WO2022062672A1 - 传感器故障处理方法及相关装置 - Google Patents

传感器故障处理方法及相关装置 Download PDF

Info

Publication number
WO2022062672A1
WO2022062672A1 PCT/CN2021/110220 CN2021110220W WO2022062672A1 WO 2022062672 A1 WO2022062672 A1 WO 2022062672A1 CN 2021110220 W CN2021110220 W CN 2021110220W WO 2022062672 A1 WO2022062672 A1 WO 2022062672A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
illuminance
environmental
fault processing
processing method
Prior art date
Application number
PCT/CN2021/110220
Other languages
English (en)
French (fr)
Inventor
吴润涛
吕志明
狄东旭
宋恒柱
李民
陈庚军
Original Assignee
深圳星标科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳星标科技股份有限公司 filed Critical 深圳星标科技股份有限公司
Publication of WO2022062672A1 publication Critical patent/WO2022062672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to the technical field of navigation aids control, in particular to a sensor fault processing method and a related device.
  • Visual navigation aids are devices that are installed on airports or buildings around the airport to identify the location of buildings and guide aircraft to take off and land, such as navigation aids. Usually, a certain number of navigation aids are installed in a certain area, and these navigation aids flash synchronously or sequentially to serve as a warning.
  • Visual navigation aids need to be controlled at different light intensity levels according to different time periods, such as night, daytime and dusk and dawn.
  • the light intensity levels are different in different time periods.
  • sensors are configured to detect the ambient illumination of the environment where the navigation aids are located, and then Controls the light intensity level according to the ambient illuminance.
  • sensors installed outdoors have a high failure rate, and as a navigation aid device, it is necessary to ensure the reliability of their work. Therefore, it is necessary to quickly detect and issue warnings after sensor failures.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent. Therefore, the purpose of the present invention is to provide a sensor fault processing method and related device.
  • a sensor fault processing method includes:
  • the first sensor and the second sensor are installed in the same environment, and the first sensor is in an enabled state;
  • An alarm prompt is issued, where the alarm prompt is used to prompt that the first sensor is faulty.
  • it also includes:
  • the first sensor When the first sensor is faulty, the first sensor is switched to a deactivated state, and the second sensor is switched to an activated state.
  • the method before the judging that the first sensor is faulty, the method further includes:
  • the subsequent steps are performed.
  • the method before receiving the first environmental illuminance collected by the first sensor and the second environmental illuminance collected by the second sensor, the method further includes:
  • a collection instruction is sent, where the collection instruction is used to control the second sensor and the first sensor to collect ambient illuminance at the same time, so as to obtain the first and second ambient illuminance.
  • a sensor fault processing device includes:
  • a receiving unit configured to receive the first environmental illuminance collected by the first sensor and the second environmental illuminance collected by the second sensor, the first sensor and the second sensor are installed in the same environment, and the first sensor is in an enabled state;
  • a judging unit for judging that the first sensor has a fault when the absolute value of the difference between the first environmental illuminance and the second environmental illuminance exceeds a set error value
  • the warning unit is configured to issue an alarm prompt, and the alarm prompt is used to prompt that the first sensor has a fault.
  • it also includes:
  • the switching unit is configured to switch the first sensor to a disabled state and switch the second sensor to an enabled state when the first sensor is faulty.
  • it also includes:
  • a comparison unit configured to compare the first ambient illuminance with a predetermined illuminance range
  • An execution unit configured to execute subsequent steps when the first ambient illuminance is within the predetermined illuminance range.
  • it also includes:
  • the sending unit is configured to send a collection instruction, where the collection instruction is used to control the second sensor and the first sensor to collect environmental illumination at the same time, so as to obtain the first environmental illumination and the second environmental illumination.
  • a computer device includes a memory, a processor, and a computer program stored on the memory and executable on the processor, and the processor implements the above when executing the computer program The described sensor fault handling method.
  • a computer program is stored thereon, and when the program is executed by a processor, the above-described sensor fault processing method is implemented.
  • the first environmental illuminance collected by the first sensor and the second environmental illuminance collected by the second sensor are received, and the first sensor is in an enabled state;
  • the absolute value of the difference between the two ambient illuminance exceeds the set error value it is judged that the first sensor has a fault; an alarm prompt is issued, and the alarm prompt is used to prompt that the first sensor has a fault.
  • the first sensor is used as the main sensor, and the second sensor is The sensor is used as a backup sensor.
  • the first sensor and the second sensor are installed in the same environment, when the absolute value of the difference between the environmental illuminances of the two sensors exceeds the predetermined error value, it is determined that the first sensor is faulty. In this way, the sensor can be realized Automatic detection of faults, so that relevant measures can be taken in time to ensure the normal operation of the navigation aids.
