WO2022063285A1 - 一种纳米纤维复合的单向布、其制备方法及应用 - Google Patents

一种纳米纤维复合的单向布、其制备方法及应用 Download PDF

Info

Publication number
WO2022063285A1
WO2022063285A1 PCT/CN2021/120840 CN2021120840W WO2022063285A1 WO 2022063285 A1 WO2022063285 A1 WO 2022063285A1 CN 2021120840 W CN2021120840 W CN 2021120840W WO 2022063285 A1 WO2022063285 A1 WO 2022063285A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofibers
unidirectional
adhesive
cloth
dispersion
Prior art date
Application number
PCT/CN2021/120840
Other languages
English (en)
French (fr)
Inventor
张立铭
曹煜彤
宋数宾
赵开荣
曹美荣
宋向阳
朱俊强
王倩
Original Assignee
中化高性能纤维材料有限公司
江苏瑞盛新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011041333.0A external-priority patent/CN112549711A/zh
Priority claimed from CN202011039808.2A external-priority patent/CN112549701A/zh
Application filed by 中化高性能纤维材料有限公司, 江苏瑞盛新材料科技有限公司 filed Critical 中化高性能纤维材料有限公司
Priority to KR1020237010683A priority Critical patent/KR20230058461A/ko
Priority to EP21871654.6A priority patent/EP4219160A1/en
Priority to BR112023005382A priority patent/BR112023005382A2/pt
Publication of WO2022063285A1 publication Critical patent/WO2022063285A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • D06M17/04Producing multi-layer textile fabrics by applying synthetic resins as adhesives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • D06M17/04Producing multi-layer textile fabrics by applying synthetic resins as adhesives
    • D06M17/10Polyurethanes polyurea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/02Armoured or projectile- or missile-resistant garments; Composite protection fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/04Protection helmets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0485Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups

