats the processing chamber, and a substrate. It is composed of various members such as a transport mechanism for transport.
  • the purpose of this disclosure is to provide a technique capable of detecting a sign of abnormality in a member.
  • it is a technique for processing a substrate by executing a process recipe including a plurality of steps, and exhausts the atmosphere of a processing room for processing the substrate while executing the process recipe.
  • the vibration data acquisition process that acquires the vibration data of the member from the vibration sensor and the acquired vibration data, the magnitude of the vibration at the rotation frequency of the member and the magnitude of the vibration at the relative rotation frequency that is an integral multiple of the rotation frequency.
  • an abnormality sign detection step of detecting an abnormality sign when the ratio with the frequency exceeds a preset abnormality sign threshold.
  • a technique capable of detecting an abnormality sign of a member is provided.
  • FIG. 1 arrow F indicates the front direction of the substrate processing device
  • arrow B indicates the rear surface direction
  • arrow R indicates the right direction
  • arrow L indicates the left direction
  • arrow U indicates the upward direction
  • arrow D indicates the downward direction.
  • FIGS. 1 and 2 The drawings used in the following description are all schematic, and the dimensional relationship of each element, the ratio of each element, etc. shown in the drawings do not always match the actual ones. Further, even between the plurality of drawings, the relationship of the dimensions of each element, the ratio of each element, and the like do not always match.
  • the substrate processing apparatus 10 includes a housing 12 made of a pressure-resistant container. An opening provided for maintenance is provided on the front wall of the housing 12, and a pair of front doors 14 are provided in the opening as an entry mechanism for opening and closing the opening.
  • a pod (board container) 18 as a substrate storage container for accommodating a substrate (wafer) 16 (see FIG. 2) such as silicon, which will be described later, conveys the substrate 16 into and out of the housing 12. Used as a carrier.
  • a pod loading / unloading outlet is provided so as to communicate the inside and outside of the housing 12.
  • a load port 20 is installed at the pod loading / unloading outlet.
  • the pod 18 is placed on the load port 20, and the pod 18 is configured to be aligned.
  • a rotary pod shelf 22 is installed at the upper part in the substantially central portion of the housing 12.
  • a plurality of pods 18 are configured to be stored on the rotary pod shelf 22.
  • the rotary pod shelf 22 includes a support column that is vertically erected and rotated in a horizontal plane, and a plurality of shelf boards that are radially supported on the support column at each position of the upper, middle, and lower stages.
  • a pod transfer device 24 is installed between the load port 20 and the rotary pod shelf 22 in the housing 12.
  • the pod transfer device 24 has a pod elevator 24A and a pod transfer mechanism 24B that can be raised and lowered while holding the pod 18.
  • the pod 18 is configured to transfer the pod 18 to each other between the load port 20, the rotary pod shelf 22, and the pod opener 26 described later.
  • a sub-housing 28 is provided in the lower part of the housing 12 from a substantially central portion in the housing 12 to the rear end.
  • a pair of pod openers 26 for transporting the substrate 16 inside and outside the sub-housing 28 are installed on the front wall of the sub-housing 28, respectively.
  • Each pod opener 26 is provided with a mounting table on which the pod 18 is placed and a cap attachment / detachment mechanism 30 for attaching / detaching the cap of the pod 18.
  • the pod opener 26 is configured to open and close the substrate loading / unloading port of the pod 18 by attaching / detaching the lid of the pod 18 mounted on the mounting table by the cap attachment / detachment mechanism 30.
  • a transfer chamber 32 fluidly isolated from the space in which the pod transfer device 24, the rotary pod shelf 22, and the like are installed is configured.
  • a substrate transfer mechanism 34 is installed in the front region of the transfer chamber 32.
  • the board transfer mechanism 34 includes a board transfer device 34A capable of rotating or linearly moving the board 16 in the horizontal direction, and a board transfer device elevator 34B for raising and lowering the board transfer device 34A.
  • the board transfer device elevator 34B is installed between the right end of the front region of the transfer chamber 32 of the sub-housing 28 and the right end of the housing 12. Further, the substrate transfer device 34A includes a tweezer (not shown) as a holding portion of the substrate 16. By the continuous operation of the board transfer device elevator 34B and the board transfer device 34A, the board 16 can be loaded (charged) and removed (discharged) from the boat 36 as a board holder. ing.
  • a boat elevator 38 for raising and lowering the boat 36 is installed in the sub-housing 28 (transfer chamber 32).
  • An arm 40 is connected to the lift of the boat elevator 38, and a lid (seal cap) 42 is horizontally installed on the arm 40.
  • the lid 42 vertically supports the boat 36 and is configured to be able to close the lower end of the processing furnace 44, which will be described later.
  • a transport mechanism that mainly transports the substrate 16 by the rotary pod shelf 22 shown in FIG. 1, the pod transfer device 24, the substrate transfer mechanism 34, the boat 36, the boat elevator 38 shown in FIG. 2, and the rotary mechanism 46 described later. Is configured.
  • the rotary pod shelf 22, the boat elevator 38, the pod transfer device 24, the substrate transfer mechanism 34, the boat 36, and the rotation mechanism 46 are each electrically connected to a transfer controller 48 described later.
  • a processing furnace 44 is provided above the standby unit 50 for accommodating the boat 36 and making it stand by. Further, a clean unit 52 is installed at the left end portion of the transfer chamber 32, which is opposite to the board transfer device elevator 34B side. The clean unit 52 is configured to supply a clean atmosphere or clean air 52A, which is an inert gas.
  • the clean air 52A blown out from the clean unit 52 circulates around the board transfer device 34A and the boat 36 in the standby unit 50. After that, the clean air 52A is sucked by a duct (not shown) and exhausted to the outside of the housing 12, or is circulated to the primary side (supply side) which is the suction side of the clean unit 52 and transferred by the clean unit 52. It is blown out again into the loading room 32.
  • a plurality of device covers are attached to the outer periphery of the housing 12 and the sub-housing 28 as a mechanism for entering the substrate processing device 10. By removing these device covers during maintenance work, maintenance personnel can enter the board processing device 10.
  • a door switch 54 as an entry sensor (only the door switch 54 of the housing 12 is shown) is provided at the end of the housing 12 and the sub-housing 28 facing the device cover.
  • a board detection sensor 56 for detecting the placement of the pod 18 is provided on the load port 20.
  • the switches and sensors such as the door switch 54 and the board detection sensor 56 are electrically connected to a controller 58 for a board processing device (see FIGS. 2 and 3) as a main control unit, which will be described later.
  • the substrate processing device 10 includes a gas supply unit 60 and an exhaust unit 62 in addition to the housing 12.
  • a processing gas supply system and a purge gas supply system are housed in the gas supply unit 60.
  • the processing gas supply system includes a processing gas supply source and an on-off valve (not shown), a mass flow controller (hereinafter abbreviated as MFC) 64A as a gas flow rate controller, and a processing gas supply pipe 66A.
  • MFC mass flow controller
  • the purge gas supply system includes a purge gas supply source and an on-off valve (not shown), an MFC 64B, and a purge gas supply pipe 66B.
  • a gas exhaust mechanism composed of an exhaust pipe 68, a pressure sensor 70 as a pressure detection unit, and a pressure adjusting unit 72 including, for example, an APC (Auto Pressure Controller) valve is housed. ..
  • a vacuum pump 74 as an exhaust device is connected to the exhaust pipe 68 on the downstream side of the exhaust unit 62.
  • the vacuum pump 74 may also be included in the gas exhaust mechanism.
  • the exhaust unit 62 and the vacuum pump 74 may be installed close to each other, such as on the same floor, or the exhaust unit 62 and the vacuum pump 74 may be installed separately from each other, such as on different floors.
  • the vacuum pump 74 is provided with an acceleration sensor 75 as a vibration sensor.
  • the accelerometer 75 measures the vibration data of the vacuum pump 74.
  • the acceleration sensor 75 is a 3-axis acceleration sensor capable of measuring vibrations in orthogonal 3-axis directions, respectively, in the vertical direction of the substrate processing device 10 (directions of arrows U and D, hereinafter referred to as "Z-axis direction"), and substrate processing. It is possible to measure vibrations in the left-right direction of the device 10 (directions of arrows R and L, hereinafter referred to as "Y-axis direction") and in the front-rear direction of the substrate processing device 10 (directions of arrows F and B and hereinafter referred to as "X-axis direction"). It is arranged so as to be.
  • the rotation axis of the rotor of the vacuum pump 74 is arranged along the Y-axis direction.
  • the controller for the board processing device 58 as the main control unit is connected to the transfer controller 48, the temperature controller 76, the pressure controller 78, and the gas supply controller 80, respectively. Further, as shown in FIG. 5, the controller 58 for the substrate processing device is connected to the sign detection controller 82 as a sign detection unit, which will be described later.
  • the processing furnace 44 includes a reaction tube (process tube) 84.
  • the reaction tube 84 includes an internal reaction tube (inner tube) 84A and an external reaction tube (outer tube) 84B provided on the outside thereof.
  • the internal reaction tube 84A is formed in a cylindrical shape with the upper end and the lower end open, and a processing chamber 86 for processing the substrate 16 is formed in the hollow portion of the cylinder in the internal reaction tube 84A.
  • the processing chamber 86 is configured to accommodate the boat 36.
  • a cylindrical heater 88 is provided on the outside of the reaction tube 84 so as to surround the side wall surface of the reaction tube 84.
  • the heater 88 is vertically installed by being supported by the heater base 90.
  • a cylindrical furnace mouth portion (manifold) 92 is arranged so as to be concentric with the external reaction tube 84B.
  • the furnace mouth portion 92 is provided so as to support the lower end portion of the internal reaction tube 84A and the lower end portion of the external reaction tube 84B, and engages with the lower end portion of the internal reaction tube 84A and the lower end portion of the external reaction tube 84B, respectively. is doing.
  • An O-ring 94 as a sealing member is provided between the furnace mouth portion 92 and the external reaction tube 84B. Since the furnace mouth portion 92 is supported by the heater base 90, the reaction tube 84 is in a vertically installed state. A reaction vessel is formed by the reaction tube 84 and the furnace mouth portion 92.
  • the processing gas nozzle 96A and the purge gas nozzle 96B are connected to the furnace port portion 92 so as to communicate with each other in the processing chamber 86.
  • a processing gas supply pipe 66A is connected to the processing gas nozzle 96A.
  • a processing gas supply source (not shown) or the like is connected to the upstream side of the processing gas supply pipe 66A via the MFC64A.
  • a purge gas supply pipe 66B is connected to the purge gas nozzle 96B.
  • a purge gas supply source (not shown) or the like is connected to the upstream side of the purge gas supply pipe 66B via the MFC64B.
  • An exhaust pipe 68 for exhausting the atmosphere of the processing chamber 86 is connected to the furnace port portion 92.
  • the exhaust pipe 68 is arranged at the lower end of the tubular space 98 formed by the gap between the internal reaction pipe 84A and the external reaction pipe 84B, and communicates with the tubular space 98.
  • a pressure sensor 70, a pressure adjusting unit 72, and a vacuum pump 74 are connected to the downstream side of the exhaust pipe 68 in this order from the upstream side.
  • a disk-shaped lid 42 capable of airtightly closing the lower end opening of the furnace opening 92 is provided below the furnace opening 92, and the upper surface of the lid 42 is in contact with the lower end of the furnace opening 92.
  • An O-ring 100 is provided as a contacting seal member.
  • a rotation mechanism 46 for rotating the boat 36 is installed on the opposite side of the processing chamber 86 near the center of the lid 42.
  • the rotation shaft 102 of the rotation mechanism 46 penetrates the lid 42 and supports the boat 36 from below.
  • the rotary mechanism 46 has a built-in rotary motor 46A, and the rotary motor 46A is configured to rotate the rotary shaft 102 of the rotary mechanism 46 and rotate the boat 36 to rotate the substrate 16. ing.
  • the lid 42 is configured to be raised and lowered in the vertical direction by a boat elevator 38 provided outside the reaction tube 84. By raising and lowering the lid 42, the boat 36 can be transported inside and outside the processing chamber 86.
  • a transfer controller 48 is electrically connected to the rotary motor 46A and the boat elevator 38 of the rotary mechanism 46.
  • the boat 36 is configured to align and hold a plurality of substrates 16 in a horizontal posture and with their centers aligned with each other in multiple stages. Further, in the lower part of the boat 36, a plurality of disk-shaped heat insulating plates 104 as heat insulating members are arranged in a horizontal posture in multiple stages.
  • the boat 36 and the heat insulating plate 104 are made of a heat-resistant material such as quartz or silicon carbide.
  • the heat insulating plate 104 is provided to make it difficult to transfer the heat from the heater 88 to the furnace mouth portion 92 side.
  • a temperature sensor 106 as a temperature detector is installed in the reaction tube 84.
  • a temperature controller 76 is electrically connected to the heater 88 and the temperature sensor 106.
  • the pod 18 when the pod 18 is supplied to the load port 20 by an in-process transfer device (not shown), the pod 18 is detected by the board detection sensor 56, and the pod carry-in / carry-out outlet is a front shutter (not shown). Is released by). Then, the pod 18 on the load port 20 is carried into the inside of the housing 12 from the pod carry-in / carry-out outlet by the pod transport device 24.
  • the pod 18 carried into the housing 12 is automatically transported onto the shelf board of the rotary pod shelf 22 by the pod transport device 24 and temporarily stored. After that, the pod 18 is transferred from the shelf board onto the mounting table of one of the pod openers 26. The pod 18 carried into the housing 12 may be directly transferred onto the mounting table of the pod opener 26 by the pod transport device 24.
  • the lid of the pod 18 mounted on the mounting table is removed by the cap attachment / detachment mechanism 30, and the substrate loading / unloading port is opened.
  • the substrate 16 (see FIG. 2) is picked up from the inside of the pod 18 through the substrate loading / unloading port by the tweezers of the substrate transfer device 34A, and after the orientations are aligned by a notch alignment device (not shown), the rear of the transfer chamber 32. It is carried into the standby unit 50 in the above and loaded (charged) into the boat 36.
  • the board transfer device 34A in which the board 16 is loaded on the boat 36 returns to the mounting table on which the pod 18 is placed, takes out the next board 16 from the pod 18, and loads the next board 16 into the boat 36.
  • the lower end of the processing furnace 44 is opened by a furnace opening shutter (not shown). Subsequently, the boat 36 holding the substrate 16 group is carried (loaded) into the processing furnace 44 by raising the lid 42 by the boat elevator 38 (boat loading process).
  • the lid 42 passes through the O-ring 100.
  • the lower end of the furnace mouth portion 92 is sealed.
  • a film forming step of forming a film on the 16 groups of the substrate is carried out.
  • the inside of the processing chamber 86 is evacuated by the vacuum pump 74 so as to have a desired pressure (vacuum degree).
  • the pressure adjusting unit 72 (opening of the valve) is feedback-controlled based on the pressure value measured by the pressure sensor 70.
  • the treatment chamber 86 is heated by the heater 88 so as to have a desired temperature.
  • the amount of electricity supplied to the heater 88 is feedback-controlled based on the temperature value detected by the temperature sensor 106.
  • the boat 36 and the substrate 16 are rotated by the rotation mechanism 46.