  • FIG. 1 is a flowchart of an embodiment of a sensor fault processing method of the present invention
  • FIG. 2 is a flowchart of another embodiment of the sensor fault processing method of the present invention.
  • FIG. 3 is a schematic structural diagram of an embodiment of the sensor fault processing device of the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of the sensor fault processing device of the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a computer device of the present invention.
  • FIG. 1 shows a flowchart of an embodiment of a sensor fault processing method provided by an embodiment of the present invention.
  • the sensor fault processing method includes:
  • S101 Receive a first environmental illuminance collected by a first sensor and a second environmental illuminance collected by a second sensor, where the first sensor and the second sensor are installed in the same environment, and the first sensor is in an enabled state.
  • the first sensor and the second sensor are configured, the first sensor can be used as a main sensor, and the second sensor can be used as a backup sensor, and both the first sensor and the second sensor are in the same environment where the navigation aids are located, and are used for Detect the ambient illuminance of the environment where the navigation aids are located.
  • the first sensor as the main sensor is in an enabled state, that is, the light intensity level of the navigation aid lamps is controlled according to the ambient illuminance detected by the first sensor.
  • the collection time interval may be preset, and the first sensor and the second sensor collect the environmental illuminance once every predetermined time to obtain the first environmental illuminance and the second environmental illuminance, respectively.
  • the difference between the first environmental illuminance and the second environmental illuminance is calculated. Since the first sensor and the second sensor are in the same environment where the navigation aids are located, if the first sensor is not faulty, the first ambient illuminance detected by the first sensor and the second ambient illuminance detected by the second sensor should be approximately In other words, the difference between the first ambient illuminance detected by the first sensor and the second ambient illuminance detected by the second sensor is very small.
  • the absolute value of the difference between the first ambient illuminance and the second ambient illuminance is compared with the set error value, and if it exceeds the set error value, it means that the first ambient illuminance detected by the first sensor is significantly lower than the second The second ambient illuminance detected by the sensor, at this time, it is determined that the first sensor is faulty.
  • an alarm prompt can be issued, and the alarm prompt can be sent to the management terminal, and the management personnel can know that the first sensor is faulty through the management terminal, so as to take maintenance measures in time, such as replacing first sensor, etc.
  • the first environmental illuminance collected by the first sensor and the second environmental illuminance collected by the second sensor are received, and the first sensor is in an enabled state; when the first environmental illuminance and the second environmental illuminance are When the absolute value of the difference exceeds the set error value, it is judged that the first sensor has a fault; an alarm prompt is issued, and the alarm prompt is used to prompt that the first sensor has a fault.
  • the first sensor is used as the main sensor
  • the second sensor is used as a backup Sensor
  • the first sensor and the second sensor are installed in the same environment, when the absolute value of the difference between the ambient illuminance of the two sensors exceeds the predetermined error value, it is judged that the first sensor is faulty, so that the automatic detection of sensor faults can be realized.
  • the navigation aids In order to take relevant measures in time to ensure the normal operation of the navigation aids.
  • it also includes:
  • the first sensor When the first sensor is faulty, the first sensor is switched to a deactivated state, and the second sensor is switched to an activated state.
  • the navigation aids play a warning role for the aircraft, it is necessary to maintain the normal operation of the navigation aids at all times to ensure the safety of the aircraft taking off and landing.
  • the first sensor serving as the main sensor is switched to the deactivated state through control, and then the second sensor serving as the backup sensor is switched to the active state.
  • the main sensor fails enable the backup sensor, use the backup sensor to collect the ambient illuminance of the environment where the navigation aids are located, and then control the navigation aids to work normally with an appropriate light intensity level. In this way, the restoration of the fault is achieved to ensure the safety of the aircraft's take-off and landing.
  • the method before judging that the first sensor is faulty, the method further includes:
  • the first ambient illuminance detected by the first sensor is usually relatively low, such as 5lx, so in this embodiment, the magnitude of the first ambient illuminance collected by the first sensor can be judged first .
  • a predetermined illuminance range may be set, and the predetermined illuminance range generally takes a relatively small value, such as 0 to 10lx.
  • the first environmental illuminance is compared with the predetermined illuminance range, It is judged whether the first ambient illuminance is within the predetermined illuminance range. In this way, if the first environmental illuminance is within the predetermined illuminance range, the first sensor may be faulty.
