WO2022062693A1 - 显示面板、电子装置以及显示面板的制作方法 - Google Patents

显示面板、电子装置以及显示面板的制作方法 Download PDF

Info

Publication number
WO2022062693A1
WO2022062693A1 PCT/CN2021/110588 CN2021110588W WO2022062693A1 WO 2022062693 A1 WO2022062693 A1 WO 2022062693A1 CN 2021110588 W CN2021110588 W CN 2021110588W WO 2022062693 A1 WO2022062693 A1 WO 2022062693A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base substrate
wavelength conversion
light
color
Prior art date
Application number
PCT/CN2021/110588
Other languages
English (en)
French (fr)
Inventor
李翔
舒适
徐传祥
于勇
岳阳
黄海涛
黄维
刘玉杰
何伟
姚琪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/788,849 priority Critical patent/US20230060696A1/en
Publication of WO2022062693A1 publication Critical patent/WO2022062693A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, an electronic device including the display panel, and a method for manufacturing the display panel.
  • Quantum dot display technology is one of the hot spots in display technology.
  • the quantum dot-organic light emitting diode (OD-OLED) display panel combines quantum dot display technology and organic light emitting diode display technology, and uses organic light emitting diodes to excite quantum dots to emit light to achieve display.
  • the quantum dot-OLED display panel has potential technical advantages, such as high resolution, high color gamut and high color purity, and no viewing angle dependence.
  • Embodiments of the present disclosure provide a display panel, including:
  • a first electrode layer disposed on the base substrate
  • the luminescent material layer is located on the side of the first electrode layer away from the base substrate;
  • the second electrode layer is located on the side of the light-emitting material layer away from the base substrate;
  • the light wavelength conversion layer is located on the side of the second electrode layer away from the base substrate, and is used for converting the excitation light emitted from the luminescent material layer into light of a predetermined color
  • the display panel further includes an elastic lens layer, and the elastic lens layer is located on the side of the second electrode layer away from the base substrate and on the side of the light wavelength conversion layer facing the base substrate , the elastic lens layer is configured to converge the excitation light emitted from the light-emitting material layer.
  • the elastic lens layer has an elastic restoring force of 200 MPa to 600 MPa.
  • the display panel further includes a thin film encapsulation located between the elastic lens layer and the second electrode layer, and wherein between the thin film encapsulation and the optical wavelength conversion layer A gas or a flexible medium is filled between and around the elastic lens layer, and the refractive index of the gas or the flexible medium is lower than that of the elastic lens layer.
  • the display panel further includes a protective layer between the elastic lens layer and the light wavelength conversion layer, wherein a height of the elastic lens layer in a direction perpendicular to the base substrate is equal to a height of the protective layer The distance from the surface of the side facing the base substrate to the surface of the thin film package on the side facing away from the base substrate in a direction perpendicular to the base substrate.
  • the at least one light wavelength conversion layer includes a first color light wavelength conversion layer and a second color light wavelength conversion layer
  • the elastic lens layer includes a first condensing lens and a second condensing lens
  • the first The orthographic projection of a condensing lens on the base substrate at least partially overlaps the orthographic projection of the first color light wavelength conversion layer on the base substrate
  • the orthographic projection of the second converging lens on the base substrate is the same as the orthographic projection of the first color light wavelength conversion layer on the base substrate.
  • the orthographic projections of the second color light wavelength conversion layer on the base substrate at least partially overlap.
  • the adjacent first color light wavelength conversion layers and the second color light wavelength conversion layers are spaced apart by a spacer in a direction parallel to the base substrate.
  • the side slope of the spacer facing the first color light wavelength conversion layer or the second color light wavelength conversion layer and the surface of the spacer on the side facing the base substrate is less than 90 degrees.
  • the area of the orthographic projection of the surface of the spacer on the side facing the base substrate on the base substrate is larger than that of the surface of the spacer on the side facing away from the base substrate on the base substrate the area of the orthographic projection.
  • the height h of the first condensing lens in the direction perpendicular to the base substrate satisfies:
  • W is the sum of the width of the first color light wavelength conversion layer and the width of the spacers on both sides adjacent to the first color light wavelength conversion layer
  • ⁇ 1 is the predetermined divergence angle of the excitation light emitted from the luminescent material layer.
  • the excitation light emitted from the light-emitting material layer has a third color
  • the display panel further includes a third-color light-transmitting layer
  • the third-color light-transmitting layer is located far from the second electrode layer.
  • One side of the base substrate is used to transmit the excitation light
  • the elastic lens layer further includes a third condensing lens
  • the orthographic projection of the third condensing lens on the base substrate is the same as that of the third color light-transmitting layer The orthographic projections on the base substrate at least partially overlap.
  • the display panel further includes a filter layer, the filter layer is located on a side of the at least one light wavelength conversion layer away from the base substrate, and the filter layer is used for filtering The outgoing light of the first color light wavelength conversion layer and the second color light wavelength conversion layer is filtered, and the filter layer is a thin film filter.
  • the filter layer includes a long-pass filter film
  • the orthographic projection of the long-pass filter film on the base substrate covers the positive projection of the first color light wavelength conversion layer on the base substrate.
  • projection and orthographic projection of the second color light wavelength conversion layer on the base substrate, the passband wavelength range of the long-pass filter film at least partially covers the desired outgoing light of the first color light wavelength conversion layer
  • the wavelength range and the desired wavelength range of the emitted light of the second color light wavelength conversion layer, and the wavelength range of the stop band of the long-pass filter film covers the wavelength range of the excitation light emitted from the luminescent material layer.
  • the filter layer includes:
  • the orthographic projection of the first color filter film on the base substrate covers the orthographic projection of the first color light wavelength conversion layer on the base substrate, the first color filter film configured to filter out light of wavelengths other than a desired wavelength range of outgoing light of the first color light wavelength converting layer;
  • the second color filter film, the orthographic projection of the second color filter film on the base substrate covers the orthographic projection of the second color light wavelength conversion layer on the base substrate, the second color filter film It is configured to filter out light of wavelengths other than a desired wavelength range of outgoing light of the second color light wavelength conversion layer.
  • the surface of one or more of the at least one optical wavelength converting layer on the side facing away from the base substrate has the shape of a converging lens surface.
  • the display panel further includes a color filter cover plate, and the color filter cover plate is located on a side of the filter layer away from the base substrate.
  • Embodiments of the present disclosure also provide an electronic device, including the display panel described in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a method for fabricating a display panel, including:
  • the elastic lens layer is located on the side of the second electrode layer away from the base substrate and on the side of the light wavelength conversion layer facing the base substrate, and the elastic lens layer is configured to The excitation light emitted from the light-emitting material layer is converged.
  • the method prior to forming the at least one optical wavelength converting layer, the method further comprises:
  • a filter layer is formed on the color filter cover
  • a plurality of spacers are formed on the side of the filter layer away from the color filter cover, and an opening area is arranged between the spacers;
  • the at least one optical wavelength conversion layer is formed in the opening area, and the adjacent optical wavelength conversion layers are separated by the spacer.
  • the method before forming the filter layer, the method further includes:
  • a black matrix layer is formed on the color filter cover
  • the filter layer is located on the side of the black matrix layer away from the color filter substrate.
  • the manufacturing method of the display panel further includes:
  • the color filter substrate and the array substrate are assembled together to form a display panel.
  • FIG. 1 illustrates a schematic cross-sectional view of a display panel according to some embodiments of the present disclosure
  • FIG. 2 illustrates a schematic cross-sectional view of a display panel according to other embodiments of the present disclosure
  • Figure 3 shows a schematic diagram of a converging lens in an elastic lens layer
  • FIG. 4 illustrates a schematic diagram of a color filter substrate of a display panel according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram illustrating filter characteristics of a thin film filter in a display panel according to some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram illustrating filter characteristics of another thin film filter in a display panel according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram illustrating filter characteristics of still another thin film filter in a display panel according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating filter characteristics of still another thin film filter in a display panel according to some embodiments of the present disclosure
  • FIG. 9 illustrates a schematic cross-sectional view of a display panel according to further embodiments of the present disclosure.
  • FIG. 10 is a schematic plan view of a display panel according to some embodiments of the present disclosure.
  • FIG. 11 schematically shows a schematic flow chart of a method of fabricating a display panel according to some embodiments of the present disclosure.
  • FIG. 12 schematically shows a schematic flow chart of a manufacturing method of a display panel according to other embodiments of the present disclosure.
  • organic light-emitting elements that output multiple different colors can be used, or organic light-emitting elements that output a single color and provide a color conversion structure can be used to obtain output light of multiple colors.
  • a double-substrate structure can be used, that is, a laminated structure of organic light-emitting elements is fabricated on one glass substrate, and a color conversion structure is fabricated on the other glass substrate, and then the two substrates are assembled together. Fill in between.
  • Embodiments of the present disclosure disclose a display panel 100 .
  • the display panel 100 may include a display area AA and a peripheral area P.
  • a plurality of sub-pixels may be provided in the display area.
  • FIG. 10 schematically shows three adjacent sub-pixels, namely a first sub-pixel PX1, a second sub-pixel PX2 and a third sub-pixel PX3.
  • the first sub-pixel PX1, the second sub-pixel PX2, and the third sub-pixel PX3 may emit light of different colors respectively to realize color display.
  • the first sub-pixel PX1 may emit red light
  • the second sub-pixel PX2 may emit red light. Green light is emitted
  • the third sub-pixel PX3 may emit blue light.
  • FIG. 1 shows the specific film layer structure of the display panel 100 (especially the above-mentioned three sub-pixels in the display panel 100 ).
  • FIG. 1 can generally be viewed as a cross-sectional view taken along line X-X in FIG. 10 .
  • the display panel 100 may include: a base substrate 30 , a first electrode layer 21 , a luminescent material layer 22 , a second electrode layer 23 , a light wavelength conversion layer 31 and an elastic lens layer 32 .
  • the first electrode layer 21 may be disposed on the base substrate 30 .
  • the fact that the first electrode layer 21 can be disposed on the base substrate 30 does not mean that the first electrode layer 21 must be directly disposed on the base substrate 30 , for example, the first electrode layer 21 and the base substrate 30 are formed between the first electrode layer 21 and the base substrate 30 . There may also be an insulating layer 40 in between.
  • the luminescent material layer 22 is located on the side of the first electrode layer 21 away from the base substrate 30
  • the second electrode layer 23 is located on the side of the luminescent material layer 22 away from the base substrate 30 .
  • the light-emitting material layer 22 is sandwiched by the first electrode layer 21 and the second electrode layer 23 , and can emit excitation light under the control of the voltages of the first electrode layer 21 and the second electrode layer 23 .
  • the light-emitting material layer 22, the first electrode layer 21 and the second electrode layer 23 constitute an organic light-emitting element.
  • the light wavelength conversion layer 31 is located on the side of the second electrode layer 23 away from the base substrate 30, and is used for converting the excitation light emitted from the luminescent material layer 22 into light of a predetermined color, for example, the excitation light is blue color light, and the light wavelength conversion layer 31 can convert it into other colors, such as red or green, so as to realize color display.
  • the elastic lens layer 32 is located on the side of the second electrode layer 23 away from the base substrate 30 and on the side of the light wavelength conversion layer 31 facing the base substrate 30 . The elastic lens layer 32 is configured to converge the excitation light emitted from the light-emitting material layer.
  • the elastic lens layer 32 can be made of a material with elastic restoring force (for example, some photoresist materials (such as positive photoresist or negative photoresist).
  • a dual substrate is used.
  • the structure, that is, the organic light-emitting structure (for example, including the first electrode layer 21, the light-emitting material layer 22 and the second electrode layer 23, etc.) can be arranged on the above-mentioned base substrate 30, and the light wavelength conversion layer 31 can be arranged on another substrate. (may be referred to as the color filter cover plate 50), and then the two substrates are assembled together to form the display panel 100.
  • a relatively thick filler ( At least above 10 microns), this filler can be used to support the color filter cover plate 50 to prevent the color filter cover plate 50 from overly pressing the organic light-emitting structure and affecting the work of the organic light-emitting structure.
  • this filler due to the large thickness of the filler, a certain sub-pixel The light emitted by the organic light-emitting structure in the OLED may be injected into the light wavelength conversion layer in the adjacent sub-pixels, thus causing the problem of cross-color. If the thickness of the existing filler is reduced, the problem of uneven thickness is prone to occur. This results in display panel defects such as mura.
  • the elastic lens layer 32 is disposed between the light wavelength conversion layer 31 and the organic light-emitting structure instead of the filler.
  • the light emitted by the light emitting structure is converged to reduce the mutual interference of the light of adjacent sub-pixels.
  • the thickness of the elastic lens layer 32 can be adjusted according to actual needs, for example, it can be set between 2 microns and 9 microns. This can reduce the thickness of the display panel compared to the filler in the related art.
  • the display panel 100 may further include an encapsulation structure, and the encapsulation structure may be disposed on the side of the second electrode layer 23 away from the base substrate 30 , and the encapsulation structure may be, for example, located on the elastic lens layer and the
  • the thin film encapsulation (TFE) between the second electrode layers may include a first inorganic encapsulation layer 25 , an organic encapsulation layer 26 and a second inorganic encapsulation layer 27 which are stacked in sequence.
  • the thin film encapsulation can be used to prevent the functional film layer on the array substrate from being corroded and polluted by the environment.
  • a gas or flexible medium 29 is filled around the elastic lens layer 32 between the thin film encapsulation and the optical wavelength conversion layer.
  • the elastic lens layer 32 will be deformed to a certain extent due to the weight.
  • the gas such as air, nitrogen, helium, etc.
  • the flexible medium 29 may be made of a material such as polyimide, polyamide, polyurethane, etc. that matches the elastic properties of the elastic lens layer 32 .
  • the flexible medium 29 can also be deformed when the elastic lens layer 32 is deformed.
  • the flexible medium 29 can also provide an elastic restoring force of 200 MPa to 600 MPa.
  • the refractive index of the gas or the flexible medium 29 is smaller than that of the elastic lens layer 32 .
  • the elastic lens layer 32 can provide greater support for the film layer structure (such as color filter cover plate, etc.) carried by the elastic restoring force, which is helpful to reduce the thickness of the film layer .
  • the flexible medium 29 is located around the elastic lens layer 32. On the one hand, it can assist the elastic lens layer 32 to provide elastic support, and on the other hand, it can also facilitate the manufacturing process of the elastic lens layer 32 (for details, please refer to FIG. 9 below for details. description of the examples).
  • a protective layer 311 may also be disposed between the elastic lens layer 32 and the light wavelength conversion layer.
  • the protective layer 311 can be made of, for example, silicon nitride (SiN), and can be deposited over the entire surface.
  • the protective layer 311 may have a thickness of 6000 angstroms or more, for example.
  • the height h of the elastic lens layer 32 in the direction perpendicular to the base substrate 30 is equal to the surface of the protective layer 311 on the side facing the base substrate 30 to the surface of the thin film package facing away from the base substrate 30 .
  • the distance of the side surface in the direction perpendicular to the base substrate is equal to the surface of the protective layer 311 on the side facing the base substrate 30 to the surface of the thin film package facing away from the base substrate 30 .
  • the upper and lower sides of the elastic lens layer 32 abut against the surface of the protective layer 311 and the surface of the thin film package, respectively.