  • the processing gas supplied from the processing gas supply source and controlled by the MFC 64A to have a desired flow rate flows through the processing gas supply pipe 66A and is introduced into the processing chamber 86 from the processing gas nozzle 96A.
  • the introduced processing gas rises in the processing chamber 86, flows out from the upper end opening of the internal reaction pipe 84A into the tubular space 98, and is exhausted from the exhaust pipe 68.
  • the processing gas comes into contact with the surface of the substrate 16 as it passes through the processing chamber 86, and at this time, a thin film is deposited on the surface of the substrate 16 by a thermal reaction.
  • the purge gas supplied from the purge gas supply source and controlled by the MFC 64B to have a desired flow rate is supplied to the processing chamber 86, and the inside of the processing chamber 86 is replaced with the inert gas. At the same time, the pressure in the processing chamber 86 is restored to the normal pressure.
  • the lid 42 is lowered by the boat elevator 38 to open the lower end of the furnace opening portion 92, and the boat 36 holding the treated substrate 16 moves from the lower end of the furnace opening portion 92 to the outside of the reaction tube 84. It is carried out (unloading) (boat unloading process). After that, the processed substrate 16 is taken out from the boat 36 by the substrate transfer device 34A and stored (discharged) in the pod 18.
  • the pod 18 containing the processed substrate 16 is carried out of the housing 12 in a procedure substantially opposite to the above procedure except for the matching step in the notch matching device.
  • controller 58 for the substrate processing apparatus as the main control unit will be specifically described.
  • the controller 58 for a board processing device mainly includes an arithmetic control unit 108 such as a CPU (Central Processing Unit), a storage unit 114 including a RAM 110, a ROM 112, and an HDD (not shown), an input unit 116 such as a mouse and a keyboard, and a monitor. It is composed of a display unit 118 such as and the like. Each data can be set by the arithmetic control unit 108, the storage unit 114, the input unit 116, and the display unit 118.
  • arithmetic control unit 108 such as a CPU (Central Processing Unit)
  • an input unit 116 such as a mouse and a keyboard
  • a monitor mainly includes an arithmetic control unit 108 such as a CPU (Central Processing Unit), a storage unit 114 including a RAM 110, a ROM 112, and an HDD (not shown), an input unit 116
  • the arithmetic control unit 108 constitutes the center of the substrate processing device controller 58, executes the control program stored in the ROM 112, and is stored in the storage unit 114 which also constitutes the recipe storage unit according to the instruction from the input unit 116. Execute a recipe (for example, a process recipe as a substrate processing recipe).
  • the ROM 112 is a recording medium composed of a flash memory, a hard disk, or the like, and stores an operation program or the like of an arithmetic control unit 108 that controls the operation of each member (for example, a vacuum pump 74 or the like) of the substrate processing apparatus 10. Further, the RAM 110 (memory) functions as a work area (temporary storage unit) of the arithmetic control unit 108.
  • the substrate processing recipe is a recipe in which processing conditions, processing procedures, and the like for processing the substrate 16 are defined. Further, in the recipe file, set values (control values) and transmission timings to be transmitted to the transfer controller 48, the temperature controller 76, the pressure controller 78, the gas supply controller 80, etc. are set for each step of the substrate processing. ..
  • the arithmetic control unit 108 determines the temperature and pressure in the processing furnace 44, the flow rate of the processing gas introduced into the processing furnace 44, and the like so that the substrate 16 loaded in the processing furnace 44 is subjected to predetermined processing. Has a function to control.
  • the transport controller 48 controls the transport operations of the rotary pod shelf 22, the boat elevator 38, the pod transport device 24, the board transfer mechanism 34, the boat 36, and the rotary mechanism 46, which form a transport mechanism for transporting the board 16. It is configured as follows.
  • the rotary pod shelf 22, the boat elevator 38, the pod transfer device 24, the board transfer mechanism 34, the boat 36, and the rotary mechanism 46 each have a built-in sensor.
  • the controller 58 for the substrate processing apparatus is notified to that effect.
  • the detection system for signs of abnormality of each member of the substrate processing apparatus 10 will be described in detail later.
  • the storage unit 114 is provided with a data storage area 120 for storing various data and the like, and a program storage area 122 for storing various programs including a board processing recipe (process recipe).
  • the data storage area 120 stores various parameters related to the recipe file.
  • various programs necessary for controlling the apparatus including the above-mentioned substrate processing recipe (process recipe) are stored.
  • the display unit 118 of the controller 58 for the board processing device is provided with a touch panel (not shown).
  • the touch panel is configured to display an operation screen that accepts input of operation commands to the above-mentioned board transfer system and board processing system.
  • the controller 58 for the board processing device may be configured to include at least a display unit 118 and an input unit 116, like an operation terminal (terminal device) of a personal computer, a mobile device, or the like.
  • the temperature controller 76 adjusts the temperature inside the processing furnace 44 by controlling the temperature of the heater 88 of the processing furnace 44.
  • the controller 58 for the substrate processing apparatus is notified to that effect.
  • the pressure controller 78 controls the pressure adjusting unit 72 so that the pressure in the processing chamber 86 becomes a desired pressure at a desired timing based on the pressure value detected by the pressure sensor 70.
  • the controller 58 for the substrate processing apparatus is notified to that effect.
  • the gas supply controller 80 is configured to control the MFC 64A and 64B so that the flow rate of the gas supplied into the processing chamber 86 becomes a desired flow rate at a desired timing.
  • the sensor (not shown) included in the MFC64A, 64B, or the like shows a predetermined value, an abnormal value, or the like, the controller 58 for the substrate processing device is notified to that effect.
  • This substrate processing step is, for example, one step of a method for manufacturing a semiconductor device (IC, LSI, etc.).
  • the operation and processing of each part constituting the substrate processing apparatus 10 is controlled by the substrate processing apparatus controller 58.
  • a predetermined film may be formed in advance on the substrate 16, and a predetermined pattern may be formed in advance on the substrate 16 or the predetermined film.
  • the substrate 16 is loaded into the boat 36 and carried into the processing chamber 86.
  • a process of loading the substrate 16 into the boat 36 (charging) (S102-1) and a process of loading the boat 36 loaded with the substrate 16 into the processing chamber 86 (loading) (S102-). 2) may be distinguished and used as separate steps.
  • the film forming preparation step S103 is an event of evacuation before the film forming process, and is evacuated by the vacuum pump 74 so that the inside of the processing chamber 86 has a desired pressure (vacuum degree).
  • the pressure adjusting unit 72 (the opening degree of the valve) is feedback-controlled based on the pressure value measured by the pressure sensor 70, and the pressure in the processing chamber 86 is reduced from the atmospheric pressure to a predetermined pressure.
  • the treatment chamber 86 is heated by the heater 88 so as to have a desired temperature.
  • the amount of electricity supplied to the heater 88 is feedback-controlled based on the temperature value detected by the temperature sensor 106.
  • the boat 36 and the substrate 16 are rotated by the rotation mechanism 46.
  • a leak check may be performed.
  • Step S104 In the film forming step S104, the following four steps are sequentially executed to form a thin film on the surface of the substrate 16. During steps 1 to 4, the substrate 16 is heated to a predetermined temperature by the heater 88.
  • step 1 the open / close valve (not shown) provided in the processing gas supply pipe 66A and the pressure adjusting unit 72 (APC valve) provided in the exhaust pipe 68 were both opened, and the flow rate was adjusted (flow rate adjustment, flow rate control) by the MFC 64A.
  • the raw material gas is passed through the processing gas supply pipe 66A.
  • the raw material gas is supplied from the processing gas nozzle 96A into the processing chamber 86 and exhausted from the exhaust pipe 68.
  • the pressure in the processing chamber 86 is kept at a predetermined pressure.
  • the first layer is formed on the surface of the substrate 16.
  • the first layer contains elements contained in the raw material gas.
  • Step 2 the on-off valve of the processing gas supply pipe 66A is closed to stop the supply of the raw material gas.
  • the pressure adjusting portion 72 (APC valve) of the exhaust pipe 68 is left open, the inside of the processing chamber 86 is exhausted by the vacuum pump 74, and the residual gas is removed from the inside of the processing chamber 86.
  • the opening / closing valve provided in the purge gas supply pipe 66B is opened to supply the inert gas into the processing chamber 86 to perform purging in the processing chamber 86, and the residual gas in the processing chamber 86 is discharged to the outside of the processing chamber 86. Discharge.
  • step 3 both the on-off valve (not shown) provided in the purge gas supply pipe 66B and the pressure adjusting unit 72 (APC valve) provided in the exhaust pipe 68 are opened, and the reaction gas whose flow rate is adjusted by the MFC 64B is sent to the purge gas supply pipe 66B. Pass inside. Then, the reaction gas is supplied from the purge gas nozzle 96B into the processing chamber 86 and exhausted from the exhaust pipe 68. At this time, the pressure in the processing chamber 86 is kept at a predetermined pressure. As a result, the first layer formed on the surface of the substrate 16 by the raw material gas reacts with the reaction gas, the first layer is modified by the action of the reaction gas, and the second layer is formed on the substrate 16. ..
  • the second layer contains an element contained in the raw material gas and an element contained in the reaction gas.
  • step 4 the on-off valve of the purge gas supply pipe 66B is closed to stop the supply of the reaction gas.
  • the pressure adjusting portion 72 (APC valve) of the exhaust pipe 68 is left open, the inside of the processing chamber 86 is exhausted by the vacuum pump 74, and the residual gas is removed from the inside of the processing chamber 86. Further, the inert gas is supplied into the processing chamber 86, and the purging in the processing chamber 86 is performed again.
  • the above steps 1 to 4 are set as one cycle, and a thin film having a predetermined film thickness is formed on the substrate 16 by performing this cycle a predetermined number of times, preferably a plurality of times.
  • Examples of the raw material gas include monochlorosilane (SiH 3 Cl, abbreviated as MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviated as DCS) gas, trichlorosilane (SiHCl 3 , abbreviated as TCS) gas, and tetrachlorosilane (SiCl).
  • MCS monochlorosilane
  • DCS dichlorosilane
  • trichlorosilane SiHCl 3 , abbreviated as TCS
  • SiCl tetrachlorosilane
  • Chlorosilane-based gas such as hexachlorodisilane gas (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas can be used.
  • the raw material gas includes, for example, a fluorosilane gas such as tetrafluorosilane (SiF 4 ) gas, a bromosilane gas such as tetrabromosilane (SiBr 4 ) gas, and an iodine silane gas such as tetraiodosilane (SiI 4 ) gas. Gas can also be used.
  • a fluorosilane gas such as tetrafluorosilane (SiF 4 ) gas
  • a bromosilane gas such as tetrabromosilane (SiBr 4 ) gas
  • an iodine silane gas such as tetraiodosilane (SiI 4 ) gas.
  • gas can also be used.
  • Examples of the raw material gas include tetrax (dimethylamino) silane (Si [N (CH 3 ) 2 ] 4 , abbreviation: 4DMAS) gas and tris (
  • 3DMAS bis (diethylamino) silane
  • BDEAS bis (diethylamino) silane
  • SiH 2 [NH (C) 4 H 9 )] 2 H 2 bis (diethylamino) silane
  • Aminosilane-based gas such as BTBAS
  • the raw material gas one or more of these can be used.
  • reaction gas examples include oxygen (O 2 ) gas, nitrous oxide (N 2 O) gas, nitrogen monoxide (NO) gas, nitrogen dioxide (NO 2 ) gas, ozone (O 3 ) gas, and water vapor (H). 2 O gas), carbon monoxide (CO) gas, carbon dioxide (CO 2 ) gas and other oxidizing gases, ammonia (NH 3 ) gas, hydrazine (N 2 H 4 ) gas, diazene (N 2 H 2 ) gas , N 3 H 8 gas or the like nitrided gas or the like can be used. As the reaction gas, one or more of these can be used.
  • nitrogen (N 2 ) gas can be used, and in addition, a rare gas such as argon (Ar) gas, helium (He) gas, neon (Ne) gas, and xenone (Xe) gas can be used. Can be used. As the inert gas, one or more of these can be used.
  • a silicon oxide film SiO film
  • a silicon nitride film SiN film
  • a silicon oxynitride film SiON film
  • the boat 36 on which the substrate 16 on which the thin film is formed is placed is unloaded from the processing chamber 86 by the boat elevator 38 (unloading).
  • the process of removing the substrate 16 from the boat 36 (discharge) by the substrate transfer device 34A, which is the next step, may be included in the substrate unloading step (S106).
  • the control system includes a controller 58 for a board processing device as a main control unit, a sign detection controller 82 as a sign detection unit, various sensors 124, and a data collection unit (Data Collection Unit, hereinafter. It is equipped with 126 (abbreviated as DCU) and 128 edge controllers (Edge Controller, hereinafter abbreviated as EC). It should be noted that these constituting the control system are connected by wire or wirelessly, respectively.
  • DCU Data Collection Unit
  • EC 128 edge controllers
  • the controller 58 for the board processing device is connected to a host computer (not shown) including a customer host computer and an operation unit (not shown).
  • the operation unit is configured to be able to exchange various data (sensor data, etc.) acquired by the controller 58 for the board processing device with the host computer.
  • the sign detection controller 82 acquires sensor data from sensors of various members provided in the board processing device 10 and its ancillary equipment, and monitors the state of the board processing device 10. Specifically, the sign detection controller 82 calculates a numerical index using data from various sensors 124, and detects an abnormality sign (that is, a failure sign) by comparing with a predetermined threshold value.
  • the sign detection controller 82 has a built-in sign detection program that detects the occurrence of an abnormal sign based on the movement of the sensor data.
  • the sign detection controller 82 has two systems, a system directly connected to the controller 58 for the board processing device and a system connected to the controller 58 for the board processing device via the DCU 126. Therefore, when an abnormality sign is detected by the sign detection controller 82, a signal is directly output to the substrate processing device controller 58 without going through the DCU 126 to generate an alarm, and the member provided with the abnormality sign is provided. It is possible to display the sensor data information of the sensor on the screen of the display unit 118 (see FIG. 3).
  • the various sensors 124 are sensors (for example, pressure sensor 70, temperature sensor 106, etc.) provided in various members provided in the substrate processing device 10 and its ancillary equipment, and the flow rate, concentration, temperature, and humidity of each member. (Dew point), pressure, current, voltage, voltage, torque, vibration, position, rotation speed, etc. are detected.
  • DCU126 collects and accumulates data of various sensors 124 during execution of the process recipe. Further, the EC128 temporarily captures sensor data as needed depending on the type of sensor, applies a process such as a fast Fourier transform (hereinafter abbreviated as FFT) to the raw data, and then transmits the raw data to the sign detection controller 82. ..
  • FFT fast Fourier transform
  • the various sensors 124 are divided into a first sensor system 124A and a second sensor system 124B having different transmission paths.
  • the first sensor system 124A is a system that captures raw data in real time in units of 0.1 seconds, and the raw data is transmitted from the first sensor system 124A to the sign detection controller 82 in real time via the controller 58 for the substrate processing device and the DCU126. Will be sent.
  • the first sensor system 124A includes, for example, a temperature sensor, a pressure sensor, a gas flow rate sensor, and other sensors.
  • the second sensor system 124B is a system in which only the part necessary for analysis is taken out by processing such as FFT with EC128, and data is transmitted in a processed file format, and the data is transmitted from the second sensor system 124B via EC128.