  • the first ambient illuminance collected by the first sensor is also relatively low at night (ie, the actual ambient illuminance). There is a fault, and the collected environmental illuminance is relatively close to the actual environmental illuminance. Therefore, if the first sensor fault is judged only by the first environmental illuminance being within the predetermined illuminance range, there may be misjudgment at night.
  • the absolute value of the difference between the first environmental illuminance and the second environmental illuminance is compared with the set error value to determine the Whether the absolute value exceeds the set error value, the error value is, for example, 10lx, if it exceeds the error value, it means that the first environment illuminance is smaller than the second environment illuminance. At this time, it is judged that the first sensor is faulty. Misjudgment of faults that are prone to occur at night.
  • step S101 before the step S101, it further includes:
  • a collection instruction is sent, where the collection instruction is used to control the second sensor and the first sensor to collect ambient illuminance at the same time, so as to obtain the first and second ambient illuminance.
  • a collection time interval can be preset, a collection instruction is sent every predetermined time, and the first sensor and the second sensor collect the environmental illuminance once according to the collection instruction, and then obtain the first environmental illuminance and the second environmental illuminance.
  • the first environmental illuminance and the second environmental illuminance are collected simultaneously according to the collection instruction, then, if the first sensor is not faulty, the first environmental illuminance collected by the first sensor and the second environmental illuminance collected by the second sensor are basically compared close, the error is very small, so the accuracy of fault judgment can be ensured.
  • the first environmental illuminance and the second environmental illuminance are collected separately at a long time interval, since the weather may change in different time periods, the corresponding environmental illuminance may be different, then the weather change will cause the first environmental illuminance and the second environmental illuminance to change.
  • the collected ambient illuminance is obviously different, it is easy to cause fault misjudgment.
  • a fault misjudgment caused by weather changes can be prevented.
  • FIG. 3 shows a schematic structural diagram of an embodiment of a sensor fault processing device provided by an embodiment of the present invention.
  • the sensor fault processing device includes:
  • a receiving unit 301 configured to receive a first ambient illuminance collected by a first sensor and a second ambient illuminance collected by a second sensor, the first sensor and the second sensor are installed in the same environment, and the first sensor is in an enabled state .
  • the judging unit 302 is configured to judge that the first sensor is faulty when the absolute value of the difference between the first environmental illuminance and the second environmental illuminance exceeds a set error value.
  • the warning unit 303 is configured to issue an alarm prompt, where the alarm prompt is used to prompt that the first sensor has a fault.
  • it also includes:
  • the switching unit is configured to switch the first sensor to a disabled state and switch the second sensor to an enabled state when the first sensor is faulty.
  • the comparing unit 401 is configured to compare the first ambient illuminance with a predetermined illuminance range.
  • the executing unit 402 is configured to execute subsequent steps when the first ambient illuminance is within the predetermined illuminance range.
  • it also includes:
  • the sending unit is configured to send a collection instruction, where the collection instruction is used to control the second sensor and the first sensor to collect environmental illumination at the same time, so as to obtain the first environmental illumination and the second environmental illumination.
  • the first environmental illuminance collected by the first sensor and the second environmental illuminance collected by the second sensor are received, and the first sensor is in an enabled state; when the first environmental illuminance and the second environmental illuminance are When the absolute value of the difference exceeds the set error value, it is determined that the first sensor is faulty; an alarm prompt is issued, and the alarm prompt is used to indicate that the first sensor is faulty.
  • the first sensor is used as the main sensor
  • the second sensor is used as a backup Sensor
  • the first sensor and the second sensor are installed in the same environment, when the absolute value of the difference between the ambient illuminance of the two sensors exceeds the predetermined error value, it is judged that the first sensor is faulty, so that the automatic detection of sensor faults can be realized.
  • the navigation aids In order to take relevant measures in time to ensure the normal operation of the navigation aids.
  • FIG. 5 shows a computer device 100 provided by an embodiment of the present invention, including a memory 102 , a processor 101 , and a computer program 1021 stored on the memory 102 and executable on the processor 101 , when the processor 101 executes the computer program 1021, the above-mentioned sensor fault processing method is implemented.
  • the computer program 1021 can be divided into one or more modules/units, and the one or more modules/units are stored in the memory 102 and executed by the processor 101 to complete the this invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 1021 in the computer device 100.
  • the computer device 100 may include, but is not limited to, a processor 101 and a memory 102 .
  • a processor 101 may include, but is not limited to, a processor 101 and a memory 102 .
  • the figure is only an example of the computer device 100, and does not constitute a limitation to the computer device 100, and may include more or less components than the one shown, or combine some components, or
  • the computer device 100 may also include an input/output device, a network access device, a bus, and the like.