  • the protective layer 311 may not be provided, and the elastic lens layer may be in direct contact with the optical wavelength conversion layer.
  • the light wavelength conversion layer 31 in the display panel 100 may include a first color light wavelength conversion layer 31A and a second color light wavelength conversion layer 31B.
  • the elastic lens layer 32 may include a first condensing lens 32A and a second condensing lens 32B.
  • the orthographic projection of the first condensing lens 32A on the base substrate 30 and the orthographic projection of the first color light wavelength conversion layer 31A on the base substrate 30 at least partially overlap, and the second converging lens 32B is on the backing.
  • the orthographic projection on the base substrate 30 at least partially overlaps the orthographic projection of the second color light wavelength conversion layer 31B on the base substrate 30 .
  • the first color light wavelength conversion layer 31A and the first condensing lens 32A are located in the first subpixel PX1, and the second color light wavelength conversion layer 31B and the second condensing lens 32B are located in the second subpixel PX2.
  • the orthographic projection of the first condensing lens 32A on the base substrate 30 can completely cover the orthographic projection of the first color light wavelength conversion layer 31A on the base substrate 30, which can make the first condensing lens 32A better
  • the light emitted from the light emitting material layer 22 is condensed to the first color light wavelength conversion layer 31A. As shown in FIG.
  • the excitation lights La and Lb emitted from the luminescent material layer 22 can be deflected toward the first color light wavelength conversion layer 31A through the condensing action of the first condensing lens 32A.
  • the excitation light Lb with a relatively large divergence angle emitted from the light-emitting material layer 22 may not be emitted to the adjacent second color light wavelength conversion layer 31B due to the condensing effect of the first condensing lens 32A, but absorbed by the spacer 34A.
  • the orthographic projection of the first condensing lens 32A on the base substrate 30 is large (for example, in the case of completely covering the orthographic projection of the first color light wavelength conversion layer 31A on the base substrate 30 ), it is possible to reduce the Optical interference between adjacent optical wavelength converting layers.
  • the orthographic projection of the second condensing lens 32B on the base substrate 30 may also completely cover the orthographic projection of the second color light wavelength conversion layer 31B on the base substrate 30 .
  • adjacent first color light wavelength conversion layers 31A and second color light wavelength conversion layers 31B are spaced apart by spacers 34A in a direction parallel to the base substrate 30 .
  • the spacer 34A can prevent mutual interference between lights from light wavelength conversion layers of different colors, and can also improve the contrast ratio of the display panel.
  • the spacer 34A may absorb and/or reflect light.
  • the cross section of the spacer 34A has a trapezoidal shape.
  • the bottom edge (lower bottom edge in FIG. 1 ) of the trapezoid that is far away from the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B is closer than the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31A and the second color light wavelength conversion
  • the bottom edge (upper bottom edge in FIG. 1 ) of layer 31B is longer.
  • the side slope surface 341 of the spacer portion 34A facing the first color light wavelength conversion layer 31A or the second color light wavelength conversion layer 31B and the side slope surface 341 of the spacer portion 34A facing the base substrate 30 The inner angle formed between the surfaces (the lower surface of the spacer 34A in FIG. 1 ) is less than 90 degrees. This means that the side slope surface 341 of the spacer 34A is away from the first condensing lens 32A or the second condensing lens 32B.
  • the light emitted from the light-emitting material layer 22 is incident on the first color light wavelength conversion layer 31A or the second color light wavelength conversion layer 31B, and will interact with the light in the first color light wavelength conversion layer 31A or the second color light wavelength conversion layer 31B.
  • Structures interact with each other, and during this interaction, the direction of light may be changed, and the light may be irradiated on the side slope surface 341 of the spacer 34A. Since the inner angle formed between the side slope surface 341 and the surface of the spacer portion 34A on the side facing the base substrate 30 (the lower surface of the spacer portion 34A in FIG. 1 ) is less than 90 degrees, when light is irradiated to the side slope When the light is on the surface 341, at least a part of the light will be reflected in a direction away from the first condensing lens 32A or the second condensing lens 32B (see light Lc in FIG. 1), thereby increasing the light output and avoiding the side slope surface 341 The light is reflected toward the light-emitting material layer 22 to cause problems such as interference.
  • the area of the orthographic projection of the surface of the spacer 34A on the side facing the base substrate 30 on the base substrate 30 is larger than the surface of the spacer 34A on the side away from the base substrate 30 The area of the orthographic projection on the base substrate 30 . This also helps to make more light exit from the first color light wavelength conversion layer 31A or the second color light wavelength conversion layer 31B.
  • FIG. 3 schematically shows the position and size relationship of the first condensing lens 32A to surrounding structures.
  • the left and right boundaries of the luminescent material layer 22 corresponding to the first condensing lens 32A are schematically shown in FIG. 3 .
  • the light-emitting material layer 22 can only emit light effectively when a voltage is applied, it can generally be considered that the light-emitting material layer 22 is in the pixel defining layer 28 .
  • the part in the opening area of is the effective light-emitting area 22A of the light-emitting material layer 22.
  • the left and right boundaries of the effective light-emitting area 22A that is, the black block on the left side of the effective light-emitting area 22A and the black block on the right side
  • the height h of the first condensing lens 32A in the direction perpendicular to the base substrate 30 satisfies:
  • W is the sum of the width of the first color light wavelength conversion layer 31A and the width of the spacers 34A on both sides adjacent to the first color light wavelength conversion layer 31A, as shown in FIG. 3 .
  • ⁇ 1 is a predetermined divergence angle of the excitation light emitted from the effective light-emitting region 22A. Assuming that in the present application, the definition of the divergence angle ⁇ 1 is the angle between the envelope of the cross-section of the excitation light beam in the direction perpendicular to the base substrate 30 and the direction perpendicular to the base substrate 30 .
  • the excitation light beam has such a divergence angle ⁇ 1
  • the excitation light beam just does not irradiate other light wavelength conversion layers adjacent to the first color light wavelength conversion layer 31A.
  • the first condensing lens 32A may cause undesired deflection of the excitation light beam, so that a part of the light is irradiated into other light wavelength conversion layers adjacent to the first color light wavelength conversion layer 31A, thereby causing certain crosstalk.
  • the radius of curvature of the first condensing lens 32A may be too large. If the radius of curvature of the first condensing lens 32A is too large, the first condensing lens 32A may overlap with other adjacent condensing lenses (eg, the second condensing lens 32B) (if the sub-pixel size is constant). Thus, an excessively large radius of curvature of the first condensing lens 32A may lead to an unnecessary increase in the size of the sub-pixels to reduce the resolution.
  • the height h of the first condensing lens 32A in the direction perpendicular to the base substrate 30 is too small, it is also unfavorable to elastically support the structure pressed on the elastic lens layer 32 (especially if a relatively small structure is arranged above the elastic lens layer 32 ) in the case of heavy substrates or covers).
  • the height h of the first condensing lens 32A in the direction perpendicular to the base substrate 30 may be 2 micrometers to 9 micrometers.
  • the condensing lens structure in the elastic lens layer 32 is described above by taking the first condensing lens 32A as an example, it should be understood that other condensing lens structures in the elastic lens layer 32 (for example, the second condensing lens 32B, etc.) can also be is similar to it. The specific details will not be repeated here.
  • the condensing lens structure in the elastic lens layer 32 has a larger refractive index so as to condense the excitation light emitted from the luminescent material layer 22 .
  • the converging lens structures in the elastic lens layer 32 may have an elastic restoring force of 200 MPa to 600 MPa, such as having an elastic restoring force of about 400 MPa.
  • the converging lens structures in the elastic lens layer 32 can be made of photoresist materials (such as certain positive resists or negative resists), and can also be made of materials such as polyimide, polyamide, polyurethane , resin and other materials.
  • the display panel 100' may further include a black matrix layer BM located on a side of the spacer 34A away from the base substrate 30.
  • the orthographic projection of the black matrix layer BM on the base substrate 30 at least partially overlaps the orthographic projection of the spacer 34A on the base substrate 30 .
  • the black matrix layer BM can be used to separate adjacent sub-pixels; on the other hand, it can be used as an alignment reference in the production process of the film structure of the display panel.
  • the black matrix layer BM can be formed on the color filter substrate 50, so as to form the spacer 34A, the light wavelength conversion
  • the black matrix layer BM can be used as the alignment reference for the structure of the layer, the elastic lens layer 32 and the like.
  • the excitation light exiting the luminescent material layer 22 may have a third color.
  • the first color light wavelength conversion layer 31A can convert the excitation light of the third color into light of the first color
  • the wavelength conversion layer 31B of the second color light can convert the excitation light of the third color into light of the second color .
  • the luminescent material layer 22 may emit blue light
  • the light of the first color is red light
  • the light of the second color is green light.
  • a display panel with sub-pixels of three colors for example, red, green, and blue
  • the display panel may further include a third-color light-transmitting layer 31C, and the third-color light-transmitting layer 31C is located on the side of the second electrode layer 23 away from the base substrate 30 , for transmitting the excitation light.
  • the elastic lens layer 32 may further include a third condensing lens 32C.
  • the orthographic projection of the third condensing lens 32C on the base substrate 30 at least partially overlaps the orthographic projection of the third color light-transmitting layer 31C on the base substrate 30 .
  • the third condensing lens 32C may be used to condense and guide the excitation light of the third color emitted from the luminescent material layer 22 to the third color light-transmitting layer 31C.
  • the orthographic projection of the third condensing lens 32C on the base substrate 30 may completely cover the orthographic projection of the third color light-transmitting layer 31C on the base substrate 30, so as to excite as many third colors as possible
  • the light is condensed and guided into the third-color light-transmitting layer 31C by the third condensing lens 32C.
  • the third color light-transmitting layer 31C may be arranged side by side with the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B. Adjacent ones of the first color light wavelength conversion layer 31A, the second color light wavelength conversion layer 31B, and the third color light transmission layer 31C may be separated by spacers 34A, 34B.
  • At least one of the first color light wavelength conversion layer 31A, the second color light wavelength conversion layer 31B, and the third color light transmission layer 31C includes scattering particles, which are used for the excitation light of the incident. Scatter.
  • the first color light wavelength conversion layer 31A, the second color light wavelength conversion layer 31B and the third color light transmission layer 31C may all contain such scattering particles. Such scattering particles can make the intensity distribution of the light emitted from the first color light wavelength conversion layer 31A, the second color light wavelength conversion layer 31B and the third color light transmission layer 31C more uniform.
  • the light intensity of the outgoing light may be relatively concentrated in a certain area (for example, within a viewing angle of plus or minus 30 degrees), while exceeding In this area, the outgoing light intensity will drop significantly. This may result in different intensities of the displayed image viewed by observers located in different regions.
  • the light intensity of the outgoing light may be in a larger range (for example, within a viewing angle of plus or minus 60 degrees or a viewing angle of plus or minus 80 degrees) ) is relatively uniform.
  • the scattering particles provided in the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B can also increase the efficiency of light wavelength conversion by scattering (for example, quantum dots for the first color light wavelength conversion layer 31A) layer to enhance the interaction of incident light with quantum dots).
  • the size of the scattering particles may be in the range of 100 nm to 600 nm.
  • the scattering particles may be made of materials such as titanium dioxide.
  • the display panel may further include a filter layer 35 , and the filter layer 35 is located on a side of the at least one light wavelength conversion layer 31 away from the base substrate 30 .
  • the filter layer 35 is used to filter the light emitted from the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B.
  • the filter layer 35 can be used to filter the excitation light emitted from the luminescent material layer 22 to avoid interference with the emitted light of the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B.
  • the filter layer may include a filter film formed from multiple layers of optical interference films (or thin film filters).
  • FIG. 5 shows a filter film that can be used to filter the light emitted from the second color light wavelength conversion layer 31B.
  • the filter film can transmit green light (passband wavelength range is about 510nm to 590nm) and filter out other wavelengths of light.
  • the filter film may for example consist of a plurality of alternating layers of titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ). Table 1 gives an example.
  • the filter film is composed of 11 layers of titanium dioxide and 10 layers of silicon dioxide alternately.
  • the total thickness of each titanium dioxide layer is 458.19 nm, and the total thickness of each silicon dioxide layer is 630.40 nm.
  • Incident light will be transmitted and reflected between each adjacent titanium dioxide layer and silicon dioxide layer, and the formed multiple beams of transmitted light and reflected light will interfere to form a desired spatial light intensity distribution.
  • FIG. 6 shows a filter film that can be used to filter the light emitted from the first color light wavelength conversion layer 31A.
  • the filter film can transmit red light (passband wavelength range of about 620nm to 670nm) and filter out other wavelengths of light.
  • the filter film may, for example, also consist of a plurality of alternating layers of titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ). Table 2 gives an example.
  • the filter film is composed of alternating layers of 10 layers of titanium dioxide and 9 layers of silicon dioxide.
  • the total thickness of each titanium dioxide layer is 439.59 nm, and the total thickness of each silicon dioxide layer is 654.65 nm.
  • Incident light will also be transmitted and reflected between each adjacent titanium dioxide layer and silicon dioxide layer, and the formed multiple beams of transmitted light and reflected light will interfere to form a desired spatial light intensity distribution.
  • the spatial light intensity distribution depends on the arrangement of the individual film layers and the thickness of the individual layers.
  • the examples given in Table 2 are different from the examples shown in Table 1 due to the different arrangement numbers and thicknesses of the respective film layers, so their filtering effects are also different.
  • FIG. 7 shows a filter film that can be used to filter the light emitted from the third color light-transmitting layer 31C.
  • the filter film is a short-pass filter film, which can transmit blue light (the wavelength range of the passband is about less than 480 nm) and filter out light with other wavelengths.
  • the filter film may, for example, also consist of a plurality of alternating layers of titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ). Table 3 gives an example.
  • the filter film is composed of 9 layers of titanium dioxide and 8 layers of silicon dioxide alternately.
  • the total thickness of each titanium dioxide layer is 398.22 nm, and the total thickness of each silicon dioxide layer is 674.84 nm.
  • Incident light will also be transmitted and reflected between each adjacent titanium dioxide layer and silicon dioxide layer, and the formed multiple beams of transmitted light and reflected light will interfere to form a desired spatial light intensity distribution.
  • the spatial light intensity distribution depends on the arrangement of the individual film layers and the thickness of the individual layers.
  • the examples given in Table 3 are different from the examples shown in Tables 1 and 2 due to the different arrangement numbers and thicknesses of the respective film layers, so their filtering effects are also different.
  • FIG. 8 shows a filter film that can be used to filter the light emitted from the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B.
  • the filter film is a long-pass filter film, which can transmit red light and a considerable part of green light (the wavelength range of the passband is about greater than 560 nm) and filter light of other wavelengths.
  • the filter film may, for example, also consist of a plurality of alternating layers of titanium dioxide (TiO 2 ) and silicon dioxide (SiO 2 ). Table 4 gives an example.
  • the filter film is composed of 10 layers of titanium dioxide and 10 layers of silicon dioxide alternately.
  • the total thickness of each titanium dioxide layer is 390.58 nm, and the total thickness of each silicon dioxide layer is 657.49 nm.
  • Incident light will also be transmitted and reflected between each adjacent titanium dioxide layer and silicon dioxide layer, and the formed multiple beams of transmitted light and reflected light will interfere to form a desired spatial light intensity distribution.
  • the spatial light intensity distribution depends on the arrangement of the individual film layers and the thickness of the individual layers.