Definitions

  • the invention belongs to the technical field of bulletproof protection, and particularly relates to a nanofiber composite unidirectional cloth, a preparation method and application thereof.
  • UD fabric uni-directional fabric, also known as unidirectional fabric or unidirectional fabric
  • a new type of composite material with both structure and functionality in the field of protection. Usually composite materials are processed and formed by two or more materials. After compounding, the properties of the original components are retained, and the special functions of the new materials are obtained.
  • UD fabric is a laminated composite material reinforced with continuous fibers, usually a prepreg composed of parallel high-performance fibers and a resin matrix is laminated to form a unidirectional sheet, and then the unidirectional sheet is laminated.
  • Laminate according to different fiber directions and finally make composite cloth or composite board (ie multi-directional sheet) by hot pressing.
  • unidirectional sheets the fibers are oriented in the same direction and are anisotropic.
  • multi-directional sheets a symmetrical layup design is usually adopted, that is, the fiber orientation of each layer is symmetrical on both sides of the central plane of the laminate, so it is also called an isotropic board.
  • Ultra-high molecular weight polyethylene UD cloth has excellent anti-ballistic performance, but because the macromolecular chain is prone to slip, when the bullet hits and does not penetrate, the ultra-high molecular weight polyethylene UD cloth creeps seriously, causing the product to sag. Causes damage to human bones or muscles; Aramid UD fabric is excellent in preventing creep caused by bullets and bullets due to the existence of rigid segments.
  • the development of a new type of UD cloth that can not only ensure the ballistic performance, but also reduce the impact dent is a development hotspot in this industry.
  • the invention provides a nanofiber composite UD cloth, which is a new type of composite structure and integrates the comprehensive characteristics of fiber filaments, thermoplastic resins and nanofibers.
  • the nanofiber composite UD cloth of the invention has excellent ballistic resistance and ballistic dent resistance, and is suitable for new bulletproof sheets, especially soft bulletproof vests and hard bulletproof inserts.
  • the present invention provides a nanofiber composite unidirectional cloth
  • the nanofiber composite unidirectional cloth includes at least two unidirectional sheets and nanofibers located between adjacent unidirectional sheets, so
  • the unidirectional sheet layer includes unidirectionally arranged high-performance fibers and an adhesive, and the adhesive includes nanofibers.
  • the included angle between the high-performance fiber arrangement directions of two adjacent unidirectional sheets is 90 ⁇ 10°.
  • the mass of the high-performance fibers accounts for 70-90% of the total mass of the nanofiber composite unidirectional cloth.
  • the mass of the adhesive accounts for 14.32-14.76% of the total mass of the nanofiber composite unidirectional cloth.
  • the mass of the nanofibers located between adjacent unidirectional sheets accounts for 0.24-0.68% of the total mass of the nanofiber composite unidirectional cloth.
  • the areal density of the nanofiber composite unidirectional fabric including two unidirectional sheets is 70-350 g/m 2 , preferably 100-300 g/m 2 , more preferably 120 g/m 2 . -250g/m 2 .
  • the mass fraction of nanofibers in the adhesive is 5-50%, preferably 5-30%, more preferably 14-30%.
  • the high performance fiber is a fiber with a tensile strength of 20 g/d or more and an initial modulus of 40 GPa or more.
  • the high performance fibers are selected from one or more of ultra-high molecular weight polyethylene fibers, aramid fibers, polyimide fibers, and polyparaphenylene benzobisoxazole fibers .
  • the high performance fibers are ultra-high molecular weight polyethylene fibers and/or aramid fibers.
  • the high performance fibers are ultra-high molecular weight polyethylene fibers and/or para-aramid fibers.
  • the high performance fiber has a tensile strength of 1.8 GPa or more, an initial modulus of 85-170 GPa, and an elongation at break of 3.5% or more.
  • the nanofibers are aramid nanofibers, preferably para-aramid nanofibers.
  • the nanofibers have a fiber length of 50-100 nm and a specific surface area of 50-500 m 2 /g.
  • the adhesive includes a resin matrix selected from one or more of polyurethane, styrenic block copolymer, and polyacrylate.
  • the resin matrix is polyurethane.
  • the resin matrix is a styrene block copolymer.
  • the resin matrix is a styrene-isoprene-styrene block copolymer.
  • the resin matrix has a tensile strength of 15-40 MPa.
  • the mass fraction of the resin matrix in the adhesive is 30-80%, preferably 40-80%;
  • the mass ratio of the resin matrix and the nanofibers is 1:(0.1-1), preferably 1:(0.1-0.6);
  • the adhesive further includes additives, preferably, the additives account for no more than 25% by mass of the adhesive.
  • the present invention also provides a method for preparing a nanofiber composite unidirectional fabric, the method comprising the following steps:
  • the present invention also provides a method for preparing the nanofiber composite unidirectional fabric according to any embodiment of the present invention, the method comprising the following steps:
  • step (1) the aqueous dispersion of the adhesive is attached to the unidirectionally arranged high-performance fibers, and dried to obtain a unidirectional sheet.
  • the mass ratio of water to solid components other than nanofibers is 7:3 to 4:6, preferably 7:3 to 5:5.
  • the thickness of the aqueous dispersion of adhesive attached to the unidirectionally arranged high performance fibers is 0.01-0.1 mm, preferably 0.01-0.05 mm.
  • step (2) the spraying amount of the nanofiber aqueous dispersion between two adjacent unidirectional sheet layers is 1-10 g/m 2 .
  • step (2) during lamination, the included angle between the high-performance fiber arrangement directions of two adjacent unidirectional sheets is 90 ⁇ 10°.
  • the hot pressing temperature is 70-120° C.
  • the hot pressing pressure is 0.1-2 MPa.
  • the method has the following features:
  • step (1) the water dispersion of the adhesive is attached to the unidirectionally arranged high-performance fibers, and dried to obtain a unidirectional sheet, wherein the high-performance fibers are ultra-high molecular weight polyethylene fibers, so
  • the nanofibers are para-aramid nanofibers, and in the aqueous adhesive dispersion, the mass fraction of the nanofibers in the aqueous adhesive dispersion is 2-20%, preferably 2-15%, more preferably 10%. -13%, the thickness of the adhesive aqueous dispersion attached to the unidirectionally arranged high-performance fibers is 0.01-0.05mm;
  • step (2) the spraying amount of the water dispersion of nanofibers between two adjacent unidirectional sheets is 1-5 g/m 2 , and in the water dispersion of nanofibers, the nanofibers account for the proportion of nanofibers.
  • the mass fraction of the aqueous dispersion is 2-20%, preferably 2-15%, more preferably 10-13%, when laminating, between the high-performance fiber arrangement direction of two adjacent unidirectional sheets
  • the included angle is 90 ⁇ 10°;
  • step (3) the hot pressing temperature is 70-120° C., and the hot pressing pressure is 0.1-2 MPa.
  • the present invention also provides the nanofiber composite unidirectional fabric prepared by the method described in any of the embodiments herein.
  • the present invention also provides an aqueous adhesive dispersion, the aqueous adhesive dispersion comprising a resin matrix, nanofibers, water and optional additives;
  • the mass ratio of water to solid components other than nanofibers is 7:3 to 4:6, preferably 7:3 to 5:5.
  • the resin matrix is selected from one or more of polyurethane, styrene block copolymer and polyacrylate, preferably polyurethane or preferably styrene block copolymer.
  • the resin matrix is a styrene-isoprene-styrene block copolymer.
  • the resin matrix has a tensile strength of 15-40 MPa.
  • the mass fraction of the resin matrix in the solid content of the aqueous adhesive dispersion is 30-80%, preferably 40-80%.
  • the nanofibers are aramid nanofibers, preferably para-aramid nanofibers.
  • the nanofibers have a fiber length of 50-100 nm and a specific surface area of 50-500 m 2 /g.
  • the mass fraction of nanofibers in the solid content of the aqueous adhesive dispersion is 5-50%, preferably 5-30%, more preferably 14% -30%.
  • the mass ratio of the resin matrix and the nanofibers is 1:(0.1-1), preferably 1:(0.1-0.6).
  • the mass fraction of the additive in the solid content of the aqueous adhesive dispersion does not exceed 25%.
  • the present invention also provides an application of the aqueous adhesive dispersion according to any embodiment of the present invention in preparing a unidirectional fabric or improving the ballistic resistance of a unidirectional fabric.
  • the present invention also provides a method for preparing a unidirectional cloth or improving the ballistic resistance of a unidirectional cloth, the method comprising preparing the unidirectional cloth by using the aqueous adhesive dispersion according to any embodiment of the present invention.
  • the invention also provides the application of the nanofiber aqueous dispersion in preparing the unidirectional cloth or improving the ballistic resistance of the unidirectional cloth.
  • the present invention also provides a method for preparing a unidirectional fabric or improving the ballistic resistance of a unidirectional fabric, the method comprising using the nanofiber aqueous dispersion according to any embodiment of the present invention to prepare a unidirectional fabric.
  • the nanofibers are aramid nanofibers, preferably para-aramid nanofibers.
  • the nanofibers have a fiber length of 50-100 nm and a specific surface area of 50-500 m 2 /g.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers is 2-20%, preferably 2-15%, more preferably 10-13% %.
  • the present invention also provides a bulletproof product prepared from the nanofiber composite unidirectional cloth according to any embodiment of the present invention; preferably, the bulletproof product includes a bulletproof vest, a bulletproof insert and a bulletproof helmet.
  • the present invention also provides a bulletproof product comprising the nanofiber composite unidirectional fabric according to any embodiment of the present invention; preferably, the bulletproof product includes a bulletproof vest, a bulletproof insert and a bulletproof helmet.
  • the present invention also provides a unidirectional sheet, the unidirectional sheet includes high-performance fibers arranged in one direction and an adhesive, the adhesive includes nanofibers, and the surface of the unidirectional sheet has nanofibers. fiber.
  • the high performance fibers, adhesives or nanofibers in the unidirectional sheet are described in any of the embodiments herein.
  • the present invention also provides a method for preparing a unidirectional sheet, the method comprising the following steps:
  • step (1) in the method of making a unidirectional sheet is as described in step (1) in any of the embodiments herein for making a nanofiber composite unidirectional cloth.
  • step (2) in the method of making a unidirectional sheet is as described in step (2) in any of the embodiments herein for making a nanofiber composite unidirectional cloth.
  • the present invention also provides a unidirectional sheet prepared by the method described in any embodiment of the present invention; preferably, the unidirectional sheet is the unidirectional sheet described in any of the embodiments herein.
  • 1 is a schematic structural diagram of a nanofiber composite UD fabric comprising two layers of unidirectional sheets, and the two layers of unidirectional sheets form a 0°/90° arrangement structure, wherein 1 is a high-performance fiber, and 2 is a high-performance fiber.
  • the nanofibers in the adhesive, 3 is the nanofibers between the unidirectional sheets.
  • 2 is a schematic structural diagram of a nanofiber composite UD fabric comprising 4 layers of unidirectional sheets, and the 4 layers of unidirectional sheets form a 0°/90°/0°/90° arrangement structure, wherein 1 is High-performance fiber, 2 is the nanofiber in the adhesive, 3 is the nanofiber between the unidirectional sheets.
  • 3 is a schematic diagram of the interlayer structure of the nanofiber composite UD cloth comprising two unidirectional sheets of the present invention.
  • the unidirectional sheets also have a connecting effect of dispersed nanofibers. , where 1 is the unidirectional sheet, and 3 is the nanofiber between the unidirectional sheets.
  • the ratio refers to the mass ratio
  • the percentage refers to the mass percentage
  • the present invention provides a nanofiber composite UD cloth, the nanofiber composite UD cloth includes at least two unidirectional sheet layers and nanofibers located between adjacent unidirectional sheet layers, and the unidirectional sheet layers include unidirectional sheet layers. Oriented high performance fibers and adhesives including nanofibers.
  • high-performance fibers refer to fibers with a tensile strength of 20 g/d or more and an initial modulus of 40 GPa or more.
  • the tensile strength, initial modulus and elongation at break of fibers refer to the tensile strength, initial modulus and elongation at break measured according to the ASTM D885 standard. It can be understood that the high-performance fibers in the unidirectional sheet layer of the nanofiber composite UD cloth of the present invention refer to high-performance fiber filaments.
  • the high-performance fibers suitable for the present invention may be high-performance fibers commonly used in the art for preparing UD fabrics, such as aramid fibers, ultra-high molecular weight polyethylene fibers, polyimide fibers and poly(p-phenylene benzobisoxazole) Fibers, preferably one or two selected from aramid fibers and ultra-high molecular weight polyethylene fibers.
  • aramid fiber refers to a fiber made from polyamide in which at least 85% of amide groups (-CONH-) on the molecular chain are directly connected with two benzene rings.
  • Aramid fibers may be fibers of polyamides obtained by the polymerization of monomers comprising one or more aromatic diamines and one or more aromatic diacids, preferably one or more aromatic diamines and one or more aromatic diamines. Fibers of polyamides obtained by the polymerization of one or more aromatic diacids, such as including but not limited to poly(p-phenylene terephthalamide) fibers (i.e., para-aramid fibers), polyisophthaloyl isophthalamide Amine fibers (ie, meta-aramid fibers), heterocyclic aramid fibers, and co-aramid fibers.
  • the ultra-high molecular weight polyethylene fibers refer to fibers obtained from substantially unbranched linear polyethylene with a viscosity average molecular weight of 1.5 million or more.
  • a certain angle is preferably formed between the high-performance fiber arrangement directions of two adjacent unidirectional sheets.
  • the included angle can be, for example, 30°-150°, that is, two adjacent unidirectional sheets can form a 0°/(30°-150°) arrangement.
  • the included angle between the arrangement directions of the high-performance fibers of two adjacent unidirectional sheets is 90 ⁇ 10°, for example, 90 ⁇ 5°, 90°.
  • the nanofiber composite UD cloth of the present invention may include an odd or even number of unidirectional sheets greater than 1, such as 2, 4, 6, and 8 unidirectional sheets.
  • the nanofiber composite UD cloth of the present invention includes 2 or 4 unidirectional sheets.
  • the unidirectional sheets may be the same or different, for example, the high-performance fibers contained in each unidirectional sheet may be the same or different.
  • the nanofiber composite UD cloth of the present invention is a new type of composite structure, which integrates the comprehensive characteristics of fiber filaments, resin matrix and nanofibers.
  • the high-performance fibers in the unidirectional sheet absorb external forces mainly through fiber tensile deformation.
  • the highly dispersed nanofibers and resin matrix in the unidirectional sheet are used for the adhesion between the single layer yarns and provide the holding force between the yarns.
  • the nanofibers between the unidirectional sheets act as interlayer connection points, providing physical cross-linking points between the unidirectional sheets.
  • the nanofibers and the resin matrix together constitute the reinforced and toughened structure of the nanofiber composite UD cloth.
  • the mass of high-performance fibers accounts for 70-90% of the total mass of the UD cloth, preferably 80-90%, such as 83-87%, 84-86%, 85%.
  • the total mass of the adhesive and the nanofibers located between the adjacent unidirectional sheets accounts for 10-30% of the total mass of the UD cloth, preferably 10-20%, for example 13-17%, 14-16%, 15%.
  • the mass of the adhesive accounts for 10-29.9% of the total mass of the UD cloth, preferably 10-19.9%, such as 13%, 14%, 14.32%, 14.41%, 14.49%, 14.53%, 14.62%, 14.64%, 14.76%, 14.8%, 15%.
  • the mass of the nanofibers located between adjacent unidirectional sheets accounts for 0.1-5% of the total mass of the UD cloth, preferably 0.1-2%, such as 0.2%, 0.24% , 0.36%, 0.38%, 0.47%, 0.51%, 0.59%, 0.68%, 0.7%, 1%.
  • nanofibers located between adjacent unidirectional sheets refers to the nanofibers contained in the UD cloth other than the nanofibers in the adhesive.
  • the mass of "nanofibers between adjacent unidirectional sheets” refers to the mass of nanofibers applied on the unidirectional sheets by spraying an aqueous dispersion of aramid nanofibers.
  • the content of the high-performance fibers, the total content of the adhesive and the nanofibers on the surface of the unidirectional sheet, the content of the adhesive and the content of the nanofibers on the surface of the unidirectional sheet are respectively The content of high-performance fibers in the UD cloth composited with the aforementioned nanofibers, the total content of adhesives and nanofibers located between adjacent unidirectional sheets, the content of adhesives and the content of adjacent unidirectional sheets The content of nanofibers between layers.
  • the "nanofibers on the surface of the unidirectional sheet” refer to the nanofibers other than the nanofibers in the adhesive contained in the unidirectional sheet.
  • the mass of "nanofibers on the surface of the unidirectional sheet” refers to the mass of nanofibers applied on the unidirectional sheet by spraying an aqueous dispersion of aramid nanofibers.
  • the areal density is 70-350 g/m 2 , preferably 100-300 g/m 2 , more preferably 120-250 g/m 2 .
  • the high-performance fiber can be one selected from the group consisting of ultra-high molecular weight polyethylene fiber, aramid fiber, polyimide fiber and poly-p-phenylene benzobisoxazole fiber or variety.
  • the aramid fibers are preferably selected from one or more of para-aramid fibers and heterocyclic aramid fibers.
  • the high-performance fibers suitable for the present invention are preferably selected from one or both of ultra-high molecular weight polyethylene fibers and aramid fibers, and more preferably selected from one or both of ultra-high molecular weight polyethylene fibers and para-aramid fibers. two kinds. It is found in the present invention that the use of ultra-high molecular weight polyethylene fibers or aramid fibers in the nanofiber composite UD cloth of the present invention can make the UD cloth have more excellent ballistic resistance.
  • the tensile strength of the high-performance fiber suitable for the present invention is preferably greater than or equal to 1.8GPa, such as 2.5-5GPa, ⁇ 23g/d, ⁇ 25g/d, ⁇ 26g/d, the initial modulus is preferably 85-170GPa, and the elongation at break is preferably 85-170GPa.