  • the processed data is transmitted to the sign detection controller 82.
  • the second sensor system 124B includes, for example, an acceleration sensor 75. Since the vibration data from the acceleration sensor 75 is accumulated in milliseconds, it is possible to capture minute changes. For example, even if the magnitude of the vibration itself is the same, the magnitude of the vibration may differ for each frequency, and even in this case, it is possible to capture minute changes in vibration in milliseconds (for example, 0.1 seconds) from the frequency distribution. can. As a result, it is possible to grasp the data fluctuation before the failure occurs, so that it is possible to predict an abnormality.
  • the vibration data from the acceleration sensor 75 is accumulated in milliseconds, the amount of data becomes enormous, and if the data is transmitted to the sign detection controller 82 as it is, it leads to a large consumption of the storage capacity of the sign detection controller 82. Since this vibration data is processed by FFT or the like and used for analysis, the amount of information is reduced by performing the processing in advance with EC128, and the vibration data is transmitted to the sign detection controller 82 as a data format that is easy to analyze. be able to.
  • the sequence of substrate processing includes, for example, carrying the substrate 16 into the processing chamber 86, evacuation in the processing chamber 86, raising the temperature, purging with an inert gas, waiting for the temperature rise, processing the substrate 16 (for example, film formation). It is composed of many events having their respective purposes, such as gas replacement in the processing chamber 86, returning to atmospheric pressure, and carrying out the substrate 16 after processing.
  • the above event is an example of a substrate processing sequence, and each event may be further subdivided.
  • the value of one or more sensors in one or more specific events among these events is used as a numerical index in the algorithm, "unusual", without using all the sensor data in the sequence. It is used as the original data to calculate the degree.
  • the abnormal degree value for each Run is monitored to detect an abnormality sign of each member of the substrate processing apparatus 10. In this way, it is possible to save the amount of data accumulated by using only the data of a specific event.
  • the abnormality sign detection of a member becomes easy to detect at the timing when a large load is applied to the member.
  • the step of reducing the pressure of the processing chamber 86 from the atmospheric pressure to a predetermined pressure, that is, the pressure band close to the atmospheric pressure at the start of evacuation or several minutes after the start of evacuation corresponds to the timing when a large load is applied to the member.
  • one substrate processing apparatus 10 is in charge of a plurality of processes, and different processing recipes such as those having different film forming conditions may be mixed and started. Since the raw material gas flows during the film formation of the substrate 16, the raw material gas may react or thermally decompose to form a solid substance, which may impose a load on the member. Therefore, it is also possible to monitor the film formation event. It is effective for detecting abnormal signs.
  • the rotation frequency of the member may be monitored in the boat unloading process, which is different from that in the film forming process.
  • the vibration data (raw data) detected by the acceleration sensor 75 is acquired.
  • the vibration data of the acceleration sensor 75 is acquired for each of the X-axis, the Y-axis, and the Z-axis, and becomes the vibration data in each of the three axial directions.
  • FFT processing is performed for each sample time for the acquired time-series vibration data of the X-axis, Y-axis, and Z-axis.
  • the FFT process is performed on the entire vibration data within the sample time (0.1 seconds as an example in this embodiment).
  • the magnitude of vibration (hereinafter referred to as "rotation frequency power spectrum") at the frequency (hereinafter referred to as reference frequency) of the rotation frequency (rotation speed per second) of the rotor of the member and the member.
  • the magnitude of vibration (hereinafter referred to as “second harmonic power spectrum”) at a frequency twice the rotation frequency of the rotor (hereinafter referred to as a contrast frequency) is acquired.
  • the rotation frequency of the rotor of the member the rotation frequency in which the member is controlled in the designated step is used.
  • power spectrum ratio The ratio of the rotation frequency power spectrum to the second harmonic power spectrum (rotation frequency power spectrum / second harmonic power spectrum, hereinafter referred to as “power spectrum ratio”) is calculated for each FFT process.
  • the threshold value (abnormality sign threshold value) is set based on the power spectrum ratio during the designated step in the normal state and past abnormality occurrence data.
  • the threshold value is set individually for the power spectral ratio obtained from each of the X-axis, Y-axis, and Z-axis data.
  • the thresholds set may be the same or different.
  • FIG. 7A to 7C show graphs of changes in the power spectral ratio obtained from the vibration data of the designated step in FIG. 7A is an X-axis graph
  • FIG. 7B is a Y-axis graph
  • FIG. 7C is a Z-axis graph.
  • the number of data N of the power spectral ratio is obtained by the number of sample hours, and it is possible to capture a small change in the power spectral ratio for each sample time (every 0.1 seconds in this embodiment). As a result, abnormality detection can be performed at an appropriate timing before the member is stopped.
  • the threshold value 100 is set for each of the X-axis, the Y-axis, and the Z-axis, but other threshold values may be set.
  • a threshold value 100 can be set for the X-axis and the Y-axis
  • a threshold value 200 can be set for the Z-axis. In this way, by setting the threshold value individually for each axis, it is possible to make an appropriate judgment according to the characteristics of vibration generation depending on the direction.
  • a limit may be set for the number of times the threshold value is exceeded. That is, the number of times that the threshold value of the power spectrum ratio is exceeded is set respectively, and when the number of times exceeds the set number of times, it is determined that there is an abnormality sign. For example, in the graph of FIG. 7A, if there is a sample for two times or more and the number of times is set twice or more, it is judged that there is an abnormality sign, and if the number of times is set three times or more, it is determined. It is not judged that there is a sign of abnormality.
  • the number of times can be set individually on the X-axis, Y-axis, and Z-axis, and the same number of times may be set or different times may be set. For example, it can be set twice on the X-axis, once on the Y-axis, and 10 times on the Z-axis. By setting the number of times limit in this way, it is possible to make an appropriate judgment by excluding the fluctuation of data due to sudden noise or the like.
  • the determination of the presence or absence of an abnormality sign in the vibration data can be performed by the following different methods. (1) If any one of the X-axis, Y-axis, and Z-axis exceeds the threshold value, it is determined that there is a sign of abnormality. (2) When the threshold value is exceeded on two of the X-axis, Y-axis, and Z-axis, it is determined that there is an abnormality sign. (3) When the threshold value is exceeded on the X-axis or the Z-axis, it is determined that there is an abnormality sign (even if the threshold value is exceeded on the Y-axis, it is not determined that there is an abnormality sign). In this case, no threshold value may be set for the unselected axis (Y-axis), and only monitoring may be performed.
  • the vibration in the rotation axis (Y-axis) direction of the rotor has different characteristics from the vibration in the other directions. It can be carried out.
  • the analysis screen for detecting an abnormality sign can be displayed on the display unit 118 (see FIG. 3) of the controller 58 for the substrate processing device. Therefore, the transition of the abnormal degree, the threshold value, the number of times the threshold value is exceeded, and the like can be visually observed, and the wear state of the member can be confirmed by the abnormal degree.
  • the substrate processing device 10 includes a control system for detecting an abnormality sign of a member, and by detecting the abnormality sign of the member by this control system, a replacement time or a maintenance time of the target member is obtained. You can know the appropriate time before.
  • the sign detection controller 82 for detecting the abnormality sign is connected to the controller 58 for the board processing device. Therefore, it is possible to acquire and analyze data only in a specific substrate processing sequence in which an abnormality sign is easily detected.
  • the vibration data acquisition step and the abnormality sign detection step can be executed in parallel with the substrate processing step, and the abnormality sign of the member can be detected in real time.
  • the vibration data is FFT processed every sample time in the designated step to obtain the power spectrum ratio data. Therefore, in the designated step, a large number of indicators of signs of abnormality of the member (for the number of times the FFT process is performed) can be acquired. This makes it possible to capture small changes in the spectral ratio within a designated step or process.
  • the ratio of the vibration power spectrum of the rotation frequency of the member to the power spectrum of twice the rotation frequency is used as an index of the abnormality, but the present invention is not limited to this.
  • the ratio of the power spectrum of the vibration of the rotation frequency of the member to the power spectrum of the rotation frequency of an integral multiple such as twice or three times may be used as an index of the abnormality.
  • the acceleration sensor 75 is provided in the vacuum pump 74
  • the position where the acceleration sensor is provided is not limited to this.
  • the acceleration sensor can also be attached to other constituent members constituting the substrate processing device 10 to acquire vibration data and detect an abnormality sign of each attached constituent member.
  • the series of steps for acquiring vibration data and detecting an abnormality sign is the same as that of the above-described embodiment, and the description thereof is omitted here.
  • the acceleration sensor 75 is attached to the vacuum pump 74 as described above, and the substrate (wafer) 16 is transferred between the boat 36 (board holder) and the pod 18 (board container).
  • the acceleration sensor 75B is attached to the mounting mechanism 34, the acceleration sensor 75B is attached to the boat elevator 38 for raising and lowering the boat 36, and the acceleration sensor 75C is attached to the rotation mechanism 46 for rotating the boat 36 will be described.
  • an acceleration sensor 75A is attached to the substrate transfer mechanism 34
  • an acceleration sensor 75B is attached to the boat elevator 38
  • an acceleration sensor 75C is attached to the rotation mechanism 46.
  • the acceleration sensors 75A to 75C are mounted at positions where vibration can be measured when the substrate transfer mechanism 34, the boat elevator 38, and the rotation mechanism 46 are driven, and are orthogonal to each other in three axial directions (X-axis, Y-axis, and Z-axis). ), Each of them is measured.
  • the acceleration sensors 75A to 75C are electrically connected to the selector 130, and the vibration data acquired by the measurement is sent to the selector 130.
  • the selector 130 switches which vibration data to acquire from the vibration data from the acceleration sensors 75A to 75C according to the timing of each process.
  • the selector 130 is connected to each of the charge amplifiers 132A, 132B, and 132C.
  • the charge amplifiers 132A, 132B, and 132C process X-axis vibration data, Y-axis vibration data, and Z-axis vibration data from the acceleration sensors 75A to 75C, respectively.
  • charge amplifier 132 The charge amplifiers 132A, 132B, and 132C (collectively referred to as “charge amplifier 132") are connected to the Programmable Logic Controller (PLC) 134, and the PLC 134 is connected to the EC 128.
  • PLC Programmable Logic Controller
  • the acceleration sensors 75A to 75C, the selector 130, the charge amplifier 132, and the PLC 134 are included in the above-mentioned second sensor system 124B (see FIG. 5).
  • the acquisition of vibration data from the acceleration sensor 75 is performed during the film formation preparation step S103 (vacuum drawing step S106-1 and leak check step S106-2) in which the vacuum pump 74 is driven.
  • the step of reducing the pressure of the processing chamber 86 from the atmospheric pressure to a predetermined pressure that is, the pressure band close to the atmospheric pressure at the start of vacuuming or for several minutes after the start of vacuuming, is the timing when a large load is applied to the member, and the vacuum is applied. It is preferable to acquire vibration data because it is easy to detect an abnormality in the pump 74. Further, in the film formation preparation step S103, even if the subsequent substrate processing events are different, there are many cases in which they are common, so it is preferable to acquire the vibration data here.
  • vibration data transfer member vibration data
  • Acquisition of vibration data (transfer member vibration data) from the acceleration sensor 75A is performed when the substrate transfer mechanism 34 is driven. Specifically, it is performed during the process of loading the substrate 16 into the boat 36 (charging) (S102-1) and the process of removing the substrate 16 from the boat 36 (discharge) (S106-2). .. It should be noted that it may be performed only at either charging or discharging.
  • the vibration data (rotating member vibration data) from the acceleration sensor 75C is acquired when the rotating mechanism 46 is driven and when the boat elevator 38 is not driven. Specifically, it is performed at the time of the film forming preparation step S103 (evacuation step S106-1 and the leak check step S106-2) and at the time of the film forming step S104.
  • the film forming step S104 although there is a change in the flow rate of the gas supplied to the processing chamber, it is considered that the influence on the rotation mechanism 46 is small.
  • the film forming preparation step or the film forming process may be performed only at one time.
  • the leak check step S106-2 the gas is not supplied or exhausted to the processing chamber and is in a stable state. Therefore, it is preferable to acquire the vibration data in the leak check step S106-2.
  • the charge amplifier 132 and the PLC 134 can be shared by switching and using them. In addition, the amount of vibration data accumulated by the acceleration sensors 75A to 75C can be reduced.
  • the acquired vibration data can be used as the original data constituting the abnormality, and the abnormality sign detection can be performed by the procedure shown in FIG. 6 described above.
  • the acceleration sensor 75 (attached to the vacuum pump 74), the acceleration sensor 75A (attached to the substrate transfer mechanism 34), the acceleration sensor 75B (attached to the boat elevator 38), the acceleration sensor 75C (attached to the rotation mechanism 46),
  • the vibration data acquisition step and the abnormality sign detection step in parallel with the substrate processing step, it is possible to detect the abnormality sign of each member in real time.
  • a thin film on the substrate 16 has been described.
  • the present disclosure is not limited to such an embodiment, and is also suitable when, for example, a thin film or the like formed on the substrate 16 is subjected to a treatment such as an oxidation treatment, a diffusion treatment, an annealing treatment, and an etching treatment. Applicable to.
  • an example of forming a thin film by using a substrate processing apparatus 10 having a hot wall type processing furnace 44 has been described, but the present disclosure is not limited to this, and a cold wall type processing furnace is used. It can also be suitably applied to the case of forming a thin film using a substrate processing apparatus having the same. Further, in the above-described embodiment, an example of forming a thin film by using a batch type substrate processing apparatus 10 that processes a plurality of substrates 16 at a time has been described, but the present disclosure is not limited to this, and for example, once. It can also be suitably applied to the case where a thin film is formed by using a single-wafer type substrate processing apparatus that processes one or several substrates 16.
  • the present disclosure is not limited to the semiconductor manufacturing apparatus for processing a semiconductor substrate such as the substrate processing apparatus 10 according to the above-described embodiment, and is also applicable to an LCD (Liquid Crystal Display) manufacturing apparatus for processing a glass substrate. Can be done.
  • LCD Liquid Crystal Display

