WO2022062384A1 - 一种双人手术显微镜 - Google Patents

一种双人手术显微镜 Download PDF

Info

Publication number
WO2022062384A1
WO2022062384A1 PCT/CN2021/089575 CN2021089575W WO2022062384A1 WO 2022062384 A1 WO2022062384 A1 WO 2022062384A1 CN 2021089575 W CN2021089575 W CN 2021089575W WO 2022062384 A1 WO2022062384 A1 WO 2022062384A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
eye
naked
double
microscope according
Prior art date
Application number
PCT/CN2021/089575
Other languages
English (en)
French (fr)
Inventor
王吉龙
何进
李剑月
杜雷
朱诚杰
Original Assignee
苏州速迈医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州速迈医学科技股份有限公司 filed Critical 苏州速迈医学科技股份有限公司
Priority to JP2023518830A priority Critical patent/JP2023543219A/ja
Priority to US18/246,335 priority patent/US20230355346A1/en
Priority to EP21870773.5A priority patent/EP4212125A4/en
Publication of WO2022062384A1 publication Critical patent/WO2022062384A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/20Surgical microscopes characterised by non-optical aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/20Surgical microscopes characterised by non-optical aspects
    • A61B90/25Supports therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/368Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements details of associated display arrangements, e.g. mounting of LCD monitor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/001Counterbalanced structures, e.g. surgical microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/309Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using white LEDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/372Details of monitor hardware