  • the so-called processor 101 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete preset hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 102 may be an internal storage unit of the computer device 100 , such as a hard disk or a memory of the computer device 100 .
  • the memory 102 may also be an external storage device of the computer device 100, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the computer device 100 card, Flash Card, etc.
  • the memory 102 may also include both an internal storage unit of the computer device 100 and an external storage device.
  • the memory 102 is used to store the computer program 1021 and other programs and data required by the computer device 100 .
  • the memory 102 may also be used to temporarily store data that has been output or will be output.
  • the embodiment of the present invention further provides a computer storage medium, on which a computer program 1021 is stored, and when the program is executed by the processor 101, the above-mentioned sensor fault processing method is implemented.
  • the computer program 1021 may be stored in a computer-readable storage medium, and when executed by the processor 101, the computer program 1021 may implement the steps of the above-mentioned method embodiments.
  • the computer program 1021 includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc.
  • the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Excluded are electrical carrier signals and telecommunication signals.
  • the disclosed apparatus/computer device 100 and method may be implemented in other manners.
  • the above-described embodiments of the apparatus/computer device 100 are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple divisions. Units or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Telephone Function (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种传感器故障处理方法及相关装置,其中,该传感器故障处理方法,包括:接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述第一传感器为启用状态;当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;发出告警提示,所述告警提示用于提示所述第一传感器存在故障。根据本发明实施例提供的传感器故障处理方法及相关装置,可以实现传感器故障的自动检测,以便于及时采取相关措施,确保助航灯具工作正常。

Description

传感器故障处理方法及相关装置 技术领域
本发明涉及助航设备控制技术领域,尤其涉及一种传感器故障处理方法及相关装置。
背景技术
目视助航设备是用于安装在机场或机场周面建筑物上,用以标识建筑物位置,引导航空器起降的设备,例如助航灯具等。通常在某个片区安装有一定数量的助航灯具,通过这些助航灯具同步闪烁或顺序闪烁起到警示作用。
目视助航灯具需要根据不同时段进行不同的光强等级控制,例如夜间、昼间及黄昏黎明,不同时段的光强等级不同,一般的,配置传感器检测助航灯具所在环境的环境照度,再根据环境照度控制光强等级。然而,安装在户外的传感器,故障率较高,而作为助航设备,需要确保其工作的可靠性,因此,需要在传感器故障之后,快速发现并发出警示。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的目的在于提出一种传感器故障处理方法及相关装置。
为实现上述目的,第一方面,根据本发明实施例的传感器故障处理方法,包括:
接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述第一传感器为启用状态;
当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;
发出告警提示,所述告警提示用于提示所述第一传感器存在故障。
根据本发明的一个实施例,还包括:
当所述第一传感器存在故障时,将所述第一传感器切换至停用状态,并将所述第二传感器切换为启用状态。
根据本发明的一个实施例,所述判断第一传感器存在故障之前还包括:
将第一环境照度与预定照度范围进行比较;