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Vapour Deposition (AREA)
  • Automation & Control Theory (AREA)

Abstract

複数のステップを含むプロセスレシピを実行させて、基板を処理する技術であって、前記プロセスレシピを実行しつつ、前記基板を処理する処理室の雰囲気を排気する部材の振動データを振動センサから取得する振動データ取得工程と、取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさとの比が、予め設定された異常予兆閾値を超える場合に、異常予兆有と検知する異常予兆検知工程と、を有する技術が提供される。

Description

半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置
 本開示は、半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置に関する。
 シリコンウエハ等の基板に薄膜を形成して半導体装置を製造する基板処理装置や半導体装置の製造方法が知られている。例えば特開2014-127702号公報には、基板を収容する処理室に、原料ガスと、原料ガスと反応する反応ガスとを順番に供給して、処理室内に収容された基板に薄膜を形成する半導体装置の製造方法が開示されている。
 一般的に、このような基板処理装置は、処理室内を真空排気する真空ポンプや、反応性ガス等の流量を制御するマスフローコントローラ、開閉バルブ、圧力計、処理室を加熱するヒータ、及び基板を搬送する搬送機構等、様々な部材で構成されている。
 この様々な部材のそれぞれは、使用するにつれて徐々に劣化して故障するため、新しい部材への交換が必要となる。
 ここで、部材を故障するまで使用する場合、故障時に基板処理装置によって処理していた基板が全て不良品となり、その基板、及び故障時の生産時間が損失となることがある。また、故障する前に定期的に交換する場合は、故障に至らない期間、すなわち十分余裕を持った短期間毎に交換する必要があるため、部材の交換頻度が多くなり、運用コストの増加につながることがある。
 本開示は、部材の異常予兆を検知することができる技術を提供することを目的とする。
 本開示の一態様によれば、複数のステップを含むプロセスレシピを実行させて、基板を処理する技術であって、前記プロセスレシピを実行しつつ、前記基板を処理する処理室の雰囲気を排気する部材の振動データを振動センサから取得する振動データ取得工程と、取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比回転周波数における振動の大きさとの比が、予め設定された異常予兆閾値を超える場合に、異常予兆有と検知する異常予兆検知工程と、を有する技術が提供される。
 本開示によれば、部材の異常予兆を検知することができる技術が提供される。
一実施形態に係る基板処理装置の概略構成を示す斜視図である。 一実施形態に係る基板処理装置の処理炉の概略構成を示す立断面図である。 一実施形態に係る基板処理装置の主制御部の概略構成を示すブロック図である。 一実施形態に係る基板処理装置を半導体製造装置として使用した場合の基板処理工程を示すフロー図である。 一実施形態に係る基板処理装置の制御システムを示すブロック図である。 一実施形態に係る部材の異常予兆検知の判断手順を示す説明図である。 一実施形態に係る部材のX軸における異常予兆検知の指標となるパワースペクトル比を時系列で示した一例のグラフである。 一実施形態に係る部材のY軸における異常予兆検知の指標となるパワースペクトル比を時系列で示した一例のグラフである。 一実施形態に係る部材のZ軸における異常予兆検知の指標となるパワースペクトル比を時系列で示した一例のグラフである。 他の実施形態に係る基板処理装置の制御システムの一部を示すブロック図である。 他の実施形態に係る基板処理装置の振動データ取得のタイミングチャートである。
 以下、本開示の一実施形態に係る半導体装置の製造方法、予兆検知プログラム、及び基板処理装置ついて説明する。なお、図1において、矢印Fは基板処理装置の正面方向、矢印Bは後面方向、矢印Rは右方向、矢印Lは左方向、矢印Uは上方向、矢印Dは下方向を指す。以下、基板処理装置10の構成について、図1、図2を参照しながら説明する。以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
<処理装置の全体構成>
 図1に示すように、基板処理装置10は耐圧容器からなる筐体12を備えている。筐体12の正面壁には、メンテナンス可能なように設けられた開口部が開設され、この開口部には、開口部を開閉する立ち入り機構として一対の正面扉14が設けられている。なお、この基板処理装置10では、後述するシリコン等の基板(ウエハ)16(図2参照)を収納した基板収納容器としてのポッド(基板収容器)18が、筐体12内外へ基板16を搬送するキャリアとして使用される。
 筐体12の正面壁には、ポッド搬入搬出口が、筐体12内外を連通するように開設されている。ポッド搬入搬出口には、ロードポート20が設置されている。ロードポート20上にはポッド18が載置されるとともに、ポッド18の位置合わせが行われるように構成されている。
 筐体12内の略中央部における上部には、回転式ポッド棚22が設置されている。回転式ポッド棚22上には、複数個のポッド18が保管されるように構成されている。回転式ポッド棚22は、垂直に立設されて水平面内で回転される支柱と、支柱に上中下段の各位置において放射状に支持された複数枚の棚板と、を備えている。
 筐体12内におけるロードポート20と回転式ポッド棚22との間には、ポッド搬送装置24が設置されている。ポッド搬送装置24は、ポッド18を保持したまま昇降可能なポッドエレベータ24Aとポッド搬送機構24Bとを有している。このポッドエレベータ24Aとポッド搬送機構24Bとの連続動作により、ロードポート20、回転式ポッド棚22、及び後述するポッドオープナ26との間で、ポッド18を相互に搬送するように構成されている。
 筐体12内の下部には、筐体12内の略中央部から後端にわたってサブ筐体28が設けられている。サブ筐体28の正面壁には、基板16をサブ筐体28内外に搬送する一対のポッドオープナ26がそれぞれ設置されている。
 各ポッドオープナ26は、ポッド18を載置する載置台と、ポッド18のキャップを着脱するキャップ着脱機構30とを備えている。ポッドオープナ26は、載置台上に載置されたポッド18の蓋をキャップ着脱機構30によって着脱することにより、ポッド18の基板出し入れ口を開閉するように構成されている。
 サブ筐体28内には、ポッド搬送装置24や回転式ポッド棚22等が設置された空間から流体的に隔絶された移載室32が構成されている。移載室32の前側領域には基板移載機構34が設置されている。基板移載機構34は、基板16を水平方向に回転ないし直動可能な基板移載装置34Aと、基板移載装置34Aを昇降させる基板移載装置エレベータ34Bとで構成されている。
 基板移載装置エレベータ34Bは、サブ筐体28の移載室32の前方領域右端部と筐体12右側の端部との間に設置されている。また、基板移載装置34Aは、基板16の保持部としての図示しないツイーザを備えている。これら基板移載装置エレベータ34B及び基板移載装置34Aの連続動作により、基板16を基板保持具としてのボート36に対して装填(チャージング)及び脱装(ディスチャージング)することが可能に構成されている。
 サブ筐体28(移載室32)内には、図2に示すように、ボート36を昇降させるボートエレベータ38が設置されている。ボートエレベータ38の昇降台には、アーム40が連結されており、アーム40には、蓋体(シールキャップ)42が水平に据え付けられている。蓋体42は、ボート36を垂直に支持し、後述する処理炉44の下端部を閉塞可能なように構成されている。
 主に、図1に示す回転式ポッド棚22、ポッド搬送装置24、基板移載機構34、ボート36、図2に示すボートエレベータ38、及び後述する回転機構46により、基板16を搬送する搬送機構が構成されている。これら回転式ポッド棚22、ボートエレベータ38、ポッド搬送装置24、基板移載機構34、ボート36、及び回転機構46は、それぞれ後述する搬送コントローラ48に電気的に接続されている。
 図1に示すように、ボート36を収容して待機させる待機部50の上方には、処理炉44が設けられている。また、移載室32の基板移載装置エレベータ34B側とは反対側である左側端部には、クリーンユニット52が設置されている。クリーンユニット52は、清浄化した雰囲気もしくは不活性ガスであるクリーンエア52Aを供給するよう構成されている。
 クリーンユニット52から吹き出されたクリーンエア52Aは、基板移載装置34A、待機部50にあるボート36の周囲を流通する。その後、クリーンエア52Aは、図示しないダクトにより吸い込まれて筐体12の外部に排気されるか、もしくはクリーンユニット52の吸い込み側である一次側(供給側)にまで循環されてクリーンユニット52によって移載室32内に再び吹き出される。
 なお、筐体12及びサブ筐体28の外周には、基板処理装置10内への立ち入り機構として、図示しない複数の装置カバーが取り付けられている。これら装置カバーは、メンテナンス作業時に取り外すことで、保守員が基板処理装置10内に立ち入り可能となっている。これら装置カバーと相対する筐体12及びサブ筐体28の端部には、立ち入りセンサとしてのドアスイッチ54(筐体12のドアスイッチ54のみ図示)が設けられている。
 また、ロードポート20上には、ポッド18の載置を検知する基板検知センサ56が設けられている。これらドアスイッチ54及び基板検知センサ56等のスイッチ、センサ類は、後述する主制御部としての基板処理装置用コントローラ58(図2、図3参照)に電気的に接続されている。
 図2に示すように、基板処理装置10は、筐体12の外に、ガス供給ユニット60と、排気ユニット62とを備えている。ガス供給ユニット60内には、処理ガス供給系統とパージガス供給系統とが格納されている。処理ガス供給系統は、図示しない処理ガス供給源及び開閉バルブと、ガス流量制御器としてのマスフローコントローラ(以下、MFCと略す)64Aと、処理ガス供給管66Aと、を含んでいる。また、パージガス供給系統は、図示しないパージガス供給源及び開閉バルブと、MFC64Bと、パージガス供給管66Bと、を含んでいる。
 排気ユニット62内には、排気管68と、圧力検知部としての圧力センサ70と、例えばAPC(Auto Pressure Contoroller)バルブからなる圧力調整部72と、により構成されるガス排気機構が格納されている。図示を省略するが、排気ユニット62の下流側において、排気管68には、排気装置としての真空ポンプ74が接続されている。なお、真空ポンプ74もガス排気機構に含めるようにしてもよい。また、排気ユニット62と真空ポンプ74を同じフロアに設置するなど近傍に設置してもよいし、排気ユニット62と真空ポンプ74を異なるフロアにするなど離間して設置するようにしてもよい。
 真空ポンプ74には、振動センサとして、加速度センサ75が設けられている。加速度センサ75は、真空ポンプ74の振動データを測定する。加速度センサ75は、直交する3軸方向の振動をそれぞれ計測可能な3軸加速度センサであり、基板処理装置10の上下方向(矢印U、Dの方向、以下「Z軸方向」という)、基板処理装置10の左右方向(矢印R、Lの方向、以下「Y軸方向」という)、基板処理装置10の前後方向(矢印F、Bの方向以下「X軸方向」という)の振動を各々計測可能となるように配置されている。なお、真空ポンプ74のロータの回転軸は、Y軸方向に沿って配置している。
 図2に示すように、主制御部としての基板処理装置用コントローラ58は、搬送コントローラ48、温度コントローラ76、圧力コントローラ78、ガス供給コントローラ80にそれぞれ接続されている。また、図5に示すように、基板処理装置用コントローラ58は、後述する予兆検知部としての予兆検知コントローラ82に接続されている。
<処理炉の構成>
 図2に示すように、処理炉44は、反応管(プロセスチューブ)84を備えている。反応管84は、内部反応管(インナーチューブ)84Aと、その外側に設けられた外部反応管(アウターチューブ)84Bと、を備えている。内部反応管84Aは、上端及び下端が開口した円筒形状に形成されており、内部反応管84A内の筒中空部には、基板16を処理する処理室86が形成されている。処理室86は、ボート36を収容可能なように構成されている。
 反応管84の外側には、反応管84の側壁面を囲うように、円筒形状のヒータ88が設けられている。ヒータ88は、ヒータベース90に支持されることにより垂直に据え付けられている。
 外部反応管84Bの下方には、外部反応管84Bと同心円状になるように、円筒形状の炉口部(マニホールド)92が配設されている。炉口部92は、内部反応管84Aの下端部と外部反応管84Bの下端部とを支持するように設けられ、内部反応管84Aの下端部と外部反応管84Bの下端部とにそれぞれ係合している。