  • Table 4 are different from the examples shown in Table 1, Table 2 and Table 3 due to the different arrangement numbers and thicknesses of the respective film layers, so their filtering effects are also different.
  • the filter layer is composed of a multilayer optical interference film. It can be seen from Figures 5 to 8 that the filter layer has a good signal-to-noise ratio, and the attenuation of the stopband relative to the passband is very significant.
  • the filter layer is usually made of photoresist, and the filter is realized by utilizing the difference in the absorption effect of the photoresist on light of different wavelengths.
  • the filter layer composed of the multilayer optical interference film utilizes the interference and reflection effects of the optical interference film on light of different wavelengths (for example, the light that is not expected to pass through the filter film can be reflected back).
  • Filtering is achieved, and the filtering effect is better than that of a filter layer made of photoresist.
  • the specific implementation of the filter film is not limited to the above embodiments. In practice, parameters such as the material, number of layers and thickness of each optical interference film can be set as required to achieve the desired filtering effect. Of course, in other embodiments of the present disclosure, other structures other than the above-mentioned use of the multilayer optical interference film may also be used to manufacture the filter film.
  • the filter layer includes a long-pass filter film 35D (eg, the filter properties of the long-pass filter film are shown in FIG. 8 ).
  • a long-pass filter film can be used to filter light emitted from the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B.
  • the orthographic projection of the long-pass filter film on the base substrate 30 may cover the orthographic projection of the first color light wavelength conversion layer 31A on the base substrate 30 and the orthographic projection of the first color light wavelength conversion layer 31A on the base substrate 30 . Orthographic projection of the two-color light wavelength conversion layer 31B on the base substrate 30 .
  • the passband wavelength range of the long-pass filter film can cover the desired wavelength range of the outgoing light of the first color light wavelength conversion layer 31A and the desired wavelength range of the outgoing light of the second color light wavelength conversion layer 31B, And the wavelength range of the stop band of the long-pass filter film covers the wavelength range of the excitation light emitted from the light-emitting material layer 22 . It should be noted that, in the embodiments of the present disclosure, it is not necessary that the wavelength range of the passband of the long-pass filter film must completely cover the desired wavelength range of the outgoing light of the first color light wavelength conversion layer 31A and the wavelength range of the first color light. The desired wavelength range of the outgoing light of the two-color light wavelength conversion layer 31B.
  • the passband wavelength range of the long-pass filter film at least partially covers the desired wavelength range of the outgoing light of the first color light wavelength conversion layer 31A and at least partially covers the second color light wavelength conversion layer 31B. Desired outgoing light wavelength range. In this way, different filter layers can be avoided for the wavelength conversion layer 31A of the first color light and the wavelength conversion layer 31B of the second color light, which simplifies the manufacturing process.
  • the filter layer may include a first color filter film 35A and a second color filter film 35B (see FIG. 2 ).
  • the orthographic projection of the first color filter film 35A on the base substrate 30 covers the orthographic projection of the first color light wavelength conversion layer 31A on the base substrate 30, and the first color filter film 35A is configured as The light of other wavelengths outside the desired wavelength range of the outgoing light of the first color light wavelength conversion layer 35A is filtered out.
  • the first color filter film 35A may be a red pass film, for example, may have the characteristics shown in FIG. 6 .
  • the orthographic projection of the second color filter film 35B on the base substrate 30 covers the orthographic projection of the second color light wavelength conversion layer 31B on the base substrate 30, and the second color filter film 35B is configured to filter out Light of wavelengths other than the wavelength range of the desired output light of the second color light wavelength conversion layer 31B is excluded.
  • the second color filter film 35B may be a green pass film, for example, may have the characteristics shown in FIG. 5 .
  • At least one of the long-pass filter film, the first color filter film and the second color filter film may have high reflection characteristics for blue light. This is beneficial to reflect the blue light back to the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B, thereby improving the utilization efficiency of blue light.
  • the display panel may further include a third color filter film 35C, and the third color filter film 35C is located on a side of the third color light-transmitting layer 31C away from the base substrate 30 ,
  • the orthographic projection of the third color filter film 35C on the base substrate 30 covers the orthographic projection of the third color light-transmitting layer 31C on the base substrate 30, and the third color filter film 35C is used for filtering.
  • Light of other wavelengths than the desired wavelength range of the excitation light emitted from the luminescent material layer 22 .
  • the third color filter film 35C may be a blue pass film, for example, may have the characteristics shown in FIG. 7 .
  • the display panel includes a dual-substrate structure, that is, the base substrate 30 and the color filter cover plate 50 are arranged opposite to each other.
  • the color filter cover 50 is located on the side of the filter layer 35 away from the base substrate 30 .
  • the display panel may not include the color filter cover 50, but only have the base substrate 30, which is a single-substrate structure. One such embodiment is shown in FIG. 9 .
  • the filter layers 35 eg, the first color filter film 35A, the second color filter film 35B, and the third color filter film 35C
  • the protective layer 36 is provided on one side, and there is no cover plate made of glass or plastic, for example.
  • the manufacturing process of the display panel using the dual-substrate structure is different from that of the display panel using the single-substrate structure.
  • the display panel is usually formed by structures such as the first electrode layer 21, the luminescent material layer 22 and the second electrode layer 23 (for example, it may also include thin film packaging TFE) on the base substrate 30, and the light wavelength conversion layer 31 and elastic.
  • the lens layer 32 (for example, the spacer 34A and the filter layer 35 may also be included) are formed on the color filter cover 50. Then the base substrate 30 and the color filter substrate 50 formed with these structures are boxed and assembled For a display panel with a single substrate structure, the first electrode layer 21, the luminescent material layer 22 and the second electrode layer 23 can be formed on the base substrate 30, and then the elastic lens can be formed on the base substrate 30. layer 32 and optical wavelength conversion layer 31.
  • the surface of the thin film package facing away from the base substrate 30 (the upper surface in Fig. 9) and the optical wavelength conversion layer are facing the lining between the surfaces of the base substrate 30 (the lower surface in FIG.
  • a flexible medium 29 is filled around the elastic lens layer 32.
  • the flexible medium 29 can deform correspondingly when the elastic lens layer 32 is elastically deformed to match the elasticity of the elastic lens layer 32.
  • the lens layer 32 is coordinated.
  • the flexible medium 29 can not only serve as an auxiliary support for the elastic lens layer 32, but also facilitate the production of the elastic lens layer 32.
  • a thin film package (for example, after the first inorganic encapsulation layer 25, the organic encapsulation layer 26 and the second inorganic encapsulation layer 27) are included, a layer of flexible medium 29 may be formed on the surface of the thin film encapsulation first, and an accommodating opening may be formed in the flexible medium 29, and then the Formed in the receiving opening is the elastic lens layer 32.
  • the thickness of the flexible medium 29 in the direction perpendicular to the base substrate 30 may be approximately equal to the height of the elastic lens layer 32 in the direction perpendicular to the base substrate 30.
  • the surface of one or more of the at least one optical wavelength conversion layer 31 in the display panel on the side facing away from the base substrate 30 has the shape of a converging lens surface. This is usually due to the fact that one or more of the optical wavelength conversion layers 31 (in part or in whole) are formed by printing technology rather than by evaporation. This is beneficial for simplifying the process, and is especially beneficial for large-sized display panels (eg, display panels on televisions or computer monitors, etc.).
  • the surfaces of the first color light wavelength conversion layer 31A′, the second color light wavelength conversion layer 31B′ and the third color light transmission layer 31C on the side away from the base substrate 30 all have The shape of the converging lens surface.
  • the surface of one side has the shape of the surface of the condensing lens.
  • the first condensing lens 32A, the second condensing lens 32B and the third condensing lens 32C in the elastic lens layer 32 are arranged to have the orientation
  • the convex surface of the base substrate 30 and the flat surface facing away from the base substrate 30 are only illustrative, and the embodiments of the present disclosure are not limited thereto.
  • the first condensing lens 32A, the second condensing lens 32B, and the third condensing lens 32C are arranged to have a flat surface toward the base substrate 30 and a convex surface away from the base substrate 30 .
  • the convex surface of the condensing lens toward the base substrate 30 and the flat surface away from the base substrate 30 as shown in FIGS. 1 and 2 .
  • the elastic lens layer 32 is formed on the color filter substrate. Therefore, if the flat surface of the condensing lens faces away from the base substrate 30 (ie, faces the color filter substrate), it is possible to The flat surface of the condensing lens is attached to other structures of the color filter substrate (such as the protective layer 311 ), which is easy to form the shape of the condensing lens and reduce the thickness occupied by the gas or flexible medium 29 perpendicular to the base substrate .
  • the convex surface of the condensing lens faces the color filter substrate, that is, the convex surface of the condensing lens is formed on other structures of the color filter substrate (such as the protective layer 311 ), it will cause difficulties in the manufacturing process and make the shape of the condensing lens more difficult Formation (especially for the structure in which the elastic lens layer 32 is filled with gas) is also not conducive to reducing the overall thickness of the display panel.
  • an insulating layer 40 and a driving circuit structure such as a thin film transistor 44 may also be disposed between the base substrate 30 and the first electrode layer 21 .
  • a pixel defining layer 28 may also be disposed between the luminescent material layer 22 and the insulating layer 40 , and the pixel defining layer 28 is provided with an opening area for defining the placement position of the luminescent material layer 22 . Since the content of the present disclosure is primarily related to the elastic lens layer 32 and the optical wavelength conversion layer, the encapsulation structure, insulating layer 40, pixel defining layer 28 and driver circuit structure are not shown and discussed in detail.
  • an embodiment of the present disclosure further provides a method for fabricating a display panel, including:
  • Step S11 providing a base substrate and sequentially forming a first electrode layer, a light-emitting material layer and a second electrode layer on the base substrate to form an array substrate;
  • Step S12 providing a color filter cover and forming at least one light wavelength conversion layer on the color filter cover;
  • Step S13 forming an elastic lens layer on the side of the at least one light wavelength conversion layer away from the color filter cover to make a color filter substrate.
  • the elastic lens layer 32 is used for condensing the excitation light emitted from the light-emitting material layer 22 .
  • the above method may further include:
  • Step S14 forming a filter layer on the color filter cover.
  • Step S15 forming a plurality of spacers on the side of the filter layer away from the color filter cover plate, with opening areas between the spacers.
  • the at least one optical wavelength conversion layer is formed in the opening region, and adjacent optical wavelength conversion layers are spaced apart by the spacers.
  • the filter layer can be formed by depositing a plurality of optical interference film layers and patterning by means such as photolithography, or by using a high-precision metal mask to perform evaporation.
  • the optical interference film layer can be, for example, a film structure formed by alternating high and low refractive index materials such as SIO 2 /TiO 2 .
  • the spacer can be made of a light-blocking material (absorbing or reflective material), which can not only prevent cross-color between adjacent pixels, but also increase the thickness of the light wavelength conversion layer.
  • the first color light wavelength conversion layer 31A and the second color light wavelength conversion layer 31B may be divided into two sub-layers Steps are formed separately.
  • the third-color light-transmitting layer 31C can be formed of, for example, a transparent protective adhesive, which can be used for planarization processing.
  • a transparent protective adhesive which can be used for planarization processing.
  • an embossing method can be used to improve the flatness effect, and the specific implementation method is not limited.
  • the method before forming the filter layer, the method further includes:
  • Step S16 forming a black matrix layer on the color filter cover, wherein the filter layer is located on the side of the black matrix layer away from the color filter substrate.
  • the black matrix layer BM can be used as an alignment reference for forming structures such as the spacers 34A, the light wavelength conversion layer, the elastic lens layer 32 and the like.
  • the method may further include:
  • Step S17 Assembling the color filter substrate and the array substrate together to form a display panel.
  • This step S17 can be realized by, for example, gluing or the like.
  • the above step S11 may further include forming various film layer structures on the base substrate.
  • a thin film transistor structure and a thin film package are formed on a base substrate.
  • the display panel according to the embodiment of the present disclosure may have a dual substrate structure or a single substrate structure.
  • the manufacturing method shown in FIG. 11 can be used to manufacture it.
  • the light wavelength conversion layer can be formed by vapor deposition.
  • FIG. 4 gives an example of the structure of the color filter substrate.
  • an embodiment of the present disclosure also provides another method for fabricating a display panel, including:
  • Step S21 forming a first electrode layer, a light-emitting material layer, a second electrode layer and a thin film package in sequence on the base substrate;
  • Step S22 forming an elastic lens layer on the side of the thin film package away from the base substrate;
  • Step S23 forming a plurality of spacers on the side of the elastic lens layer away from the base substrate;
  • Step S24 forming at least one light wavelength conversion layer in the opening area between the spacers;
  • Step S25 forming a filter layer on the side of the at least one light wavelength conversion layer away from the base substrate.
  • the light wavelength conversion layer can be produced by ink jet printing, which is advantageous for the production of large-sized display panels.
  • the arrangement of the spacer is beneficial to form a cavity for accommodating the material fluid to be printed, and is helpful to realize the fabrication of the light wavelength conversion layer by inkjet printing.
  • the thin film encapsulation (eg, including the first inorganic encapsulation layer 25 , the organic encapsulation layer 26 and the second inorganic encapsulation layer 27 ) is formed on the base substrate 30 , the thin film encapsulation may be separated from the thin film encapsulation.
  • a layer of flexible medium 29 is first formed on one side of the base substrate, a receiving opening is formed in the flexible medium 29, and then an elastic lens layer 32 is formed in the receiving opening.
  • the surface of one or more of the at least one optical wavelength conversion layer on the side facing away from the base substrate is formed with the shape of a converging lens surface.
  • the shape can be created by the surface shape of the material fluid during the inkjet printing process. This shape is beneficial to increase the intensity of light emitted from the light wavelength conversion layer.
  • a protective layer may also be formed on a side of the filter layer away from the base substrate.
  • the display panel fabricated by the method shown in FIG. 12 may have, for example, a single-substrate structure.
  • the light wavelength conversion layer may include, for example, quantum dots, quantum rods, phosphors, and the like.
  • quantum dots (2 nm to 30 nm in size, usually spherical) and particle scatterers much larger than the quantum dot size can be provided in the light wavelength conversion layer to enhance the light conversion efficiency and uniformity of the quantum dots.
  • the elastic lens layer 32 may be fabricated by patterning, for example, the elastic lens layer 32 may be formed from a photoresist material by photolithography.
  • the spacers 34A, 34B may be black, gray or white, for example.
  • the spacers 34A and 34B can be used to reflect or absorb excitation light, thereby reducing optical interference between adjacent sub-pixels.
  • the spacers 34A and 34B may be made of photoresist material, and in order to enhance the effect, components such as silicon dioxide or titanium dioxide may be mixed therein to enhance performance parameters such as color and reflectivity.
  • Embodiments of the present disclosure also provide an electronic device, including the transparent display panels 100, 100', 100" described in any of the foregoing embodiments.
  • the electronic device may be any display device, such as a smart phone, a Wearable smart watches, smart glasses, tablet computers, TV sets, monitors, notebook computers, digital photo frames, navigators, car monitors, e-books, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开的实施例提供了一种显示面板,包括:衬底基板;第一电极层,设置在所述衬底基板上;发光材料层,用于发射激发光,所述发光材料层位于所述第一电极层的远离衬底基板的一侧;第二电极层,所述第二电极层位于所述发光材料层的远离衬底基板的一侧;和至少一个光波长转换层,所述光波长转换层位于所述第二电极层的远离衬底基板的一侧,用于将从发光材料层发出的激发光转换成预定颜色的光,其中,所述显示面板还包括弹性透镜层,所述弹性透镜层位于所述第二电极层的远离衬底基板的一侧且位于所述光波长转换层的朝向所述衬底基板的一侧,所述弹性透镜层配置成对于从发光材料层射出的激发光进行会聚。本公开的实施例还提供了一种电子装置及显示面板的制作方法。