  • the ratio is preferably 3.5% or more. Therefore, in a preferred embodiment, the present invention uses high performance fibers with a tensile strength of 1.8 GPa or more, an initial modulus of 85-170 GPa, and an elongation at break of 3.5% or more.
  • the high-performance fibers are ultra-high-performance fibers with a tensile strength of 2.5-5GPa, an initial modulus of 85-170GPa, and an elongation at break greater than or equal to 3.5%
  • Molecular weight polyethylene fibers, or aramid fibers with tensile strength ⁇ 23g/d, preferably ⁇ 25g/d, more preferably ⁇ 26g/d, initial modulus of 85-170 GPa, and elongation at break greater than or equal to 3.5% Para-aramid fibers are preferred.
  • Nanofibers suitable for use in the present invention are preferably aramid nanofibers.
  • the aramid nanofibers may be selected from one or both of para-aramid nanofibers and heterocyclic aramid nanofibers.
  • the nanofibers are para-aramid nanofibers. It is found in the present invention that aramid nanofibers have rigid segments, which are not easy to produce longitudinal slip between molecular chains, and can effectively play the role of connecting unidirectional sheets. Therefore, the nanofiber composite UD cloth containing aramid nanofibers has better performance. anti-ballistic properties, especially lower BFS values.
  • the fiber length of the nanofibers suitable for use in the present invention is preferably 50-100 nm, and the specific surface area is preferably 50-500 m 2 /g, such as 200-250 m 2 /g.
  • the nanofibers are aramid nanofibers with a fiber length of 50-100 nm and a specific surface area of 50-500 m 2 /g, preferably para-aramid nanofibers .
  • the adhesive in the nanofiber composite UD cloth of the present invention is the solid component of the adhesive aqueous dispersion used in the preparation of the UD cloth.
  • Adhesives in UD cloth usually include a resin matrix.
  • the mass fraction of the resin matrix in the adhesive is usually 30-80%.
  • Resin matrices suitable for use in the present invention are typically thermoplastic resins.
  • the thermoplastic resin is preferably selected from one or more of polyurethane, styrene block copolymer and polyacrylate, more preferably polyurethane or styrene block copolymer.
  • Polyurethane resin has good low temperature flexibility, excellent mechanical properties and impact resistance, and the adhesive with polyurethane as resin matrix has good viscoelasticity and bonding strength.
  • the styrene block copolymer suitable for the present invention is a polymer obtained by copolymerizing styrene and other olefin monomers (such as aliphatic olefin monomers), preferably styrene and butadiene, isoprene , a polymer obtained by copolymerizing one or more olefin monomers in ethylene, butene and propylene, including but not limited to styrene-butadiene-styrene block copolymer (SBS), styrene-isoamyl Diene-styrene block copolymer (SIS), styrene-ethylene/butylene-styrene block copolymer (SEBS) and styrene-ethylene/propylene-styrene block copolymer (SEPS).
  • SBS styrene-butadiene-styrene block copolymer
  • the resin matrix is SIS.
  • the mass fraction of polystyrene segments is 15 ⁇ 5%, and the mass fraction of polyisoprene segments is 85 ⁇ 5%.
  • the adhesive with styrene block copolymer as resin matrix can not only satisfy the protective performance, but also endow the nanofiber composite UD cloth with good softness.
  • the tensile strength of the resin matrix suitable for the present invention is preferably 15-40 MPa, such as 15-25 MPa, 20-30 MPa.
  • the resin matrix is a polyurethane with a tensile strength of 15-40 MPa, preferably 20-30 MPa.
  • the resin matrix is a styrene block copolymer (eg, SIS) with a tensile strength of 15-40 MPa, preferably 15-25 MPa.
  • the mass fraction of the resin matrix in the adhesive is 40-80%, such as 50-70%, 55-65%, 55-80% 60%.
  • the adhesive also includes nanofibers.
  • Nanofibers suitable for use in adhesives have been described previously.
  • the mass fraction of nanofibers in the adhesive is usually 5-50%, preferably 5-30%, such as 9-30%, 14-30%, 14% -25%, 24-26%, 9.1%, 14.9%, 19.2%, 20%, 24.5%, 28.6%.
  • the mass ratio of the resin matrix and the nanofibers is 1:(0.1-1), preferably 1:(0.1-0.6), more preferably 1:(0.2-0.45), For example 1: (0.3-0.45), 1: (0.4-0.45).
  • the adhesive of the nanofiber composite UD cloth of the present invention further includes an additive.
  • the additives in the adhesive are those commonly used in the art for aqueous adhesive dispersions.
  • the resin matrix is polyurethane
  • the additives are those commonly used in polyurethane emulsions.
  • the additives in the adhesive may include one or more selected from emulsifiers, tackifiers, pH adjusters, defoamers and antioxidants. When included, the amounts of each of emulsifiers, tackifiers, pH adjusters, defoamers, and antioxidants in the adhesive may be conventional in the art.
  • the mass fraction of the additive in the adhesive is usually not more than 30%, preferably not more than 25%, such as 15-25%.
  • the mass ratio of the resin matrix and the additive in the adhesive is usually 2:1 to 5:1, preferably 2:1 to 4:1, such as 2.5:1 to 3.5:1, 3 :1.
  • the nanofibers located between adjacent unidirectional sheets can be the same as or different from the nanofibers in the adhesive. In some embodiments, the nanofibers located between adjacent unidirectional sheets and the nanofibers in the adhesive are the same type of nanofibers. In the nanofiber composite UD cloth of the present invention, the nanofibers located between adjacent unidirectional sheets come from the aqueous dispersion of nanofibers sprayed on the unidirectional sheet when the nanofiber composite UD cloth of the present invention is prepared .
  • the areal density of the nanofibers located between two adjacent unidirectional sheets is 0.05-2.5 g/m 2 , preferably 0.1-1 g/m 2 , more preferably 0.3-0.5 g/m 2 , For example, 0.15 g/m 2 , 0.26 g/m 2 , 0.36 g/m 2 , 0.4 g/m 2 , 0.46 g/m 2 , 0.5 g/m 2 , 0.55 g/m 2 .
  • the nanofiber composite UD cloth of the present invention can be prepared by the following steps:
  • the unidirectional sheet can be prepared by a method known in the art, for example, the aqueous dispersion of the adhesive is uniformly attached to the high-performance fiber, and dried to obtain the unidirectional sheet.
  • the present invention is characterized in that the adhesive includes nanofibers, that is, the aqueous dispersion of the adhesive used in preparing the unidirectional sheet is an aqueous dispersion of the adhesive including nanofibers.
  • step (1) includes: uniformly attaching the aqueous dispersion of adhesive to the unidirectionally arranged high-performance fibers, and drying the high-performance fibers to which the aqueous dispersion of adhesive is attached , to obtain a unidirectional sheet.
  • the aqueous dispersion of adhesive is attached to the unidirectionally arranged high performance fibers by dipping the high performance fibers into the aqueous dispersion of adhesive.
  • the aqueous dispersion of the adhesive is formed by dispersing the aforementioned components of the adhesive in water, ie, the aqueous adhesive dispersion includes a resin matrix, nanofibers and water, optionally or preferably also including additives.
  • the dosage ratio of each solid component in the aqueous adhesive dispersion is the same as the dosage ratio of each component in the aforementioned adhesive.
  • the solids content of the aqueous adhesive dispersion is usually 30%-60%, preferably 40%-50%, such as 42.3%, 43.9%, 45.5%, 46.9%, 49.5%.
  • Water suitable for use in the present invention is preferably deionized water.
  • the mass ratio of water to solid components other than nanofibers is usually 7:3 to 4:6, preferably 7:3 to 5:5, more preferably 6.5:3.5 to 5.5:4.5 , for example 6:4.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion is usually 2%-20%, preferably 3%-15%, such as 3.8%, 6.5%, 9.1%, 11.5%, 13.8% %, more preferably 5-15%, eg 9-13%, 10-13%, 9-12%, 11-12%.
  • an aqueous dispersion of a sizing agent comprising nanofibers is obtained by dispersing the nanofibers in an aqueous dispersion of the sizing agent free of nanofibers.
  • Aqueous dispersions of nanofiber-free adhesives can be self-prepared or commercially available, for example, when the resin matrix in the adhesive is polyurethane, the aqueous dispersions of nanofiber-free adhesives It can be a commercially available polyurethane emulsion, such as the polyurethane emulsion with the brand name WB8139 produced by Henkel; another example is when the resin matrix in the adhesive is a styrene block copolymer, the nanofiber-free adhesive
  • the aqueous dispersion may be a commercially available styrene block copolymer emulsion, such as the SIS emulsion produced by Henkel under the designation B7137.
  • the aqueous dispersion of the adhesive attached to the high-performance fibers forms an adhesive film on the surface that forms the high-performance fibers.
  • the thickness of the adhesive film is preferably 0.01-0.1 mm, more preferably 0.01-0.05 mm, such as 0.02-0.04 mm, 0.025-0.035 mm, 0.03 mm.
  • the method for controlling the amount of dipping material may be various methods for controlling the amount of dipping material known in the art.
  • the temperature of the aqueous dispersion of the adhesive is usually controlled at room temperature to 90°C.
  • the drying temperature and time are such that the water in the aqueous dispersion of the adhesive to which the high-performance fibers is attached is evaporated to dryness.
  • the nanofibers are highly dispersed in the aqueous dispersion.
  • the mass of nanofibers is usually 2-20% of the total mass of the aqueous dispersion of the adhesive, preferably 2-15%, 3-15%, such as 3.8%, 6.5%, 9.1%, 11.5%, 13.8%, more preferably 5-15%, eg 9-13%, 10-13%, 9-12%, 11-12%.
  • step (1) includes: spreading the high-performance fibers on a roller, prepreg processing through a glue tank containing an aqueous dispersion of an adhesive containing nanofibers, and drying to obtain a single to the slice.
  • a single roll spreader is used to spread high performance fibers onto rolls. The method of prepreg processing is known to those skilled in the art, usually the bottom of the roller is immersed in the glue tank, the high-performance fiber is dipped through the rotation of the roller, and then the rubber squeegee is processed.
  • the aqueous dispersion of nanofibers is formed by dispersing nanofibers in water.
  • the nanofibers are highly dispersed in water.
  • the mass of the nanofibers is usually 2-20% of the total mass of the nanofiber aqueous dispersion, preferably 2-15%, 3-15%, such as 3.8%, 6.5%, 9.1%, 11.5%, 13.8%, more preferably 5% -15%, eg 9-13%, 10-13%, 9-12%, 11-12%.
  • the present invention finds that the nanofiber composite UD cloth with improved ballistic resistance can be prepared by controlling the nanofiber content in the nanofiber aqueous dispersion to 2-20%, especially the nanofiber content is further controlled to 5-15%, Nanofiber composite UD cloth with significantly reduced BFS value can be prepared. It is found in the present invention that since the aqueous dispersion of the adhesive containing nanofibers has a certain viscosity, it cannot be applied to the unidirectional sheet by spraying.
  • the present invention disperses the water of the nanofibers.
  • the liquid is sprayed onto the unidirectional sheets so that the nanofibers form junctions between the unidirectional sheets.
  • the spraying amount of the nanofiber aqueous dispersion between the unidirectional sheets is 1-10 g/m 2 , preferably 1-5 g/m 2 , for example, 4 g/m 2 .
  • the aqueous dispersion of nanofibers is usually sprayed on one surface of the unidirectional sheet to be laminated, and then the surface of the aqueous dispersion of unsprayed nanofibers of another unidirectional sheet is attached. on the surface of the nanofiber-sprayed aqueous dispersion.
  • the drying temperature and time should be such that the water in the nanofiber aqueous dispersion adhered on the unidirectional sheet is evaporated to dryness.
  • the arrangement directions of the high-performance fibers of the two adjacent unidirectional sheets preferably form a certain angle, for example, the angle can be 30°-150°, preferably 90°. ⁇ 10°.
  • the included angles between two adjacent unidirectional sheets may be the same or different. In some embodiments, the included angles between two adjacent unidirectional sheets are the same, for example, 60 ⁇ 10° or 90 ⁇ 10°.
  • the temperature of hot-pressing compounding is preferably 70-120°C.
  • the hot pressing pressure is preferably 0.1-2 MPa.
  • the preparation method of the nanofiber composite aramid UD cloth of the present invention comprises the following steps:
  • the thickness of the glue film is preferably 0.01-0.1 mm, more preferably 0.01-0.05mm, dried to obtain a unidirectional sheet;
  • the spraying amount of the aqueous dispersion of nanofibers between the unidirectional sheets is preferably 1-10 g/m 2 , dry, and then carry out the unidirectional sheet Lamination, when laminating, it is preferable that the arrangement directions of the high-performance fibers of two adjacent unidirectional sheets preferably form a certain included angle, and the included angle is preferably 90 ⁇ 10°;
  • the laminated unidirectional sheets are composited by hot pressing to obtain a UD fabric composited with nanofibers, and the temperature of hot pressing and composite is preferably 70-120°C.
  • the hot pressing pressure is preferably 0.1-2 MPa.
  • the present inventors found that a UD cloth with excellent ballistic resistance can be prepared by using an aqueous dispersion of a nanofiber-containing adhesive.
  • the present invention includes an aqueous adhesive dispersion comprising a resin matrix, nanofibers and water, optionally or preferably further comprising additives.
  • the additives include one or more selected from emulsifiers, tackifiers, defoamers, antioxidants and pH adjusters.
  • the aqueous adhesive dispersion of the present invention comprises a resin matrix, nanofibers and water, optionally or preferably further comprising an emulsifier, tackifier, defoamer, antioxidant and pH one or more of the modifiers.
  • the mass ratio of water to solid components other than nanofibers is usually 7:3 to 4:6, preferably 7:3 to 5:5, more preferably 6.5:3.5 to 5.5:4.5, eg 6:4.
  • the dosage ratio of each solid component in the adhesive aqueous dispersion of the present invention is the same as the dosage ratio of each component in the aforementioned adhesive.
  • the solid content of the aqueous adhesive dispersion of the present invention is usually 30%-60%, preferably 40%-50%, such as 42.3%, 43.9%, 45.5%, 46.9%, 49.5%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion is usually 2%-20%, preferably 2%-15%, 3%-15%, such as 3.8%, 6.5% %, 9.1%, 11.5%, 13.8%, more preferably 5-15%, eg 9-13%, 10-13%, 9-12%, 11-12%.
  • the present invention also includes the use of the adhesive aqueous dispersion of the present invention in preparing UD cloth or improving the ballistic resistance of UD cloth.
  • the improvement of the ballistic resistance refers to the increase of the V50 value and/or the decrease of the BFS value under the bulletproof standard NIJ0101.06.
  • the present invention finds that a UD cloth with excellent ballistic resistance can be prepared by using an aqueous dispersion of nanofibers.
  • the mass of nanofibers is usually 2-20% of the total mass of the aqueous dispersion of nanofibers, preferably 3-15%, such as 3.8%, 6.5%, 9.1%, 11.5%, 13.8%, more preferably 5-15%, such as 9-13%, 10-13%, 9-12%, 11-12%.
  • the present invention also includes the use of the aqueous dispersions of nanofibers described herein in preparing UD fabrics or improving the ballistic resistance of unidirectional fabrics.
  • the invention relates to the application of nanofiber composite UD cloth to bulletproof sheets.
  • the bulletproof sheet can be, for example, a UD cloth comprising a plurality of unidirectional sheet layers, which can be obtained by laminating a single-layer UD cloth, or further laminating a multi-layer UD cloth.
  • the bulletproof sheet of the present invention can be used for bulletproof vests, bulletproof inserts and bulletproof helmets.
  • the present invention also includes bulletproof articles prepared from the aramid UD cloth of the present invention.
  • Bulletproof products include bulletproof vests, bulletproof inserts and bulletproof helmets.
  • Bulletproof inserts include personal bulletproof inserts and vehicle bulletproof inserts.
  • the nanofiber composite UD cloth of the present invention can be made into a bulletproof product by methods known in the art, for example, the nanofiber composite UD cloth of the present invention can be cut, laminated and composited to form a bulletproof product.
  • the preparation method of the nanofiber composite UD cloth of the present invention is safe and environmentally friendly, using an aqueous system is harmless to the human body and the environment, the nanofibers have a high specific surface area, and can be stably dispersed in the aqueous system. Nanofibers can be uniformly dispersed in the two-phase interface of high-performance fibers and adhesives, providing a holding force between yarns. Physical cross-linking points between layers.
  • the nanofiber composite UD cloth of the present invention has excellent anti-ballistic performance, low cost and production difficulty, and good economy.
  • the nanofiber composite UD cloth of the present invention is used for bulletproof products, can effectively improve the impact resistance of shrapnel, has higher safety, and the weight of the product is not greatly increased, the product is softer, and the comfort is higher.
  • Ultra-high molecular weight polyethylene fiber purchased from Shandong Aidi Polymer Materials Co., Ltd., the tensile strength is 3.5GPa, the initial modulus is 120GPa, and the elongation at break is 3.5%;
  • High-strength aramid fiber para-aramid fiber, sourced from Sinochem High-performance Fiber Materials Co., Ltd., brand ZHAODA HT840D-01, tensile strength 26g/d, initial modulus 100GPa, elongation at break 3.5%;
  • Aramid nanofibers para-aramid nanofibers are prepared from ZHAODA HT840D-01 para-aramid fibers of Sinochem High Performance Fiber Materials Co., Ltd. by chemical cracking method.
  • the fiber length is 50-100nm, and the specific surface area is 50-100nm. is 200-250m 2 /g;
  • Ultra-high molecular weight polyethylene nanofibers using the aforementioned ultra-high molecular weight polyethylene fibers of Shandong Aidi Polymer Materials Co., Ltd. as raw materials, prepared by chemical cracking method, the fiber length is 50-100nm, and the specific surface area is 200-250m 2 / g;
  • Polyurethane emulsion purchased from Henkel, brand WB8139, in the state of water emulsion, viscosity of 400cps, total solid content of 40wt% (polyurethane resin content of 30wt%, additive content of 10wt%), the tensile strength of the dried colloid is 20-30MPa.
  • Styrene-isoprene-styrene block copolymer (SIS) emulsion purchased from Henkel, brand B7137, in water emulsion state, viscosity 280cps, solid content 42wt%, colloidal tensile strength after drying 15- 25MPa, 15wt% of the segment structure of SIS is polystyrene segment, and 85wt% is polyisoprene segment.
  • SIS Styrene-isoprene-styrene block copolymer
  • Example 1 Preparation of aramid nanofiber composite ultra-high molecular weight polyethylene fiber UD fabric by single-roller prepreg and hot-pressing composite process
  • aramid nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing aramid nanofibers. 4 parts by weight of aramid nanofibers are dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing a polyurethane emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm . Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 1.