Definitions

  • the invention relates to the technical field of medical equipment, in particular to a double operation microscope.
  • the exit pupil position of the eyepieces of traditional operating microscopes is fixed, and the diameter of the exit pupil is generally only about 2mm.
  • the operator needs to keep the pupil of the eye at the exit pupil position of the eyepiece for a long time, even if the design of the microscope meets the Ergonomic, holding the same posture for a long time is also easy to fatigue the operator.
  • it is necessary to tilt the operating microscope to a large extent for observation. At this time, the operator still needs to follow the eyepiece to adjust his position.
  • some operating microscopes are equipped with compensation structures, the compensation range is mostly limited, and each time the operator needs to adjust his position. Manual adjustment is cumbersome and inconvenient.
  • the operator often needs an assistant to observe and cooperate with the microscope under the microscope. Since the position of the assistant and the operator relative to the patient is not the same, the posture of at least one person cannot be guaranteed to be comfortable when observing the same monitor. and due to the difference in viewing angle, viewing the same display as the operator will cause the assistant's orientation to feel confused.
  • the purpose of the present invention is to provide a double operating microscope, the operator and assistant of different stature can maintain a reasonable ergonomic posture, can see the real images of their respective perspectives, and can observe the state of the other party at any time and conduct facial language communication, At the same time, only one stereo optical imaging system is needed, and two people can observe at the same time by simply distributing and flipping the video signal.
  • the present invention provides a double operation microscope, which includes a bracket, a mirror body, a first naked-eye 3D display and a second naked-eye 3D display, and the mirror body is mounted on the bracket , a photosensitive element is arranged in the lens body, the first naked-eye 3D display and the second naked-eye 3D display are respectively connected to the photosensitive element, and the display directions of the first naked-eye 3D display and the second naked-eye 3D display are opposite, and The image displayed on the first naked-eye 3D display is 180 degrees different from the direction of the image displayed on the second naked-eye 3D display.
  • it further includes a mounting bracket, and the first naked-eye 3D display and the second naked-eye 3D display are respectively movably mounted on the mounting bracket.
  • first naked-eye 3D display and the second naked-eye 3D display can be driven to move in a vertical direction on the mounting frame independently.
  • the bracket includes a base, a support rod vertically mounted on the base, a large cross arm rotatably mounted on the support rod, and a large cross arm rotatably mounted on the large cross arm A small cross arm and a balance arm rotatably mounted on the small cross arm, and the mirror body is mounted on the balance arm.
  • the first naked-eye 3D display and the second naked-eye 3D display are mounted on the mirror body, the large horizontal arm or the support rod through the mounting bracket; or the double operating microscope further comprises a seat A body and a connecting rod mounted on the base body, the first naked-eye 3D display and the second naked-eye 3D display are mounted on one end of the connecting rod through the mounting bracket.
  • the other end of the connecting rod is movably mounted on the base, the connecting rod can be driven to move along its axis direction, and/or the connecting rod can be driven to Its axis is the axis of rotation.
  • first naked-eye 3D display and the second naked-eye 3D display can be placed on the ground or suspended on the roof through the base and the connecting rod.
  • the size of the first naked-eye 3D display and the second naked-eye 3D display is between 12-16 inches;
  • the microsurgery auxiliary device further includes a collection device, a processing device and a driving device, so
  • the collecting device can be configured to collect the human eye position information of the operator or assistant, and the processing device can be configured to control the action of the driving device according to the collected human eye position information, and adjust the first naked-eye 3D display or the first naked eye 3D display. 2.
  • it also includes a plurality of wheels, the wheels are mounted on the bottom end of the base or the base body.
  • the wheel is a universal wheel.
  • FIG. 1 is a schematic structural diagram of a double operating microscope provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the connection of two naked-eye 3D displays of a two-person operating microscope provided by an embodiment of the present application;
  • FIG. 3 is a schematic three-dimensional installation schematic diagram of two naked-eye 3D displays of the two-person surgical microscope provided by the embodiment of the present application when placed on the ground;
  • FIG. 4 is a side view installation schematic diagram of the two naked-eye 3D displays of the double surgical microscope provided by the embodiment of the present application when placed on the ground;
  • FIG. 5 is a schematic diagram of installation when two naked-eye 3D displays of the double operating microscope provided by the embodiment of the application are suspended on the roof;
  • FIG. 6 is a schematic structural diagram of a two-person operating microscope provided by an embodiment of the present application.
  • 7a and 7b are schematic diagrams of the optical path principle of the two-person operating microscope provided by the embodiment of the application in two states when the distance between the positive lens group and the negative lens group is adjusted;
  • FIG. 8 is a schematic diagram of the optical path principle of the double operating microscope provided by the embodiment of the present application when an observation unit is provided;
  • FIG. 9 is a schematic structural diagram of the double operating microscope provided by the embodiment of the application when an observation unit is provided;
  • Fig. 10a and Fig. 10b are schematic diagrams of the optical path principle of the two-person operating microscope provided by the embodiment of the application when dual illumination optical paths are provided;
  • FIG. 11 is a schematic diagram of the optical path principle of the double operating microscope provided by the embodiment of the application when the projection mirror group and the variable magnification mirror group are linked;
  • FIG. 12 is a schematic diagram of the viewing angle and distance of the naked-eye 3D display of the two-person surgical microscope provided by the embodiment of the application;
  • 13a-13c are schematic structural diagrams of the double-person surgical microscope provided by the embodiment of the present application when the naked-eye 3D display is installed in other positions of the bracket.
  • FIG. 1 is a schematic structural diagram of a two-person operating microscope provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the connection of two naked-eye 3D displays of the two-person operating microscope provided by an embodiment of the application
  • FIG. 4 is a schematic side view installation schematic diagram of the two naked-eye 3D displays of the double-person surgical microscope provided by the embodiment of the application when placed on the ground
  • 5 is a schematic view of the installation when two naked-eye 3D displays of the double operating microscope provided by the embodiment of the application are suspended on the roof