当所述第一环境照度处于所述预定照度范围时,执行后续步骤。
根据本发明的一个实施例,所述接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度之前还包括:
发送采集指令,所述采集指令用于控制第二传感器与第一传感器同时采集环境照度,以得到所述第一环境照度和第二环境照度。
第二方面,根据本发明实施例的传感器故障处理装置,包括:
接收单元,用于接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述第一传感器为启用状态;
判断单元,用于当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;
警示单元,用于发出告警提示,所述告警提示用于提示所述第一传感器存在故障。
根据本发明的一个实施例,还包括:
切换单元,用于当所述第一传感器存在故障时,将所述第一传感器切换至停用状态,并将所述第二传感器切换为启用状态。
根据本发明的一个实施例,还包括:
比较单元,用于将第一环境照度与预定照度范围进行比较;
执行单元,用于当所述第一环境照度处于所述预定照度范围时,执行后续步骤。
根据本发明的一个实施例,还包括:
发送单元,用于发送采集指令,所述采集指令用于控制第二传感器与第一传感器同时采集环境照度,以得到所述第一环境照度和第二环境照度。
第三方面,根据本发明实施例的计算机设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的传感器故障处理方法。
第四方面,根据本发明实施例的计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述的传感器故障处理方法。
根据本发明实施例提供的传感器故障处理方法及相关装置,接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,第一传感器处于启用状态;当第一环境照度与第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;发出告警提示,告警提示用于提示所述第一传感器存在故障,换言之,第一传感器作为主传感器,第二传感器作为备用传感器,由于第一传感器和第二传感器安装于同一环境中,当两个传感器的环境照度之差的绝对值超过预定误差值时,则判断第一传感器存在故障,如此,可以实现传感器故障的自动检测,以便于及时采取相关措施,确保助航灯具工作正常。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明传感器故障处理方法一个实施例的流程图;
图2是本发明传感器故障处理方法另一个实施例的流程图;
图3是本发明传感器故障处理装置一个实施例的结构示意图;
图4是本发明传感器故障处理装置一个实施例的结构示意图;
图5是本发明计算机设备实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
参照图1所示,图1示出了本发明实施例提供的传感器故障处理方法一个实施例的流程图,为了便于描述,仅示出了与本发明实施例相关的部分。具体的,该传感器故障处理方法包括:
S101、接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述第一传感器为启用状态。
具体地,配置第一传感器和第二传感器,第一传感器可以作为主传感器,第二传感器可以作为备用传感器,并且,第一传感器和第二传感器均处于助航灯具所在的同一环境中,用于检测助航灯具所在环境的环境照度。作为主传感器的第一传感器处于启用状态,也即是,根据第一传感器检测的环境照度控制助航灯具的光强等级。可以预先设定采集时间间隔,每隔预定时间第一传感器及第二传感器采集一次环境照度,分别得到第一环境照度和第二环境照度。
S102、当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障。
也就是说,在接收到第一传感器采集的第一环境照度,第二传感器采集的第二环境照度之后,计算第一环境照度和第二环境照度之间的差值。由于第一传感器和第二传感器处于助航灯具所在的同一环境中,所以,如果第一传感器没有故障,则第一传感器检测的第一环境照度与第二传感器检测的第二环境照度应该大致是相等的,或者说,第一传感器检测的第一环境照度与第二传感器检测的第二环境照度之间的差值是非常小的。因此,将第一环境照度和第二环境照度之间差值的绝对值与设定误差值进行比较,如果超过设定误差值,则说明第一传感器检测的第一环境照度明显低于第二传感器检测的第二环境照度,此时,判断第一传感器存在故障。
S103、发出告警提示,所述告警提示用于提示所述第一传感器存在故障。
也就是说,在确定第一传感器存在故障时,可以发出告警提示,该告警 提示可以发送至管理终端,管理人员通过管理终端即可获知第一传感器存在故障,以便于及时采取检修措施,例如更换第一传感器等。
根据本发明实施例提供的传感器故障处理方法,接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,第一传感器处于启用状态;当第一环境照度与第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;发出告警提示,告警提示用于提示所述第一传感器存在故障,换言之,第一传感器作为主传感器,第二传感器作为备用传感器,由于第一传感器和第二传感器安装于同一环境中,当两个传感器的环境照度之差的绝对值超过预定误差值时,则判断第一传感器存在故障,如此,可以实现传感器故障的自动检测,以便于及时采取相关措施,确保助航灯具工作正常。
在本发明的一些实施例中,还包括:
当所述第一传感器存在故障时,将所述第一传感器切换至停用状态,并将所述第二传感器切换为启用状态。
由于助航灯具对航空器起到警示作用,所以,需要时刻保持助航灯具的正常工作,进而确保航空器起降的安全。本实施例中,在第一传感器存在故障时,通过控制将作为主传感器的第一传感器切换至停用状态,再将作备用传感器的第二传感器切换至启用状态,换言之,在主传感器故障时,启用备用传感器,利用备用传感器采集助航灯具所在环境的环境照度,进而控制助航灯具采用合适的光强等级正常工作,如此,实现故障的即是恢复处理,确保航空器的起降安全。
参照图2所示,在本发明的一些实施例中,所述判断第一传感器存在故障之前还包括:
S201、将第一环境照度与预定照度范围进行比较。
S202、当所述第一环境照度处于所述预定照度范围时,执行后续步骤。