  • the UD fabric of Example 1 has a 2-layer structure with a 0°/90° arrangement, and its structure is shown in Figures 1 and 3.
  • the arrangement direction of the UHMWPE fibers of the two adjacent unidirectional sheets is The angle between them is 90°.
  • the connection effect of dispersed nanofibers between the unidirectional sheets According to the total length of the high-performance fiber used in the UD cloth and the linear density of the high-performance fiber, the quality of the high-performance fiber can be calculated, and then by measuring the total mass of the UD cloth, the mass fraction of the high-performance fiber in the UD cloth can be calculated. In the UD cloth of Example 1, the mass fraction of ultra-high molecular weight polyethylene fibers in the UD cloth is 85%.
  • the mass fraction of the nanofibers in the adhesive the mass of the nanofibers ⁇ (the mass of the emulsion ⁇ the solid content of the emulsion + the mass of the nanofibers), so in the adhesive of Example 1, the mass fraction of the nanofibers in the adhesive is 9.1% .
  • the mass fraction of the nanofibers in the aqueous adhesive dispersion the mass of the nanofibers ⁇ (the mass of the emulsion + the mass of the nanofibers), so in the aqueous adhesive dispersion of Example 1, the nanofibers account for the mass of the aqueous adhesive dispersion The score was 3.8%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers mass of nanofibers ⁇ (mass of water+mass of nanofibers), so in the aqueous dispersion of nanofibers of Example 1, nanofibers account for the mass of the aqueous dispersion of nanofibers The score was 3.8%.
  • the amount of nanofibers sprayed on the UD cloth the mass fraction of nanofibers in the aqueous dispersion of nanofibers ⁇ the spraying amount of the aqueous dispersion of nanofibers on the unidirectional sheet layer ⁇ the number of unidirectional sheets contained in the UD cloth, Therefore, in the UD cloth of Example 1, the amount of nanofibers sprayed on the UD cloth was 0.31 g/m 2 . Combined with the areal density of the UD cloth shown in Table 2, it can be seen that in the UD cloth of Example 1, the nanofibers sprayed on the UD cloth accounted for 0.24% of the mass fraction of the UD cloth, and the adhesive accounted for 14.76% of the mass fraction of the UD cloth %.
  • aramid nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing aramid nanofibers. 7 parts by weight of aramid nanofibers are dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing a polyurethane emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm . Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • the 90° unidirectional arrangement layer is obtained by cutting and turning. Subsequently, 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 2.
  • the UD fabric of Example 2 has a 2-layer structure with a 0°/90° arrangement, and its structure is shown in Figures 1 and 3.
  • the arrangement direction of the UHMWPE fibers of the two adjacent unidirectional sheets is The angle between them is 90°.
  • the mass fraction of ultra-high molecular weight polyethylene fibers in the UD cloth is 85%.
  • the mass fraction of nanofibers in the adhesive is 14.9%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion is 6.5%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers is 6.5%.
  • the amount of nanofibers sprayed on the UD cloth was 0.52 g/m 2 .
  • Example 3 Preparation of aramid nanofiber composite ultra-high molecular weight polyethylene fiber UD fabric by single-roller prepreg and hot-pressing composite process
  • aramid nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing aramid nanofibers.
  • 10 parts by weight of aramid nanofibers are dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing a polyurethane emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm . Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 3.
  • the UD fabric of Example 3 has a 2-layer structure with a 0°/90° arrangement, and its structure is shown in Figures 1 and 3.
  • the arrangement direction of the UHMWPE fibers of the two adjacent unidirectional sheets is The angle between them is 90°.
  • the mass fraction of ultra-high molecular weight polyethylene fibers in the UD cloth is 85%.
  • the mass fraction of nanofibers in the adhesive is 20%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion is 9.1%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers is 9.1%.
  • the amount of nanofibers sprayed on the UD cloth was 0.73 g/m 2 .
  • the nanofibers sprayed on the UD cloth accounted for 0.51% of the mass fraction of the UD cloth, and the adhesive accounted for 14.49% of the mass fraction of the UD cloth. %.
  • Example 4 Preparation of aramid nanofiber composite ultra-high molecular weight polyethylene fiber UD fabric by single-roller prepreg and hot-pressing composite process
  • 13 parts by weight of aramid nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing aramid nanofibers. 13 parts by weight of aramid nanofibers were dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing a polyurethane emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm . Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 4.
  • the UD fabric of Example 4 has a 2-layer structure with a 0°/90° arrangement, and its structure is shown in Figures 1 and 3.
  • the arrangement direction of the UHMWPE fibers of the two adjacent unidirectional sheets is The angle between them is 90°.
  • the mass fraction of ultra-high molecular weight polyethylene fibers in the UD cloth is 85%.
  • the mass fraction of nanofibers in the adhesive is 24.5%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion is 11.5%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers is 11.5%.
  • the amount of nanofibers sprayed on the UD cloth was 0.92 g/m 2 .
  • Example 5 Preparation of Aramid Nanofiber Composite Ultra High Molecular Weight Polyethylene Fiber UD Fabric Using Single Roller Arranger Prepreg and Hot Pressing Composite Process
  • 16 parts by weight of aramid nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing aramid nanofibers.
  • 16 parts by weight of aramid nanofibers were dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing a polyurethane emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm . Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 5.
  • the UD fabric of Example 5 has a 2-layer structure with a 0°/90° arrangement, and its structure is shown in Figures 1 and 3.
  • the arrangement direction of the UHMWPE fibers of the two adjacent unidirectional sheets is The angle between them is 90°.
  • the mass fraction of ultra-high molecular weight polyethylene fibers in the UD cloth is 85%.
  • the mass fraction of nanofibers in the adhesive is 28.6%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion is 13.8%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers is 13.8%.
  • the amount of nanofibers sprayed on the UD cloth was 1.10 g/m 2 .
  • the UD fabrics with the 2-layer structure in Examples 1-5 were cut into splines according to the ASTMD5035 standard, and a tensile test was performed using a universal material testing machine (Instron, model Instron 5967). Sampling 10 times in each direction and weft direction, the spline width is 40mm, the spline length is 180mm, stretched under the standard state, the instrument test speed is 250mm/min, the warp direction and weft direction of the UD cloth splines of Examples 1-5 are The strength test results of the orientation are shown in Table 1 below.
  • the results of the spline tensile test show that the warp strength and weft strength of the nanofiber composite UD fabrics of Examples 1-5 are not much different.
  • the areal densities of the UD fabrics with the 2-layer structure in Examples 1-5 were tested, and the results are shown in Table 2.
  • the ballistic helmet compression and target shooting tests were performed on the UD cloths in Examples 1-5. 48 pieces of UD cloth with a two-layer structure in Examples 1-5 were treated with one-sided film-coated squeegee, and then prepreg was hot-pressed to make a bulletproof helmet. A 1.1g FSP simulated shrapnel gun was used to carry out the process according to the bulletproof standard NIJ0101.06. In the test, 6 shots were performed on different parts of the bulletproof helmet. The test results are shown in Table 2 below.
  • the V50 in the test index is the speed of the bullet with a penetration probability of 50%.
  • the value of V50 means the quality of the bulletproof performance.
  • Back Face Signature is the structural depression on bulletproof products produced by unpenetrating bullets. The smaller the BFS value, the better the bulletproof performance.
  • the test results show that the V50 of the bulletproof helmets made in Examples 1-5 are all greater than 680m/s, and the BFS are all less than 25mm.
  • UHMWPE fiber has high tensile strength and elastic modulus, and the UD cloth made of it has better bulletproof effect.
  • the BFS concave degree of bulletproof products can be effectively improved through the process of aramid nanofiber compounding.
  • the present invention found that the degree of dispersion of nanofibers has an important influence on the BFS of the bulletproof helmet.
  • the sample of Example 4 has a lower BFS value and a higher V50 value relative to Example 5.
  • Observing the macroscopic morphology of the UD cloth of Example 4 it was found that the warp and weft lines of the UD cloth of Example 4 were uniform and flat, and the edge of the UD cloth did not produce laminations and protrusions, indicating that the nanofibers did not occur locally during the hot-pressing compounding process. Agglomerated with good dispersion.
  • controlling the mass fraction of nanofibers in the aqueous dispersion of the adhesive and the aqueous dispersion of nanofibers to be less than 13% is beneficial to obtain good dispersibility and improve the anti-ballistic performance of products, especially the The mass fraction of nanofibers in the aqueous dispersion of the nanofiber-containing adhesive and the aqueous dispersion of nanofibers is controlled at 10-13%, which can improve the ballistic resistance of the bulletproof product to the greatest extent.
  • Example 6 Preparation of high-strength aramid fiber UD fabric composited with aramid nanofibers by single-roller prepreg and hot-pressing composite process
  • aramid nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing aramid nanofibers.
  • 10 parts by weight of aramid nanofibers are dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the high-strength aramid fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing a polyurethane emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm. Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 6.
  • the UD fabric of Example 6 has a 2-layer structure arranged at 0°/90°, and its structure is shown in Figures 1 and 3. The included angle is 90°.
  • the connection effect of dispersed nanofibers between the unidirectional sheets there is also the connection effect of dispersed nanofibers between the unidirectional sheets.
  • the areal density of the nanofiber composite UD cloth of Example 6 was 200 g/m 2 .
  • the mass fraction of aramid fibers in the UD cloth is 85%.
  • the adhesive of Example 6 the mass fraction of nanofibers in the adhesive is 20%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion of Example 6 is 9.1%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers is 9.1%.
  • the amount of nanofibers sprayed on the UD cloth was 0.73 g/m 2 .
  • the nanofibers sprayed on the UD cloth accounted for 0.36% of the mass fraction of the UD cloth, and the adhesive accounted for 14.64% of the mass fraction of the UD cloth.
  • the nanofiber composite UD cloth of Example 6 was used to make a bulletproof helmet, and the same target shooting test standard as Test Example 2 was used to measure the nanofiber composite UD cloth of Example 6.
  • the V50 of the resulting bulletproof helmet was 685 m/s, and the BFS was 10 mm.
  • the ballistic resistance V50 value of the nanofiber composite high-strength aramid fiber UD cloth of Example 6 is lower, and the BFS value is smaller, because different The type of high-performance fiber layer itself is caused by the difference in the anti-ballistic performance.
  • Comparative Example 1 UHMWPE fiber UD fabric was prepared by single-roller prepreg and hot-pressing composite process
  • the ultra-high molecular weight polyethylene fiber guide yarn is spread neatly on the roller through the single-roller arrangement machine, and then prepreg is processed through the glue tank equipped with polyurethane emulsion, and the film thickness is controlled to 0.03mm. Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the 90° unidirectional arrangement layer is obtained by cutting and turning.
  • the UD fabric of Comparative Example 1 was prepared by performing 0°/90° hot pressing compounding at a temperature of 90° C. and a pressure of 0.5 MPa.
  • the UD fabric of Comparative Example 1 had a 2-layer structure with a 0°/90° arrangement.
  • ultra-high molecular weight polyethylene nanofibers are dispersed into 100 parts by weight of polyurethane emulsion to form a polyurethane emulsion containing ultra-high molecular weight polyethylene nanofibers. Disperse 10 parts by weight of ultra-high molecular weight polyethylene nanofibers into 100 parts by weight of deionized water to form an aqueous dispersion of ultra-high molecular weight polyethylene nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is spread neatly on the roller through a single-roller arrangement machine, and then prepreg is processed through the glue tank containing the polyurethane emulsion containing ultra-high molecular weight polyethylene nanofibers, and the thickness of the film is controlled. is 0.03mm. Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of high molecular weight polyethylene nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • the UD cloth of Comparative Example 2 had a 2-layer structure with a 0°/90° arrangement.
  • the test results show that the bulletproof helmet made of UD cloth (comparative example 1) without adding aramid nanofibers may cause harm to the human body due to the excessive BFS value.
  • the bulletproof helmet made of UD cloth (comparative example 2) made of polyurethane emulsion and water dispersion containing 10 wt% of ultra-high molecular weight polyethylene nanofibers, its ballistic resistance is lower than that of UD cloth using aramid nanofibers, and the Compared with the UD cloth without the addition of aramid nanofibers, there is no significant improvement.
  • ultra-high molecular weight polyethylene nanofibers do not have the rigid segments of aramid nanofibers, and are prone to longitudinal slippage between the molecular chains, which cannot effectively modify the interface and connect the unidirectional sheets. Meet the rigid requirements of bulletproof helmets.
  • Example 7 Preparation of aramid nanofiber composite ultra-high molecular weight polyethylene fiber UD fabric by single-roller prepreg and hot-pressing composite process
  • 10 parts by weight of aramid nanofibers are dispersed into 100 parts by weight of SIS emulsion to form an SIS emulsion containing aramid nanofibers.
  • 10 parts by weight of aramid nanofibers are dispersed in 100 parts by weight of deionized water to form an aqueous dispersion of aramid nanofibers.
  • the ultra-high molecular weight polyethylene fiber guide yarn is neatly spread on the roller through a single-roller arrangement machine, and then prepreg is processed through a glue tank containing SIS emulsion containing aramid nanofibers, and the film thickness is controlled to 0.03mm . Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the aqueous dispersion of aramid nanofibers was sprayed on the 0° unidirectional arrangement layer, and the spraying amount was controlled to be 4 g/m 2 , and then dried.
  • a 90° unidirectional arrangement layer is obtained by cutting and turning.
  • 0°/90° hot pressing was performed at a temperature of 90° C. and a pressure of 0.5 MPa, thereby preparing the nanofiber composite UD cloth of Example 7.
  • the UD fabric of Example 7 has a 2-layer structure with a 0°/90° arrangement, and its structure is shown in Figures 1 and 3.
  • the arrangement direction of the UHMWPE fibers of the two adjacent unidirectional sheets is The angle between them is 90°.
  • the areal density of the nanofiber composite UD cloth of Example 7 was 155 g/m 2 .
  • the mass fraction of ultra-high molecular weight polyethylene fibers in the UD cloth is 85%.
  • the mass fraction of nanofibers in the adhesive is 19.2%.
  • the mass fraction of nanofibers in the aqueous adhesive dispersion of Example 7 is 9.1%.
  • the mass fraction of nanofibers in the aqueous dispersion of nanofibers was 9.1%.
  • the amount of nanofibers sprayed on the UD cloth was 0.73 g/m 2 .
  • the nanofibers sprayed on the UD cloth accounted for 0.47% of the mass fraction of the UD cloth, and the adhesive accounted for 14.53% of the mass fraction of the UD cloth.
  • the areal density of the UD fabric with the 2-layer structure in Example 7 was tested, and the results are shown in Table 5.
  • the ballistic helmet compression and target shooting tests were performed on the UD cloth in Example 7. 48 pieces of UD cloth with a 2-layer structure in Example 7 were treated with one-sided film squeegee, and prepreg was hot-pressed to make a bulletproof helmet. A 1.1g FSP simulated shrapnel gun was used to test according to the bulletproof standard NIJ0101.06. Six shots were taken at different parts of the bulletproof helmet, and the test results are shown in Table 5 below.
  • the ultra-high molecular weight polyethylene fiber guide yarn is spread on the roller neatly through the single-roller arrangement machine, and then prepreg is processed through the glue tank equipped with SIS emulsion, and the film thickness is controlled to 0.03mm. Then it is dried to obtain a 0° unidirectional arrangement layer.
  • the 90° unidirectional arrangement layer is obtained by cutting and turning.
  • the UD fabric of Comparative Example 3 was prepared by performing 0°/90° hot pressing compounding at a temperature of 90° C. and a pressure of 0.5 MPa.
  • the UD cloth of Comparative Example 3 had a 2-layer structure with a 0°/90° arrangement.
  • the areal density of the UD cloth with the 2-layer structure of Comparative Example 3 was tested, and the results are shown in Table 6.
  • the UD cloth of Comparative Example 3 was made into a bulletproof helmet by the same helmet pressing method as in Test Example 5, and the target shooting test was carried out using the same target test standard as in Test Example 5. The results are shown in Table 6 below.
  • the test results show that the choice of resin has a great influence on the protective performance of the nanofiber composite unidirectional fabric of the present invention.
  • the SIS emulsion has only 15wt% of its molecular segments as rigid polystyrene segments.
  • 85wt% is a flexible polyisoprene segment, so the corresponding UD cloth is more suitable for soft protection, such as body armor, while the degree of polyurethane crosslinking is higher, the corresponding UD cloth is more suitable for hard protection, such as bulletproof Helmets, bulletproof panels.
  • the ballistic resistance of the UD cloth prepared by the resin matrix using polyurethane as the adhesive of the present invention is better than that of the UD cloth prepared by using the SIS resin matrix as the adhesive.
  • the anti-ballistic performance of the UD cloth prepared by using SIS as the resin matrix of the adhesive of the present invention is significantly improved compared with the existing flexible protective materials, and has a very good application in soft protection. prospect.
  • the bulletproof performance of the bulletproof helmet composited with para-aramid nanofibers has been improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种纳米纤维复合的单向布及其制备方法。本发明的纳米纤维复合的单向布包括至少两个单向片层和位于相邻的单向片层之间的纳米纤维,所述单向片层包括单向排布的高性能纤维和胶黏剂,所述胶黏剂包括纳米纤维。本发明提供的纳米纤维复合的单向布是一种新型的复合结构,整合了纤维长丝、树脂基体及纳米纤维的综合特性。本发明的纳米纤维复合单向布具有优异的防弹性能,适用于新型防弹片材。