Description

显示面板、电子装置以及显示面板的制作方法
相关申请的交叉引用
本申请要求于2020年9月27日递交中国专利局的、申请号为202011037370.4的 中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板、一种包括该显示面板的电子装置以及一种用于制作显示面板的方法。
背景技术
量子点显示技术是显示技术的热点之一。在大尺寸显示装置的方案中,量子点-有机发光二极管(OD-OLED)显示面板将量子点显示技术和有机发光二极管显示技术相结合,利用有机发光二极管激发量子点出光实现显示。该量子点-有机发光二极管显示面板具有潜在技术优势,例如,其具有高分辨率、高色域及高色纯度,且不具有视角依赖性。
公开内容
本公开的实施例提供了一种显示面板,包括:
衬底基板;
第一电极层,设置在所述衬底基板上;
发光材料层,用于发射激发光,所述发光材料层位于所述第一电极层的远离衬底基板的一侧;
第二电极层,所述第二电极层位于所述发光材料层的远离衬底基板的一侧;和
至少一个光波长转换层,所述光波长转换层位于所述第二电极层的远离衬底基板的一侧,用于将从发光材料层发出的激发光转换成预定颜色的光,
其中,所述显示面板还包括弹性透镜层,所述弹性透镜层位于所述第二电极层的远离衬底基板的一侧且位于所述光波长转换层的朝向所述衬底基板的一侧,所述弹性透镜层配置成对于从发光材料层射出的激发光进行会聚。
在一些实施例中,所述弹性透镜层具有200兆帕至600兆帕的弹性回复力。
在一些实施例中,所述显示面板还包括薄膜封装,所述薄膜封装位于所述弹性透镜层和所述第二电极层之间,且其中,在所述薄膜封装与所述光波长转换层之间、所述弹性透镜层周围填充有气体或柔性介质,所述气体或柔性介质的折射率低于所述弹性透镜层的折射率。
在一些实施例中,所述显示面板还包括位于弹性透镜层和光波长转换层之间的保护层,其中,所述弹性透镜层在垂直于衬底基板的方向上的高度等于所述保护层的朝向所述衬底基板的一侧的表面至所述薄膜封装的背离所述衬底基板的一侧的表面在垂直于衬底基板的方向上的距离。
在一些实施例中,所述至少一个光波长转换层包括第一颜色光波长转换层和第二颜色光波长转换层,所述弹性透镜层包括第一会聚透镜和第二会聚透镜,所述第一会聚透镜在衬底基板上的正投影与所述第一颜色光波长转换层在衬底基板上的正投影至少部分地重叠,所述第二会聚透镜在衬底基板上的正投影与所述第二颜色光波长转换层在衬底基板上的正投影至少部分地重叠。
在一些实施例中,相邻的所述第一颜色光波长转换层和所述第二颜色光波长转换层在平行于衬底基板的方向上被间隔部间隔开。
在一些实施例中,所述间隔部的朝向所述第一颜色光波长转换层或所述第二颜色光波长转换层的侧坡面与所述间隔部的朝向衬底基板一侧上的表面之间所成的内角小于90度。
在一些实施例中,所述间隔部的朝向衬底基板一侧上的表面在衬底基板上的正投影的面积大于所述间隔部的背离衬底基板一侧上的表面在衬底基板上的正投影的面积。
在一些实施例中,所述第一会聚透镜在垂直于衬底基板的方向上的高度h满足:
Figure PCTCN2021110588-appb-000001
其中,W是第一颜色光波长转换层的宽度同与该第一颜色光波长转换层相邻的两侧的间隔部的宽度之和,θ1是发光材料层出射的激发光的预定发散角。
在一些实施例中,所述发光材料层出射的激发光具有第三颜色,所述显示面板还包括第三颜色透光层,所述第三颜色透光层位于所述第二电极层的远离衬底基板的一 侧,用于透射所述激发光,所述弹性透镜层还包括第三会聚透镜,所述第三会聚透镜在衬底基板上的正投影与所述第三颜色透光层在衬底基板上的正投影至少部分地重叠。
在一些实施例中,所述的显示面板还包括滤光层,所述滤光层位于所述至少一个光波长转换层的背离所述衬底基板的一侧,所述滤光层用于对所述第一颜色光波长转换层和第二颜色光波长转换层的出射光进行滤光,所述滤光层为薄膜滤光片。
在一些实施例中,所述滤光层包括长通滤光膜,所述长通滤光膜在衬底基板上的正投影覆盖所述第一颜色光波长转换层在衬底基板上的正投影以及所述第二颜色光波长转换层在衬底基板上的正投影,所述长通滤光膜的通带波长范围至少部分地覆盖所述第一颜色光波长转换层的期望的出射光波长范围和所述第二颜色光波长转换层的期望的出射光波长范围,且所述长通滤光膜的阻带波长范围覆盖了所述发光材料层出射的激发光的波长范围。
在一些实施例中,所述滤光层包括:
第一颜色滤光膜,所述第一颜色滤光膜在衬底基板上的正投影覆盖所述第一颜色光波长转换层在衬底基板上的正投影,所述第一颜色滤光膜配置成滤除除去所述第一颜色光波长转换层的期望的出射光波长范围之外的其他波长的光;以及
第二颜色滤光膜,所述第二颜色滤光膜在衬底基板上的正投影覆盖所述第二颜色光波长转换层在衬底基板上的正投影,所述第二颜色滤光膜配置成滤除除去所述第二颜色光波长转换层的期望的出射光波长范围之外的其他波长的光。
在一些实施例中,所述至少一个光波长转换层中的一个或多个光波长转换层的背离所述衬底基板的一侧的表面具有会聚透镜表面的形状。
在一些实施例中,所述显示面板还包括彩膜盖板,所述彩膜盖板位于所述滤光层的背离所述衬底基板的一侧。
本公开的实施例还提供了一种电子装置,包括如前述任一实施例所述的显示面板。
本公开的实施例还提供了一种显示面板的制作方法,包括:
提供衬底基板并在衬底基板上依次形成第一电极层、发光材料层和第二电极层以形成阵列基板;
提供彩膜盖板并在彩膜盖板上形成至少一个光波长转换层;以及
在所述至少一个光波长转换层的背离彩膜盖板的一侧上形成弹性透镜层以制成彩膜基板,
其中,所述弹性透镜层位于所述第二电极层的远离衬底基板的一侧且位于所述光波长转换层的朝向所述衬底基板的一侧,所述弹性透镜层配置成对于从发光材料层射出的激发光进行会聚。
在一些实施例中,在形成所述至少一个光波长转换层之前,所述方法还包括:
在彩膜盖板上形成滤光层;
在滤光层的背离彩膜盖板的一侧上形成多个间隔部,在间隔部之间设有开口区;
其中,所述至少一个光波长转换层形成在所述开口区中,相邻的光波长转换层由所述间隔部间隔开。
在一些实施例中,在形成滤光层之前,所述方法还包括:
在彩膜盖板上形成黑矩阵层,
其中,所述滤光层位于所述黑矩阵层的背离彩膜基板的一侧。
在一些实施例中,所述的显示面板的制作方法还包括:
将所述彩膜基板与阵列基板组装在一起以形成显示面板。
附图说明
为了更清楚地说明本公开文本的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开文本的一些实施例,而非对本公开文本的限制,其中:
图1示出根据本公开的一些实施例的显示面板的示意性剖视图;
图2示出根据本公开的另一些实施例的显示面板的示意性剖视图;
图3示出弹性透镜层中的会聚透镜的示意图;
图4示出根据本公开的一些实施例的显示面板的彩膜基板的示意图;
图5示出根据本公开的一些实施例的显示面板中的一种薄膜滤光片的滤光特性的示意图;
图6示出根据本公开的一些实施例的显示面板中的另一种薄膜滤光片的滤光特性的示意图;
图7示出根据本公开的一些实施例的显示面板中的再一种薄膜滤光片的滤光特性 的示意图;
图8示出根据本公开的一些实施例的显示面板中的又一种薄膜滤光片的滤光特性的示意图;
图9示出根据本公开的再一些实施例的显示面板的示意性剖视图;
图10为根据本公开的一些实施例的显示面板的示意性平面图;
图11示意性地示出根据本公开的一些实施例的显示面板的制作方法的示意性流程图;以及
图12示意性地示出根据本公开的另一些实施例的显示面板的制作方法的示意性流程图。
具体实施方式
为更清楚地阐述本公开的目的、技术方案及优点,以下将结合附图对本公开的实施例进行详细的说明。应当理解,下文对于实施例的描述旨在对本公开的总体构思进行解释和说明,而不应当理解为是对本公开的限制。在说明书和附图中,相同或相似的附图标记指代相同或相似的部件或构件。为了清晰起见,附图不一定按比例绘制,并且附图中可能省略了一些公知部件和结构。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。措词“一”或“一个”不排除多个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”“顶”或“底”等等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。当诸如层、膜、区域或衬底基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在彩色显示面板中,可以使用输出多种不同颜色的有机发光元件,也可以使用输出单一颜色的有机发光元件并提供颜色转换结构来获得多种颜色的输出光。在后一种方案中,可以采用双基板结构,即在一块玻璃基板上制作有机发光元件的层叠结构, 而在另一块玻璃基板上制作颜色转换结构,然后再将两块基板组装在一起,它们之间用填料来填充。
本公开的实施例公开了一种显示面板100。该显示面板100可以包括显示区AA和周边区P。在显示区中可以设置有多个子像素。图10示意性地示出了三个相邻的子像素,即第一子像素PX1、第二子像素PX2和第三子像素PX3。作为示例,第一子像素PX1、第二子像素PX2和第三子像素PX3可以分别出射不同颜色的光以实现彩色显示,例如,第一子像素PX1可以发射红光,第二子像素PX2可以发射绿光,而第三子像素PX3可以发射蓝光。
图1中示出了该显示面板100(尤其是该显示面板100中的上述三个子像素)的具体膜层结构。图1可以大体看成是沿着图10中的剖切线X-X截得的剖视图。该显示面板100可以包括:衬底基板30、第一电极层21、发光材料层22、第二电极层23、光波长转换层31以及弹性透镜层32。第一电极层21可以设置在所述衬底基板30上。在此,第一电极层21可以设置在所述衬底基板30上并不意味着第一电极层21必定直接设置在衬底基板30上,例如,第一电极层21和衬底基板30之间还可以具有绝缘层40。发光材料层22位于所述第一电极层21的远离衬底基板30的一侧,第二电极层23位于所述发光材料层22的远离衬底基板30的一侧。发光材料层22被第一电极层21和第二电极层23夹在中间,可以在第一电极层21和第二电极层23的电压的控制下来发射激发光。在此,发光材料层22、第一电极层21和第二电极层23构成了有机发光元件。所述光波长转换层31位于所述第二电极层23的远离衬底基板30的一侧,用于将从发光材料层22发出的激发光转换成预定颜色的光,例如,激发光为蓝色光,而光波长转换层31则可以将其转换成其他颜色,例如红色或绿色,从而实现彩色显示。该弹性透镜层32位于所述第二电极层23的远离衬底基板30的一侧且位于所述光波长转换层31的朝向所述衬底基板30的一侧。所述弹性透镜层32配置成对于从发光材料层射出的激发光进行会聚。
弹性透镜层32可以由具有弹性回复力的材料(例如某些光刻胶材料(如正性光刻胶或负性光刻胶制成。在图1的实施例中,采用的是双基板的结构,即有机发光结构(例如包括第一电极层21、发光材料层22和第二电极层23等)可以设置于上述的衬底基板30上,而光波长转换层31可以设置在另一基板(可称为彩膜盖板50)上,然后将两块基板对盒组装在一起形成显示面板100。在相关技术中,光波长转换层31和 有机发光结构之间填充有比较厚的填料(至少在10微米以上),这种填料可以用于支撑彩膜盖板50,防止彩膜盖板50过度压迫有机发光结构而影响有机发光结构的工作。然而,由于填料厚度较大,某个子像素中的有机发光结构发出的光可能会射入到相邻的子像素中的光波长转换层中,于是引起串色问题。而现有填料的厚度如果减小,容易出现厚度不均的问题,从而导致云纹(mura)等显示面板的缺陷。