 なお、炉口部92と外部反応管84Bとの間には、シール部材としてのOリング94が設けられている。炉口部92がヒータベース90に支持されることにより、反応管84は垂直に据え付けられた状態となっている。この反応管84と炉口部92とにより反応容器が形成される。
 炉口部92には、処理ガスノズル96A及びパージガスノズル96Bが処理室86内に連通するように接続されている。処理ガスノズル96Aには、処理ガス供給管66Aが接続されている。処理ガス供給管66Aの上流側には、MFC64Aを介して、図示しない処理ガス供給源等が接続されている。また、パージガスノズル96Bには、パージガス供給管66Bが接続されている。パージガス供給管66Bの上流側には、MFC64Bを介して、図示しないパージガス供給源等が接続されている。
 炉口部92には、処理室86の雰囲気を排気する排気管68が接続されている。排気管68は、内部反応管84Aと外部反応管84Bとの隙間によって形成される筒状空間98の下端部に配置されて筒状空間98に連通している。排気管68の下流側には、圧力センサ70、圧力調整部72、真空ポンプ74が上流側から順に接続されている。
 炉口部92の下方には、炉口部92の下端開口を気密に閉塞可能な円盤状の蓋体42が設けられており、蓋体42の上面には、炉口部92の下端と当接するシール部材としてのOリング100が設けられている。
 蓋体42の中心部付近における処理室86と反対側には、ボート36を回転させる回転機構46が設置されている。回転機構46の回転軸102は、蓋体42を貫通してボート36を下方から支持している。また、回転機構46には、回転モータ46Aが内蔵されており、この回転モータ46Aによって回転機構46の回転軸102を回転させ、ボート36を回転させることで、基板16を回転させるように構成されている。
 蓋体42は、反応管84の外部に設けられたボートエレベータ38によって、垂直方向に昇降されるように構成されている。蓋体42を昇降させることにより、ボート36を処理室86内外へ搬送することが可能に構成されている。回転機構46の回転モータ46A及びボートエレベータ38には、搬送コントローラ48が電気的に接続されている。
 ボート36は、複数枚の基板16を水平姿勢でかつ互いに中心を揃えた状態で整列させて多段に保持するように構成されている。また、ボート36の下部には、断熱部材としての円板形状の断熱板104が水平姿勢で多段に複数枚配置されている。ボート36及び断熱板104は、例えば石英や炭化珪素等の耐熱性材料により構成されている。断熱板104は、ヒータ88からの熱を炉口部92側に伝えにくくするために設けられている。
 また、反応管84内には、温度検知器としての温度センサ106が設置されている。このヒータ88と温度センサ106とには、温度コントローラ76が電気的に接続されている。
<基板処理装置の動作>
 続いて、図1及び図2を参照しながら、半導体デバイスの製造工程の一工程として、基板16上に薄膜を形成する方法について説明する。なお、基板処理装置10を構成する各部の動作は、基板処理装置用コントローラ58により制御される。
 図1に示すように、ポッド18が工程内搬送装置(図示せず)によってロードポート20に供給されると、基板検知センサ56によりポッド18が検知され、ポッド搬入搬出口がフロントシャッタ(図示せず)によって開放される。そして、ロードポート20の上のポッド18が、ポッド搬送装置24によってポッド搬入搬出口から筐体12内部へと搬入される。
 筐体12内部へと搬入されたポッド18は、ポッド搬送装置24によって回転式ポッド棚22の棚板上へ自動的に搬送されて一時的に保管される。その後、ポッド18は、棚板上から一方のポッドオープナ26の載置台上に移載される。なお、筐体12内部へと搬入されたポッド18は、ポッド搬送装置24によって直接ポッドオープナ26の載置台上に移載されてもよい。
 載置台上に載置されたポッド18は、その蓋がキャップ着脱機構30によって取り外され、基板出し入れ口が開放される。その後、基板16(図2参照)は、基板移載装置34Aのツイーザによって基板出し入れ口を通じてポッド18内からピックアップされ、図示しないノッチ合わせ装置にて方位が整合された後、移載室32の後方にある待機部50内へ搬入され、ボート36内に装填(チャージング)される。ボート36に基板16を装填した基板移載装置34Aは、ポッド18が載置された載置台に戻り、ポッド18内から次の基板16を取り出して、ボート36内に装填する。
 この一方(上段または下段)のポッドオープナ26における基板移載機構34による基板16のボート36への装填作業中に、他方(下段または上段)のポッドオープナ26の載置台上には、別のポッド18が回転式ポッド棚22上からポッド搬送装置24によって搬送される。この別のポッド18が載置台に移載されることで、ポッドオープナ26によるポッド18の開放作業が同時進行される。
 予め指定された枚数の基板16がボート36内に装填されると、処理炉44の下端部が、図示しない炉口シャッタによって開放される。続いて、基板16群を保持したボート36は、蓋体42がボートエレベータ38によって上昇されることにより処理炉44内へ搬入(ローディング)されていく(ボートロード工程)。
 上述のように、複数枚の基板16を保持したボート36が処理炉44の処理室86内に搬入(ローディング)されると、図2に示すように、蓋体42はOリング100を介して炉口部92の下端をシールした状態となる。
 その後、基板16群に成膜する成膜工程が実施される。まず、処理室86内が所望の圧力(真空度)となるように、真空ポンプ74によって真空排気される。この際、圧力センサ70が測定した圧力値に基づき、圧力調整部72(の弁の開度)がフィードバック制御される。また、処理室86が所望の温度となるように、ヒータ88によって加熱される。この際、温度センサ106が検知した温度値に基づき、ヒータ88への通電量がフィードバック制御される。続いて、回転機構46により、ボート36及び基板16が回転させられる。
 次いで、処理ガス供給源から供給されてMFC64Aにて所望の流量となるように制御された処理ガスは、処理ガス供給管66A内を流通して処理ガスノズル96Aから処理室86内に導入される。導入された処理ガスは処理室86を上昇し、内部反応管84Aの上端開口から筒状空間98に流出して排気管68から排気される。処理ガスは、処理室86を通過する際に基板16の表面と接触し、この際に熱反応によって基板16の表面上に薄膜が堆積される。
 予め設定された処理時間が経過すると、パージガス供給源から供給されてMFC64Bにて所望の流量となるように制御されたパージガスが処理室86に供給され、処理室86内が不活性ガスに置換されるとともに、処理室86の圧力が常圧に復帰される。
 その後、ボートエレベータ38により蓋体42が下降されて炉口部92の下端が開口されるとともに、処理済の基板16を保持するボート36が炉口部92の下端から反応管84の外部へと搬出(アンローディング)される(ボートアンロード工程)。その後、処理済の基板16は、基板移載装置34Aによりボート36から取り出され、ポッド18内へ格納(ディスチャージ)される。
 ディスチャージ後は、ノッチ合わせ装置での整合工程を除き、上述の手順とほぼ反対の手順で、処理後の基板16を格納したポッド18が筐体12外へと搬出される。
<基板処理装置用コントローラの構成>
 次に、図3を参照して、主制御部としての基板処理装置用コントローラ58について具体的に説明する。
 基板処理装置用コントローラ58は、主にCPU(Central Processing Unit)等の演算制御部108と、RAM110、ROM112、及び図示しないHDDを備える記憶部114と、マウスやキーボード等の入力部116と、モニタ等の表示部118と、から構成されている。なお、演算制御部108、記憶部114、入力部116、及び表示部118によって、各データを設定可能に構成されている。
 演算制御部108は、基板処理装置用コントローラ58の中枢を構成し、ROM112に記憶された制御プログラムを実行し、入力部116からの指示に従って、レシピ記憶部も構成する記憶部114に記憶されているレシピ(例えば、基板処理レシピとしてのプロセスレシピ等)を実行する。
 ROM112は、フラッシュメモリ、ハードディスク等により構成される記録媒体であり、基板処理装置10の各部材(例えば真空ポンプ74等)の動作の制御を行う演算制御部108の動作プログラム等を記憶する。また、RAM110(メモリ)は、演算制御部108のワークエリア(一時記憶部)として機能する。
 ここで、基板処理レシピ(プロセスレシピ)は、基板16を処理する処理条件や処理手順等が定義されたレシピである。また、レシピファイルには、搬送コントローラ48、温度コントローラ76、圧力コントローラ78、及びガス供給コントローラ80等に送信する設定値(制御値)や送信タイミング等が、基板処理のステップ毎に設定されている。
 演算制御部108は、処理炉44内にローディングされた基板16に対し、所定の処理がなされるように、処理炉44内の温度や圧力、処理炉44内に導入される処理ガスの流量等を制御する機能を有している。
 搬送コントローラ48は、基板16を搬送する搬送機構を構成する回転式ポッド棚22、ボートエレベータ38、ポッド搬送装置24、基板移載機構34、ボート36、及び回転機構46の搬送動作をそれぞれ制御するように構成されている。
 また、回転式ポッド棚22、ボートエレベータ38、ポッド搬送装置24、基板移載機構34、ボート36、及び回転機構46には、それぞれセンサが内蔵されている。これらのセンサがそれぞれ所定の値や異常な値等を示した際には、基板処理装置用コントローラ58にその旨の通知が行われる。なお、基板処理装置10の各部材の異常予兆の検知システムについては、後に詳述する。
 記憶部114には、各種データ等が格納されるデータ格納領域120と、基板処理レシピ(プロセスレシピ)を含む各種プログラムが格納されるプログラム格納領域122とが設けられている。データ格納領域120は、レシピファイルに関連する各種パラメータが格納される。また、プログラム格納領域122には、上述の基板処理レシピ(プロセスレシピ)を含む装置を制御するのに必要な各種プログラムが格納されている。
 また、基板処理装置用コントローラ58の表示部118には、図示しないタッチパネルが設けられている。タッチパネルは、上述の基板搬送系統及び基板処理系統への操作コマンドの入力を受け付ける操作画面を表示するように構成されている。なお、基板処理装置用コントローラ58は、パソコンやモバイル等の操作端末(端末装置)のように、少なくとも表示部118と入力部116を含む構成であればよい。
 温度コントローラ76は、処理炉44のヒータ88の温度を制御することで処理炉44内の温度を調節する。なお、温度センサ106が所定の値や異常な値等を示した際には、基板処理装置用コントローラ58にその旨の通知が行われる。
 圧力コントローラ78は、圧力センサ70により検知された圧力値に基づいて、処理室86内の圧力が所望のタイミングにて所望の圧力となるように、圧力調整部72を制御する。なお、圧力センサ70が所定の値や異常な値等を示した際には、基板処理装置用コントローラ58にその旨の通知が行われる。
 ガス供給コントローラ80は、処理室86内に供給するガスの流量が所望のタイミングにて所望の流量となるように、MFC64A、64Bを制御するように構成されている。なお、MFC64A、64B等が備えるセンサ(図示せず)が所定の値や異常な値等を示した際には、基板処理装置用コントローラ58にその旨の通知が行われる。
<基板処理工程>
 次に、本実施形態の基板処理装置10を半導体製造装置として使用して、基板を処理する基板処理工程の概略について、図4を用いて説明する。この基板処理工程は、例えば、半導体装置(IC、LSI等)の製造方法の一工程である。なお、以下の説明において、基板処理装置10を構成する各部の動作や処理は、基板処理装置用コントローラ58により制御される。
 ここでは、基板16に対して、原料ガス(第1の処理ガス)と反応ガス(第2の処理ガス)とを交互に供給することで、基板16上に薄膜を形成する例について説明する。なお、例えば、基板16上には、予め所定の膜が形成されていてもよく、基板16又は所定の膜には、予め所定のパターンが形成されていてもよい。
(基板搬入(ボートロード)工程S102)
 まず、基板搬入工程S102では、基板16をボート36に装填し、処理室86内へ搬入する。なお、基板搬入工程S102において、基板16をボート36に装填する処理(チャージング)(S102-1)と、基板16が装填されたボート36を処理室86に搬入する処理(ローディング)(S102-2)を区別して、別々の工程としてもよい。
(成膜準備工程S103)
 成膜準備工程S103は、成膜工程前の真空引きのイベントであり、処理室86内が所望の圧力(真空度)となるように、真空ポンプ74によって真空排気される。この際、圧力センサ70が測定した圧力値に基づき、圧力調整部72(の弁の開度)がフィードバック制御され、処理室86の圧力を大気圧から所定圧力まで減圧させる。また、処理室86が所望の温度となるように、ヒータ88によって加熱される。この際、温度センサ106が検知した温度値に基づき、ヒータ88への通電量がフィードバック制御される。続いて、回転機構46により、ボート36及び基板16が回転させられる。