Description

一种纳米纤维复合的单向布、其制备方法及应用 技术领域
本发明属于防弹防护技术领域,具体涉及一种纳米纤维复合的单向布、其制备方法及应用。
背景技术
复合材料是目前高性能纤维行业的主要发展方向,而纤维增强的树脂基复合材料更是目前的发展主流,UD布(uni-directional fabric,又称为单向织物或单向布)是属于防弹防护领域兼具结构化和功能化的新型复合材料。通常复合材料是由两种或两种以上材料加工成型,通过复合后既保留了原组份的性能,又获得了新材料的特殊功能。
UD布是采用连续纤维增强的层压复合材料,通常由平行排列的高性能纤维和树脂基体组成的预浸料经层压复合制成单向片层,再通过单向片层的铺层设计,按照不同的纤维方向进行叠层,最后通过热压成型的方法制成复合布或复合板(即多向片层)。对于单向片层,纤维是沿着同一个方向取向,呈各向异性。对于多向片层,通常采用对称铺层设计,即在层板中心面的两侧各层纤维取向是对称的,因此也称为各向同性板。
超高分子量聚乙烯UD布具有优异的防弹性能,但因为大分子链易产生滑移,当子弹弹击且未贯穿的情况下,超高分子量聚乙烯UD布蠕变严重,造成制品产生凹陷而对人体骨骼或肌肉造成伤害;芳纶UD布由于刚性链段的存在,在防子弹弹击对材料造成蠕变方面较为优异。开发一种既能保障防弹性能,又能降低弹击凹陷的新型UD布是本行业的发展热点。
因此,本领域亟需一种具有优异的防弹性能和防弹击凹陷性能的UD布。
发明内容
本发明提供了一种纳米纤维复合的UD布,其是一种新型的复合结构,整合了纤维长丝、热塑性树脂及纳米纤维的综合特性。本发明的纳米纤维复合的UD布具有优异的防弹性能和防弹击凹陷性能,适用于新型防弹片材,尤其是软质防弹衣和硬质防弹插板。
具体而言,本发明提供一种纳米纤维复合的单向布,所述纳米纤维复合的单向布包括至少两个单向片层和位于相邻的单向片层之间的纳米纤维,所述单向片层包括单向排布的高性能纤维和胶黏剂,所述胶黏剂包括纳米纤维。
在一个或多个实施方案中,相邻的两个单向片层的高性能纤维排布方向之间的夹角为90±10°。
在一个或多个实施方案中,所述高性能纤维的质量占所述纳米纤维复合的单向布总质量的70-90%。
在一个或多个实施方案中,所述胶黏剂的质量占所述纳米纤维复合的单向布总质量的14.32-14.76%。
在一个或多个实施方案中,所述位于相邻的单向片层之间的纳米纤维的质量占所述纳米纤维复合的单向布总质量的0.24-0.68%。
在一个或多个实施方案中,所述纳米纤维复合的单向布包括两个单向片层时的面密度为70-350g/m 2,优选为100-300g/m 2,更优选为120-250g/m 2
在一个或多个实施方案中,所述胶黏剂中,纳米纤维占胶黏剂的质量分数为5-50%,优选为5-30%,更优选为14-30%。
在一个或多个实施方案中,所述高性能纤维为拉伸强度大于等于20g/d、初始模量大于等于40GPa的纤维。
在一个或多个实施方案中,所述高性能纤维选自超高分子量聚乙烯纤维、芳纶纤维、聚酰亚胺纤维和聚对苯撑苯并二噁唑纤维中的一种或多种。
在一个或多个实施方案中,所述高性能纤维为超高分子量聚乙烯纤维和/或芳纶纤维。
在一个或多个实施方案中,所述高性能纤维为超高分子量聚乙烯纤维和/或对位芳纶纤维。
在一个或多个实施方案中,所述高性能纤维的拉伸强度大于等于1.8GPa,初始模量为85-170GPa,断裂伸长率大于等于3.5%。
在一个或多个实施方案中,所述纳米纤维为芳纶纳米纤维,优选为对位芳纶纳米纤维。
在一个或多个实施方案中,所述纳米纤维的纤维长度为50-100nm,比表面积为50-500m 2/g。
在一个或多个实施方案中,所述胶黏剂包括树脂基体,所述树脂基体选自聚氨酯、苯乙烯嵌段共聚物和聚丙烯酸酯中的一种或多种。
在一个或多个实施方案中,所述树脂基体为聚氨酯。
在一个或多个实施方案中,所述树脂基体为苯乙烯嵌段共聚物。
在一个或多个实施方案中,所述树脂基体为苯乙烯-异戊二烯-苯乙烯嵌段共聚物。
在一个或多个实施方案中,所述树脂基体的拉伸强度为15-40MPa。
在一个或多个实施方案中,所述胶黏剂中,树脂基体占胶黏剂的质量分数为30-80%,优选为40-80%;
在一个或多个实施方案中,所述胶黏剂中,树脂基体和纳米纤维的质量比为1:(0.1-1),优选为1:(0.1-0.6);
在一个或多个实施方案中,所述胶黏剂还包括添加剂,优选地,添加剂占胶黏剂的质量分数不超过25%。
本发明还提供一种制备纳米纤维复合的单向布的方法,所述方法包括以下步骤:
(1)制备包括单向排列的高性能纤维和胶黏剂的单向片层,其中,胶黏剂包括纳米纤维;
(2)在单向片层上喷涂纳米纤维的水分散液,干燥,再对单向片层进行层叠;
(3)对层叠的单向片层进行热压复合,得到纳米纤维复合的单向布。
本发明还提供制备本发明任一实施方案所述的纳米纤维复合的单向布的方法,所述方法包括以下步骤:
(1)制备包括单向排列的高性能纤维和胶黏剂的单向片层,其中,胶黏剂包括纳米纤维;
(2)在单向片层上喷涂纳米纤维的水分散液,干燥,再对单向片层进行层叠;
(3)对层叠的单向片层进行热压复合,得到纳米纤维复合的单向布。
在一个或多个实施方案中,步骤(1)中,使胶黏剂的水分散体附着在单向排布的高性能纤维上,干燥,得到单向片层。
在一个或多个实施方案中,所述胶黏剂水分散体中,水与除纳米纤维以外的固体成分的质量比为7:3到4:6,优选为7:3到5:5。
在一个或多个实施方案中,附着在单向排布的高性能纤维上的胶黏剂水分散体的厚度为0.01-0.1mm,优选为0.01-0.05mm。
在一个或多个实施方案中,步骤(2)中,纳米纤维的水分散液在相邻的两个单向片层之间的喷涂量为1-10g/m 2
在一个或多个实施方案中,步骤(2)中,进行层叠时,相邻的两个单向片层的高性能纤维排布方向之间的夹角为90±10°。
在一个或多个实施方案中,步骤(3)中,热压温度为70-120℃,热压压力为0.1-2MPa。
在一个或多个实施方案中,所述方法具有以下特征:
步骤(1)中,使胶黏剂的水分散体附着在单向排布的高性能纤维上,干燥,得到单向片层,其中,所述高性能纤维为超高分子量聚乙烯纤维,所述纳米纤维为对位芳纶纳米纤维,所述胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为2-20%、优选为2-15%、更优选为10-13%,附着在单向排布的高性能纤维上的胶黏剂水分散体的厚度为0.01-0.05mm;
步骤(2)中,纳米纤维的水分散液在相邻的两个单向片层之间的喷涂量为1-5g/m 2,所述纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为2-20%、优选为2-15%、更优选为10-13%,进行层叠时,相邻的两个单向片层的高性能纤维排布方向之间的夹角为90±10°;和
步骤(3)中,热压温度为70-120℃,热压压力为0.1-2MPa。
本发明还提供采用本文任一实施方案所述的方法制备得到的纳米纤维复合的单向布。
本发明还提供一种胶黏剂水分散体,所述胶黏剂水分散体包括树脂基体、纳米纤维、水和任选的添加剂;
在一个或多个实施方案中,所述胶黏剂水分散体中,水与除纳米纤维以外的固体成分的质量比为7:3到4:6,优选为7:3到5:5。
在一个或多个实施方案中,所述树脂基体选自聚氨酯、苯乙烯嵌段共聚物和聚丙烯酸酯中的一种或多种,优选为聚氨酯或优选为苯乙烯嵌段共聚物。
在一个或多个实施方案中,所述树脂基体为苯乙烯-异戊二烯-苯乙烯嵌段共聚物。
在一个或多个实施方案中,所述树脂基体的拉伸强度为15-40MPa。
在一个或多个实施方案中,所述胶黏剂水分散体中,树脂基体占胶黏剂水分散体固体成分的质量分数为30-80%,优选为40-80%。
在一个或多个实施方案中,所述纳米纤维为芳纶纳米纤维,优选为对位芳纶纳米纤维。
在一个或多个实施方案中,所述纳米纤维的纤维长度为50-100nm,比表面积为50-500m 2/g。
在一个或多个实施方案中,所述胶黏剂水分散体中,纳米纤维占胶黏剂水分散体固体成分的质量分数为5-50%,优选为5-30%,更优选为14-30%。
在一个或多个实施方案中,所述胶黏剂水分散体中,树脂基体和纳米纤维的质量比为1:(0.1-1),优选为1:(0.1-0.6)。
在一个或多个实施方案中,所述胶黏剂水分散体中,添加剂占胶黏剂水分散体固体成分的质量分数不超过25%。
本发明还提供本发明任一实施方案所述的胶黏剂水分散体在制备单向布或提升单向布的防弹性能中的应用。
本发明还提供一种制备单向布或提升单向布的防弹性能的方法,所述方法包括使用本发明任一实施方案所述的胶黏剂水分散体制备单向布。
本发明还提供纳米纤维的水分散液在制备单向布或提升单向布的防弹性能中的应用。
本发明还提供一种制备单向布或提升单向布的防弹性能的方法,所述方法包括使用本发明任一实施方案所述的纳米纤维的水分散液制备单向布。
在一个或多个实施方案中,所述纳米纤维为芳纶纳米纤维,优选为对位芳纶纳米纤维。
在一个或多个实施方案中,所述纳米纤维的纤维长度为50-100nm,比表面积为50-500m 2/g。
在一个或多个实施方案中,所述纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为2-20%,优选为2-15%,更优选为10-13%。
本发明还提供本发明任一实施方案所述的纳米纤维复合的单向布制备得到的防弹制品;优选地,所述防弹制品包括防弹衣、防弹插板和防弹头盔。
本发明还提供一种防弹制品,所述防弹制品包含本发明任一实施方案所述的纳米纤维复合的单向布;优选地,所述防弹制品包括防弹衣、防弹插板和防弹头盔。
本发明还提供一种单向片层,所述单向片层包括单向排布的高性能纤维和胶黏剂,所述胶黏剂包括纳米纤维,所述单向片层的表面具有纳米纤维。
在一个或多个实施方案中,所述单向片层中的高性能纤维、胶黏剂或纳米纤维本文任一实施方案所述。
本发明还提供一种制备单向片层的方法,所述方法包括以下步骤:
(1)制备包括单向排列的高性能纤维和胶黏剂的单向片层,其中,胶黏剂包括纳米纤维;
(2)在单向片层上喷涂纳米纤维的水分散液,干燥;
在一个或多个实施方案中,制备单向片层的方法中的步骤(1)如本文制备纳米纤维复合的单向布的任一实施方案中的步骤(1)所述。
在一个或多个实施方案中,制备单向片层的方法中的步骤(2)如本文制备纳米纤维复合的单向布的任一实施方案中的步骤(2)所述。
本发明还提供采用本发明任一实施方案所述的方法制备得到的单向片层;优选地,所述单向片层为本文任一实施方案所述的单向片层。
附图说明
图1为本发明的纳米纤维复合的包括2层单向片层的UD布的结构示意图,2层单向片层形成0°/90°排布结构,其中,1为高性能纤维,2为胶黏剂中的纳米纤维,3为单向片层间的纳米纤维。
图2为本发明的纳米纤维复合的包括4层单向片层的UD布的结构示意图,4层单向片层形成0°/90°/0°/90°排布结构,其中,1为高性能纤维,2为胶黏剂中的纳米纤维,3为单向片层间的纳米纤维。
图3为本发明的纳米纤维复合的包括2层单向片层的UD布的层间结构示意图,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用,其中,1为单向片层,3为单向片层间的纳米纤维。
具体实施方式
为使本领域技术人员可了解本发明的特点及效果,以下谨就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。
本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。
本文中,若无特别说明,比例是指质量比,百分含量是指质量百分含量。
本文中,若无特别说明,“包含”、“包括”、“含有”或类似用语涵盖了“由……组成”和“主要由……组成”的意思。
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。
本发明提供一种纳米纤维复合的UD布,所述纳米纤维复合UD布包括至少两个单向片层和位于相邻的单向片层之间的纳米纤维,所述单向片层包括单向排布的高性能纤维和胶黏剂,所述胶黏剂包括纳米纤维。
本发明中,高性能纤维是指拉伸强度大于等于20g/d、初始模量大于等于40GPa的纤维。本文中,若无特别说明,纤维的拉伸强度、初始模量和断裂伸长率是指按照ASTM D885标准测得的拉伸强度、初始模量和断裂伸长率。可以理解的是,本发明的纳米纤维复合的UD布的单向片层中的高性能纤维是指高性能纤维长丝。适用于本发明的高性能纤维可以是本领域常用于制备UD布的高性能纤维,例如包括芳纶纤维、超高分子量聚乙烯纤维、聚酰亚胺纤维和聚对苯撑苯并二噁唑纤维,优选选自芳纶纤维和超高分子量聚乙烯纤维中的一种或两种。本发明中,芳纶纤维是指由分子链上至少有85%的酰胺基团(-CONH-)直接与两个苯环相连接的聚酰胺制得的纤维。芳纶纤维可以是包括一种或多种芳香族二胺和一种或多种芳香族二酸的单体聚合得到的聚酰胺的纤维,优选是由一种或多种芳香族二胺和一种或多种芳香族二酸聚合得到的聚酰胺的纤维,例如包括但不限于聚对苯二甲酰对苯二胺纤维(即对位芳纶纤维)、聚间苯二甲酰间苯二胺纤维(即间位芳纶纤维)、杂环芳纶纤维和共聚芳纶纤维。本发明中,超高分子量聚乙烯纤维是指由粘均分子量在150万以上的基本上无支链的线性聚乙烯制得的纤维。
本发明的纳米纤维复合的UD布中,相邻的两个单向片层的高性能纤维排布方向之间优选呈一定的夹角。夹角例如可以是30°-150°,即相邻的两个单向片层可以形成0°/(30°-150°)排布结构。在优选的实施方案中,相邻的两个单向片层的高性能纤维的排布方向之间的夹角为90±10°,例如90±5°、90°。
本发明的纳米纤维复合的UD布可以包括大于1的奇数个或偶数个单向片层,例如2个、4个、6个、8个单向片层。在一些实施方案中,如图1和图2所示,本发明的纳米纤维复合UD布包括2个或4个单向片层。当本发明的纳米纤维复合的UD布含有多层单向片层时,各单向片层可以相同或不同,例如各单向片层所含的高性能纤维可以相同或不同。
本发明的纳米纤维复合的UD布是一种新型的复合结构,整合了纤维长丝、树脂基体及纳米纤维的综合特性。单向片层中的高性能纤维主要通过纤维拉伸形变来吸收外部作用力。单向片层中的高度分散的纳米纤维和树脂基体用于单层纱线间的粘和、提供了纱线间的握持作用力。单向片层间的纳米纤维作为层间连接点、提供了单向片层之间的物理交联点。纳米纤维和树脂基体共同构成了纳米纤维复合的UD布的增强增韧结构。
本发明的纳米纤维复合的UD布中,高性能纤维的质量占UD布总质量的70-90%,优选为80-90%、例如83-87%、84-86%、85%。本发明的纳米纤维复合的UD布中,胶黏剂和位于相邻的单向片层之间的纳米纤维的总质量占UD布总质量的10-30%,优选为10-20%、例如13-17%、14-16%、15%。本发明的纳米纤维复合的UD布中,胶黏剂的质量占UD布总质量的10-29.9%,优选为10-19.9%,例如13%、14%、14.32%、14.41%、14.49%、14.53%、14.62%、14.64%、14.76%、14.8%、15%。本发明的纳米纤维复合的UD布中,位于相邻的单向片层之间的纳米纤维的质量占UD布总质量的0.1-5%,优选为0.1-2%,例如0.2%、0.24%、0.36%、0.38%、0.47%、0.51%、0.59%、0.68%、0.7%、1%。本发明中,当计算质量或含量时,“位于相邻的单向片层之间的纳米纤维”是指UD布所含的除胶黏剂中的纳米纤维以外的纳米纤维。在一些实施方案中,“位于相邻的单向片层之间的纳米纤维”的质量是指通过喷涂芳纶纳米纤维的水分散液的方式施加在单向片层上的纳米纤维的质量。
本发明的单向片层中,高性能纤维的含量、胶黏剂和位于单向片层表面的纳米纤维的总含量、胶黏剂的含量以及位于单向片层表面的纳米纤维的含量分别同前述纳米纤维复合的UD布中的高性能纤维的含量、胶黏剂和位于相邻的单向片层之间的纳米纤维的总含量、胶黏剂的含量以及位于相邻的单向片层之 间的纳米纤维的含量。本发明中,当计算质量或含量时,“位于单向片层表面的纳米纤维”是指单向片层所含的除胶黏剂中的纳米纤维以外的纳米纤维。在一些实施方案中,“位于单向片层表面的纳米纤维”的质量是指通过喷涂芳纶纳米纤维的水分散液的方式施加在单向片层上的纳米纤维的质量。
本发明的纳米纤维复合UD布含有两个单向片层时的面密度为70-350g/m 2,优选为100-300g/m 2,进一步优选为120-250g/m 2
本发明的纳米纤维复合的UD布中,高性能纤维可以是选自超高分子量聚乙烯纤维、芳纶纤维、聚酰亚胺纤维和聚对苯撑苯并二噁唑纤维中的一种或多种。芳纶纤维优选选自对位芳纶纤维和杂环芳纶纤维中的一种或多种。适用于本发明的高性能纤维优选选自超高分子量聚乙烯纤维和芳纶纤维中的一种或两种,更优选选自超高分子量聚乙烯纤维和对位芳纶纤维中的一种或两种。本发明发现,在本发明的纳米纤维复合的UD布中使用超高分子量聚乙烯纤维或芳纶纤维能够使得UD布具有更优异的防弹性能。
适用于本发明的高性能纤维的拉伸强度优选大于等于1.8GPa,例如2.5-5GPa、≥23g/d、≥25g/d、≥26g/d,初始模量优选为85-170GPa,断裂伸长率优选大于等于3.5%。因此,在优选的实施方案中,本发明使用拉伸强度大于等于1.8GPa、初始模量为85-170GPa、且断裂伸长率大于等于3.5%的高性能纤维。在优选的实施方案中,本发明的纳米纤维复合的UD布中,高性能纤维为拉伸强度为2.5-5GPa、初始模量为85-170GPa、且断裂伸长率大于等于3.5%的超高分子量聚乙烯纤维,或为拉伸强度≥23g/d、优选≥25g/d、更优选≥26g/d、初始模量为85-170GPa、且断裂伸长率大于等于3.5%的芳纶纤维、优选对位芳纶纤维。
适用于本发明的纳米纤维优选为芳纶纳米纤维。芳纶纳米纤维可以选自对位芳纶纳米纤维和杂环芳纶纳米纤维中的一种或两种。优选地,纳米纤维为对位芳纶纳米纤维。本发明发现,芳纶纳米纤维具备刚性链段,分子链间不易产生纵向滑移,能够有效地起到连接单向片层的作用,因此含有芳纶纳米纤维的纳米纤维复合UD布具有更佳的防弹性能,特别是更低的BFS值。
适用于本发明的纳米纤维的纤维长度优选为50-100nm,比表面积优选为50-500m 2/g,例如200-250m 2/g。在优选的实施方案中,本发明的纳米纤维复合的UD布中,纳米纤维为纤维长度为50-100nm且比表面积为50-500m 2/g的芳纶纳米纤维、优选对位芳纶纳米纤维。