在本公开的实施例中,弹性透镜层32代替填料设置在光波长转换层31和有机发光结构之间,一方面可以起到支撑彩膜盖板50的作用,另一方面还可以对从有机发光结构发出的光进行会聚,以减小相邻的子像素的光的相互干扰。此外,弹性透镜层32可以根据实际的需要来调节厚度,例如可以在2微米至9微米之间进行设置。这相比于相关技术中的填料,可以减小显示面板的厚度。
在一些实施例中,显示面板100还可以包括封装结构,该封装结构可设置在第二电极层23的远离衬底基板30的一侧上,该封装结构例如可以是位于所述弹性透镜层和所述第二电极层之间的薄膜封装(TFE),该薄膜封装可以包括依次层叠设置的第一无机封装层25、有机封装层26和第二无机封装层27。该薄膜封装可以用于防止阵列基板上的功能膜层受到环境的腐蚀和污染。在一些实施例中,在所述薄膜封装与所述光波长转换层之间、所述弹性透镜层32周围填充有气体或柔性介质29。在使用中,弹性透镜层32由于承受重量会产生一定的形变,此时,弹性透镜层32周围的气体(例如空气、氮气、氦气等)或柔性介质29能够容许弹性透镜层32的这种形变。作为示例,柔性介质29可以是由与弹性透镜层32的弹性性能相匹配的诸如聚酰亚胺、聚酰胺、聚氨酯等材料制成。柔性介质29能够在弹性透镜层32产生形变时也产生相应的形变。比如,柔性介质29也能够提供200兆帕至600兆帕的弹性回复力。为了更好实现弹性透镜层32的光学会聚作用,例如,气体或柔性介质29的折射率小于弹性透镜层32的折射率。弹性透镜层32与普通的非弹性透镜层相比,能够借助弹性回复力对于其所承载的膜层结构(例如彩膜盖板等)提供更大的支撑力,有助于减小膜层厚度。柔性介质29位于弹性透镜层32的周围,一方面能够辅助弹性透镜层32提供弹性支撑作用,另一方面还可以为弹性透镜层32的制作工艺提供便利(具体可参见下面如图9所示的实施例的描述)。
在一些实施例中,如图1和图2所示,在所述弹性透镜层32和光波长转换层之间还可以设置有保护层311。该保护层311例如可以由氮化硅(SiN)制成,可以整面沉 积。保护层311例如可以具有6000埃以上的厚度。所述弹性透镜层32在垂直于衬底基板30的方向上的高度h等于保护层311的朝向所述衬底基板30的一侧的表面至所述薄膜封装的背离所述衬底基板的一侧的表面在垂直于衬底基板的方向上的距离。即,弹性透镜层32的上下两侧分别抵靠保护层311的表面和薄膜封装的表面。需要说明的是,在一些实施例中,也可以不设置有保护层311,而使弹性透镜层与光波长转换层直接接触。
在一些实施例中,如图1所示,显示面板100中的光波长转换层31可以包括第一颜色光波长转换层31A和第二颜色光波长转换层31B。相应地,所述弹性透镜层32可以包括第一会聚透镜32A和第二会聚透镜32B。所述第一会聚透镜32A在衬底基板30上的正投影与所述第一颜色光波长转换层31A在衬底基板30上的正投影至少部分地重叠,所述第二会聚透镜32B在衬底基板30上的正投影与所述第二颜色光波长转换层31B在衬底基板30上的正投影至少部分地重叠。第一颜色光波长转换层31A和第一会聚透镜32A位于第一子像素PX1中,第二颜色光波长转换层31B和第二会聚透镜32B位于第二子像素PX2中。作为示例,第一会聚透镜32A在衬底基板30上的正投影可以完全覆盖第一颜色光波长转换层31A在衬底基板30上的正投影,这可以使得第一会聚透镜32A更好地将从发光材料层22发出的光会聚到第一颜色光波长转换层31A。如图1所示,从发光材料层22发出的激发光La、Lb可以经过第一会聚透镜32A的会聚作用而朝向第一颜色光波长转换层31A偏转。在这种情况下,即使从发光材料层22发出的发散角比较大的激发光Lb也可以由于第一会聚透镜32A的会聚作用而不射向相邻的第二颜色光波长转换层31B,而被间隔部34A所吸收。也就是说,在第一会聚透镜32A在衬底基板30上的正投影较大(例如在完全覆盖第一颜色光波长转换层31A在衬底基板30上的正投影的情况下),可以削减相邻的光波长转换层之间的光学干扰。同样,在一些实施例中,第二会聚透镜32B在衬底基板30上的正投影也可以完全覆盖第二颜色光波长转换层31B在衬底基板30上的正投影。
在一些实施例中,相邻的第一颜色光波长转换层31A和第二颜色光波长转换层31B在平行于衬底基板30的方向上被间隔部34A间隔开。间隔部34A可以防止来自不同颜色的光波长转换层的光之间的相互干扰,还可以提高显示面板的对比度。在本公开的实施例中,间隔部34A可以对光线具有吸收和/或反射作用。
作为示例,如图1所示,间隔部34A的横截面具有梯形形状。该梯形的远离第一 颜色光波长转换层31A和第二颜色光波长转换层31B的底边(图1中为下底边)比靠近第一颜色光波长转换层31A和第二颜色光波长转换层31B的底边(图1中为上底边)更长。或者说,间隔部34A的朝向所述第一颜色光波长转换层31A或所述第二颜色光波长转换层31B的侧坡面341与所述间隔部34A的朝向衬底基板30一侧上的表面(图1中为间隔部34A的下表面)之间所成的内角小于90度。这意味着间隔部34A的侧坡面341是背离第一会聚透镜32A或第二会聚透镜32B的。从发光材料层22发出的光在入射到第一颜色光波长转换层31A或第二颜色光波长转换层31B之后会与第一颜色光波长转换层31A或第二颜色光波长转换层31B中的结构(例如量子点等)相互作用,在这种相互作用过程中,光的方向可能会被改变,而可能照射到间隔部34A的侧坡面341上。由于侧坡面341与所述间隔部34A的朝向衬底基板30一侧上的表面(图1中为间隔部34A的下表面)之间所成的内角小于90度,当光照射到侧坡面341上时,光的至少一部分会被朝向远离第一会聚透镜32A或第二会聚透镜32B的方向反射(参见图1中的光线Lc),从而增大出光量,且可以避免侧坡面341将光朝向发光材料层22反射而产生干扰等问题。
在一些实施例中,所述间隔部34A的朝向衬底基板30一侧上的表面在衬底基板30上的正投影的面积大于所述间隔部34A的背离衬底基板30一侧上的表面在衬底基板30上的正投影的面积。这也有助于使得更多的光从第一颜色光波长转换层31A或第二颜色光波长转换层31B出射。
下面以第一会聚透镜32A为例对弹性透镜层32中的透镜的高度进行介绍。图3示意性地示出了第一会聚透镜32A与周围结构的位置和尺寸关系。第一会聚透镜32A在垂直于衬底基板30的方向上的高度h越大,发光材料层22与第一颜色光波长转换层31A之间的距离就会越大,这可能降低光的利用率。在图3中示意性地示出了与第一会聚透镜32A对应的发光材料层22的左右边界。假定从发光材料层22的有效发光区22A的左右边界(应当理解,发光材料层22只有在被施加电压的部分才是能够进行有效发光的部分,通常可以认为发光材料层22在像素界定层28的开口区内的部分为发光材料层22的有效发光区22A。图3中示意性地示出了有效发光区22A的左右边界(即有效发光区22A左侧的黑色块和右侧的黑色块与有效发光区22A的交界处))射出的光与第一会聚透镜32A相切,则可以得到以下关系:所述第一会聚透镜32A在垂直于衬底基板30的方向上的高度h满足:
Figure PCTCN2021110588-appb-000002
其中,W是第一颜色光波长转换层31A的宽度同与该第一颜色光波长转换层31A相邻的两侧的间隔部34A的宽度之和,如图3所示。θ1是有效发光区22A出射的激发光的预定发散角。假定在本申请中,发散角θ1的定义是激发光光束在垂直于衬底基板30的方向上的截面的包络线与垂直于衬底基板30的方向的夹角。而在激发光光束具有这样的发散角θ1时,激发光光束恰好不会照射到与第一颜色光波长转换层31A相邻的其他光波长转换层中。当第一会聚透镜32A在垂直于衬底基板30的方向上的高度h不满足上式(1)时(即高度h大于式(1)中的不等号右侧的部分时),第一会聚透镜32A可能会对激发光光束产生不期望的偏折而使一部分光照射到与第一颜色光波长转换层31A相邻的其他的光波长转换层中从而产生一定的串扰。
另一方面,如果第一会聚透镜32A在垂直于衬底基板30的方向上的高度h太小,又可能使得该第一会聚透镜32A的曲率半径过大。如果第一会聚透镜32A的曲率半径过大,第一会聚透镜32A可能会与相邻的其他会聚透镜(例如第二会聚透镜32B)交叠(在子像素尺寸一定的情况下)。因而,第一会聚透镜32A的曲率半径过大可能导致子像素的尺寸的不必要的增加而减小分辨率。另外,第一会聚透镜32A在垂直于衬底基板30的方向上的高度h太小也不利于对压在弹性透镜层32上的结构进行弹性支撑(尤其是在弹性透镜层32上方设置有较重的基板或盖板的情况下)。作为示例,第一会聚透镜32A在垂直于衬底基板30的方向上的高度h可以为2微米至9微米。
虽然上述以第一会聚透镜32A为例对弹性透镜层32中的会聚透镜结构进行了介绍,但是应当理解,弹性透镜层32中的其他的会聚透镜结构(例如第二会聚透镜32B等)也可以是与之相似的。具体细节不再赘述。
在本公开的实施例中,期望弹性透镜层32中的会聚透镜结构具有较大的折射率以使得对于从发光材料层22出射的激发光进行会聚。作为示例,弹性透镜层32中的会聚透镜结构可以具有200兆帕至600兆帕的弹性回复力,如具有约400兆帕的弹性回复力。例如,弹性透镜层32中的会聚透镜结构可以由光敏抗蚀剂材料制成(如某些正性抗蚀剂或负性抗蚀剂),还可以由诸如聚酰亚胺、聚酰胺、聚氨酯、树脂等材料制成。
在一些实施例中,如图2所示,显示面板100’还可以包括黑矩阵层BM,所述黑 矩阵层BM位于所述间隔部34A的背离衬底基板30的一侧。所述黑矩阵层BM在衬底基板30上的正投影与所述间隔部34A在衬底基板30上的正投影至少部分地重叠。黑矩阵层BM一方面可以用于分隔相邻的子像素;另一方面可以在显示面板的膜层结构的制作过程中用作对位基准,例如,当显示面板采用双基板结构时,上述间隔部34A、光波长转换层、弹性透镜层32都设置在彩膜基板50上,而在形成这些结构之前可以在彩膜基板50上先形成黑矩阵层BM,从而在形成间隔部34A、光波长转换层、弹性透镜层32等结构时可以以该黑矩阵层BM为对位基准。
在一些实施例中,从发光材料层22出射的激发光可以具有第三颜色。而第一颜色光波长转换层31A可以将该第三颜色的激发光转换成第一颜色的光,第二颜色光波长转换层31B可以将该第三颜色的激发光转换成第二颜色的光。例如,发光材料层22可发出蓝光,上述第一颜色的光是红光,第二颜色的光是绿光。对于具有三种颜色(例如红绿蓝)的子像素的显示面板而言,由于第三颜色的光本身就可以用于显示,所以只需要将该第三颜色的光射出即可,而不需要再将其转换成其他颜色。在图1所示的示例中,所述显示面板还可包括第三颜色透光层31C,所述第三颜色透光层31C位于所述第二电极层23的远离衬底基板30的一侧,用于透射所述激发光。相应地,所述弹性透镜层32还可包括第三会聚透镜32C。所述第三会聚透镜32C在衬底基板30上的正投影与所述第三颜色透光层31C在衬底基板30上的正投影至少部分地重叠。第三会聚透镜32C可以用于将从发光材料层22发出的第三颜色的激发光会聚和引导到第三颜色透光层31C。作为示例,第三会聚透镜32C在衬底基板30上的正投影可以完全覆盖所述第三颜色透光层31C在衬底基板30上的正投影,以使得尽可能多的第三颜色的激发光被第三会聚透镜32C会聚和引导到第三颜色透光层31C中。第三颜色透光层31C可以与第一颜色光波长转换层31A和第二颜色光波长转换层31B并排地布置。在第一颜色光波长转换层31A、第二颜色光波长转换层31B和第三颜色透光层31C中的相邻的两者之间可以由间隔部34A、34B隔开。