由于当第一传感器故障后,第一传感器检测到的第一环境照度通常是比较低的,例如5lx,所以,本实施例中,可以先对第一传感器采集的第一环境照度的大小进行判断。具体的,可以设置一个预定照度范围,该预定照度范围一般取值比较小,例如0至10lx,在获得第一传感器采集的第一环境照度之后,将第一环境照度与预定照度范围进行比较,判断第一环境照度是否处于预定照度范围内,如此,如果第一环境照度处于预定照度范围内,则有该 第一传感器有可能存在故障。
但是,对于夜间而言,由于夜间的环境照度比较低,所以,在夜间,第一传感器采集的第一环境照度也是比较低的(即实际的环境照度),换言之,在夜间,第一传感器即便是存在故障,其采集的环境照度与实际的环境照度比较接近的,因此,如果仅仅通过第一环境照度处于预定照度范围内判断第一传感器故障,则在夜间可能存在误判。
本实施例中,先对第一环境照度是否处于预定照度范围内进行判断,如果是,再继续将第一环境照度与第二环境照度之差的绝对值与设定误差值进行比较,判断该绝对值是否超出设定误差值,该误差值例如是10lx,如果超出误差值,则说明第一环境照度比第二环境照度还要小,此时,判断第一传感器故障,如此,可以防止在夜间容易出现的故障误判问题。
在本发明的一个实施例中,所述步骤S101之前还包括:
发送采集指令,所述采集指令用于控制第二传感器与第一传感器同时采集环境照度,以得到所述第一环境照度和第二环境照度。
具体地,可以预先设定采集时间间隔,每隔预定时间发送一采集指令,第一传感器及第二传感器根据该采集指令采集一次环境照度,进而得到第一环境照度和第二环境照度。
由于第一环境照度和第二环境照度是根据采集指令同时采集的,那么,如果第一传感器没有故障,则第一传感器采集的第一环境照度和第二传感器采集的第二环境照度基本上比较接近,误差非常小,如此,可以确保故障判断的准确性。而如果第一环境照度和第二环境照度是相隔较长时间分别采集的,由于不同时间段天气可能会发生变化,对应的环境照度可能不同,那么天气变化导致第一环境照度和第二环境照度采集的环境照度明显不同时,容易造成故障误判。本实施例中,利用同时采集的第一环境照度和第二环境照度,可以防止由于天气变化造成的故障误判。
参照图3所示,图3示出了本发明实施例提供的传感器故障处理装置一个实施例的结构示意图,为了便于描述,仅示出了与本发明实施例相关的部分。具体的,该传感器故障处理装置包括:
接收单元301,用于接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述 第一传感器为启用状态。
判断单元302,用于当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障。
警示单元303,用于发出告警提示,所述告警提示用于提示所述第一传感器存在故障。
在本发明的一个实施例中,还包括:
切换单元,用于当所述第一传感器存在故障时,将所述第一传感器切换至停用状态,并将所述第二传感器切换为启用状态。
参照图4所示,在本发明的一个实施例中,还包括:
比较单元401,用于将第一环境照度与预定照度范围进行比较。
执行单元402,用于当所述第一环境照度处于所述预定照度范围时,执行后续步骤。
在本发明的一个实施例中,还包括:
发送单元,用于发送采集指令,所述采集指令用于控制第二传感器与第一传感器同时采集环境照度,以得到所述第一环境照度和第二环境照度。
根据本发明实施例提供的传感器故障处理装置,接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,第一传感器处于启用状态;当第一环境照度与第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;发出告警提示,告警提示用于提示所述第一传感器存在故障,换言之,第一传感器作为主传感器,第二传感器作为备用传感器,由于第一传感器和第二传感器安装于同一环境中,当两个传感器的环境照度之差的绝对值超过预定误差值时,则判断第一传感器存在故障,如此,可以实现传感器故障的自动检测,以便于及时采取相关措施,确保助航灯具工作正常。
参照图5所示,图5示出了本发明实施例提供的计算机设备100,包括存储器102、处理器101以及存储在所述存储器102上并可在所述处理器101上运行的计算机程序1021,所述处理器101执行所述计算机程序1021时实现如上所述的传感器故障处理方法。
示例性的,所述计算机程序1021可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器102中,并由所述处理器101执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的 一系列计算机程序指令段,该指令段用于描述所述计算机程序1021在所述计算机设备100中的执行过程。
所述计算机设备100可包括,但不仅限于处理器101、存储器102。本领域技术人员可以理解,图仅仅是计算机设备100的示例,并不构成对计算机设备100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述计算机设备100还可以包括输入输出设备、网络接入设备、总线等。
所称处理器101可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立预设硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器102可以是所述计算机设备100的内部存储单元,例如计算机设备100的硬盘或内存。所述存储器102也可以是所述计算机设备100的外部存储设备,例如所述计算机设备100上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器102还可以既包括所述计算机设备100的内部存储单元也包括外部存储设备。所述存储器102用于存储所述计算机程序1021以及所述计算机设备100所需的其他程序和数据。所述存储器102还可以用于暂时地存储已经输出或者将要输出的数据。
本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序1021,该程序被处理器101执行时实现如上所述的传感器故障处理方法。
所述的计算机程序1021可存储于一计算机可读存储介质中,该计算机程序1021在被处理器101执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序1021包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电 信信号以及软件分发介质等。