 なお、成膜準備工程S103では、リークチェックが行われてもよい。
(成膜工程S104)
 成膜工程S104では、次の4つのステップを順次実行して基板16の表面上に薄膜を形成する。なお、ステップ1~4の間は、ヒータ88により、基板16を所定の温度に加熱しておく。
[ステップ1]
 ステップ1では、処理ガス供給管66Aに設けた図示しない開閉バルブと、排気管68に設けた圧力調整部72(APCバルブ)をともに開けて、MFC64Aにより流量調節(流量調整、流量制御)された原料ガスを処理ガス供給管66A内に通す。そして、原料ガスを処理ガスノズル96Aから処理室86内に供給し、排気管68から排気する。この際、処理室86内の圧力を所定の圧力に保つ。これにより、基板16の表面に、第1層を形成する。なお、第1層は、原料ガスに含まれる元素を含むこととなる。
[ステップ2]
 ステップ2では、処理ガス供給管66Aの開閉バルブを閉めて原料ガスの供給を止める。排気管68の圧力調整部72(APCバルブ)は開いたままとし、真空ポンプ74により処理室86内を排気し、残留ガスを処理室86内から排除する。また、パージガス供給管66Bに設けられた開閉バルブを開けて、不活性ガスを処理室86内に供給して処理室86内のパージを行い、処理室86内の残留ガスを処理室86外に排出する。
[ステップ3]
 ステップ3では、パージガス供給管66Bに設けられた図示しない開閉バルブと、排気管68に設けられた圧力調整部72(APCバルブ)をともに開け、MFC64Bにより流量調節された反応ガスをパージガス供給管66B内に通す。そして、反応ガスをパージガスノズル96Bから処理室86内に供給し、排気管68から排気する。この際、処理室86内の圧力を所定の圧力に保つ。これにより、原料ガスによって基板16の表面に形成された第1層と反応ガスとが反応し、第1層が反応ガスの作用により改質されて、基板16上に第2層が形成される。なお、第2層は、原料ガスに含まれる元素と反応ガスに含まれる元素とを含むこととなる。
[ステップ4]
 ステップ4では、パージガス供給管66Bの開閉バルブを閉めて、反応ガスの供給を止める。排気管68の圧力調整部72(APCバルブ)は開いたままとし、真空ポンプ74により処理室86内を排気し、残留ガスを処理室86内から排除する。また、不活性ガスを処理室86内に供給し、再び処理室86内のパージを行う。
 上記のステップ1~4を1サイクルとし、このサイクルを所定回数、好ましくは、複数回行うことによって基板16上に所定膜厚の薄膜を形成する。
 原料ガスとしては、例えば、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシランガス(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシラン系ガスを用いることができる。また、原料ガスとしては、例えば、テトラフルオロシラン(SiF)ガス等のフルオロシラン系ガス、テトラブロモシラン(SiBr)ガス等のブロモシラン系ガス、テトラヨードシラン(SiI)ガス等のヨードシラン系ガスを用いることもできる。また、原料ガスとしては、例えば、テトラキス(ジメチルアミノ)シラン(Si[N(CH、略称:4DMAS)ガス、トリス(ジメチルアミノ)シラン(Si[N(CHH、略称:3DMAS)ガス、ビス(ジエチルアミノ)シラン(Si[N(C、略称:BDEAS)ガス、ビス(ターシャリーブチルアミノ)シラン(SiH[NH(C)]、略称:BTBAS)ガス等のアミノシラン系ガスを用いることもできる。原料ガスとしては、これらのうち1以上を用いることができる。
 反応ガスとしては、例えば、酸素(O)ガス、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水蒸気(HOガス)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等の酸化ガスや、アンモニア(NH)ガス、ヒドラジン(N)ガス、ジアゼン(N)ガス、Nガス等の窒化ガス等を用いることができる。反応ガスとしては、これらのうち1以上を用いることができる。
 不活性ガスとしては、例えば、窒素(N)ガスを用いることができ、この他、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。
 反応ガスとして酸化ガスを用いる場合、基板16上に、薄膜として、シリコン酸化膜(SiO膜)を形成することができる。反応ガスとして窒化ガスを用いる場合、基板16上に、シリコン窒化膜(SiN膜)を形成することができる。反応ガスとして酸化ガスおよび窒化ガスを用いる場合、基板16上に、薄膜として、シリコン酸窒化膜(SiON膜)を形成することができる。
 (基板搬出(ボートアンロード)工程S106)
 基板搬出工程S106では、ボートエレベータ38により、薄膜が形成された基板16が載置されたボート36を、処理室86から搬出する(アンローディング)。なお、次の工程である基板移載装置34Aにより基板16をボート36から脱装する処理(ディスチャージ)を基板搬出工程(S106)に含めるようにしてもよい。
<本実施形態における制御システム>
 次に、基板処理装置10の各部材の異常予兆(故障予兆)を検知する制御システムについて、図5及び図6を参照して説明する。なお、以下、基板処理装置10によって基板16上に薄膜を形成する例を用いて説明する。
 図5に示すように、制御システムは、主制御部としての基板処理装置用コントローラ58と、予兆検知部としての予兆検知コントローラ82と、各種センサ類124と、データ収集ユニット(Data Collection Unit、以下DCUと略す)126と、エッジコントローラ(Edge Controller、以下ECと略す)128と、を備えている。なお、制御システムを構成するこれらは、有線または無線でそれぞれ接続されている。
 基板処理装置用コントローラ58は、顧客ホストコンピュータを含む図示しない上位コンピュータと、図示しない操作部と、に接続されている。操作部は、基板処理装置用コントローラ58が取得した各種のデータ(センサデータ等)を、上位コンピュータとの間でやり取り可能な構成とされている。
 予兆検知コントローラ82は、基板処理装置10及びその付帯設備に設けられた様々な部材のセンサからセンサデータを取得して基板処理装置10の状態を監視する。具体的には、予兆検知コントローラ82は、各種センサ類124からのデータを利用して数値指標を算出し、予め決めた閾値と比較して異常予兆(すなわち故障予兆)を検知する。なお、予兆検知コントローラ82は、センサデータの動きを元に、異常予兆の発生を検知する予兆検知プログラムを内蔵している。
 また、予兆検知コントローラ82は、基板処理装置用コントローラ58に直接接続される系統と、DCU126を経由して基板処理装置用コントローラ58に接続される系統の2つの系統を有している。このため、予兆検知コントローラ82で異常予兆を検知した場合、DCU126を介さずに基板処理装置用コントローラ58に直接信号を出して、アラームを発生させるとともに、異常予兆が認められた部材に設けられたセンサのセンサデータの情報を表示部118(図3参照)の画面に表示することが可能とされている。
 各種センサ類124は、基板処理装置10及びその付帯設備に設けられた様々な部材に設けられたセンサ(例えば圧力センサ70や温度センサ106等)であり、各部材の流量、濃度、温度、湿度(露点)、圧力、電流、電圧、電圧、トルク、振動、位置、回転速度等を検知する。
 DCU126は、プロセスレシピの実行中に各種センサ類124のデータを収集して蓄積する。また、EC128は、センサの種類によって必要に応じてセンサデータを一旦取り込み、生データに高速フーリエ変換(Fast Fourier Transform、以下FFTと略す)等の処理を加えた後、予兆検知コントローラ82に送信する。
 また、各種センサ類124は、送信経路の異なる第1センサ系統124Aと、第2センサ系統124Bとに分けられている。第1センサ系統124Aは、0.1秒単位でリアルタイムに生データを取込む系統であり、第1センサ系統124Aから基板処理装置用コントローラ58及びDCU126を経て予兆検知コントローラ82にリアルタイムで生データが送信される。この第1センサ系統124Aには、例えば温度センサや、圧力センサ、ガス流量センサ等のセンサが含まれる。
 一方、第2センサ系統124Bは、EC128でFFT等の処理をかけて解析に必要な部分のみ取り出し、加工されたファイル形式でデータが送信される系統であり、第2センサ系統124BからEC128を経て予兆検知コントローラ82に加工したデータが送信される。この第2センサ系統124Bには、例えば加速度センサ75が含まれる。加速度センサ75からの振動データは、ミリ秒単位で蓄積されるため、微小な変化を捉えることができる。例えば、振動自体の大きさが同じでも、周波数ごとで振動の大きさが異なることがあり、この場合でも、周波数分布から、ミリ秒単位(例えば0.1秒間)の振動の微小な変化を捉えることができる。これにより、故障が発生する前のデータ変動を把握することができるので、異常予兆を行うことができる。
 加速度センサ75からの振動データは、ミリ秒単位で蓄積されるため、データ量が膨大となり、そのままデータを予兆検知コントローラ82に送信すると、予兆検知コントローラ82の記憶部容量の大量消費につながる。この振動データは、FFT等の処理をして解析に使用するため、その処理をあらかじめEC128で実施させることで、情報量を減少させ、かつ解析し易いデータの形式として予兆検知コントローラ82へ送信することができる。
 以下、上述した制御システムを用いた基板処理装置10の部材として真空ポンプ74の異常予兆判断工程の実施形態について、具体的に説明する。
[非正常度を構成する元データ]
基板処理のシーケンスは、例えば、基板16の処理室86内への搬入、処理室86内の真空引き、昇温、不活性ガスによるパージ、昇温待ち、基板16の処理(例えば成膜)、処理室86内のガス置換、大気圧へ戻す、処理後の基板16の搬出等、それぞれの目的を持った多くのイベントで構成されている。なお、上記のイベントは基板処理シーケンスの一例であり、各イベントはさらに細かく分割されているケースがある。
 本実施形態では、シーケンス中のセンサデータをすべて使うことなく、これらのイベントの中の1つ以上の特定のイベントにおける、1つ以上のセンサの値を、アルゴリズム内の数値指標である「非正常度」を算出する元データとして使用している。また、Run毎の非正常度値を監視して、基板処理装置10の各部材の異常予兆を検知する。このように、特定のイベントのデータだけを使用することで、データ蓄積量を節約することが可能となる。
 例えば、部材の異常予兆検知は、部材に大きな負荷がかかるタイミングで検知し易い状態となる。処理室86の圧力を大気圧から所定圧力まで減圧させるステップ、すなわち真空引き開始時や、真空引き開始後数分間の大気圧に近い圧力帯が、部材に大きな負荷がかかるタイミングに該当する。
 また、基板処理装置10は1台で複数の工程を担当しており、成膜条件が異なるもの等、異なった処理レシピが入り混じって着工される場合がある。基板16の成膜時には原料ガスが流れるため、原料ガスが反応又は熱分解して固形物を作る場合があり、それが部材に負荷をかける場合があるため、成膜イベント中を監視することも異常予兆検知にとっては有効である。
 一方で、成膜イベントが異なるRunが混じっていると、異なる成膜イベント同士では条件が異なるため、直接の比較が困難となり、成膜イベントが同じもの同士のみで経時変化を監視することになり、監視対象が分散され、傾向が分かり難くなる虞がある。
 前述した、基板処理前の真空引きのイベントは、その後の基板処理イベントが異なっても、共通な場合が多い。つまり、同一装置で複数の異なる成膜条件のレシピが着工される場合でも、この各Runで共通の真空引き開始時の状態を監視してセンサデータを取得することで、基板処理内容に依存せず、同一の状態の経時変化を知ることができ、精度の高い予測が可能となる。
 また、部材の回転周波数が、成膜工程中と異なる、ボートアンロード工程において、監視してもよい。
[非正常度の計算例]
 ここで、加速度センサ75のセンサデータを用いる場合、の非正常度の計算例をそれぞれ示す。
 まず、加速度センサ75のセンサデータ(振動データ)を用いて異常の予兆有無を判断する場合は、図6に示すように、以下の手順となる。
(1)プロセスレシピを構成する各ステップのうちの指定ステップ、例えば1パッチ目におけるセンサデータのうち、加速度センサ75により検出される振動データ(生データ)を取得する。本実施形態では、加速度センサ75の振動データは、X軸、Y軸、Z軸の各々について取得し、3軸方向各々の振動データとなる。
(2)取得したX軸、Y軸、Z軸の各々の時系列の振動データに対して、サンプル時間毎にFFT処理を行う。FFT処理は、サンプル時間(本実施形態では一例として0.1秒間)内の振動データ全体に対して行う。