在一些实施例中,第一颜色光波长转换层31A、第二颜色光波长转换层31B和所述第三颜色透光层31C中的至少一者包含有散射颗粒,用于对入射的激发光进行散射。例如第一颜色光波长转换层31A、第二颜色光波长转换层31B和所述第三颜色透光层31C中均可以包含有这样的散射颗粒。这种散射颗粒可以使得从第一颜色光波长转换层31A、第二颜色光波长转换层31B和所述第三颜色透光层31C出射的光的强度分布 更加均匀。特别地,在所述第三颜色透光层31C不包括这些散射颗粒的情况下,出射光的光强可能会相对地集中在某个区域(例如在正负30度的视角内),而超出这个区域,出射光强会显著下降。这就可能导致位于不同区域的观察者观看到的显示图像的强度不同。而在所述第三颜色透光层31C包含这种散射颗粒的情况下,出射光的光强可能在一个更大的范围(例如在正负60度的视角内或正负80度的视角内)上是比较均匀的。另外,在第一颜色光波长转换层31A和第二颜色光波长转换层31B中设置的散射颗粒还可以通过散射来增加光波长转换的效率(例如对于第一颜色光波长转换层31A为量子点层时增强入射光与量子点的相互作用)。作为示例,所述散射颗粒的尺寸可在100nm至600nm的范围内。例如,所述散射颗粒可以由二氧化钛等材料制成。
在一些实施例中,所述的显示面板还可以包括滤光层35,所述滤光层35位于所述至少一个光波长转换层31的背离所述衬底基板30的一侧。该滤光层35用于对所述第一颜色光波长转换层31A和第二颜色光波长转换层31B的出射光进行滤光。该滤光层35可以用于滤除从发光材料层22发出的激发光,以避免其对第一颜色光波长转换层31A和第二颜色光波长转换层31B的出射光产生干扰。在一些实施例中,滤光层可以包括由多层光学干涉薄膜(或称薄膜滤光片)来形成的滤光膜。
图5、图6、图7和图8分别给出了四种不同的滤光膜的透光率和波长的变化关系图。图5示出了一种可用于对从第二颜色光波长转换层31B出射的光进行滤光的滤光膜。该滤光膜可透过绿光(通带波长范围约510nm至590nm)并滤除其他波长的光。该滤光膜例如可以由多个二氧化钛(TiO 2)和二氧化硅(SiO 2)的交替膜层构成。表1给出了一种示例。
膜层顺序 材料 厚度(nm)
1 TiO 2 32.50
2 SiO 2 15.83
3 TiO 2 41.31
4 SiO 2 88.44
5 TiO 2 72.08
6 SiO 2 93.25
7 TiO 2 18.50
8 SiO 2 28.51
9 TiO 2 45.14
10 SiO 2 91.78
11 TiO 2 41.89
12 SiO 2 90.67
13 TiO 2 32.47
14 SiO 2 16.32
15 TiO 2 45.16
16 SiO 2 96.04
17 TiO 2 54.37
18 SiO 2 91.69
19 TiO 2 28.86
20 SiO 2 17.87
21 TiO 2 45.91
表1
在表1给出的示例中,该滤光膜由11层二氧化钛和10层二氧化硅交替构成。其中,各二氧化钛层的总厚度为458.19nm,各二氧化硅层的总厚度为630.40nm。入射光会在各个相邻的二氧化钛层和二氧化硅层之间产生透射和反射,所形成的多束透射光和反射光会产生干涉从而形成所期望的空间光强分布。
图6示出了一种可用于对从第一颜色光波长转换层31A出射的光进行滤光的滤光膜。该滤光膜可透过红光(通带波长范围约620nm至670nm)并滤除其他波长的光。 该滤光膜例如也可以由多个二氧化钛(TiO 2)和二氧化硅(SiO 2)的交替膜层构成。表2给出了一种示例。
膜层顺序 材料 厚度(nm)
1 TiO 2 43.44
2 SiO 2 65.99
3 TiO 2 5.10
4 SiO 2 75.08
5 TiO 2 39.78
6 SiO 2 62.69
7 TiO 2 23.50
8 SiO 2 65.59
9 TiO 2 85.76
10 SiO 2 83.59
11 TiO 2 48.84
12 SiO 2 87.70
13 TiO 2 40.29
14 SiO 2 81.93
15 TiO 2 61.48
16 SiO 2 48.26
17 TiO 2 30.62
18 SiO 2 83.81
19 TiO 2 60.80
表2
在表2给出的示例中,该滤光膜由10层二氧化钛和9层二氧化硅交替构成。其中,各二氧化钛层的总厚度为439.59nm,各二氧化硅层的总厚度为654.65nm。入射光同样会在各个相邻的二氧化钛层和二氧化硅层之间产生透射和反射,所形成的多束透射光和反射光会产生干涉从而形成所期望的空间光强分布。该空间光强分布依赖于各个膜层的布置和各层的厚度。表2给出的示例由于各个膜层的布置数量和厚度与表1所示的示例不同,因此,其滤光效果也是不同的。
图7示出了一种可用于对从第三颜色透光层31C出射的光进行滤光的滤光膜。该滤光膜为短通滤光膜,可透过蓝光(通带波长范围约为小于480nm)并滤除其他波长的光。该滤光膜例如也可以由多个二氧化钛(TiO 2)和二氧化硅(SiO 2)的交替膜层构成。表3给出了一种示例。
膜层顺序 材料 厚度(nm)
1 TiO 2 57.79
2 SiO 2 100.22
3 TiO 2 53.15
4 SiO 2 123.26
5 TiO 2 16.96
6 SiO 2 22.51
7 TiO 2 69.99
8 SiO 2 104.25
9 TiO 2 49.18
10 SiO 2 102.70
11 TiO 2 47.36
12 SiO 2 102.30
13 TiO 2 49.48
14 SiO 2 100.43
15 TiO 2 50.76
16 SiO 2 19.17
17 TiO 2 3.55
表3
在表3给出的示例中,该滤光膜由9层二氧化钛和8层二氧化硅交替构成。其中,各二氧化钛层的总厚度为398.22nm,各二氧化硅层的总厚度为674.84nm。入射光同样会在各个相邻的二氧化钛层和二氧化硅层之间产生透射和反射,所形成的多束透射光和反射光会产生干涉从而形成所期望的空间光强分布。该空间光强分布依赖于各个膜层的布置和各层的厚度。表3给出的示例由于各个膜层的布置数量和厚度与表1和表2所示的示例不同,因此,其滤光效果也是不同的。
图8示出了一种可用于对从第一颜色光波长转换层31A和第二颜色光波长转换层31B出射的光进行滤光的滤光膜。该滤光膜为长通滤光膜,可透过红光和相当一部分绿光(通带波长范围约为大于560nm)并滤除其他波长的光。该滤光膜例如也可以由多个二氧化钛(TiO 2)和二氧化硅(SiO 2)的交替膜层构成。表4给出了一种示例。
膜层顺序 材料 厚度(nm)
1 SiO 2 70.85
2 TiO 2 32.14
3 SiO 2 56.69
4 TiO 2 44.00
5 SiO 2 64.10
6 TiO 2 39.47
7 SiO 2 67.71
8 TiO 2 42.31
9 SiO 2 64.54
10 TiO 2 41.77
11 SiO 2 68.82
12 TiO 2 40.83
13 SiO 2 64.19
14 TiO 2 43.35
15 SiO 2 68.92
16 TiO 2 37.93
17 SiO 2 63.14
18 TiO 2 46.80
19 SiO 2 68.53
20 TiO 2 21.98
表4
在表4给出的示例中,该滤光膜由10层二氧化钛和10层二氧化硅交替构成。其中,各二氧化钛层的总厚度为390.58nm,各二氧化硅层的总厚度为657.49nm。入射光同样会在各个相邻的二氧化钛层和二氧化硅层之间产生透射和反射,所形成的多束透 射光和反射光会产生干涉从而形成所期望的空间光强分布。该空间光强分布依赖于各个膜层的布置和各层的厚度。表4给出的示例由于各个膜层的布置数量和厚度与表1、表2和表3所示的示例不同,因此,其滤光效果也是不同的。
以上给出了一些滤光层的例子。在上述示例中,滤光层是由多层光学干涉薄膜构成的。从图5至图8中可以看出,该滤光层具有良好的信噪比,阻带相对于通带的衰减非常显著。而在现有的显示面板中,滤光层通常是由光敏抗蚀剂制成的,利用光敏抗蚀剂对不同波长的光的吸收作用的差异来实现滤光。在本申请的一些实施例中,由多层光学干涉薄膜构成的滤光层利用光学干涉薄膜对于不同波长的光的干涉和反射作用(例如可以将不期望通过滤光膜的光反射回去)来实现滤光,与由光敏抗蚀剂制成的滤光层相比,滤光的效果更好。滤光膜的具体实现方式不限于上述实施例。在实际中,可以根据需要来设置各个光学干涉薄膜的材料、层数与厚度等参数以实现所需的滤光效果。当然,在本公开的其他实施例中,也可以采用除去上述采用多层光学干涉薄膜之外的其他结构来制作滤光膜。
在一些实施例中,所述滤光层包括长通滤光膜35D(例如该长通滤光膜的滤光特性如图8所示)。这种长通滤光膜可用于对从第一颜色光波长转换层31A和第二颜色光波长转换层31B出射的光进行滤光。作为示例,如图1所示,所述长通滤光膜在衬底基板30上的正投影可以覆盖所述第一颜色光波长转换层31A在衬底基板30上的正投影以及所述第二颜色光波长转换层31B在衬底基板30上的正投影。所述长通滤光膜的通带波长范围可以覆盖所述第一颜色光波长转换层31A的期望的出射光波长范围和所述第二颜色光波长转换层31B的期望的出射光波长范围,且所述长通滤光膜的阻带波长范围覆盖了所述发光材料层22出射的激发光的波长范围。需要说明的是,在本公开的实施例中,并不需要长通滤光膜的通带波长范围必须完全覆盖所述第一颜色光波长转换层31A的期望的出射光波长范围和所述第二颜色光波长转换层31B的期望的出射光波长范围。而只需要长通滤光膜的通带波长范围至少部分地覆盖所述第一颜色光波长转换层31A的期望的出射光波长范围和至少部分地覆盖所述第二颜色光波长转换层31B的期望的出射光波长范围。这种方式可以避免对于第一颜色光波长转换层31A和第二颜色光波长转换层31B分别设置不同的滤光层,简化了制作工艺。
在一些实施例中,所述滤光层可以包括第一颜色滤光膜35A和第二颜色滤光膜35B(参见图2)。所述第一颜色滤光膜35A在衬底基板30上的正投影覆盖所述第一颜 色光波长转换层31A在衬底基板30上的正投影,所述第一颜色滤光膜35A配置成滤除除去所述第一颜色光波长转换层35A的期望的出射光波长范围之外的其他波长的光。例如,在第一颜色光波长转换层31A的输出光为红光时,第一颜色滤光膜35A可以为红通膜,比如可以具有如图6所示的特性。第二颜色滤光膜35B在衬底基板30上的正投影覆盖所述第二颜色光波长转换层31B在衬底基板30上的正投影,所述第二颜色滤光膜35B配置成滤除除去所述第二颜色光波长转换层31B的期望的出射光波长范围之外的其他波长的光。例如,在第二颜色光波长转换层31B的输出光为绿光时,第二颜色滤光膜35B可以为绿通膜,比如可以具有如图5所示的特性。