本领域技术人员可以理解的是,本发明的纳米纤维复合的UD布中的胶黏剂是制备UD布时使用的胶黏剂水分散体的固体成分。制备UD布时,粘附在纤维长丝上的胶黏剂水分散体中的溶剂被去除,胶黏剂水分散体的固体成分保留在UD布中。UD布中的胶黏剂通常包括树脂基体。本发明的纳米纤维复合的UD布的胶黏剂中,树脂基体占胶黏剂的质量分数通常为30-80%。
适用于本发明的树脂基体通常为热塑性树脂。热塑性树脂优选选自聚氨酯、苯乙烯嵌段共聚物和聚丙烯酸酯中的一种或多种,更优选为聚氨酯或苯乙烯嵌段共聚物。聚氨酯树脂具有良好的低温柔顺性、优异的力学性能和抗冲击性能,以聚氨酯为树脂基体的胶黏剂具有良好的粘弹性和粘接强度。适用于本发明的苯乙烯嵌段共聚物是苯乙烯与其他烯烃类单体(例如脂肪族烯烃类单体)共聚得到的聚合物,优选为苯乙烯与选自丁二烯、异戊二烯、乙烯、丁烯和丙烯中的一种或多种烯烃类单体共聚得到的聚合物,包括但不限于苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)和苯乙烯-乙烯/丙烯-苯乙烯嵌段共聚物(SEPS)。在一些实施方案中,树脂基体为SIS。优选地,SIS中,聚苯乙烯链段的质量分数为15±5%,聚异戊二烯链段的质量分数为85±5%。以苯乙烯嵌段共聚物为树脂基体的胶黏剂能够在满足防护性能的同时赋予纳米纤维复合的UD布良好的柔软性。适用于本发明的树脂基体的拉伸强度优选为15-40MPa,例如15-25MPa、20-30MPa。在优选的实施方案中,本发明的纳米纤维复合UD布中,树脂基体为拉伸强度为15-40MPa、优选20-30MPa的聚氨酯。在另一些优选的实施方案中,本发明的纳米纤维复合UD布中,树脂基体为拉伸强度为15-40MPa、优选15-25MPa的苯乙烯嵌段共聚物(例如SIS)。在优选的实施方案中,本发明的纳米纤维复合的UD布的胶黏剂中,树脂基体占胶黏剂的质量分数为40-80%,例如50-70%、55-65%、55-60%。
本发明的纳米纤维复合的UD布的特点之一是胶黏剂还包括纳米纤维。适用于胶黏剂的纳米纤维如前所述。本发明的纳米纤维复合的UD布的胶黏剂中,纳米纤维占胶黏剂的质量分数通常为5-50%,优选为5-30%,例如9-30%、14-30%、14-25%、24-26%、9.1%、14.9%、19.2%、20%、24.5%、28.6%。在优选的实施方案中,胶黏剂中,树脂基体和纳米纤维的质量比为1:(0.1-1),优选为1:(0.1-0.6),更优选为1:(0.2-0.45),例如1:(0.3-0.45)、1:(0.4-0.45)。
在一些实施方案中,本发明的纳米纤维复合的UD布的胶黏剂还包括添加剂。本发明中,胶黏剂中的添加剂为本领域常用于胶黏剂水分散体的添加剂,例如在树脂基体为聚氨酯的实施方案中,添加剂为常用于聚氨酯乳液的添加剂。胶黏剂中的添加剂可以包括选自乳化剂、增黏剂、pH调节剂、消泡剂和抗氧剂中的一种或多种。当含有时,乳化剂、增黏剂、pH调节剂、消泡剂和抗氧剂各自在胶黏剂中的用量可以是本领域常规的。当胶黏剂包括添加剂时,添加剂占胶黏剂的质量分数通常不超过30%,优选不超过25%,例如15-25%。当胶黏剂包括添加剂时,胶黏剂中,树脂基体和添加剂的质量比通常为2:1到5:1,优选为2:1到4:1,例如2.5:1到3.5:1、3:1。
本发明的纳米纤维复合的UD布中,位于相邻的单向片层间的纳米纤维可以与胶黏剂中的纳米纤维相同或不同。在一些实施方案中,位于相邻的单向片层间的纳米纤维与胶黏剂中的纳米纤维为同一种纳米纤维。本发明的纳米纤维复合的UD布中,位于相邻的单向片层间的纳米纤维来自于制备本发明的纳米纤维复合的UD布时喷涂在单向片层上的纳米纤维的水分散液。本发明中,位于相邻的两层单向片层间的纳米纤维的面密度为0.05-2.5g/m 2,优选为0.1-1g/m 2,更优选为0.3-0.5g/m 2,例如0.15g/m 2、0.26g/m 2、0.36g/m 2、0.4g/m 2、0.46g/m 2、0.5g/m 2、0.55g/m 2
本发明的纳米纤维复合的UD布可以通过以下步骤制备得到:
(1)制备包括单向排列的高性能纤维和胶黏剂的单向片层,其中,胶黏剂包括纳米纤维;
(2)在单向片层上均匀地喷涂纳米纤维的水分散液,干燥,再对单向片层进行层叠;
(3)对层叠的单向片层进行热压复合,得到纳米纤维复合的UD布。
步骤(1)中,可以采用本领域已知的方法制备单向片层,例如将胶黏剂的水分散体均匀附着在高性能纤维上,经过干燥,得到单向片层。本发明的特点在于胶黏剂包括纳米纤维,即制备单向片层时使用的胶黏剂的水分散体为包括纳米纤维的胶黏剂的水分散体。
在一些实施方案中,步骤(1)包括:使胶黏剂的水分散体均匀地附着在单向排布的高性能纤维上,对附着有胶黏剂的水分散体的高性能纤维进行干燥,得到单向片层。在一些实施方案中,通过将高性能纤维浸渍在胶黏剂的水分散体中的方式使胶黏剂的水分散体附着在单向排布的高性能纤维上。胶黏剂的水分散体由前述胶黏剂的各成分分散在水中而形成,即胶黏剂水分散体包括树脂基体、纳米纤维和水,任选地或优选地还包括添加剂。胶黏剂水分散体中各固体成分的用量配比同前述胶黏剂中各成分的用量配比。胶黏剂水分散体的固含量通常为30%-60%,优选为40%-50%,例如42.3%、43.9%、45.5%、46.9%、49.5%。适用于本发明的水优选为去离子水。胶黏剂水分散体中,水与除纳米纤维以外的固体成分的质量比通常为7:3到4:6,优选为7:3到5:5,更优选为6.5:3.5到5.5:4.5,例如6:4。胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数通常为2%-20%,优选为3%-15%,例如3.8%、6.5%、9.1%、11.5%、13.8%,更优选5-15%,例如9-13%、10-13%、9-12%、11-12%。在一些实施方案中,通过将纳米纤维分散在不含纳米纤维的胶黏剂的水分散体中,得到包括纳米纤维的胶黏剂的水分散体。不含纳米纤维的胶黏剂的水分散体可以是自行配制的,也可以是市售的,例如当胶黏剂中的树脂基体为聚氨酯时,不含纳米纤维的胶黏剂的水分散体可以是市售的聚氨酯乳液,例如可以是汉高生产的牌号为WB8139的聚氨酯乳液;又如当胶黏剂中的树脂基体为苯乙烯嵌段共聚物时,不含纳米纤维的胶黏剂的水分散体可以是市售的苯乙烯嵌段共聚物乳液,例如可以是汉高生产的牌号为B7137的SIS乳液。附着在高性能纤维上的胶黏剂的水分散体在形成高性能纤维表面形成一层胶膜。本发明中,胶膜的厚度优选为0.01-0.1mm,更优选为0.01-0.05mm,例如0.02-0.04mm、0.025-0.035mm、0.03mm。本发明中,控制浸料量(胶膜厚度)的方法可以是 本领域已知的各种用于控制浸料量的方法。当采用浸渍的方式附着时,胶黏剂的水分散体的温度通常控制为室温到90℃。对附着有胶黏剂的水分散体的高性能纤维进行干燥时,干燥的温度和时间应使得将附着在高性能纤维上的胶黏剂水分散体中的水分蒸干。
本发明的胶黏剂的水分散体中,纳米纤维高度分散在水分散体中。纳米纤维的质量通常占胶黏剂的水分散体总质量的2-20%,优选2-15%、3-15%,例如3.8%、6.5%、9.1%、11.5%、13.8%,更优选5-15%,例如9-13%、10-13%、9-12%、11-12%。本发明发现,将含有纳米纤维的胶黏剂的水分散体中的纳米纤维含量控制在2-20%,可以制备得到防弹性能改善的纳米纤维复合的UD布,特别是将纳米纤维含量进一步控制在5-15%,可以制备得到BFS值显著降低的纳米纤维复合的UD布。在优选的实施方案中,步骤(1)包括:将高性能纤维铺展到辊筒上,通过装有含有纳米纤维的胶黏剂的水分散体的胶槽进行预浸料处理,干燥,得到单向片层。在一些实施方案中,使用单辊排布机将高性能纤维铺展到滚筒上。预浸料处理的方法是本领域技术人员已知的,通常是辊筒底部浸没在胶槽中,通过辊筒旋转使高性能纤维完成浸胶过程,随后进行刮胶处理。
步骤(2)中,纳米纤维的水分散液由纳米纤维分散在水中而形成。本发明的纳米纤维的水分散液中,纳米纤维高度分散在水中。纳米纤维的质量通常占纳米纤维的水分散液总质量的2-20%,优选2-15%、3-15%,例如3.8%、6.5%、9.1%、11.5%、13.8%,更优选5-15%,例如9-13%、10-13%、9-12%、11-12%。本发明发现,将纳米纤维的水分散液中的纳米纤维含量控制在2-20%,可以制备得到防弹性能改善的纳米纤维复合UD布,特别是将纳米纤维含量进一步控制在5-15%,可以制备得到BFS值显著降低的纳米纤维复合UD布。本发明发现,由于含有纳米纤维的胶黏剂的水分散体具有一定的粘度,无法采用喷涂的方法施加到单向片层上,另外,若将纳米纤维分散在胶黏剂的水分散体中作为单向片层之间的粘结剂,不仅会增加UD制品的面密度,也会增加UD制品的硬度,UD制品则无法达到“轻柔”的效果,因此,本发明将纳米纤维的水分散液喷涂到单向片层上,以使得纳米纤维在单向片层之间形成连接点。本发明 中,纳米纤维的水分散液在单向片层间的喷涂量为1-10g/m 2,优选为1-5g/m 2、例如4g/m 2。可以理解的是,本发明中,通常在待层叠的单向片层的一个表面上喷涂纳米纤维的水分散液,再将另一单向片层的未喷涂纳米纤维的水分散液的表面贴合在该喷涂有纳米纤维的水分散液的表面上。对喷涂有纳米纤维的水分散液的单向片层进行干燥时,干燥的温度和时间应使得将附着在单向片层上的纳米纤维水分散液中的水分蒸干。步骤(2)中,进行层叠时,相邻的两个单向片层的高性能纤维的排布方向之间优选呈一定的夹角,夹角例如可以为30°-150°,优选为90±10°。层叠时,各相邻的两个单向片层间的夹角可以相同或不同。在一些实施方式中,各相邻的两个单向片层间的夹角相同,例如均为60±10°或90±10°。
步骤(3)中,热压复合的温度优选为70-120℃。热压压力优选为0.1-2MPa。
在优选的实施方案中,本发明的纳米纤维复合的芳纶UD布的制备方法,包括以下步骤:
(1)将高性能纤维铺展到辊筒上,通过装有含有纳米纤维的胶黏剂的水分散体的胶槽进行预浸料处理,胶膜的厚度优选为0.01-0.1mm、更优选为0.01-0.05mm,干燥,得到单向片层;
(2)在单向片层上喷涂纳米纤维的水分散液,纳米纤维的水分散液在单向片层间的喷涂量优选为1-10g/m 2,干燥,再对单向片层进行层叠,进行层叠时,优选相邻的两个单向片层的高性能纤维的排布方向之间优选呈一定的夹角,夹角优选为90±10°;
(3)对层叠的单向片层进行热压复合,得到纳米纤维复合的UD布,热压复合的温度优选为70-120℃。热压压力优选为0.1-2MPa。
本发明发现,使用含有纳米纤维的胶黏剂的水分散体能够制备得到防弹性能优异的UD布。因此,本发明包括一种胶黏剂水分散体,其包含树脂基体、纳米纤维和水,任选地或优选地还包含添加剂。添加剂包括选自乳化剂、增黏剂、消泡剂、抗氧化剂和pH调节剂中的一种或多种。在优选的实施方案中,本发明的胶黏剂水分散体包括树脂基体、纳米纤维和水,任选地或优选地还包含选自乳化剂、增黏剂、消泡剂、抗氧化剂和pH调节剂中的一种或多种。本 发明的胶黏剂水分散体中,水与除纳米纤维以外的固体成分的质量比通常为7:3到4:6,优选为7:3到5:5,更优选为6.5:3.5到5.5:4.5,例如6:4。本发明的胶黏剂水分散体中各固体成分的用量配比同前述胶黏剂中各成分的用量配比。本发明的胶黏剂水分散体的固含量通常为30%-60%,优选为40%-50%,例如42.3%、43.9%、45.5%、46.9%、49.5%。本发明的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数通常为2%-20%,优选为2%-15%、3%-15%,例如3.8%、6.5%、9.1%、11.5%、13.8%,更优选5-15%,例如9-13%、10-13%、9-12%、11-12%。本发明还包括本发明的胶黏剂水分散体在制备UD布或提升UD布的防弹性能中的用途。本发明中,防弹性能提升是指防弹标准NIJ0101.06下的V50值升高和/或BFS值下降。
本发明发现,使用纳米纤维的水分散液能够制备得到防弹性能优异的UD布。纳米纤维的质量通常占纳米纤维的水分散液总质量的2-20%,优选3-15%,例如3.8%、6.5%、9.1%、11.5%、13.8%,更优选5-15%,例如9-13%、10-13%、9-12%、11-12%。本发明还包括本文所述的纳米纤维的水分散液在制备UD布或提升单向布的防弹性能中的用途。
本发明涉及纳米纤维复合的UD布应用于防弹片材的用途。防弹片材例如可以是包括多个单向片层的UD布,可由单层的UD布层压得到,或由多层的UD布进一步层压得到。本发明的防弹片材可用于防弹衣、防弹插板及防弹头盔。本发明还包括由本发明的芳纶UD布制备得到的防弹制品。防弹制品包括防弹衣、防弹插板及防弹头盔。防弹插板包括个人防弹插板和车用防弹插板。可采用本领域已知的方法将本发明的纳米纤维复合的UD布制成防弹制品,例如可对本发明的纳米纤维复合的UD布进行裁剪层叠复合成型制成防弹制品。
本发明的技术方案具有如下优势:
本发明的纳米纤维复合的UD布的制备方法安全环保,使用水性体系对人体和环境无害,纳米纤维具有高比表面积,能稳定分散于水性体系中,经热压工艺,胶黏剂中的纳米纤维能够均匀地分散于高性能纤维和胶黏剂两相界面中、提供了纱线间的握持作用力,单向片层间喷涂的纳米纤维作为层间连接点、提供了单向片层之间的物理交联点。本发明的纳米纤维复合的UD布在具有优异 的防弹性能的同时,成本和生产难度较低,具有较好的经济性。本发明的纳米纤维复合的UD布用于防弹制品,能有效提高抗弹片冲击性能,具有更高的安全性,且制品重量没有大幅增加,制品较软,舒适度较高。
本发明通过以下实施例进行全面的说明,但是这些实施例仅用于对本发明进行说明,并不旨在限制本发明的范围。本发明的保护范围仅由权利要求限定,本领域技术人员在本发明公开的实施方式的基础上所做的任何省略、替换或修改都将落入本发明的保护范围。
下列实施例中使用本领域常规的仪器设备。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。下列实施例中使用各种材料、试剂,除非另作说明,都使用常规市售产品,其规格为本领域常用的规格。在本发明的说明书以及下述实施例中,如没有特别说明,“%”都表示重量百分比,“份”都表示重量份,比例都表示重量比。
实施例中使用以下材料:
超高分子量聚乙烯纤维:购自山东爱地高分子材料有限公司,拉伸强度为3.5GPa,初始模量为120GPa,断裂伸长率为3.5%;
高强芳纶纤维:对位芳纶纤维,来源是中化高性能纤维材料有限公司,牌号ZHAODA HT840D-01,拉伸强度为26g/d,初始模量为100GPa,断裂伸长率为3.5%;
芳纶纳米纤维:对位芳纶纳米纤维,以中化高性能纤维材料有限公司的ZHAODA HT840D-01对位芳纶纤维为原料,采用化学裂解法制备得到,纤维长度为50-100nm,比表面积为200-250m 2/g;
超高分子量聚乙烯纳米纤维:以前述山东爱地高分子材料有限公司的超高分子量聚乙烯纤维为原料,采用化学裂解法制备得到,纤维长度为50-100nm,比表面积为200-250m 2/g;
聚氨酯乳液:购自汉高,牌号WB8139,为水乳液状态,粘度为400cps,总固含量为40wt%(聚氨酯树脂含量为30wt%,添加剂含量为10wt%),干燥后的胶体的拉伸强度为20-30MPa。
苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)乳液:购自汉高,牌号B7137,为水乳液状态,粘度280cps,固含量为42wt%,干燥后胶体拉伸强度为15-25MPa,SIS的链段结构中15wt%为聚苯乙烯链段,85wt%为聚异戊二烯链段。
实施例1:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的超高分子量聚乙烯纤维UD布
将4重量份的芳纶纳米纤维分散到100重量份的聚氨酯乳液中,形成含有芳纶纳米纤维的聚氨酯乳液。将4重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向获得90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例1的纳米纤维复合UD布。实施例1的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的超高分子量聚乙烯纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。根据UD布所用高性能纤维的总长度和高性能纤维的线密度可计算出高性能纤维的质量,再通过测量UD布的总质量,可计算得到高性能纤维在UD布中的质量分数。实施例1的UD布中,超高分子量聚乙烯纤维占UD布的质量分数为85%。
纳米纤维占胶黏剂的质量分数=纳米纤维质量÷(乳液的质量×乳液固含量+纳米纤维质量),因此实施例1的胶黏剂中,纳米纤维占胶黏剂的质量分数为9.1%。
纳米纤维占胶黏剂水分散体的质量分数=纳米纤维质量÷(乳液质量+纳米纤维质量),因此实施例1的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为3.8%。
纳米纤维占纳米纤维的水分散液的质量分数=纳米纤维质量÷(水质量+纳米纤维质量),因此实施例1的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为3.8%。
喷涂在UD布上的纳米纤维的量=纳米纤维占纳米纤维的水分散液的质量分数×单向片层上纳米纤维的水分散液的喷涂量×UD布所含的单向片层数,因此实施例1的UD布中,喷涂在UD布上的纳米纤维的量为0.31g/m 2。结合表2所示的UD布的面密度可知,实施例1的UD布中,喷涂在UD布上的纳米纤维占UD布的质量分数为0.24%,胶黏剂占UD布的质量分数为14.76%。
实施例2:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的超高分子量聚乙烯纤维UD布