  • FIG. 1 is a schematic structural diagram of a two-person operating microscope provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the connection of two naked-eye 3D displays of the two-person operating microscope provided by an embodiment of the application
  • FIG. 6 is a schematic structural diagram of the double operating microscope provided by the embodiment of the application
  • FIGS. 7a and 7b A schematic diagram of the optical path principle of the two-person operating microscope provided by the embodiment of the application in two states when the distance between the positive lens group and the negative lens group is adjusted
  • FIG. 8 is a schematic diagram of the two-person operating microscope provided by the embodiment of the application when an observation unit is provided. Schematic diagram of the optical path principle
  • FIG. 9 is a schematic structural diagram of the double operating microscope provided by the embodiment of the application when an observation unit is provided
  • FIGS. 10a and 10b are the optical paths of the double operating microscope provided by the embodiment of the application when dual illumination optical paths are provided Schematic diagram of the principle
  • FIG. 11 is a schematic diagram of the optical path principle of the double operating microscope provided by the embodiment of the application when the projection lens group and the variable magnification lens group are linked;
  • FIG. 12 is the naked-eye 3D display viewing angle of the double operating microscope provided by the embodiment of the application.
  • Fig. 13a-Fig. 13c are schematic structural diagrams of the two-person operating microscope provided by the embodiment of the application when the naked-eye 3D display is installed in other positions of the bracket.
  • a double operating microscope of this embodiment includes a bracket 1 , a mirror body 2 , a first naked-eye 3D display 3 and a second naked-eye 3D display 4 .
  • the bracket 1 includes a base 11 , a support rod 15 vertically installed on the base 11 , a large cross arm 12 rotatably installed on the support rod 15 , and a large cross arm 12 rotatably installed on the large cross arm 12 .
  • the small cross arm 13 and the balance arm 14 rotatably mounted on the small cross arm 13, the mirror body 2 is mounted on the balance arm 14, as shown in FIG. 1, FIG. 6 or FIG. 13a-c.
  • the lens body 2 is provided with an imaging unit 20.
  • the imaging unit 20 includes a large objective lens group 21, a variable magnification lens group 22, a first lens barrel objective lens 23 and a photosensitive element 24.
  • the large objective lens group 21, the variable magnification lens The group 22 , the first lens barrel objective lens 23 and the photosensitive element 24 are sequentially located in the same observation optical path 25 , as shown in FIG. 6 .
  • the large objective lens group 21 includes at least one positive lens group 211 and at least one negative lens group 212 , the positive lens group 211 and the negative lens group 212 are arranged on the same optical axis, and between the positive lens group 211 and the negative lens group 212 The distance can be adjusted, and the adjustment range of the distance between the positive lens group 211 and the negative lens group 212 is not less than 6 mm.
  • the large objective lens with variable focal length can easily change the position of the focal plane, that is, the working distance of the operation, covering the required surgical depth.
  • the implementation method is to change the distance between the positive lens group 211 and the negative lens group 212, and the adjustment range of the working distance is proportional to the distance range between the positive lens group 211 and the negative lens group 212, as shown in Figures 7a and 7b.
  • the positive lens group 211 includes at least two optical lenses of different materials
  • the negative lens group 212 includes at least two optical lenses of different materials
  • the negative lens group 212 is close to the object to be observed
  • the negative lens group 212 includes
  • the outer side surface 2121 and the inner side surface 2122 are both concave surfaces, and the absolute value of the radius of curvature of the outer side surface 2121 is smaller than the absolute value of the radius of curvature of the inner side surface 2122 .
  • the present application preferably adopts the design of binocular observation optical paths 25.
  • Each observation optical path 25 is provided with a variable magnification lens group 22, a first lens barrel objective lens 23 and a photosensitive element 24, and the two observation optical paths 25 share a large objective lens group 21.
  • the double optical path variable magnification lens group 22 realizes observation of different magnifications, and can observe the whole and part of the affected area.
  • the variable magnification lens group 22 is preferably an afocal Galilean structure, which can be variable magnification in steps or continuously.
  • the variable magnification lens group 22 is a continuous variable magnification structure, it includes at least two groups of second lenses 221 , and the second lenses 221 can be driven to move along respective optical axis directions.
  • the combination of the variable magnification lens group 22 and the large objective lens with variable focal length enables the operating microscope of the present application to realize convenient observation of different magnifications for tissue structures of different depths.
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 are respectively connected to the photosensitive element 24 .
  • the size of the first naked-eye 3D display 3 and the second naked-eye 3D display 4 is between 12-16 inches.
  • the visual distance between the naked-eye 3D display and the observer is between 400 and 1200 mm, and the viewing angle of the naked-eye 3D display is not less than 120 degrees, preferably not less than 90 degrees.
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 are installed on a mounting frame 5 facing away from each other, that is, the display directions of the two naked-eye 3D displays are opposite, as shown in FIG. 1 .
  • two naked-eye 3D displays are located between two observers, such as operator 9 and assistant 10 .
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 can be driven to move along the vertical direction on the mounting frame 5 independently, and the operator 9 and the assistant 10 can individually perform operations on the respective naked-eye 3D displays. Height adjustment to adapt to different heights to ensure the best viewing height.
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 can also be driven to rotate in the horizontal direction or the vertical direction respectively, that is, the left and right viewing angles or the tilting viewing angles of the displays can be adjusted to achieve the best viewing angle.
  • the viewing angles of the object to be observed by the operator 9 and the assistant 10 are different, so the image directions of the observed object are also different.
  • 10 is located on both sides of the operating microscope, so the direction of the images of the object to be observed should be different by 180 degrees. Therefore, in the design, the image displayed by the first naked-eye 3D display The directions of the images displayed by the second naked-eye 3D display 4 are also different by 180 degrees.
  • the object to be observed is an "F" image, assuming that the first naked-eye 3D display 3 displays an "F" image, the second naked-eye 3D display 4 should display an "F” image rotated 180 degrees, as shown in Figure 2 shown.
  • the photosensitive device in the lens body 2 will be provided with two photosensitive elements 24, and one observation optical path 25 corresponds to one photosensitive element 24, which are respectively defined as the left photosensitive element and the right photosensitive element.