在上述实施例中,长通滤光膜、第一颜色滤光膜以及第二颜色滤光膜中的至少一种都可以具有对蓝光的高反射特性。这有利于将蓝光反射回第一颜色光波长转换层31A和第二颜色光波长转换层31B,从而提高蓝光的利用效率。
在一些实施例中,显示面板还可以包括第三颜色滤光膜35C,所述第三颜色滤光膜35C位于所述第三颜色透光层31C的背离所述衬底基板30的一侧,所述第三颜色滤光膜35C在衬底基板30上的正投影覆盖所述第三颜色透光层31C在衬底基板30上的正投影,所述第三颜色滤光膜35C用于滤除所述发光材料层22出射的激发光的期望波长范围之外的其他波长的光。例如,在发光材料层22出射的激发光为蓝色光时,第三颜色滤光膜35C可以为蓝通膜,比如可以具有如图7所示的特性。
在上述的实施例中,显示面板包括双基板结构,即具有彼此相反地设置的衬底基板30和彩膜盖板50。作为示例,彩膜盖板50位于所述滤光层35的背离所述衬底基板30的一侧。然而,本公开的实施例不限于此。例如,显示面板可以不包括彩膜盖板50,而仅具有衬底基板30,为单基板结构。图9中给出了这样的一种实施例。在该实施例中,在显示面板100”中,滤光层35(例如第一颜色滤光膜35A、第二颜色滤光膜35B、第三颜色滤光膜35C)的背离衬底基板30的一侧上仅仅设置有保护层36,而没有例如由玻璃或塑料制成的盖板。采用双基板结构的显示面板与采用单基板结构的显示面板的制作工艺是不同的。对于双基板结构的显示面板,通常是将由第一电极层21、发光材料层22和第二电极层23等结构(例如还可包括薄膜封装TFE)形成于衬底基板30上,而将光波长转换层31以及弹性透镜层32等结构(例如还可以包括间隔部34A、滤光层35)形成在彩膜盖板50上。之后再将形成有这些结构的衬底基板30和彩膜基板50进行对盒,组装在一起。而采用单基板结构的显示面板,可以在衬底基板 30上形成第一电极层21、发光材料层22和第二电极层23等结构之后,继续在衬底基板30上形成弹性透镜层32以及光波长转换层31等结构。在图9的实施例中,在所述薄膜封装的背离衬底基板30的表面(图9中是上表面)与所述光波长转换层的朝向衬底基板30的表面(图9中是下表面)之间、所述弹性透镜层32周围填充有柔性介质29。柔性介质29在弹性透镜层32产生弹性变形时可以产生相应的变形,以与弹性透镜层32相协调。在这种情况下,柔性介质29既可以起到配合弹性透镜层32进行辅助支撑,还有利于弹性透镜层32的制作。例如,在衬底基板30上形成薄膜封装(如包括第一无机封装层25、有机封装层26和第二无机封装层27)之后,可以在薄膜封装的表面上先形成一层柔性介质29,并在柔性介质29中形成容纳开口,然后将弹性透镜层32形成于容纳开口中。作为示例,柔性介质29在垂直于衬底基板30的方向上的厚度可以与弹性透镜层32在垂直于衬底基板30的方向上的高度大致相等。
在一些实施例中,显示面板中的至少一个光波长转换层31中的一个或多个光波长转换层的背离所述衬底基板30的一侧的表面具有会聚透镜表面的形状。这通常是由于一个或多个光波长转换层31(部分或全部)采用了打印技术来形成,而不是采用蒸镀来形成的。这有利于简化工艺,对于大尺寸的显示面板(例如电视或电脑显示器等上的显示面板)尤其有益。在图9的实施例中,第一颜色光波长转换层31A’、第二颜色光波长转换层31B’和第三颜色透光层31C的背离所述衬底基板30的一侧的表面均具有会聚透镜表面的形状。这有利于增加第一颜色光波长转换层31A’、第二颜色光波长转换层31B’和第三颜色透光层31C的出射光强。然而,这不是必须的,例如显示面板中的第一颜色光波长转换层31A’、第二颜色光波长转换层31B’和第三颜色透光层31C中仅一部分背离所述衬底基板30的一侧的表面具有会聚透镜表面的形状。
需要说明的是,在图1、图2和图9所示的上述实施例中,弹性透镜层32中的第一会聚透镜32A、第二会聚透镜32B和第三会聚透镜32C被布置成具有朝向衬底基板30的凸面和背离衬底基板30的平坦面,然而这只是示意性的,本公开的实施例不限于此,例如在工艺条件允许的情况下,也可以将弹性透镜层32中的第一会聚透镜32A、第二会聚透镜32B和第三会聚透镜32C被布置成具有朝向衬底基板30的平坦面和背离衬底基板30的凸面。对于双基板结构,采用如图1和图2所示的将会聚透镜的凸面朝向衬底基板30设置而将平坦面设置成背离衬底基板30是更有优势的。在制作双基板结构的显示面板的工艺中,通常,弹性透镜层32是在彩膜基板上形成的,因此,将 会聚透镜的平坦面背离衬底基板30(即面朝彩膜基板),可以使得会聚透镜的平坦面贴合在彩膜基板的其他结构(例如保护层311)上,这样易于形成会聚透镜的形状且易于减小气体或柔性介质29在垂直于衬底基板上所占据的厚度。而如果将会聚透镜的凸面朝向彩膜基板,即,使会聚透镜的凸面形成在彩膜基板的其他结构(例如保护层311)上,则会给制作工艺造成困难,使会聚透镜的形状更难形成(尤其是对于弹性透镜层32周围填充有气体的结构),也不利于减小显示面板的总厚度。
在一些实施例中,如图1所示,在衬底基板30和第一电极层21之间还可以设置有绝缘层40和诸如薄膜晶体管44等驱动电路结构。在发光材料层22与绝缘层40之间还可以设置有像素界定层28,该像素界定层28中设有开口区,用于限定发光材料层22的设置位置。由于本公开的内容主要在于与弹性透镜层32和光波长转换层相关联的内容,因此,对于封装结构、绝缘层40、像素界定层28和驱动电路结构不再详细示出和讨论。
下面对于本公开的实施例所述的显示面板的制作方法进行介绍。
如图11所示,本公开的实施例还提供了一种显示面板的制作方法,包括:
步骤S11:提供衬底基板并在衬底基板上依次形成第一电极层、发光材料层和第二电极层以形成阵列基板;
步骤S12:提供彩膜盖板并在彩膜盖板上形成至少一个光波长转换层;以及
步骤S13:在所述至少一个光波长转换层的背离彩膜盖板的一侧上形成弹性透镜层以制成彩膜基板。
如前所述,弹性透镜层32用于对于从发光材料层22射出的激发光进行会聚。
在一些实施例中,在上述步骤S13之前,上述方法还可以包括:
步骤S14:在彩膜盖板上形成滤光层;以及
步骤S15:在滤光层的背离彩膜盖板的一侧上形成多个间隔部,在间隔部之间设有开口区。
在该实施例中,所述至少一个光波长转换层形成在所述开口区中,相邻的光波长转换层由所述间隔部间隔开。
在上述步骤S14中,滤光层可以通过沉积多个光学干涉膜层并通过诸如光刻术等手段进行图案化来制成或采用高精度金属掩膜板来进行蒸镀制成。所述光学干涉膜层可以例如由SIO 2/TiO 2等高低折射率材料交替形成膜系结构。在上述方法中,间隔部可 以由挡光性材料(吸收或反射性材料)制成,既可以防止相邻像素之间的串色,还可以提高光波长转换层的厚度。在所述至少一个光波长转换层包括第一颜色光波长转换层31A和第二颜色光波长转换层31B时,第一颜色光波长转换层31A和第二颜色光波长转换层31B可以分两个子步骤分别形成。当显示面板中设有第三颜色透光层31C的情况下,第三颜色透光层31C例如可以由透明的保护胶来形成,该透明的保护胶可用于进行平坦化处理。对于高段差基底,可采用压印的方式以提高平坦效果,具体的实现方式不做限制。
在一些实施例中,在形成滤光层之前,所述方法还包括:
步骤S16:在彩膜盖板上形成黑矩阵层,其中,所述滤光层位于所述黑矩阵层的背离彩膜基板的一侧。如前所述,黑矩阵层BM可以用作形成间隔部34A、光波长转换层、弹性透镜层32等结构的对位基准。
在一些实施例中,所述方法还可以包括:
步骤S17:将所述彩膜基板与阵列基板组装在一起以形成显示面板。该步骤S17例如可以通过粘合等方式来实现。
更具体地,上述步骤S11还可以包括在衬底基板上形成多种膜层结构。例如,在衬底基板上形成薄膜晶体管结构及薄膜封装等。
在图11中可选的步骤用虚线框表示。
如前所述,根据本公开的实施例的显示面板可以具有双基板结构或者单基板结构。对于双基板结构的显示面板(即同时设置有衬底基板和彩膜基板的显示面板),例如可以采用如图11所示的制作方法来制作。在此情况下,光波长转换层可以通过蒸镀来形成。图4给出了彩膜基板的结构的示例。
如图12所示,本公开的实施例还提供了另一种显示面板的制作方法,包括:
步骤S21:在衬底基板上依次形成第一电极层、发光材料层、第二电极层和薄膜封装;
步骤S22:在薄膜封装的背离衬底基板的一侧上形成弹性透镜层;
步骤S23:在弹性透镜层的背离衬底基板的一侧上形成多个间隔部;
步骤S24:在间隔部之间的开口区中形成至少一个光波长转换层;
步骤S25:在所述至少一个光波长转换层的背离衬底基板的一侧上形成滤光层。
在上述方法中,光波长转换层可以通过喷墨打印方式制作,对于大尺寸的显示面 板的制作比较有利。而间隔部的设置有利于形成容纳所打印的材料流体的凹腔,有助于实现通过喷墨打印方式制作光波长转换层。
在一些实施例中,如前所述,在衬底基板30上形成薄膜封装(如包括第一无机封装层25、有机封装层26和第二无机封装层27)之后,可以在薄膜封装的背离衬底基板的一侧上先形成一层柔性介质29,并在柔性介质29中形成容纳开口,然后将弹性透镜层32形成于容纳开口中。
在一些实施例中,所述至少一个光波长转换层中的一个或多个光波长转换层的背离所述衬底基板的一侧的表面形成有会聚透镜表面的形状。该形状可以通过在喷墨打印过程中材料流体的表面形状来形成。该形状有利于提高从光波长转换层出射的光强。
在本公开的实施例中,在步骤S25之后,还可以在滤光层的背离衬底基板的一侧上形成保护层。由上述图12所示的方法制作的显示面板例如可以具有单基板结构。
在本公开的实施例中,光波长转换层例如可以包括量子点、量子棒或磷光体等。作为示例,光波长转换层中可以设有量子点(尺寸在2纳米至30纳米,通常为球形)以及比量子点尺寸大得多的颗粒散射体来增强量子点的光转换效率和均匀性。
在本公开的实施例中,弹性透镜层32可以通过图案化方式来制作,例如弹性透镜层32可以由光刻胶材料通过光刻术来形成。
在一些实施例中,间隔部34A、34B例如可以是黑色、灰色或白色的。间隔部34A、34B可以用于反射或吸收激发光,削减相邻的子像素之间的光学干扰。例如,间隔部34A、34B可以由光敏抗蚀剂材料制成,为了增强效果,其中还可以混有二氧化硅或二氧化钛等成分来增强色彩、反射率等性能参数。
本公开的实施例还提供了一种电子装置,包括前述任一实施例所述的透明显示面板100、100’、100”。该电子装置例如可以为任何一种显示装置,如智能手机、可穿戴式智能手表、智能眼镜、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、车载显示器、电子书等。
虽然结合附图对本公开进行了说明,但是附图中公开的实施例旨在对本公开的实施例进行示例性说明,而不能理解为对本公开的一种限制。附图中的尺寸比例仅仅是示意性的,并不能理解为对本公开的限制。
上述实施例仅例示性的说明了本公开的原理及构造,而非用于限制本公开,本领域的技术人员应明白,在不偏离本公开的总体构思的情况下,对本公开所作的任何改 变和改进都在本公开的范围内。本公开的保护范围,应如本申请的权利要求书所界定的范围为准。