(3)FFT処理毎に、部材のロータの回転周波数(1秒当たりの回転数)の周波数(以下、基準周波数)における振動の大きさ(以下「回転周波数パワースペクトル」と称する)と、部材のロータの回転周波数の2倍の周波数(以下、対比周波数)における振動の大きさ(以下「2次高調波パワースペクトル」と称する)を取得する。なお、部材のロータの回転周波数は、指定ステップにおいて当該部材が制御されている回転周波数を用いる。
(4)FFT処理毎に、回転周波数パワースペクトルと2次高調波パワースペクトルの比(回転周波数パワースペクトル/2次高調波パワースペクトル、以下「パワースペクトル比」という)を算出する。
(5)算出したパワースペクトル比の推移を監視する。
(6)パワースペクトル比が、予め設定した閾値(本実施形態では、一例として100)を超える場合に、異常予兆有を検知する。当該閾値(異常予兆閾値)は、正常時における当該指定ステップ中のパワースペクトル比や、過去の異常発生データに基づいて設定される。なお、当該閾値は、X軸、Y軸、Z軸の各々のデータから得られるパワースペクトル比に対して、個別に設定される。設定される閾値は、同じであってもよいし、異なっていてもよい。
 図7A~図7Cには、図6の指定ステップの振動データから求められたパワースペクトル比の推移のグラフが示されている。図7AはX軸、図7BはY軸、図7CはZ軸のグラフである。パワースペクトル比のデータ数Nは、サンプル時間数だけ得られ、サンプル時間毎(本実施形態では0.1秒毎)の細かなパワースペクトル比の変化を捉えることができる。これにより、部材の停止前の適切なタイミングで、異常検知を行うことができる。
 図7A~図7Cでは、X軸、Y軸、Z軸の各々について、閾値100が設定されているが、他の閾値を設定してもよい。例えば、X軸、Y軸について閾値100を設定し、Z軸について閾値200を設定することができる。このように、各軸で閾値を個別に設定することにより、方向よる振動発生の特徴に応じて、適切な判断を行うことができる。
 また、X軸、Y軸、Z軸の各々について、異常予兆有りの判断を行う場合に、閾値を超えた回数についての制限を設けてもよい。すなわち、パワースペクトル比の閾値を超えた回数を各々設定し、設定した回数以上となった場合に、異常予兆有りと判断する。例えば、図7Aのグラフでは、2回分の閾値以上サンプルがあり、2回以上の回数設定を行った場合には、異常予兆有りと判断し、3回以上の回数設定を行った場合には、異常予兆有りと判断されない。当該回数の設定についても、X軸、Y軸、Z軸で個別に行うことができ、同一回数を設定しても、異なる回数を設定してもよい。例えば、X軸2回、Y軸1回、Z軸10回で設定することができる。このように、回数制限を設けることにより、突発的なノイズなどによるデータの振れを除いて、適切な判断を行うことができる。
 振動データにおける異常予兆有りの判断は、一例として、以下の異なる方法で行うことができる。
(1)X軸、Y軸、Z軸のうち1つでも閾値を超えた場合には、異常予兆有りと判断する。
(2)X軸、Y軸、Z軸のうち2つの軸で閾値を超えた場合に、異常予兆有りと判断する。
(3)X軸、または、Z軸で閾値を超えた場合に、異常予兆有りと判断する(Y軸で閾値を超えても異常予兆有りと判断しない)。この場合、選択されない軸(Y軸)には閾値を設けず、モニタだけ行うようにしてもよい。
 異常予兆有りの判断について(1)(2)を選択することにより、突発的なノイズなどによるデータの振れを除いて、適切な判断を行うことができる。
 異常予兆有りの判断について(3)を選択することにより、ロータの回転軸方向の振動についての情報を、異常予兆についての判断から外すことができる。図7Bに示されるように、ロータの回転軸(Y軸)方向の振動は、他の方向の振動と異なる特徴を有しているため、異常予兆についての判断から外すことにより、適切な判断を行うことができる。
[異常予兆検知の解析画面の表示]
異常予兆検知の解析画面は、基板処理装置用コントローラ58の表示部118(図3参照)で表示可能とされている。このため、非正常度の推移と閾値、及び閾値を超えた回数等を目視することでき、部材の消耗状態を非正常度で確認することができる。
(作用、効果)
 上記実施形態によれば、基板処理装置10が、部材の異常予兆を検知する制御システムを備え、この制御システムによって部材の異常予兆を検知することにより、その対象となる部材の交換時期又はメンテナンス時期の前の適切な時期を知ることができる。
 これにより、部材が故障する前に交換等の対処をすることができるとともに、部材を故障する直前まで使用することで交換頻度を下げることができる。また、基板処理中の故障を防ぐことで、装置稼働率の向上、製品(基板16)の歩留まり低下防止、及び無駄なメンテナンス時間の削減が可能となる。
 また、上記実施形態によれば、異常予兆を検知する予兆検知コントローラ82が、基板処理装置用コントローラ58に接続されている。このため、異常予兆を検知し易い特定の基板処理シーケンスに限定して、データを取得、分析することが可能となる。
 また、上記実施形態によれば、振動データの取得工程と異常予兆検知工程を、基板処理工程と並行に実行することができ、リアルタイムで部材の異常予兆を検知することができる。
 また、部材の故障予兆検知に関しては、指定ステップにおいて、振動データをサンプル時間毎にFFT処理してパワースペクトル比のデータを得る。したがって、指定ステップ内において、部材の異常予兆の指標を多く(FFT処理を行なった回数分)取得できる。これにより、指定ステップや工程内の細かなスペクトル比の変化を捉えられることができる。
 なお、本実施形態では、部材の回転周波数の振動のパワースペクトルと、その2倍の回転周波数のパワースペクトルとの比を非正常度の指標としたが、これに限定されるものではない。部材の回転周波数の振動のパワースペクトルと、その2倍、3倍などの整数倍の回転周波数のパワースペクトルとの比を非正常度の指標としてもよい。
(その他の実施形態)
 上述の実施形態では、加速度センサ75を真空ポンプ74に設けた例について説明したが、加速度センサを設ける位置はこれに限定されない。加速度センサは、基板処理装置10を構成する他の構成部材に取り付け、振動データを取得して、取り付けた各構成部材の異常予兆を検知することもできる。なお、振動データを取得して異常予兆を検知する一連の流れについては上述の実施形態と同様であり、ここでは説明を割愛する。
 例えば、加速度センサ75を前述のように真空ポンプ74に取り付けると共に、加速度センサ75Aを基板(ウエハ)16をボート36(基板保持具)とポッド18(基板収容器)との間で搬送する基板移載機構34に取り付け、加速度センサ75Bをボート36を昇降させるボートエレベータ38に取り付け、加速度センサ75Cをボート36を回転させる回転機構46に取り付けた場合について説明する。
 図8に示されるように、基板移載機構34には加速度センサ75Aが取り付けられ、ボートエレベータ38には加速度センサ75Bが取り付けられ、回転機構46には加速度センサ75Cが取り付けられている。加速度センサ75A~75Cは、基板移載機構34、ボートエレベータ38、回転機構46の駆動時に振動を計測可能な位置に各々取り付けられており、直交する3軸方向(X軸、Y軸、Z軸)の振動をそれぞれ計測する。
 加速度センサ75A~75Cは、セレクタ130と電気的に接続されており、計測で取得した振動データをセレクタ130へ送る。セレクタ130では、各工程のタイミングに応じて、加速度センサ75A~75Cからの振動データの内、いずれの振動データを取得するかを切り換える。セレクタ130は、チャージアンプ132A、132B、132Cの各々と接続されている。チャージアンプ132A、132B、132Cでは、加速度センサ75A~75Cからの、X軸の振動データ、Y軸の振動データ、Z軸の振動データ、が各々処理される。チャージアンプ132A、132B、132C(これらをまとめて「チャージアンプ132」と称する)は、Programmable Logic Controller(PLC)134と接続されており、PLC134は、EC128と接続されている。加速度センサ75A~75C、セレクタ130、チャージアンプ132、PLC134は、前述の第2センサ系統124Bに含まれる(図5参照)。
 次に、加速度センサ75(真空ポンプ74に取り付け)、 加速度センサ75A(基板移載機構34に取り付け)、加速度センサ75B(ボートエレベータ38に取り付け)、加速度センサ75C(回転機構46に取り付け)、での振動データの取得について、図9のタイミングチャートを参照して説明する。
 加速度センサ75からの振動データの取得は、真空ポンプ74を駆動時させる成膜準備工程S103(真空引き工程S106-1、リークチェック工程S106-2)の時に行われる。特に、処理室86の圧力を大気圧から所定圧力まで減圧させるステップ、すなわち真空引き開始時や、真空引き開始後数分間の大気圧に近い圧力帯が、部材に大きな負荷がかかるタイミングとなり、真空ポンプ74における異常を検知し易く、振動データを取得することが好ましい。また、成膜準備工程S103では、その後の基板処理イベントが異なっても、共通な場合が多いため、ここでの振動データの取得が好ましい。
 加速度センサ75Aからの振動データ(移載部材振動データ)の取得は、基板移載機構34の駆動時に行われる。具体的には、基板16をボート36に装填する処理(チャージング)(S102-1)の時、及び、基板16をボート36から脱装する処理(ディスチャージ)(S106-2)の時に行われる。なお、チャージングまたはディスチャージのいずれか一方時のみに行ってもよい。
 加速度センサ75Bからの振動データ(昇降部材振動データ)の取得は、ボートエレベータ38の駆動時に行われる。具体的には、基板16が装填されたボート36を処理室86に搬入する処理(ローディング)(S102-2)の時、及び薄膜が形成された基板16が載置されたボート36を処理室86から搬出する(アンローディング)(S106-1)の時に行われる。なお、ローディングまたはアンローディングのいずれか一方時のみに行ってもよい。
 加速度センサ75Cからの振動データ(回転部材振動データ)の取得は、回転機構46の駆動時で、且つ、ボートエレベータ38の非駆動時に行われる。具体的には、成膜準備工程S103(真空引き工程S106-1、リークチェック工程S106-2)の時、及び、成膜工程S104の時に行われる。成膜工程S104では、処理室へ供給される気体の流量等に変化があるが、回転機構46への影響は小さいと考えられる。なお、成膜準備工程または成膜工程のいずれか一方時のみに行ってもよい。特に、リークチェック工程S106-2の時は、処理室内への気体の供給、排気が行われず安定した状態であるため、リークチェック工程S106-2の時に振動データを取得することが好ましい。
 加速度センサ75A~75Cの3個の加速度センサからの振動データは、異なる時間に取得されるので、チャージアンプ132とPLC134を、切り換えて使用することにより共用にすることができる。また、加速度センサ75A~75Cで取得された振動データの蓄積量を低減することができる。
 取得した振動データを非正常度を構成する元データとして使用し、前述の図6に示す手順により異常予兆検知を行うことができる。
 このように、加速度センサ75(真空ポンプ74に取り付け)、 加速度センサ75A(基板移載機構34に取り付け)、加速度センサ75B(ボートエレベータ38に取り付け)、加速度センサ75C(回転機構46に取り付け)、からの振動データを取得し、振動データの取得工程と異常予兆検知工程を、基板処理工程と並行に実行することにより、リアルタイムで各部材の異常予兆を検知することができる。
(その他)
 以上、本開示の実施形態を具体的に説明したが、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上述の実施形態では、基板16上に薄膜を形成する例について説明した。しかし、本開示はこのような態様に限定されず、例えば基板16上に形成された薄膜等に対して、酸化処理、拡散処理、アニール処理、及びエッチング処理等の処理を行う場合にも、好適に適用可能である。
 また、上述の実施形態では、ホットウォール型の処理炉44を有する基板処理装置10を用いて薄膜を形成する例について説明したが、本開示はこれに限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を形成する場合にも、好適に適用できる。さらに、上述の実施形態では、一度に複数枚の基板16を処理するバッチ式の基板処理装置10を用いて薄膜を形成する例について説明したが、本開示はこれに限定されず、例えば、一度に1枚または数枚の基板16を処理する枚葉式の基板処理装置を用いて薄膜を形成する場合にも、好適に適用できる。
 また、本開示は、上述の実施形態に係る基板処理装置10のような半導体基板を処理する半導体製造装置等に限らず、ガラス基板を処理するLCD(Liquid Crystal Display)製造装置にも適用することができる。
10   基板処理装置
16   基板
86   処理室
74   真空ポンプ
75   加速度センサ(振動センサ)
82   予兆検知コントローラ(振動データ取得部、異常予兆検知部)