将7重量份的芳纶纳米纤维分散到100重量份的聚氨酯乳液中,形成含有芳纶纳米纤维的聚氨酯乳液。将7重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向获得90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例2的纳米纤维复合UD布。实施例2的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的超高分子量聚乙烯纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。实施例2的UD布中,超高分子量聚乙烯纤维占UD布的质量分数为85%。实施例2的胶黏剂中,纳米纤维占胶黏剂的质量分数为14.9%。实施例2的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为6.5%。实施例2的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为6.5%。实施例2的UD布中,喷涂在UD布上的纳米纤维的量为0.52g/m 2。结合表2所示的UD布的面密度可知,实施例2的UD布中,喷涂在UD布上 的纳米纤维占UD布的质量分数为0.38%,胶黏剂占UD布的质量分数为14.62%。
实施例3:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的超高分子量聚乙烯纤维UD布
将10重量份的芳纶纳米纤维分散到100重量份的聚氨酯乳液中,形成含有芳纶纳米纤维的聚氨酯乳液。将10重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向得到90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例3的纳米纤维复合UD布。实施例3的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的超高分子量聚乙烯纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。实施例3的UD布中,超高分子量聚乙烯纤维占UD布的质量分数为85%。实施例3的胶黏剂中,纳米纤维占胶黏剂的质量分数为20%。实施例3的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为9.1%。实施例3的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为9.1%。实施例3的UD布中,喷涂在UD布上的纳米纤维的量为0.73g/m 2。结合表2所示的UD布的面密度可知,实施例3的UD布中,喷涂在UD布上的纳米纤维占UD布的质量分数为0.51%,胶黏剂占UD布的质量分数为14.49%。
实施例4:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的超高分子量聚乙烯纤维UD布
将13重量份的芳纶纳米纤维分散到100重量份的聚氨酯乳液中,形成含有芳纶纳米纤维的聚氨酯乳液。将13重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向得到90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例4的纳米纤维复合UD布。实施例4的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的超高分子量聚乙烯纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。实施例4的UD布中,超高分子量聚乙烯纤维占UD布的质量分数为85%。实施例4的胶黏剂中,纳米纤维占胶黏剂的质量分数为24.5%。实施例4的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为11.5%。实施例4的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为11.5%。实施例4的UD布中,喷涂在UD布上的纳米纤维的量为0.92g/m 2。结合表2所示的UD布的面密度可知,实施例4的UD布中,喷涂在UD布上的纳米纤维占UD布的质量分数为0.59%,胶黏剂占UD布的质量分数为14.41%。
实施例5:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的超高分子量聚乙烯纤维UD布
将16重量份的芳纶纳米纤维分散到100重量份的聚氨酯乳液中,形成含有芳纶纳米纤维的聚氨酯乳液。将16重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控 制为4g/m 2,然后烘干。通过裁切、转向得到90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例5的纳米纤维复合UD布。实施例5的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的超高分子量聚乙烯纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。实施例5的UD布中,超高分子量聚乙烯纤维占UD布的质量分数为85%。实施例5的胶黏剂中,纳米纤维占胶黏剂的质量分数为28.6%。实施例5的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为13.8%。实施例5的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为13.8%。实施例5的UD布中,喷涂在UD布上的纳米纤维的量为1.10g/m 2。结合表2所示的UD布的面密度可知,实施例5的UD布中,喷涂在UD布上的纳米纤维占UD布的质量分数为0.68%,胶黏剂占UD布的质量分数为14.32%。
测试例1
对实施例1-5中的具有2层结构的UD布依照ASTMD5035标准剪割样条,使用万能材料试验机(英斯特朗,型号为Instron 5967)进行拉伸试验,在UD布的经向和纬向各取样10次,样条宽度为40mm,样条长度为180mm,在标准状态下进行拉伸,仪器测试速度为250mm/min,实施例1-5的UD布样条经向和纬向的强力测试结果见下表1。
表1:纳米纤维复合的UD样条拉伸试验结果
序号 样品 经向强力(KN/4cm) 纬向强力(KN/4cm)
1 实施例1 9.32 8.17
2 实施例2 9.45 7.93
3 实施例3 10.05 8.24
4 实施例4 9.56 8.06
5 实施例5 10.11 8.45
样条拉伸试验结果表明,实施例1-5的纳米纤维复合UD布之间经向强力和纬向强力相差不大,这是因为对于UD布样条的拉伸过程,起主要作用的是高性能纤维的拉伸应力以及胶黏剂的粘接作用,因此对于各实施例中起主要作用的均为相同结构单元,所以宏观表现为样品经向强力在9.3-10.2KN/4cm之间,纬向强力在7.9-8.5KN/4cm之间。
测试例2
测试实施例1-5中的具有2层结构的UD布的面密度,结果如表2所示。对实施例1-5中的UD布进行防弹头盔压制及打靶测试。对48片实施例1-5中的具有2层结构的UD布进行单面覆膜刮胶处理,预浸料后热压制成防弹头盔,采用1.1gFSP模拟弹片枪按照防弹标准NIJ0101.06进行测试,在防弹头盔的不同部位进行6次射击,测试结果见下表2,测试指标中的V50为穿透概率为50%的子弹速度,V50数值的高低意味着防弹性能的优劣,BFS(Back Face Signature)为未穿透子弹在防弹制品上产生的结构凹陷,BFS数值越小意味着防弹性能越好。
表2:纳米纤维复合的UD布的面密度和UD防弹头盔打靶测试结果
序号 样品 面密度(g/m 2) V50(m/s) BFS(mm)
1 实施例1 127 697 23
2 实施例2 138 703 19
3 实施例3 144 695 13
4 实施例4 156 715 9
5 实施例5 163 681 16
测试结果显示,实施例1-5制成的防弹头盔的V50均大于680m/s,BFS均小于25mm。超高分子量聚乙烯纤维具有较高的拉伸强度和弹性模量,所制 成的UD布防弹效果较好。通过芳纶纳米纤维复合的过程可有效改善防弹制品的BFS凹陷程度。
本发明发现,纳米纤维的分散程度对于防弹头盔的BFS有重要影响。实施例4的样品相对于实施例5具有更低的BFS值和更高的V50值。对实施例4的UD布的宏观形貌进行观察发现,实施例4的UD布经纬线均匀平整,UD布边缘部分没有产生叠层和突起,说明在热压复合过程中纳米纤维并没有发生局部团聚,具有良好的分散程度。本发明发现,将纳米纤维在胶黏剂的水分散体和纳米纤维的水分散液中的质量分数控制在13%以下有利于获得良好的分散性,有利于改善制品的防弹性能,特别是将纳米纤维在含纳米纤维的胶黏剂的水分散体和纳米纤维的水分散液中的质量分数控制在10-13%,能够最大程度改善防弹制品的防弹性能。
实施例6:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的高强芳纶纤维UD布
将10重量份的芳纶纳米纤维分散到100重量份的聚氨酯乳液中,形成含有芳纶纳米纤维的聚氨酯乳液。将10重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将高强芳纶纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向获得90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例6的纳米纤维复合UD布。实施例6的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的芳纶纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。
实施例6的纳米纤维复合的UD布的面密度为200g/m 2。实施例6的UD布中,芳纶纤维占UD布的质量分数为85%。实施例6的胶黏剂中,纳米纤维占胶黏剂的质量分数为20%。实施例6的胶黏剂水分散体中,纳米纤维占胶黏 剂水分散体的质量分数为9.1%。实施例6的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为9.1%。实施例6的UD布中,喷涂在UD布上的纳米纤维的量为0.73g/m 2。结合UD布的面密度可知,实施例6的UD布中,喷涂在UD布上的纳米纤维占UD布的质量分数为0.36%,胶黏剂占UD布的质量分数为14.64%。
测试例3
采用与测试例2同样的方法和工艺将实施例6的纳米纤维复合的UD布制成防弹头盔,采用与测试例2相同的打靶测试标准,测得由实施例6的纳米纤维复合的UD布制得的防弹头盔的V50为685m/s,BFS为10mm。相比于纳米纤维复合超高分子量聚乙烯纤维UD布(实施例3),实施例6的纳米纤维复合高强芳纶纤维UD布的防弹性能V50值较低,BFS值较小,这是因为不同类型高性能纤维层自身防弹性能差异所致。
对比例1:采取单辊排布机预浸料及热压复合工艺制备超高分子量聚乙烯纤维UD布
将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。通过裁剪、转向获得90°单方向排布层。在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到对比例1的UD布。对比例1的UD布具有0°/90°排布的2层结构。
对比例2:采取单辊排布机预浸料及热压复合工艺制备超高分子量聚乙烯纳米纤维复合的超高分子量聚乙烯纤维UD布
将10重量份的超高分子量聚乙烯纳米纤维分散到100重量份的聚氨酯乳液中,形成含有超高分子量聚乙烯纳米纤维的聚氨酯乳液。将10重量份的超高分子量聚乙烯纳米纤维分散到100重量份的去离子水中,形成超高分子量聚乙烯纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺 展到辊筒上,再通过装有含有超高分子量聚乙烯纳米纤维的聚氨酯乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂高分子量聚乙烯纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向得到90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到对比例2的纳米纤维复合UD布。对比例2的UD布具有0°/90°排布的2层结构。
测试例4
测试对比例1的具有2层结构的UD布和对比例2的具有2层结构的纳米纤维复合UD布的面密度,结果如表3所示。采取与测试例2同样的头盔压制方法将对比例1的UD布和对比例2的纳米纤维复合UD布制成防弹头盔并采用与测试例2相同的打靶测试标准进行打靶测试,结果见下表3。
表3:UD布面密度和防弹头盔打靶测试结果
序号 样品 面密度(g/m 2) V50(m/s) BFS(mm)
1 对比例1 135 678 24
2 对比例2 139 671 23
测试结果表明,不添加芳纶纳米纤维的UD布(对比例1)制成的防弹头盔由于BFS值过大可能会对人体产生伤害。含10wt%的超高分子量聚乙烯纳米纤维的聚氨酯乳液和水分散液制成的UD布(对比例2)制成的防弹头盔,其防弹性能低于使用芳纶纳米纤维的UD布,且相比不添加芳纶纳米纤维的UD布并未有大幅提升。这是因为超高分子量聚乙烯纳米纤维不具备芳纶纳米纤维的刚性链段,且分子链间容易产生纵向滑移,无法有效地起到界面改性和连接单向片层的作用,因此无法满足防弹头盔的刚性需求。
实施例7:采取单辊排布机预浸料及热压复合工艺制备芳纶纳米纤维复合的超高分子量聚乙烯纤维UD布
将10重量份的芳纶纳米纤维分散到100重量份的SIS乳液中,形成含有芳纶纳米纤维的SIS乳液。将10重量份的芳纶纳米纤维分散到100重量份的去离子水中,形成芳纶纳米纤维的水分散液。将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有含有芳纶纳米纤维的SIS乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。在0°单方向排布层上喷涂芳纶纳米纤维的水分散液,喷涂量控制为4g/m 2,然后烘干。通过裁切、转向获得90°单方向排布层。随后在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到实施例7的纳米纤维复合UD布。实施例7的UD布具有0°/90°排布的2层结构,其结构如图1和图3所示,相邻的两个单向片层的超高分子量聚乙烯纤维的排布方向之间的夹角为90°,单向片层间除了胶黏剂的粘和作用外,还存在分散的纳米纤维的连接作用。
实施例7的纳米纤维复合的UD布的面密度为155g/m 2。实施例7的UD布中,超高分子量聚乙烯纤维占UD布的质量分数为85%。实施例7的胶黏剂中,纳米纤维占胶黏剂的质量分数为19.2%。实施例7的胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为9.1%。实施例7的纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为9.1%。实施例7的UD布中,喷涂在UD布上的纳米纤维的量为0.73g/m 2。结合UD布的面密度可知,实施例7的UD布中,喷涂在UD布上的纳米纤维占UD布的质量分数为0.47%,胶黏剂占UD布的质量分数为14.53%。
测试例5
测试实施例7中的具有2层结构的UD布的面密度,结果如表5所示。对实施例7中的UD布进行防弹头盔压制及打靶测试。对48片实施例7中的具有2层结构的UD布进行单面覆膜刮胶处理,预浸料后热压制成防弹头盔,采用1.1gFSP模拟弹片枪按照防弹标准NIJ0101.06进行测试,在防弹头盔的不同部位进行6次射击,测试结果见下表5。
表5:纳米纤维复合的UD布的面密度和UD防弹头盔打靶测试结果
序号 样品 面密度(g/m 2) V50(m/s) BFS(mm)
1 实施例7 155 645 20
对比例3
将超高分子量聚乙烯纤维导纱经单辊排布机整齐铺展到辊筒上,再通过装有SIS乳液的胶槽进行预浸料处理,胶膜厚度控制为0.03mm。随后烘干,得到0°单方向排布层。通过裁剪、转向获得90°单方向排布层。在90℃的温度、0.5MPa的压力下进行0°/90°热压复合,由此制备得到对比例3的UD布。对比例3的UD布具有0°/90°排布的2层结构。
测试例6
测试对比例3的具有2层结构的UD布的面密度,结果如表6所示。采取与测试例5同样的头盔压制方法将对比例3的UD布制成防弹头盔并采用与测试例5相同的打靶测试标准进行打靶测试,结果见下表6。
表6:UD布面密度和防弹头盔打靶测试结果
序号 样品 面密度(g/m 2) V50(m/s) BFS(mm)
1 对比例3 149 630 24
测试结果表明,树脂的选择对于本发明的纳米纤维复合的单向布的防护性能影响较大,相较于聚氨酯乳液,SIS乳液由于其分子链段中仅有15wt%为刚性聚苯乙烯链段,85wt%为柔性聚异戊二烯链段,因此相应的UD布更适宜于软质防护,例如防弹衣,而聚氨酯交联程度更高,相应的UD布更适宜于硬质防护,例如防弹头盔、防弹板。相同面密度的情况下,本发明的使用聚氨酯作为胶黏剂的树脂基体制备得到的UD布的防弹性能要优于使用SIS作为胶黏剂的树脂基体制备得到的UD布。不过,作为一种柔性材料,本发明的使用SIS作为胶黏剂的树脂基体制备得到的UD布的防弹性能相比现有的柔性防护材料 有显著提升,在软质防护方面有非常好的应用前景。在不同树脂体系下,复合对位芳纶纳米纤维的防弹头盔其防弹性能均有所提升。
虽然,在上述具体实施方式上结合了优选方案对本发明进行了详尽的解释和说明,但在本发明基础上的改进或修改属于本发明的同等范畴之内。所以应当理解本发明不限于所公开的实施方案,上述权利要求均属于本发明要求的保护范围。