  • one of the glasses-free 3D displays for example, the input port of the second glasses-free 3D display 4 can be reversely connected, that is, the left input port of the second glasses-free 3D display 4 It is connected to the right photosensitive element, the right input port is connected to the left photosensitive element, and then the pattern in the second naked-eye 3D display 4 is vertically inverted by 180 degrees, so that the second naked-eye 3D display
  • the 3D display is an image with a difference of 180 degrees in three directions, as shown in Figure 2.
  • it can also be implemented in other ways, for example, directly rotating the second naked-eye 3D display 4 by 180 degrees and then installing it, or implementing the image rotation of the second naked-eye 3D display 4 by means of software.
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 can choose different fixing methods according to different site conditions and usage habits, and the fixing structure is simple and reliable.
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 can be installed on the upper surface of the large horizontal arm 12 and located above the support rod 15, as shown in FIG. 13a; It can also be suspended on the lower surface of the large cross arm 12, as shown in Figure 13c; it can also be directly installed on the support rod 15, as shown in Figure 13b.
  • the two naked-eye 3D displays may not be installed on the bracket 1 of the auxiliary device, but can also be placed on the ground through the base 6 and the connecting rod 61, as shown in FIG.
  • the first naked-eye 3D display 3 and the second naked-eye 3D display 4 are mounted on one end of the connecting rod 61 through the mounting bracket 5, and the other end of the connecting rod 61 is movably mounted on the base 6, so the The connecting rod 61 can be driven to move relative to the base 6 along its axis or rotate with its axis as a rotation axis, as shown in Figures 3-5, so that the installation positions of the two naked-eye 3D displays can be adjusted.
  • the installation height, rotation angle and flip angle of the first naked-eye 3D display 3 and the second naked-eye 3D display 4 All are adjustable, and all can be automatically maintained after adjustment.
  • the naked-eye 3D display is set in the range of 400-1200mm, which is close to the observation distance of commonly used clinical equipment.
  • the human eye does not need to adjust the focus repeatedly, saving time and effort. No loss of brightness, reduce visual fatigue.
  • the closer observation distance is in line with the approaching habit of the human eye when recognizing details.
  • the present application adopts a naked-eye 3D display so that the operator 9 or assistant 10 can directly perform surgical operations by observing the naked-eye 3D display.
  • the overall structure of the device is simple, complex data processing of images is unnecessary, and the system delay is small.
  • the use of the naked-eye 3D display eliminates the need for the observation angle of the operator 9 or the assistant 10 to be directly aligned, and the object to be observed can be clearly observed within a certain observation angle range without adjusting the orientation of the display.
  • the microsurgery auxiliary device further includes an acquisition device, a processing device and a driving device
  • the acquisition device can be configured to acquire the human eye position information of the operator 9 or the assistant 10
  • the processing device is configured to control the action of the driving device according to the collected human eye position information, and adjust the display angle of the first naked-eye 3D display 3 or the second naked-eye 3D display 4, so as to realize the automatic tracking of the operator by the naked-eye 3D display 9 or the observer's eye, and rotate accordingly to ensure the best viewing angle.
  • the lens body 2 is also provided with at least one lighting unit 7, and the lighting light of each lighting unit 7 can illuminate the object to be observed through the large objective lens group 21, and the lighting light entering the large objective lens group 21
  • the direction is parallel to the optical axis direction of the large objective lens group 21, which can reduce the reflection loss, as shown in FIG. 7a.
  • it can also be arranged into a symmetrical double illumination light path 75 to enhance the illumination intensity, compress the lateral volume of the system, and facilitate the balance of the mirror body 2, as shown in Figures 10a and 10b.
  • the illumination unit 7 includes a light source assembly 71 , a condenser lens group 72 , a diaphragm 73 and a projection lens group 74 which are sequentially located in the same illumination light path 75 .
  • the light source assembly 71 includes at least one LED light source 711 , and at least one of the LED light sources 711 in the light source assembly 71 can be driven to switch to the illumination light path 75 to illuminate the object to be observed.
  • the light source assembly 71 also includes at least one monochromatic light source (for fluorescent mode), which can be switched with the white light source to enter the illumination light path 75 .
  • the projection lens group 74 includes at least one first lens 741, and the first lens 741 can be driven to move along its optical axis.
  • the double operating microscope of the present application may also be provided with a transmission device between the projection lens group 74 and the variable magnification lens group 22 to realize the linkage between the projection lens group 74 and the variable magnification lens group 22
  • the transmission device is not directly drawn in the figure, and the linkage relationship between the projection mirror group 74 and the variable magnification mirror group 22 is schematically represented by a broken line.
  • the projection lens group 74 is adjusted accordingly, so that the illumination spot can also be reduced accordingly, reducing the risk of light damage to tissues outside the field of view, and at the same time, it is also beneficial to improve the illuminance inside the field of view, compensating for the subjective observation of the human eye when observing at high magnification. Decrease in brightness.
  • an observation unit 8 may be installed on the lens body 2 of the double-person operating microscope of the present application to realize traditional visual observation, as shown in FIG. 9 .
  • the observation unit 8 includes an eyepiece 81 , a turning lens group 82 (or a prism group) and a second lens barrel objective lens 83 .
  • the imaging unit 20 also includes a spectroscope group 26. In the same observation optical path 25, light passes through the large objective lens group 21 and the variable magnification lens group 22 to reach the spectroscope group 26, and the spectroscope group 26 separates the light.
  • the light is split into two parts, one part of the light passes through the first lens barrel objective lens 23 to reach the photosensitive element 24 in sequence, and the other part of the light rays sequentially passes through the second lens barrel objective lens 83 , the turning lens group 82 and the eyepiece 81 .
  • two observers can observe the object to be observed through the naked eye 3D display, and can observe the object to be observed by using the traditional visual observation method, which greatly enhances the operability and adaptability of the microsurgery auxiliary device sex.
  • wheels 62 may be installed on the bottom end of the base 11 or the bottom end of the base body 6 , preferably a universal wheel is used to facilitate the operator to move the microscope.