Claims (20)

  1.  複数のステップを含むプロセスレシピを実行させて、基板を処理する半導体装置の製造方法であって、
     前記プロセスレシピを実行しつつ、前記基板を処理する処理室の雰囲気を排気する部材の振動データを振動センサから取得する振動データ取得工程と、
     取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさとの比が、予め設定された異常予兆閾値を超える場合に、異常予兆有と検知する異常予兆検知工程と、
     を有する半導体装置の製造方法。
  2.  前記部材の回転周波数における振動の大きさ、及び前記回転周波数の整数倍の対比周波数における振動の大きさは、前記振動データを高速フーリエ変換処理した結果に基づいて取得する、
     請求項1に記載の半導体装置の製造方法。
  3.  前記高速フーリエ変換処理のサンプル時間は、前記高速フーリエ変換処理を行う時系列データの全体時間である、
     請求項2に記載の半導体装置の製造方法。
  4.  前記対比周波数は、前記部材の回転周波数の2倍の二次回転周波数である、 請求項1~請求項3のいずれか1項に記載の半導体装置の製造方法。
  5.  前記異常予兆検知工程において、前記異常予兆閾値を予め設定された回数を超えた場合に、異常予兆有の検知とする、請求項1~請求項4のいずれか1項に記載の半導体装置の製造方法。
  6.  前記振動センサは、互いに直交するX軸、Y軸、Z軸の3軸方向の振動をそれぞれ計測可能な加速度センサである、請求項1~請求項5のいずれか1項に記載の半導体装置の製造方法。
  7.  前記X軸、Y軸、Z軸の3軸方向の各々について前記部材の異常予兆を検知可能に構成されている、請求項6に記載の半導体装置の製造方法。
  8.  前記異常予兆閾値は、前記X軸、Y軸、Z軸の複数についての各々について個別に設定されている、
     請求項7に記載の半導体装置の製造方法。
  9.  前記Z軸は鉛直軸に沿った方向に配置され、前記Y軸は前記部材のロータの回転軸に沿った方向に配置されている、
     請求項6~請求項8のいずれか1項に記載の半導体装置の製造方法。
  10.  前記異常予兆検知工程において、前記部材のロータの回転軸に沿った方向の振動について、異常予兆を検知するデータから外す、
     請求項6~9のいずれか1項に記載の半導体装置の製造方法。
  11.  前記異常予兆検知工程において複数の軸に沿った振動データにおいて異常予兆有を検知した場合に、警告を発する、
     請求項6~請求項10のいずれか1項に記載の半導体装置の製造方法。
  12.  基板を処理する処理室の雰囲気を排気する部材の振動データを振動センサから取得する工程と、
    前記部材の振動を監視して異常予兆を検知する異常予兆検知工程と、を有し、
     前記異常予兆検知工程では、
     取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさとの比が、予め設定された異常予兆閾値を超える場合に、異常予兆有を検知する、
     異常予兆検知方法。
  13.  複数のステップを含むプロセスレシピを実行させて、基板を処理する基板処理装置で実行されるプログラムであって、
     前記プロセスレシピを実行しつつ、基板を処理する処理室の雰囲気を排気する部材の振動データを振動センサから取得する手順と、
     取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさと、の比が、予め設定された異常予兆閾値を超える場合に、異常予兆有と判断する手順と、
    を有するプログラムを前記基板処理装置に実行させる、
     異常予兆検知プログラム。
  14.  複数のステップを含むプロセスレシピを実行させて、基板を処理する基板処理装置であって、
     前記プロセスレシピを実行しつつ、前記基板を処理する処理室の雰囲気を排気する部材の振動データを振動センサから取得する振動データ取得部と、
     取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさと、の比率が、予め設定された異常予兆閾値を超える場合に、異常予兆有を検知する、異常予兆検知部と、
     を有する基板処理装置。
  15.  基板を処理室内へ搬入する基板搬入工程と、 前記処理室で前記基板に成膜する成膜工程と、 前記基板を前記処理室外へ搬出する基板搬出工程と、を少なくとも含む基板処理工程と、
     半導体装置を構成する構成部材のうち少なくとも一つの部材の振動データを振動センサから取得する振動データ取得工程と、
     取得した前記部材の振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさとの比が、予め設定された異常予兆閾値を超える場合に、異常予兆有と検知する異常予兆検知工程と、を有し、
     前記振動データ取得工程及び前記異常予兆検知工程のうち少なくとも一方は、 前記基板処理工程の実行と並行して実行される、半導体装置の製造方法。
  16.  前記基板処理工程は、前記基板を基板保持具に装填する工程、及び、前記基板を該基板保持具から脱装する工程、の少なくとも一方を更に含む、請求項15に記載の半導体装置の製造方法。
  17.  前記構成部材は、前記基板を処理する処理室の雰囲気を排気する排気部材、前記基板を基板保持具と基板収容器との間で搬送する搬送部材、前記基板保持具を昇降させる昇降部材、前記基板保持具を回転させる回転部材、のうち少なくとも一つ以上が選択されるように構成されている、請求項15または請求項16記載の半導体装置の製造方法。
  18.  基板を処理室内へ搬入する基板搬入手順と、 前記処理室で前記基板に成膜する成膜手順と、 前記基板を前記処理室外へ搬出する基板搬出手順と、を少なくとも含む基板処理手順を実行させて、 基板を処理する基板処理装置で実行されるプログラムであって、
     装置を構成する構成部材のうち少なくとも一つの部材の振動データを振動センサから取得する手順と、取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさと、の比が、予め設定された異常予兆閾値を超える場合に、異常予兆有と判断する手順と、を有し、
     前記振動センサから取得する手順及び前記異常予兆有と判断する手順のうち少なくとも一方を、 前記基板処理手順の実行と並行して実行させる、
     プログラムを前記基板処理装置に実行させる、異常予兆検知プログラム。
  19.  基板を処理室内へ搬入する基板搬入工程と、 前記処理室で前記基板に成膜する成膜工程と、 前記基板を前記処理室外へ搬出する基板搬出工程と、を少なくとも含む基板処理工程を実行させて、基板を処理する基板処理装置であって、
     装置を構成する構成部材のうち少なくとも一つの部材の振動データを振動センサから取得する振動データ取得部と、
     取得した前記振動データに基づいて、前記部材の回転周波数における振動の大きさと、前記回転周波数の整数倍の対比周波数における振動の大きさと、の比率が、予め設定された異常予兆閾値を超える場合に、異常予兆有を検知する、異常予兆検知部と、を有し、
     前記振動データ取得部による振動データ取得及び前記異常予兆検知部での異常検知のうち少なくとも一方を、前記基板処理工程の実行と並行して実行させる、制御部と、
     を備えた、基板処理装置。
  20.  前記振動データ取得部は、前記基板を基板保持具へ装填する時及び前記基板を基板保持具から脱装する時の少なくとも一方の時に前記振動データを移載部材振動データとして取得し、前記基板保持具を昇降する時に前記振動データを昇降部材振動データとして取得し、前記基板保持具の回転時且つ前記基板保持具の非昇降時に前記振動データを回転部材振動データとして取得する、
     請求項19に記載の基板処理装置。
PCT/JP2021/026139 2020-09-23 2021-07-12 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置 WO2022064814A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022551153A JPWO2022064814A1 (ja) 2020-09-23 2021-07-12
KR1020237005560A KR20230041051A (ko) 2020-09-23 2021-07-12 반도체 장치의 제조 방법, 이상 예조 검지 방법, 이상 예조 검지 프로그램 및 기판 처리 장치
CN202180052376.5A CN115989559A (zh) 2020-09-23 2021-07-12 半导体装置的制造方法、异常预兆检测方法、异常预兆检测程序以及基板处理装置
TW110128660A TW202224047A (zh) 2020-09-23 2021-08-04 半導體裝置的製造方法、異常預兆感測方法、異常預兆感測程式、及基板處理裝置
US18/124,799 US20230223285A1 (en) 2020-09-23 2023-03-22 Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/035760 2020-09-23
PCT/JP2020/035760 WO2022064558A1 (ja) 2020-09-23 2020-09-23 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/124,799 Continuation US20230223285A1 (en) 2020-09-23 2023-03-22 Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2022064814A1 true WO2022064814A1 (ja) 2022-03-31

Family

ID=80845298

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/035760 WO2022064558A1 (ja) 2020-09-23 2020-09-23 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置
PCT/JP2021/026139 WO2022064814A1 (ja) 2020-09-23 2021-07-12 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035760 WO2022064558A1 (ja) 2020-09-23 2020-09-23 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置

Country Status (6)

Country Link
US (1) US20230223285A1 (ja)
JP (1) JPWO2022064814A1 (ja)
KR (1) KR20230041051A (ja)
CN (1) CN115989559A (ja)
TW (1) TW202224047A (ja)
WO (2) WO2022064558A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307921A (ja) * 1993-04-27 1994-11-04 Toshiba Corp 回転機械の監視診断装置
JPH07324974A (ja) * 1994-06-02 1995-12-12 Mitsubishi Electric Corp 回転機振動診断装置
JP2004117253A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 製造装置及び回転機の寿命予測方法
JP2015094587A (ja) * 2013-11-08 2015-05-18 セイコーエプソン株式会社 寿命予測方法、寿命予測装置、寿命予測システム、寿命演算装置及び回転機械

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4184638B2 (ja) * 2001-08-31 2008-11-19 株式会社東芝 半導体製造装置の寿命診断方法
JP4100413B2 (ja) * 2005-04-25 2008-06-11 松下電工株式会社 設備監視方法および設備監視装置
TWI435233B (zh) * 2011-03-14 2014-04-21 Powertech Technology Inc 半導體製程設備之異常預知管控裝置與方法
US10543988B2 (en) * 2016-04-29 2020-01-28 TricornTech Taiwan Real-time mobile carrier system for facility monitoring and control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307921A (ja) * 1993-04-27 1994-11-04 Toshiba Corp 回転機械の監視診断装置
JPH07324974A (ja) * 1994-06-02 1995-12-12 Mitsubishi Electric Corp 回転機振動診断装置
JP2004117253A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 製造装置及び回転機の寿命予測方法
JP2015094587A (ja) * 2013-11-08 2015-05-18 セイコーエプソン株式会社 寿命予測方法、寿命予測装置、寿命予測システム、寿命演算装置及び回転機械

Also Published As

Publication number Publication date
US20230223285A1 (en) 2023-07-13
WO2022064558A1 (ja) 2022-03-31
JPWO2022064814A1 (ja) 2022-03-31
KR20230041051A (ko) 2023-03-23
CN115989559A (zh) 2023-04-18
TW202224047A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
KR101427726B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
US20130065189A1 (en) Thermal treatment apparatus, temperature control system, thermal treatment method, temperature control method, and non-transitory computer readable medium embodied with program for executing the thermal treatment method or the temperature control method
JP6403577B2 (ja) クリーニング方法、半導体装置の製造方法、基板処理装置及びプログラム並びにクリーニング終了判定方法
JP6545396B2 (ja) 基板処理装置、振動検出システム及びプログラム
US20120226475A1 (en) Substrate processing system, management apparatus, data analysis method
JP2015029057A (ja) 基板処理装置及び半導体装置の製造方法並びに記録媒体
JPWO2014115643A1 (ja) 基板処理装置の異常判定方法、異常判定装置、及び基板処理システム並びに記録媒体
US10607869B2 (en) Substrate processing system and control device
JP5600503B2 (ja) 統計解析方法、基板処理システムおよびプログラム
JP2010219460A (ja) 基板処理装置
US20040018650A1 (en) Substrate processing apparatus
KR20210019057A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
WO2011021635A1 (ja) 基板処理システム、群管理装置及び基板処理システムにおける表示方法
TWI677043B (zh) 半導體裝置之製造方法、基板處理裝置及程式
WO2022064814A1 (ja) 半導体装置の製造方法、異常予兆検知方法、異常予兆検知プログラム、及び基板処理装置
JP7227351B2 (ja) 半導体装置の製造方法、予兆検知プログラム、及び基板処理装置
US8948899B2 (en) Substrate processing system, substrate processing apparatus and display method of substrate processing apparatus
JP5123485B2 (ja) 基板処理装置及び基板処理方法及び半導体デバイスの製造方法
JP7324853B2 (ja) 基板処理装置、半導体装置の製造方法、及び予兆検知プログラム
JP4248753B2 (ja) 基板処置装置および基板処理方法
JPWO2019172274A1 (ja) 処理装置、排気システム、半導体装置の製造方法
JP2010067686A (ja) 半導体装置の製造方法
JP2007258630A (ja) 基板処理装置
JP2007258632A (ja) 基板処理装置
JP2009026993A (ja) 基板処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551153

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005560

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871946

Country of ref document: EP

Kind code of ref document: A1