Claims (17)

  1. 一种纳米纤维复合的单向布,其特征在于,所述纳米纤维复合的单向布包括至少两个单向片层和位于相邻的单向片层之间的纳米纤维,所述单向片层包括单向排布的高性能纤维和胶黏剂,所述胶黏剂包括纳米纤维。
  2. 如权利要求1所述的纳米纤维复合的单向布,其特征在于,所述纳米纤维复合的单向布具有以下一项或多项特征:
    相邻的两个单向片层的高性能纤维排布方向之间的夹角为90±10°;
    所述高性能纤维的质量占所述纳米纤维复合的单向布总质量的70-90%;
    所述胶黏剂的质量占所述纳米纤维复合的单向布总质量的14.32-14.76%;
    所述位于相邻的单向片层之间的纳米纤维的质量占所述纳米纤维复合的单向布总质量的0.24-0.68%;
    所述纳米纤维复合的单向布包括两个单向片层时的面密度为70-350g/m 2,优选为100-300g/m 2,更优选为120-250g/m 2
    所述胶黏剂中,纳米纤维占胶黏剂的质量分数为5-50%,优选为5-30%,更优选为14-30%;
    所述高性能纤维为拉伸强度大于等于20g/d、初始模量大于等于40GPa的纤维。
  3. 如权利要求1所述的纳米纤维复合单向布,其特征在于,所述高性能纤维选自超高分子量聚乙烯纤维、芳纶纤维、聚酰亚胺纤维和聚对苯撑苯并二噁唑纤维中的一种或多种,优选为超高分子量聚乙烯纤维和/或芳纶纤维,更优选为超高分子量聚乙烯纤维和/或对位芳纶纤维;和/或,所述高性能纤维的拉伸强度大于等于1.8GPa,初始模量为85-170GPa,断裂伸长率大于等于3.5%。
  4. 如权利要求1所述的纳米纤维复合的单向布,其特征在于,所述纳米纤维为芳纶纳米纤维,优选为对位芳纶纳米纤维;和/或,所述纳米纤维的纤维长度为50-100nm,比表面积为50-500m 2/g。
  5. 如权利要求1所述的纳米纤维复合的单向布,其特征在于,
    所述胶黏剂包括树脂基体,所述树脂基体选自聚氨酯、苯乙烯嵌段共聚物和聚丙烯酸酯中的一种或多种、优选为聚氨酯或苯乙烯嵌段共聚物;优选地,所述树脂基体为苯乙烯-异戊二烯-苯乙烯嵌段共聚物;和/或
    所述树脂基体的拉伸强度为15-40MPa。
  6. 如权利要求5所述的纳米纤维复合的单向布,其特征在于,所述纳米纤维复合的单向布具有以下一项或多项特征:
    所述胶黏剂中,树脂基体占胶黏剂的质量分数为30-80%,优选为40-80%;
    所述胶黏剂中,树脂基体和纳米纤维的质量比为1:(0.1-1),优选为1:(0.1-0.6);
    所述胶黏剂还包括添加剂,优选地,添加剂占胶黏剂的质量分数不超过25%。
  7. 一种制备纳米纤维复合的单向布的方法,其特征在于,所述方法包括以下步骤:
    (1)制备包括单向排列的高性能纤维和胶黏剂的单向片层,其中,胶黏剂包括纳米纤维;
    (2)在单向片层上喷涂纳米纤维的水分散液,干燥,再对单向片层进行层叠;
    (3)对层叠的单向片层进行热压复合,得到纳米纤维复合的单向布。
  8. 如权利要求7所述的方法,其特征在于,所述方法具有以下一项或多项特征:
    步骤(1)中,使胶黏剂的水分散体附着在单向排布的高性能纤维上,干燥,得到单向片层;优选地,所述胶黏剂水分散体中,水与除纳米纤维以外的固体成分的质量比为7:3到4:6,优选为7:3到5:5;优选地,附着在单向排布的高性能纤维上的胶黏剂水分散体的厚度为0.01-0.1mm;
    步骤(2)中,纳米纤维的水分散液在相邻的两个单向片层之间的喷涂量为1-10g/m 2
    步骤(2)中,进行层叠时,相邻的两个单向片层的高性能纤维排布方向之间的夹角为90±10°;
    步骤(3)中,热压温度为70-120℃,热压压力为0.1-2MPa。
  9. 如权利要求7所述的方法,其特征在于,所述方法具有以下特征:
    步骤(1)中,使胶黏剂的水分散体附着在单向排布的高性能纤维上,干燥,得到单向片层,其中,所述高性能纤维为超高分子量聚乙烯纤维,所述纳米纤维为对位芳纶纳米纤维,所述胶黏剂水分散体中,纳米纤维占胶黏剂水分散体的质量分数为2-20%、优选为2-15%、更优选为10-13%,附着在单向排布的高性能纤维上的胶黏剂水分散体的厚度为0.01-0.05mm;
    步骤(2)中,纳米纤维的水分散液在相邻的两个单向片层之间的喷涂量为1-5g/m 2,所述纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为2-20%、优选为2-15%、更优选为10-13%,进行层叠时,相邻的两个单向片层的高性能纤维排布方向之间的夹角为90±10°;和
    步骤(3)中,热压温度为70-120℃,热压压力为0.1-2MPa。
  10. 采用权利要求7-9中任一项所述的方法制备得到的纳米纤维复合的单向布;
    优选地,所述纳米纤维复合的单向布为权利要求1-6中任一项所述的纳米纤维复合的单向布。
  11. 一种胶黏剂水分散体,其特征在于,所述胶黏剂水分散体包括树脂基体、纳米纤维、水和任选的添加剂;
    优选地,所述胶黏剂水分散体具有以下一项或多项特征:
    所述胶黏剂水分散体中,水与除纳米纤维以外的固体成分的质量比为7:3到4:6,优选为7:3到5:5;
    所述树脂基体选自聚氨酯、苯乙烯嵌段共聚物和聚丙烯酸酯中的一种或多种、优选为聚氨酯或苯乙烯嵌段共聚物;优选地,所述树脂基体为苯乙烯-异戊二烯-苯乙烯嵌段共聚物;
    所述树脂基体的拉伸强度为15-40MPa;
    所述胶黏剂水分散体中,树脂基体占胶黏剂水分散体固体成分的质量分数为30-80%,优选为40-80%;
    所述纳米纤维为芳纶纳米纤维,优选为对位芳纶纳米纤维;
    所述纳米纤维的纤维长度为50-100nm,比表面积为50-500m 2/g;
    所述胶黏剂水分散体中,纳米纤维占胶黏剂水分散体固体成分的质量分数为5-50%,优选为5-30%,更优选为14-30%。
    所述胶黏剂水分散体中,树脂基体和纳米纤维的质量比为1:(0.1-1),优选为1:(0.1-0.6);
    所述胶黏剂水分散体中,添加剂占胶黏剂水分散体固体成分的质量分数不超过25%。
  12. 权利要求11所述的胶黏剂水分散体在制备单向布或提升单向布的防弹性能中的应用。
  13. 纳米纤维的水分散液在制备单向布或提升单向布的防弹性能中的应用;
    优选地,所述纳米纤维的水分散液具有以下一项或多项特征:
    所述纳米纤维为芳纶纳米纤维,优选为对位芳纶纳米纤维;
    所述纳米纤维的纤维长度为50-100nm,比表面积为50-500m 2/g;
    所述纳米纤维的水分散液中,纳米纤维占纳米纤维的水分散液的质量分数为2-20%,优选为2-15%,更优选为10-13%。
  14. 一种防弹制品,其特征在于,所述防弹制品包含权利要求1-6和10中任一项所述的纳米纤维复合的单向布;优选地,所述防弹制品包括防弹衣、防弹插板和防弹头盔。
  15. 一种单向片层,其特征在于,所述单向片层包括单向排布的高性能纤维和胶黏剂,所述胶黏剂包括纳米纤维,所述单向片层的表面具有纳米纤维;
    优选地,所述高性能纤维、所述胶黏剂或所述纳米纤维如权利要求2-6中任一项中所述。
  16. 一种制备单向片层的方法,其特征在于,所述方法包括以下步骤:
    (1)制备包括单向排列的高性能纤维和胶黏剂的单向片层,其中,胶黏剂包括纳米纤维;
    (2)在单向片层上喷涂纳米纤维的水分散液,干燥;
    优选地,所述步骤(1)如权利要求8或9中的步骤(1)所述;
    优选地,所述步骤(2)如权利要求8或9中的步骤(2)所述。
  17. 采用权利要求16所述的方法制备得到的单向片层;
    优选地,所述单向片层为权利要求15所述的单向片层。
PCT/CN2021/120840 2020-09-28 2021-09-27 一种纳米纤维复合的单向布、其制备方法及应用 WO2022063285A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237010683A KR20230058461A (ko) 2020-09-28 2021-09-27 나노섬유 복합 단방향 패브릭, 이의 제조 방법 및 응용
EP21871654.6A EP4219160A1 (en) 2020-09-28 2021-09-27 Nanofiber composite unidirectional fabric, preparation method therefor and application thereof
BR112023005382A BR112023005382A2 (pt) 2020-09-28 2021-09-27 Pano unidirecional compósito de nanofibra, método de preparação do mesmo e aplicação do mesmo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011041333.0A CN112549711A (zh) 2020-09-28 2020-09-28 芳纶纳米纤维复合的单向布及其制备方法
CN202011039808.2A CN112549701A (zh) 2020-09-28 2020-09-28 一种纳米纤维复合的单向布、其制备方法及应用
CN202011039808.2 2020-09-28
CN202011041333.0 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022063285A1 true WO2022063285A1 (zh) 2022-03-31

Family

ID=80844970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120840 WO2022063285A1 (zh) 2020-09-28 2021-09-27 一种纳米纤维复合的单向布、其制备方法及应用

Country Status (4)

Country Link
EP (1) EP4219160A1 (zh)
KR (1) KR20230058461A (zh)
BR (1) BR112023005382A2 (zh)
WO (1) WO2022063285A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666086A (zh) * 2009-12-17 2012-09-12 帝斯曼知识产权资产管理有限公司 用于制造多层材料片的方法、多层材料片及其用途
CN102706219A (zh) * 2012-06-06 2012-10-03 中国科学院化学研究所 微米及纳米材料增强的仿生层状复合材料及其制备方法
WO2012150169A1 (en) * 2011-05-03 2012-11-08 Teijin Aramid B.V. Antiballistic panel
CN105074378A (zh) * 2013-03-13 2015-11-18 帝斯曼知识产权资产管理有限公司 具有经设计的依从性和速率敏感性冲击响应的轻质半刚性复合防弹体系
CN112549701A (zh) * 2020-09-28 2021-03-26 中化高性能纤维材料有限公司 一种纳米纤维复合的单向布、其制备方法及应用
CN112549711A (zh) * 2020-09-28 2021-03-26 中化高性能纤维材料有限公司 芳纶纳米纤维复合的单向布及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666086A (zh) * 2009-12-17 2012-09-12 帝斯曼知识产权资产管理有限公司 用于制造多层材料片的方法、多层材料片及其用途
WO2012150169A1 (en) * 2011-05-03 2012-11-08 Teijin Aramid B.V. Antiballistic panel
CN102706219A (zh) * 2012-06-06 2012-10-03 中国科学院化学研究所 微米及纳米材料增强的仿生层状复合材料及其制备方法
CN105074378A (zh) * 2013-03-13 2015-11-18 帝斯曼知识产权资产管理有限公司 具有经设计的依从性和速率敏感性冲击响应的轻质半刚性复合防弹体系
CN112549701A (zh) * 2020-09-28 2021-03-26 中化高性能纤维材料有限公司 一种纳米纤维复合的单向布、其制备方法及应用
CN112549711A (zh) * 2020-09-28 2021-03-26 中化高性能纤维材料有限公司 芳纶纳米纤维复合的单向布及其制备方法

Also Published As

Publication number Publication date
BR112023005382A2 (pt) 2023-04-25
KR20230058461A (ko) 2023-05-03
EP4219160A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
EP2061650B1 (en) High performance ballistic composites having improved flexibility and method of making the same
JP5415254B2 (ja) セラミック対向弾道パネル構造物
JP5543782B2 (ja) 一方向に配向した繊維構造体の形成方法
RU2668488C2 (ru) Пуленепробиваемый материал (варианты), объединяющий тканые или нетканые композиты
TWI523992B (zh) 防彈效能增強之聚合物纖維
CN101678636B (zh) 抑制水渗入弹道材料
KR101360856B1 (ko) 프랙 쉴드
TWI401038B (zh) 保護性頭盔
KR101324947B1 (ko) 향상된 탄도 제품의 제조방법
KR101980250B1 (ko) 하이브리드 섬유 일방향성 테이프 및 복합체 라미네이트
WO2022063286A1 (zh) 芳纶纳米纤维复合的单向布及其制备方法
JP5291011B2 (ja) 耐被弾衝撃性の複合布地構造体
JPS61209228A (ja) 耐衝撃性複合製品
US20120196108A1 (en) High performance ballistic composites having improved flexibility and method of making the same
WO2012170100A2 (en) Methods to improve the process-ability of uni-directional composites
TW201211496A (en) Flexible body armor vest with breast plate
WO2022063285A1 (zh) 一种纳米纤维复合的单向布、其制备方法及应用
CN112549701A (zh) 一种纳米纤维复合的单向布、其制备方法及应用
CN101203728A (zh) 涂覆聚合物条纹的织物的增强弹道性能
KR20140133522A (ko) 연성 탄도 응용을 위한 고밀도 단방향 직물
US20190128647A1 (en) Light weight coated fabrics as trauma reducing body armor
BR112013018150B1 (pt) Artigo à prova de bala, e, processo para fabricar o mesmo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237010683

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005382

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023005382

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230323

WWE Wipo information: entry into national phase

Ref document number: 2021871654

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871654

Country of ref document: EP

Effective date: 20230428