Abstract

一种双人手术显微镜,包括支架(1)、镜身(2)、第一裸眼3D显示器(3)和第二裸眼3D显示器(4),镜身(2)安装在支架(1)上,镜身(2)内设置有感光元件(24),第一裸眼3D显示器(3)和第二裸眼3D显示器(4)分别与感光元件(24)连接,第一裸眼3D显示器(3)和第二裸眼3D显示器(4)的显示方向相反,且第一裸眼3D显示器(3)显示的图像与第二裸眼3D显示器(4)显示的图像方向相差180度。双人手术显微镜使得不同身材的操作者(9)和助手(10)都可保持合理的人体工学姿势,可看到各自视角的真实影像,并可随时观察对方的状态并进行面部语言交流,同时只需要一套立体光学成像系统,通过对视频信号的简单分配和翻转,即可实现两人同时观察。

Description

一种双人手术显微镜 技术领域
本发明涉及医用设备技术领域,尤其涉及一种双人手术显微镜。
背景技术
传统手术显微镜目镜的出瞳位置固定,且出瞳直径一般仅2mm左右,为了观察到完整的物面视场,需要操作者长时间将眼睛的瞳孔保持在目镜出瞳位置,即使显微镜的设计符合人体工学,长时间的保持不变的姿势也容易让操作者疲劳。而对于某些特殊患处,需要大幅度倾斜手术显微镜来进行观察,此时操作者仍需跟随目镜调整自己的位置,尽管有些手术显微镜设置了补偿结构,但补偿范围大都有限,且每次都需要进行手动调节,繁琐不便。
基于以上原因,有技术方案采用显示器来显示视频图像,但普通显示器无法体现物体的深度信息,无法适用于实时手术。
还有技术方案采用基于偏振原理的3D显示器,观察者需要佩戴偏光眼镜才能看到立体影像,对本身佩戴眼镜的操作者不够友好,且观察者需要几乎正对显示器才能观察到理想的立体影像,此外采用此方案的显示器尺寸通常较大,因此其放置位置距离操作者通常在2米以上,由于人眼在观察距离差别较大的物体时,有一个调节过程,因此当操作者的视线离开显示器,观察和调节显微镜参数或其他辅助设备再返回后,无法立即看清显示器上的细节图像。
特别是对于比较复杂的手术,操作者往往需要助手在显微镜下进行同步观察并配合操作,由于助手与操作者相对于患者的方位并不相同,观察同一个显示器时至少一个人的姿态无法保证舒适的直视,而且由于观察角度的差异,与操作者观察同一个显示器会造成助手的方位感觉错乱。
特别地,临床的很多科室,特别是骨科,需要操作者与助手面对面进行操作,此时现有解决方案为使用笨重而结构复杂的桥型分光装置(US20030133187),其内部光路系统存在多次转折并至少有一次中间成像,其光通量损失严重,使得观察分辨率和对比度下降,并且系统复杂,制造成本高。
因此,结合上述存在的技术问题,有必要提出一种新的技术方案。
发明内容
本发明的目的在于提供一种双人手术显微镜,不同身材的操作者和助手都可保持合理的人体工学姿势,可看到各自视角的真实影像,并可随时观察对方的状态并进行面部语言交流,同时只需要一套立体光学成像系统,通过对视频信号的简单分配和翻转,即可实现两人同时观察。
为实现发明目的,根据本发明的一个方面,本发明提供一种双人手术显微镜,其包括支架、镜身、第一裸眼3D显示器和第二裸眼3D显示器,所述镜身安装在所述支架上,所述镜身内设置有感光元件,所述第一裸眼3D显示器和第二裸眼3D显示器分别与所述感光元件连接,所述第一裸眼3D显示器和第二裸眼3D显示器的显示方向相反,且所述第一裸眼3D显示器显示的图像与第二裸眼3D显示器显示的图像方向相差180度。
在一个进一步的实施例中,其还包括安装架,所述第一裸眼3D显示器和第二裸眼3D显示器分别活动安装在所述安装架上。
在一个进一步的实施例中,所述第一裸眼3D显示器和第二裸眼3D显示器分别能够被驱动的单独在所述安装架上沿竖直方向移动。
在一个进一步的实施例中,所述支架包括底座、竖直安装在所述底座上的支撑杆、可转动安装在所述支撑杆上的大横臂、可转动安装在所述大横臂上的小横臂和可转动安装在所述小横臂上的平衡臂,所述镜身安装在所述平衡臂上。
在一个进一步的实施例中,所述第一裸眼3D显示器和第二裸眼3D显示器通过所述安装架安装在所述镜身、大横臂或支撑杆上;或所述双人手术显微镜还包括座体和安装在所述座体上的连接杆,所述第一裸眼3D显示器和第二裸眼3D显示器通过所述安装架安装在所述连接杆的一端。
在一个进一步的实施例中,所述连接杆的另一端活动安装在所述座体上,所述连接杆能够被驱动的沿其轴线方向移动,和/或所述连接杆能够被驱动的以其轴线为转轴转动。
在一个进一步的实施例中,所述第一裸眼3D显示器和第二裸眼3D显示器能够通过所述座体和连接杆放置在地面上或悬吊在房顶上。
在一个进一步的实施例中,所述第一裸眼3D显示器和第二裸眼3D显示器的尺寸在12-16英寸之间;所述显微手术辅助装置还包括采集装置、处理装置和驱动装置,所述采集装置能够被配置的采集操作者或助手的人眼位置信息,所述处理装置被配置的能够根据采集的人眼位置信息控制所述驱动装置动作,调节所述第一裸眼3D显示器或第二裸眼3D显示器的显示角度。
在一个进一步的实施例中,其还包括若干个轮子,所述轮子安装在所述底座或座体的底端。
在一个进一步的实施例中,所述轮子为万向轮。
附图说明
图1为本申请实施例提供的双人手术显微镜的结构示意图;
图2为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器的连接示意图;
图3为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器放置在地面时的立体安装示意图;
图4为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器放置在地面时的侧视安装示意图;
图5为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器悬吊在房顶时的安装示意图;
图6为本申请实施例提供的双人手术显微镜的结构示意图;
图7a和图7b为本申请实施例提供的双人手术显微镜在调节正透镜组和负透镜组间距离时两种状态下的光路原理示意图;
图8为本申请实施例提供的双人手术显微镜在设有观察单元时的光路原理示意图;
图9为本申请实施例提供的双人手术显微镜在设有观察单元时的结构示意图;
图10a和图10b为本申请实施例提供的双人手术显微镜在设有双照明光路时的光路原理示意图;
图11为本申请实施例提供的双人手术显微镜在投射镜组和变倍镜组联动时的光路原理示意图;
图12为本申请实施例提供的双人手术显微镜的裸眼3D显示器可视角度和距离示意图;
图13a-图13c为本申请实施例提供的双人手术显微镜在裸眼3D显示器安装在支架其他位置时的结构示意图。
其中,1-支架,11-底座,12-大横臂,13-小横臂,14-平衡臂,15-支撑杆,2-镜身,20-成像单元,21-大物镜组,211-正透镜组,212-负透镜组,2121-外侧面,2122-内侧面,22-变倍镜组,221-第二透镜,23-第一镜筒物镜,24-感光元件,25-观察光路,26-分光镜组,3-第一裸眼3D显示器,4-第二裸眼3D显示器,5-安装架,6-座体,61-连接杆,62-轮子,7-照明单元,71-光源组件,711-LED光源,72-聚光镜组,73-光阑,74-投射镜组,741-第一透镜,75-照明光路,8-观察单元,81-目镜,82-转折镜组,83-第二镜筒物镜,9-操作者,10-助手。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下。