需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例系统中的模块或单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子预设硬件、或者计算机软件和电子预设硬件的结合来实现。这些功能究竟以预设硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明所提供的实施例中,应该理解到,所揭露的装置/计算机设备100和方法,可以通过其它的方式实现。例如,以上所描述的装置/计算机设备100实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种传感器故障处理方法,其特征在于,包括:
    接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述第一传感器为启用状态;
    当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;
    发出告警提示,所述告警提示用于提示所述第一传感器存在故障。
  2. 根据权利要求1所述的传感器故障处理方法,其特征在于,还包括:
    当所述第一传感器存在故障时,将所述第一传感器切换至停用状态,并将所述第二传感器切换为启用状态。
  3. 根据权利要求1所述的传感器故障处理方法,其特征在于,所述判断第一传感器存在故障之前还包括:
    将第一环境照度与预定照度范围进行比较;
    当所述第一环境照度处于所述预定照度范围时,执行后续步骤。
  4. 根据权利要求1所述的传感器故障处理方法,其特征在于,所述接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度之前还包括:
    发送采集指令,所述采集指令用于控制第二传感器与第一传感器同时采集环境照度,以得到所述第一环境照度和第二环境照度。
  5. 一种传感器故障处理装置,其特征在于,包括:
    接收单元,用于接收第一传感器采集的第一环境照度及第二传感器采集的第二环境照度,所述第一传感器和第二传感器安装于同一环境中,所述第一传感器为启用状态;
    判断单元,用于当第一环境照度与所述第二环境照度之差的绝对值超过设定误差值时,判断第一传感器存在故障;
    警示单元,用于发出告警提示,所述告警提示用于提示所述第一传感器存在故障。
  6. 根据权利要求5所述的传感器故障处理装置,其特征在于,还包括:
    切换单元,用于当所述第一传感器存在故障时,将所述第一传感器切换至停用状态,并将所述第二传感器切换为启用状态。
  7. 根据权利要求5所述的传感器故障处理装置,其特征在于,还包括:
    比较单元,用于将第一环境照度与预定照度范围进行比较;
    执行单元,用于当所述第一环境照度处于所述预定照度范围时,执行后续步骤。
  8. 根据权利要求5所述的传感器故障处理装置,其特征在于,还包括:
    发送单元,用于发送采集指令,所述采集指令用于控制第二传感器与第一传感器同时采集环境照度,以得到所述第一环境照度和第二环境照度。
  9. 一种计算机设备,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4任意一项所述的传感器故障处理方法。
  10. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至4任意一项所述的传感器故障处理方法。
PCT/CN2021/110220 2020-09-25 2021-08-03 传感器故障处理方法及相关装置 WO2022062672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011021717.6 2020-09-25
CN202011021717.6A CN112235924A (zh) 2020-09-25 2020-09-25 传感器故障处理方法及相关装置

Publications (1)

Publication Number Publication Date
WO2022062672A1 true WO2022062672A1 (zh) 2022-03-31

Family

ID=74108639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110220 WO2022062672A1 (zh) 2020-09-25 2021-08-03 传感器故障处理方法及相关装置

Country Status (2)

Country Link
CN (1) CN112235924A (zh)
WO (1) WO2022062672A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109775A (zh) * 2023-10-17 2023-11-24 哲弗智能系统(上海)有限公司 一种温度传感器检测方法、装置、电子设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112235924A (zh) * 2020-09-25 2021-01-15 深圳星标科技股份有限公司 传感器故障处理方法及相关装置
CN113110349B (zh) * 2021-04-27 2022-03-25 湖南省水利投地方电力有限公司 一种水电站水轮发电机组显控装置
CN116793431A (zh) * 2023-08-29 2023-09-22 上海溱湖新能源科技有限公司 基于物联网的蒸汽凝结水排放器监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344271A (zh) * 2013-07-22 2013-10-09 中国航空动力机械研究所 传感器故障诊断装置和方法以及传感器的信号采集系统
WO2017051631A1 (ja) * 2015-09-24 2017-03-30 富士フイルム株式会社 故障診断装置、故障診断方法、及び故障診断プログラム
CN107388591A (zh) * 2017-08-14 2017-11-24 广东万和热能科技有限公司 采暖炉的控制方法、控制装置及计算机可读存储介质
CN110081923A (zh) * 2019-05-16 2019-08-02 中国人民解放军战略支援部队信息工程大学 野外基线环境参数自动采集系统故障检测方法与装置