Claims (20)

  1. 一种显示面板,包括:
    衬底基板;
    第一电极层,设置在所述衬底基板上;
    发光材料层,用于发射激发光,所述发光材料层位于所述第一电极层的远离衬底基板的一侧;
    第二电极层,所述第二电极层位于所述发光材料层的远离衬底基板的一侧;和
    至少一个光波长转换层,所述光波长转换层位于所述第二电极层的远离衬底基板的一侧,用于将从发光材料层发出的激发光转换成预定颜色的光,
    其中,所述显示面板还包括弹性透镜层,所述弹性透镜层位于所述第二电极层的远离衬底基板的一侧且位于所述光波长转换层的朝向所述衬底基板的一侧,所述弹性透镜层配置成对于从发光材料层射出的激发光进行会聚。
  2. 根据权利要求1所述的显示面板,其中,所述弹性透镜层具有200兆帕至600兆帕的弹性回复力。
  3. 根据权利要求1或2所述的显示面板,其中,所述显示面板还包括薄膜封装,所述薄膜封装位于所述弹性透镜层和所述第二电极层之间,且其中,在所述薄膜封装与所述光波长转换层之间、所述弹性透镜层周围填充有气体或柔性介质,所述气体或柔性介质的折射率低于所述弹性透镜层的折射率。
  4. 根据权利要求3所述的显示面板,还包括位于弹性透镜层和光波长转换层之间的保护层,其中,所述弹性透镜层在垂直于衬底基板的方向上的高度等于所述保护层的朝向所述衬底基板的一侧的表面至所述薄膜封装的背离所述衬底基板的一侧的表面在垂直于衬底基板的方向上的距离。
  5. 根据权利要求1所述的显示面板,其中,所述至少一个光波长转换层包括第一颜色光波长转换层和第二颜色光波长转换层,所述弹性透镜层包括第一会聚透镜和第二会聚透镜,所述第一会聚透镜在衬底基板上的正投影与所述第一颜色光波长转换层在衬底基板上的正投影至少部分地重叠,所述第二会聚透镜在衬底基板上的正投影与所述第二颜色光波长转换层在衬底基板上的正投影至少部分地重叠。
  6. 根据权利要求5所述的显示面板,其中,相邻的所述第一颜色光波长转换层和所述第二颜色光波长转换层在平行于衬底基板的方向上被间隔部间隔开。
  7. 根据权利要求6所述的显示面板,其中,所述间隔部的朝向所述第一颜色光波长转换层或所述第二颜色光波长转换层的侧坡面与所述间隔部的朝向衬底基板一侧上的表面之间所成的内角小于90度。
  8. 根据权利要求7所述的显示面板,其中,所述间隔部的朝向衬底基板一侧上的表面在衬底基板上的正投影的面积大于所述间隔部的背离衬底基板一侧上的表面在衬底基板上的正投影的面积。
  9. 根据权利要求8所述的显示面板,其中,所述第一会聚透镜在垂直于衬底基板的方向上的高度h满足:
    Figure PCTCN2021110588-appb-100001
    其中,W是第一颜色光波长转换层的宽度同与该第一颜色光波长转换层相邻的两侧的间隔部的宽度之和,θ1是发光材料层出射的激发光的预定发散角。
  10. 根据权利要求5至9中任一项所述的显示面板,其中,所述发光材料层出射的激发光具有第三颜色,所述显示面板还包括第三颜色透光层,所述第三颜色透光层位于所述第二电极层的远离衬底基板的一侧,用于透射所述激发光,所述弹性透镜层还包括第三会聚透镜,所述第三会聚透镜在衬底基板上的正投影与所述第三颜色透光层在衬底基板上的正投影至少部分地重叠。
  11. 根据权利要求5至9中任一项所述的显示面板,还包括滤光层,所述滤光层位于所述至少一个光波长转换层的背离所述衬底基板的一侧,所述滤光层用于对所述第一颜色光波长转换层和第二颜色光波长转换层的出射光进行滤光,所述滤光层为薄膜滤光片。
  12. 根据权利要求11所述的显示面板,其中,所述滤光层包括长通滤光膜,所述长通滤光膜在衬底基板上的正投影覆盖所述第一颜色光波长转换层在衬底基板上的正投影以及所述第二颜色光波长转换层在衬底基板上的正投影,所述长通滤光膜的通带波长范围至少部分地覆盖所述第一颜色光波长转换层的期望的出射光波长范围和所述第二颜色光波长转换层的期望的出射光波长范围,且所述长通滤光膜的阻带波长范围覆盖了所述发光材料层出射的激发光的波长范围。
  13. 根据权利要求11所述的显示面板,其中,所述滤光层包括:
    第一颜色滤光膜,所述第一颜色滤光膜在衬底基板上的正投影覆盖所述第一颜色光波长转换层在衬底基板上的正投影,所述第一颜色滤光膜配置成滤除除去所述第一颜色光波长转换层的期望的出射光波长范围之外的其他波长的光;以及
    第二颜色滤光膜,所述第二颜色滤光膜在衬底基板上的正投影覆盖所述第二颜色光波长转换层在衬底基板上的正投影,所述第二颜色滤光膜配置成滤除除去所述第二颜色光波长转换层的期望的出射光波长范围之外的其他波长的光。
  14. 根据权利要求5至9中任一项所述的显示面板,其中,所述至少一个光波长转换层中的一个或多个光波长转换层的背离所述衬底基板的一侧的表面具有会聚透镜表面的形状。
  15. 根据权利要求11所述的显示面板,还包括彩膜盖板,所述彩膜盖板位于所述滤光层的背离所述衬底基板的一侧。
  16. 一种电子装置,包括根据权利要求1至15中任一项所述的显示面板。
  17. 一种显示面板的制作方法,包括:
    提供衬底基板并在衬底基板上依次形成第一电极层、发光材料层和第二电极层以形成阵列基板;
    提供彩膜盖板并在彩膜盖板上形成至少一个光波长转换层;以及
    在所述至少一个光波长转换层的背离彩膜盖板的一侧上形成弹性透镜层以制成彩膜基板,
    其中,所述弹性透镜层位于所述第二电极层的远离衬底基板的一侧且位于所述光波长转换层的朝向所述衬底基板的一侧,所述弹性透镜层配置成对于从发光材料层射出的激发光进行会聚。
  18. 根据权利要求17所述的显示面板的制作方法,其中,在形成所述至少一个光波长转换层之前,所述方法还包括:
    在彩膜盖板上形成滤光层;
    在滤光层的背离彩膜盖板的一侧上形成多个间隔部,在间隔部之间设有开口区;
    其中,所述至少一个光波长转换层形成在所述开口区中,相邻的光波长转换层由所述间隔部间隔开。
  19. 根据权利要求18所述的显示面板的制作方法,其中,在形成滤光层之前, 所述方法还包括:
    在彩膜盖板上形成黑矩阵层,
    其中,所述滤光层位于所述黑矩阵层的背离彩膜基板的一侧。
  20. 根据权利要求17至19中任一项所述的显示面板的制作方法,还包括:
    将所述彩膜基板与阵列基板组装在一起以形成显示面板。
PCT/CN2021/110588 2020-09-27 2021-08-04 显示面板、电子装置以及显示面板的制作方法 WO2022062693A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/788,849 US20230060696A1 (en) 2020-09-27 2021-08-04 Display panel, electronic device, and method of manufacturing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011037370.4A CN114284314A (zh) 2020-09-27 2020-09-27 显示面板、电子装置以及显示面板的制作方法
CN202011037370.4 2020-09-27

Publications (1)

Publication Number Publication Date
WO2022062693A1 true WO2022062693A1 (zh) 2022-03-31

Family

ID=80844826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110588 WO2022062693A1 (zh) 2020-09-27 2021-08-04 显示面板、电子装置以及显示面板的制作方法

Country Status (3)

Country Link
US (1) US20230060696A1 (zh)
CN (1) CN114284314A (zh)
WO (1) WO2022062693A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241350A (zh) * 2022-06-08 2022-10-25 Tcl华星光电技术有限公司 显示面板及显示面板的制造方法
CN116669480B (zh) * 2023-07-12 2024-04-05 昆山国显光电有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190363107A1 (en) * 2017-01-20 2019-11-28 Sony Semiconductor Solutions Corporation Display device, electronic device, and method of manufacturing display device
CN111108602A (zh) * 2019-12-17 2020-05-05 京东方科技集团股份有限公司 减少显示面板中环境光的反射的色分离的方法、显示面板、显示装置及制造显示面板的方法
CN111146248A (zh) * 2018-11-01 2020-05-12 三星电子株式会社 显示设备
CN111653683A (zh) * 2020-06-16 2020-09-11 京东方科技集团股份有限公司 显示面板和显示装置
CN212517209U (zh) * 2020-09-27 2021-02-09 京东方科技集团股份有限公司 显示面板和电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190363107A1 (en) * 2017-01-20 2019-11-28 Sony Semiconductor Solutions Corporation Display device, electronic device, and method of manufacturing display device
CN111146248A (zh) * 2018-11-01 2020-05-12 三星电子株式会社 显示设备
CN111108602A (zh) * 2019-12-17 2020-05-05 京东方科技集团股份有限公司 减少显示面板中环境光的反射的色分离的方法、显示面板、显示装置及制造显示面板的方法
CN111653683A (zh) * 2020-06-16 2020-09-11 京东方科技集团股份有限公司 显示面板和显示装置
CN212517209U (zh) * 2020-09-27 2021-02-09 京东方科技集团股份有限公司 显示面板和电子装置

Also Published As

Publication number Publication date
US20230060696A1 (en) 2023-03-02
CN114284314A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN212517209U (zh) 显示面板和电子装置
JP7353834B2 (ja) 表示装置および表示システム
US5566007A (en) Reflection type liquid crystal display device capable of color display
CN110459581B (zh) 显示面板及显示装置
WO2022062693A1 (zh) 显示面板、电子装置以及显示面板的制作方法
TWI670549B (zh) 顯示單元結構及使用量子棒之顯示元件
US20210407977A1 (en) Display panel and method for manufacturing the same, display device
US20140285753A1 (en) Display device
US10367171B2 (en) Low reflective display device
WO2022083304A1 (zh) 显示面板及其制备方法、显示装置
CN214672621U (zh) 显示面板和显示装置
US11126030B2 (en) Display panel, method of fabricating display panel, display device including display panel
WO2021004086A1 (zh) 色彩转化组件、显示面板及显示装置
CN115185025A (zh) 一种微透镜阵列基板及其制备方法、显示装置
KR20210157401A (ko) 색상 변환 어셈블리 및 표시 패널
US20240027820A1 (en) Color film substrate, display panel and display device
US11895893B2 (en) Display panel including stack of light-converging structure and band-pass filtering structure, manufacturing method thereof, and display apparatus
CN112216774A (zh) 色彩转换组件、显示面板及制作方法
CN211741778U (zh) 彩膜基板、显示面板和显示装置
CN115036342A (zh) 一种显示基板、显示面板
CN112992998A (zh) 显示面板、显示装置及显示面板的制作方法
JP7490721B2 (ja) 表示装置、モジュールおよび機器
US20240145624A1 (en) Enhanced quantum dot color conversion layer fabrication and integration for microled backplane
CN114967210B (zh) 一种反射显示模组及其制备方法
CN117529157A (zh) 一种显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871070

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.01.2024)