请参阅图1至图13,图1为本申请实施例提供的双人手术显微镜的结构示意图;图2为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器的连接示意图;图3为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器放置在地面时的立体安装示意图;图4为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器放置在地面时的侧视安装示意图;图5为本申请实施例提供的双人手术显微镜的两个裸眼3D显示器悬吊在房顶时的安装示意图;图6为本申请实施例提供的双人手术显微镜的结构示意图;图7a和图7b为本申请实施例提供的双人手术显微镜在调节正透镜组和负透镜组间距离时两种状态下的光路原理示意图;图8为本申请实施例提供的双人手术显微镜在设有观察单元时的光路原理示意图;图9为本申请实施例提供的双人手术显微镜在设有观察单元时的结构示意图;图10a和图10b为本申请实施例提供的双人手术显微镜在设有双照明光路时的光路原理示意图;图11为本申请实施例提供的双人手术显微镜在投射镜组和变倍镜组联动时的光路原理示意图;图12为本申请实施例提供 的双人手术显微镜的裸眼3D显示器可视角度和距离示意图;图13a-图13c为本申请实施例提供的双人手术显微镜在裸眼3D显示器安装在支架其他位置时的结构示意图。
实施例
如图1所示,本实施例的一种双人手术显微镜,其包括支架1、镜身2、第一裸眼3D显示器3和第二裸眼3D显示器4。所述支架1包括底座11、竖直安装在所述底座11上的支撑杆15,可转动安装在所述支撑杆15上的大横臂12、可转动安装在所述大横臂12上的小横臂13及可转动安装在所述小横臂13上的平衡臂14,所述镜身2安装在所述平衡臂14上,如图1、图6或图13a-c所示。所述镜身2内设置有成像单元20,所述成像单元20包括大物镜组21、变倍镜组22、第一镜筒物镜23和感光元件24,所述大物镜组21、变倍镜组22、第一镜筒物镜23和感光元件24依次处于同一观察光路25中,如图6所示。
所述大物镜组21包括至少一个正透镜组211和至少一个负透镜组212,所述正透镜组211和负透镜组212同光轴设置,所述正透镜组211和负透镜组212之间距离可调节设置,所述正透镜组211和负透镜组212之间距离的调节范围不小于6mm。焦距可变的大物镜能够便捷改变焦面位置,即操作的工作距离,覆盖需要的手术深度。实现方式为改变正透镜组211和负透镜组212间距离,工作距离的调节范围与正透镜组211和负透镜组212间距离范围成正比,如图7a和7b所示。所述正透镜组211包括至少两种不同材质的光学透镜,所述负透镜组212包括至少两种不同材质的光学透镜,所述负透镜组212靠近待观察对象,所述负透镜组212包括外侧面2121和内侧面2122,所述外侧面2121和内侧面2122均为凹面,所述外侧面2121曲率半径的绝对值小于所述内侧面2122曲率半径的绝对值。
本申请优选采用双目观察光路25设计,每一个观察光路25内均设置一个变倍镜组22、第一镜筒物镜23和感光元件24,两个观察光路25共用一个大物镜组21。双光路变倍镜组22实现不同放大倍率的观察,可以对患处进行整体和局部观察。所述变倍镜组22优选为无焦的伽利略结构,可为分档变倍或连续变倍。所述变倍镜组22为连续变倍结构时,其包括至少两组第二透镜221,所述第二透镜221能够被驱动的沿各自光轴方向移动。所述变倍镜组22与焦距 可变大物镜的结合,使得本申请的手术显微镜可对不同深度的组织结构实现不同放大倍率的便捷观察。
所述第一裸眼3D显示器3和第二裸眼3D显示器4分别与所述感光元件24连接。所述第一裸眼3D显示器3和第二裸眼3D显示器4的尺寸在12-16英寸之间。如图12所示,裸眼3D显示器与观察者之间的可视距离在400~1200mm之间,裸眼3D显示器的可视角度范围不小于120度,优选观看角度不小于90度。所述第一裸眼3D显示器3和第二裸眼3D显示器4背向安装在一个安装架5上,即两个裸眼3D显示器的显示方向相反,如图1所示。在使用时,两个裸眼3D显示器位于两个观察者之间,比如操作者9和助手10。所述第一裸眼3D显示器3和第二裸眼3D显示器4分别能够被驱动的单独在所述安装架5上沿竖直方向移动,操作者9和助手10可以单独的对各自的裸眼3D显示器进行高度调节,以适应不同身高,保证最好的观察高度。同时,所述第一裸眼3D显示器3和第二裸眼3D显示器4还分别能够被驱动的在水平方向或竖直方向转动,即调节显示器的左右视角或俯仰视角,以达到最佳的观察视角。由于操作者9和助手10分别位于待观察对象的两侧,操作者9和助手10对待观察对象的观察视角不同,故观察到的待观察对象的影像方向也不同,且由于操作者9和助手10是位于手术显微镜的两侧,故两人所看到的待观察对象的影像之间方向应相差180度,因此,在设计时,本申请的所述第一裸眼3D显示器3显示的图像与第二裸眼3D显示器4显示的图像方向也相差180度。比如待观察对象为一个“F”图形,假设第一裸眼3D显示器3显示为“F”图像,则第二裸眼3D显示器4中显示的应为旋转180度后的“F”图像,如图2所示。由于一般手术显微镜采用的都是双观察光路25设计,故在镜身2内的感光装置会设置有两个感光元件24,一个观察光路25对应一个感光元件24,分别定义为左感光元件和右感光元件,同时为裸眼3D显示器进行视频信号传输。因此,为了使两个裸眼3D显示器内显示的图像方向相差180度,可以将其中一个裸眼3D显示器,比如第二裸眼3D显示器4的输入口反接,即第二裸眼3D显示器4的左输入口与右感光元件连接,右输入口与左感光元件连接,之后在将第二裸眼3D显示器4中的图案竖直反转180度,便可以实现在第二裸眼3D显示器4中呈现与第一裸眼3D显示器3方向相差180度的图像,如图2所示。当然,也可以通过其它方式实现,比如,直接将第二裸眼3D显示器4旋转 180度后安装,又或通过软件的方式来实现所述第二裸眼3D显示器4的图像旋转。
所述第一裸眼3D显示器3和第二裸眼3D显示器4可根据不同的场地条件和使用习惯,选择不同的固定方式,固定结构简单、可靠。比如通过所述安装架5,所述第一裸眼3D显示器3和第二裸眼3D显示器4可以安装在所述大横臂12的上表面,且位于支撑杆15的上方,如图13a所示;也可以悬吊在所述大横臂12的下表面,如图13c所示;也可以直接安装在所述支撑杆15上,如图13b所示。同时,两个裸眼3D显示器也可以不安装在辅助装置的支架1上,还可以通过座体6和连接杆61放置在地面上,如图4所示,或悬吊在房顶上,如图5所示。所述第一裸眼3D显示器3和第二裸眼3D显示器4通过所述安装架5安装在所述连接杆61的一端,所述连接杆61的另一端活动安装在所述座体6上,所述连接杆61可以被驱动的沿其轴线方向相对所述座体6移动或以其轴线为转轴转动,如图3-5所示,从而可以调节两个裸眼3D显示器的安装位置。需要知道的是,无论所述第一裸眼3D显示器3和第二裸眼3D显示器4安装在哪个位置,所述第一裸眼3D显示器3和第二裸眼3D显示器4的安装高度、转动角度和翻转角度都是可调节的,且都可在调节完之后自动保持状态。
裸眼3D显示器设置在400~1200mm范围内,与临床常用设备的观测距离接近,当观察者在观察显示器与其他设备之间进行视线切换时,人眼不需要反复调焦,省时省力。光亮度无损失,减轻视觉疲劳。同时,较近的观察距离符合人眼分辨细节时的趋近习惯。本申请采用裸眼3D显示器使得操作者9或助手10可通过观察裸眼3D显示器直接进行手术操作,装置整体结构简单,不必对图像进行复杂的数据处理,系统延迟小。另外,裸眼3D显示器的使用,使得操作者9或助手10的观察角度无需正对,在可以一定观察角度范围内清楚观察到待观察对象,不需要调整显示器朝向。