CN110501094A (zh) * 2019-09-05 2019-11-26 珠海格力电器股份有限公司 电器温度传感器的故障检测校准方法、空调器及计算机可读存储介质
CN112235924A (zh) * 2020-09-25 2021-01-15 深圳星标科技股份有限公司 传感器故障处理方法及相关装置
CN112235925A (zh) * 2020-09-25 2021-01-15 深圳星标科技股份有限公司 目视助航设备状态预警方法及相关装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8286034B2 (en) * 2010-07-20 2012-10-09 Oracle America, Inc. Accurate fault status tracking of variable access sensors
CN104340200B (zh) * 2013-08-02 2016-12-28 上海汽车集团股份有限公司 一种制动踏板位置传感器故障的诊断方法
CN105910732A (zh) * 2016-04-14 2016-08-31 广东美的暖通设备有限公司 温度传感器的准确性漂移故障检测方法和系统、空调器
CN111323848A (zh) * 2018-12-17 2020-06-23 北汽福田汽车股份有限公司 一种车辆雨量传感器的校正方法和存储介质
CN109341900A (zh) * 2019-01-04 2019-02-15 新誉轨道交通科技有限公司 温度传感器的故障判断方法、装置及电子设备
CN110146161B (zh) * 2019-06-10 2021-08-13 Oppo广东移动通信有限公司 环境光照强度的检测方法、装置和终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344271A (zh) * 2013-07-22 2013-10-09 中国航空动力机械研究所 传感器故障诊断装置和方法以及传感器的信号采集系统
WO2017051631A1 (ja) * 2015-09-24 2017-03-30 富士フイルム株式会社 故障診断装置、故障診断方法、及び故障診断プログラム
CN107388591A (zh) * 2017-08-14 2017-11-24 广东万和热能科技有限公司 采暖炉的控制方法、控制装置及计算机可读存储介质
CN110081923A (zh) * 2019-05-16 2019-08-02 中国人民解放军战略支援部队信息工程大学 野外基线环境参数自动采集系统故障检测方法与装置
CN110501094A (zh) * 2019-09-05 2019-11-26 珠海格力电器股份有限公司 电器温度传感器的故障检测校准方法、空调器及计算机可读存储介质
CN112235924A (zh) * 2020-09-25 2021-01-15 深圳星标科技股份有限公司 传感器故障处理方法及相关装置
CN112235925A (zh) * 2020-09-25 2021-01-15 深圳星标科技股份有限公司 目视助航设备状态预警方法及相关装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109775A (zh) * 2023-10-17 2023-11-24 哲弗智能系统(上海)有限公司 一种温度传感器检测方法、装置、电子设备及存储介质
CN117109775B (zh) * 2023-10-17 2024-02-20 哲弗智能系统(上海)有限公司 一种温度传感器检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112235924A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022062672A1 (zh) 传感器故障处理方法及相关装置
CN110247725B (zh) Otn网络的线路故障排查方法、装置及终端设备
CN109889604B (zh) 一种物联网终端参数管理方法、装置及服务器
US10261571B2 (en) Backup power supply support
CN109358893A (zh) 一种fpga程序的在线升级方法、装置及系统
CN111274099A (zh) 一种交换机系统的指示灯控制方法、系统、设备以及介质
CN103269056B (zh) 电流检测保护装置及方法
WO2020238747A1 (zh) 串口输出路径切换方法、系统及装置和交换机
CN113313962A (zh) 信号灯故障监测方法、装置、电子设备及存储介质
CN112446714A (zh) 快递售后工单处理系统的服务器升级方法、装置及设备
CN115774858A (zh) 一种故障处理方法、装置、电子设备及存储介质
KR20190109644A (ko) 온실 데이터 수집 이상 감지 장치 및 그 방법
CN204539285U (zh) 一种网络摄像机
CN110517629A (zh) 一种面板led控制方法、装置、设备及可读存储介质
CN109029761A (zh) 一种多阈值温度传感器开关器件及其控制方法
CN113590287B (zh) 任务处理方法、装置、设备、存储介质及调度系统
KR102678704B1 (ko) 배전 관리 시스템의 고장 관리 장치
CN112235925A (zh) 目视助航设备状态预警方法及相关装置
CN110677264B (zh) 一种供电故障处理的方法及装置
CN113300918A (zh) 智慧灯杆的故障检测方法、终端设备及存储介质
CN105306532A (zh) 提高气象模型系统中数据下载可靠性和速度的系统及方法
US20200380850A1 (en) Management device, management system, management method and management program
CN111599174A (zh) 一种交通指标的异常检测方法和电子设备
CN203433506U (zh) 一种局部放电智能故障恢复系统
CN115883611B (zh) 一种建筑能源管理安全架构系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21871050

Country of ref document: EP

Kind code of ref document: A1