在一个进一步的实施例中,所述显微手术辅助装置还包括采集装置、处理装置和驱动装置,所述采集装置能够被配置的采集操作者9或助手10的人眼位置信息,所述处理装置被配置的能够根据采集的人眼位置信息控制所述驱动装置动作,调节所述第一裸眼3D显示器3或所述第二裸眼3D显示器4的显示角度,从而实现裸眼3D显示器自动跟踪操作者9或观察者的眼睛,并随之转动, 以便保证最佳的观察角度。
所述镜身2内还设有至少一个照明单元7,每一个所述照明单元7的照明光线能够通过所述大物镜组21对待观察对象进行照明,且进入所述大物镜组21的照明光线方向与所述大物镜组21的光轴方向平行,可降低反射损失,如图7a所示。且还可布置成对称双照明光路75以加强照明强度,压缩系统横向体积,便于镜身2平衡,如图10a和10b所示。所述照明单元7包括依次处于同一照明光路75的光源组件71、聚光镜组72、光阑73和投射镜组74。所述光源组件71包括至少一种LED光源711,所述光源组件71中至少有一个所述LED光源711能够被驱动的切换至照明光路75对待观察对象进行照明。比如所述光源组件71除了白光光源,还包括至少一种单色光源(用于荧光模式),可与白光光源切换进入照明光路75。所述投射镜组74包括至少一个第一透镜741,所述第一透镜741能够被驱动的沿其光轴方向移动。
在一个进一步的实施例中,本申请的双人手术显微镜还可以在所述投射镜组74和变倍镜组22之间设置一个传动装置,实现所述投射镜组74和变倍镜组22联动,如图11所示,图中未直接画出传动装置,通过一条折线示意性的表示所述投射镜组74和变倍镜组22联动关系。当低倍率观察时,物面成像的视场直径较大,此时照明光斑需要覆盖整个物面视场,但切换到高倍率时,物面视场直径迅速减小,此时照明光路75的投射镜组74做相应调节,使得照明光斑也能随之减小,降低对视场外组织可能造成的光损伤风险,同时也有利于提高视场内部的光照度,补偿高倍率观察时人眼主观亮度的降低。
在一个进一步的实施例中,必要时,本申请的双人手术显微镜还可以在所述镜身2上安装一个观察单元8,实现传统的目视观察,如图9所示。如图8所示,所述观察单元8包括目镜81、转折镜组82(或棱镜组)和第二镜筒物镜83。所述成像单元20还包括分光镜组26,在同一观察光路25中,光线依次通过所述大物镜组21和变倍镜组22到达所述分光镜组26,所述分光镜组26将光线分光成两部分,一部分光线依次通过所述第一镜筒物镜23到达所述感光元件24,另一部分光线依次通过第二镜筒物镜83、转折镜组82和目镜81。这样,在使用时,两个观察者既可以通过裸眼3D显示器观察待观察对象,又可以采用传统的目视观察方式来观察待观察对象,大大增强了显微手术辅助装置的可操 作性和适应性。
在一个进一步的实施例中,所述底座11的底端或所述座体6的底端还可以安装若干个轮子62,优选采用万向轮,方便操作者移动显微镜。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种双人手术显微镜,其特征在于,其包括支架(1)、镜身(2)、第一裸眼3D显示器(3)和第二裸眼3D显示器(4),所述镜身(2)安装在所述支架(1)上,所述镜身(2)内设置有感光元件(24),所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)分别与所述感光元件(24)连接,所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)的显示方向相反,且所述第一裸眼3D显示器(3)显示的图像与第二裸眼3D显示器(4)显示的图像方向相差180度。
  2. 根据权利要求1所述的双人手术显微镜,其特征在于,其还包括安装架(5),所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)分别活动安装在所述安装架(5)上。
  3. 根据权利要求2所述的双人手术显微镜,其特征在于,所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)分别能够被驱动的单独在所述安装架(5)上沿竖直方向移动。
  4. 根据权利要求2所述的双人手术显微镜,其特征在于,所述支架(1)包括底座(11)、竖直安装在所述底座(11)上的支撑杆(15)、可转动安装在所述支撑杆(15)上的大横臂(12)、可转动安装在所述大横臂(12)上的小横臂(13)和可转动安装在所述小横臂(13)上的平衡臂(14),所述镜身(2)安装在所述平衡臂(14)上。
  5. 根据权利要求4所述的双人手术显微镜,其特征在于,所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)通过所述安装架(5)安装在所述镜身(2)、大横臂(12)或支撑杆(15)上;或所述双人手术显微镜还包括座体(6)和安装在所述座体(6)上的连接杆(61),所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)通过所述安装架(5)安装在所述连接杆(61)的一端。
  6. 根据权利要求5所述的双人手术显微镜,其特征在于,所述连接杆(61)的另一端活动安装在所述座体(6)上,所述连接杆(61)能够被驱动的沿其轴线方向移动,和/或所述连接杆(61)能够被驱动的以其轴线为转轴转动。
  7. 根据权利要求6所述的双人手术显微镜,其特征在于,所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)能够通过所述座体(6)和连接杆(61)放置在地面上或悬吊在房顶上。
  8. 根据权利要求1所述的双人手术显微镜,其特征在于,所述第一裸眼3D显示器(3)和第二裸眼3D显示器(4)的尺寸在12-16英寸之间;
    所述显微手术辅助装置还包括采集装置、处理装置和驱动装置,所述采集装置能够被配置的采集操作者(9)或助手(10)的人眼位置信息,所述处理装置被配置的能够根据采集的人眼位置信息控制所述驱动装置动作,调节所述第一裸眼3D显示器(3)或第二裸眼3D显示器(4)的显示角度。
  9. 根据权利要求5所述的双人手术显微镜,其特征在于,其还包括若干个轮子(62),所述轮子(62)安装在所述底座(11)或座体(6)的底端。
  10. 根据权利要求9所述的双人手术显微镜,其特征在于,所述轮子(62)为万向轮。
PCT/CN2021/089575 2020-09-23 2021-04-25 一种双人手术显微镜 WO2022062384A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023518830A JP2023543219A (ja) 2020-09-23 2021-04-25 二人手術用顕微鏡
US18/246,335 US20230355346A1 (en) 2020-09-23 2021-04-25 Surgical microscope having assistant's device
EP21870773.5A EP4212125A4 (en) 2020-09-23 2021-04-25 OPERATIVE MICROSCOPE FOR TWO SURGEONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011009431.6 2020-09-23
CN202011009431.6A CN112190348A (zh) 2020-09-23 2020-09-23 一种双人手术显微镜

Publications (1)

Publication Number Publication Date
WO2022062384A1 true WO2022062384A1 (zh) 2022-03-31

Family

ID=74016061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089575 WO2022062384A1 (zh) 2020-09-23 2021-04-25 一种双人手术显微镜

Country Status (5)

Country Link
US (1) US20230355346A1 (zh)
EP (1) EP4212125A4 (zh)
JP (1) JP2023543219A (zh)
CN (1) CN112190348A (zh)
WO (1) WO2022062384A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190348A (zh) * 2020-09-23 2021-01-08 苏州速迈医疗设备有限公司 一种双人手术显微镜
CN113029521A (zh) * 2021-02-01 2021-06-25 佛山市碧盈医疗器材有限公司 一种手术显微镜的测试方法
CN114877225B (zh) * 2022-05-20 2023-12-05 中国医学科学院北京协和医院 医用支撑装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053202A1 (en) * 2001-09-17 2003-03-20 Iekado Sibata Yoshikatsu Seiki Surgical microscope system
US20030133187A1 (en) 2001-11-02 2003-07-17 Martin Schmidt Observation instrument for a stereoscopic operation microscope
CN102495463A (zh) * 2011-12-23 2012-06-13 苏州康捷医疗股份有限公司 一种可视三维立体成像方法及利用此方法的手术显微镜
CN202631839U (zh) * 2012-05-08 2012-12-26 吴立业 一种医疗用显微手术设备
CN203263352U (zh) * 2013-01-28 2013-11-06 吴立业 电子口腔手术镜
US20140247482A1 (en) * 2013-03-04 2014-09-04 Mitaka Kohki Co., Ltd. Surgical microscope system
CN205433937U (zh) * 2015-12-17 2016-08-10 广州医科大学附属口腔医院 一种牙科手术显微装置
CN109745124A (zh) * 2019-01-25 2019-05-14 佳木斯大学附属第一医院 一种神经外科手术显微镜装置
CN112190348A (zh) * 2020-09-23 2021-01-08 苏州速迈医疗设备有限公司 一种双人手术显微镜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209543B2 (ja) * 1990-07-13 2001-09-17 オリンパス光学工業株式会社 手術用顕微鏡
US5867210A (en) * 1996-02-09 1999-02-02 Rod; Samuel R. Stereoscopic on-screen surgical microscope systems
JP4245750B2 (ja) * 1999-10-15 2009-04-02 オリンパス株式会社 立体観察装置
JP4523356B2 (ja) * 2004-08-05 2010-08-11 オリンパス株式会社 立体画像観察装置
JP2019154883A (ja) * 2018-03-15 2019-09-19 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置、医療用観察装置、および画像処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053202A1 (en) * 2001-09-17 2003-03-20 Iekado Sibata Yoshikatsu Seiki Surgical microscope system
US20030133187A1 (en) 2001-11-02 2003-07-17 Martin Schmidt Observation instrument for a stereoscopic operation microscope
CN102495463A (zh) * 2011-12-23 2012-06-13 苏州康捷医疗股份有限公司 一种可视三维立体成像方法及利用此方法的手术显微镜
CN202631839U (zh) * 2012-05-08 2012-12-26 吴立业 一种医疗用显微手术设备
CN203263352U (zh) * 2013-01-28 2013-11-06 吴立业 电子口腔手术镜
US20140247482A1 (en) * 2013-03-04 2014-09-04 Mitaka Kohki Co., Ltd. Surgical microscope system
CN205433937U (zh) * 2015-12-17 2016-08-10 广州医科大学附属口腔医院 一种牙科手术显微装置
CN109745124A (zh) * 2019-01-25 2019-05-14 佳木斯大学附属第一医院 一种神经外科手术显微镜装置
CN112190348A (zh) * 2020-09-23 2021-01-08 苏州速迈医疗设备有限公司 一种双人手术显微镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212125A4

Also Published As

Publication number Publication date
CN112190348A (zh) 2021-01-08
EP4212125A4 (en) 2024-03-13
JP2023543219A (ja) 2023-10-13
EP4212125A1 (en) 2023-07-19
US20230355346A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022062384A1 (zh) 一种双人手术显微镜
US11147443B2 (en) Surgical visualization systems and displays
US10028651B2 (en) Surgical visualization systems and displays
EP2903551B1 (en) Digital system for surgical video capturing and display
AU771368B2 (en) Visual aid in the form of telescopic spectacles with an automatic focussing device
US20160220324A1 (en) Surgical visualizations systems and displays
CN107111122A (zh) 眼科手术中的放大及相关联设备、系统和方法
US8934169B2 (en) Dual objective 3-D stereomicroscope
JP2008093433A (ja) 眼科用手術顕微鏡システム
US20200030054A1 (en) Observation system for dental and medical treatment
WO2022062383A1 (zh) 一种显微手术辅助装置
CN207020415U (zh) 一种具有摄像功能的眼镜式手术放大镜
CN213963694U (zh) 一种双人手术显微镜
CN213851130U (zh) 一种显微手术辅助装置
CN212781485U (zh) 一种中路显微摄像与多向中路监视的眼科手术显微镜
US11504001B2 (en) Surgery 3D visualization apparatus
CN212483980U (zh) 一种多位体视中视多波长视频眼科手术显微镜
US20220313085A1 (en) Surgery 3D Visualization Apparatus
CN212781476U (zh) 一种应用于眼科手术显微镜的多波长多角度照明装置
CN111665618A (zh) 一种多位体视中视多波长视频眼科手术显微镜
WO2002054944A1 (en) Apparatus for measuring visual power of a blind person

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518830

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021870773

Country of ref document: EP

Effective date: 20230412

NENP Non-entry into the national phase

Ref country code: DE