WO2022062251A1 - 一种夹具稳定性测试方法、系统、装置和存储介质 - Google Patents

一种夹具稳定性测试方法、系统、装置和存储介质 Download PDF

Info

Publication number
WO2022062251A1
WO2022062251A1 PCT/CN2020/140963 CN2020140963W WO2022062251A1 WO 2022062251 A1 WO2022062251 A1 WO 2022062251A1 CN 2020140963 W CN2020140963 W CN 2020140963W WO 2022062251 A1 WO2022062251 A1 WO 2022062251A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard deviation
action
action duration
duration
fixture
Prior art date
Application number
PCT/CN2020/140963
Other languages
English (en)
French (fr)
Inventor
陈旻琪
任孝江
贺毅
姚维兵
左志军
Original Assignee
广州明珞装备股份有限公司
明珞汽车装备(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州明珞装备股份有限公司, 明珞汽车装备(上海)有限公司 filed Critical 广州明珞装备股份有限公司
Publication of WO2022062251A1 publication Critical patent/WO2022062251A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of mechanical manufacturing and production, in particular to a method, system, device and storage medium for testing the stability of a fixture.
  • Programmable Logic Controller As a digital operation operating electronic system specially designed for application in industrial environment, usually adopts a programmable memory, which stores and executes logic operations and sequence control in its internal storage. , timing, counting and arithmetic operations and other operating procedures, through digital or analog input and output to control various types of mechanical equipment or production processes.
  • Fixture refers to the device used to fix the processing object in the process of machinery manufacturing, so that it occupies the correct position to accept construction or inspection.
  • any process in the process the device used to quickly, easily and safely install the workpiece can be called a fixture.
  • fixtures are an indispensable and important process equipment used to ensure the quality of machining, improve production efficiency, reduce labor intensity, and reduce the excessive technical requirements of workers to realize the automation of the production process.
  • the fixtures need to undergo strict stability tests before leaving the factory.
  • the method of testing the stability of the fixture in the prior art solution is to drive the fixture cylinder to run continuously for a period of time through PLC, and then observe the change of the fixture; this method can only judge the change of the fixture by the naked eye, and there is no data recording fixture during the fixture stability test process.
  • the fixtures tested by this method often require a lot of debugging time after arriving at the site, the overall work efficiency is low, and the accuracy of the stability test results is low.
  • the purpose of the present invention is to provide a method, system, device and storage medium for the stability test of the fixture.
  • the first technical scheme adopted in the present invention is:
  • a fixture stability testing method comprising the following steps:
  • the stability of the fixture is determined by combining the motion data, the preset ratio, the positive standard deviation and the negative standard deviation.
  • the action data includes the action duration of the clamp cylinder and the number of times corresponding to the action duration
  • the step of collecting the action data of the clamp cylinder, and transmitting the action data to the server specifically includes the following steps:
  • the filtered action duration and the number of times corresponding to the action duration are transmitted to the server.
  • the step of outputting the standard deviation of the action duration and the average action duration of the fixture in combination with the action data, the standard deviation algorithm, and the mean algorithm specifically includes the following steps:
  • the action duration standard deviation is output.
  • a preset positive standard deviation function is used to process the average value of the action duration and the standard deviation of the action duration to determine a positive standard deviation
  • a preset negative standard deviation function is used to process the action.
  • the step of determining the negative standard deviation from the duration mean and the action duration standard deviation specifically includes the following steps:
  • the average value of the action duration and the standard deviation of the action duration are processed in combination with a preset negative standard deviation function and a preset multiple value, and a negative standard deviation is output.
  • the step of judging the stability of the fixture in combination with the motion data, the preset ratio, the positive standard deviation and the negative standard deviation specifically includes the following steps:
  • the second technical scheme adopted by the present invention is:
  • a fixture stability testing system comprising:
  • the acquisition module is used to collect the action data of the clamp cylinder and transmit the action data to the server;
  • an output module configured to output the standard deviation of the action duration and the average action duration of the fixture in combination with the action data, the standard deviation algorithm and the mean value algorithm;
  • a determination module configured to use a preset positive standard deviation function to process the action duration mean value and the action duration standard deviation to determine a positive standard deviation after obtaining a preset multiple value, and use a preset negative standard deviation function to process the action duration The mean and the standard deviation of the action duration determine a negative standard deviation;
  • a determination module configured to determine the stability of the fixture in combination with the motion data, the preset ratio, the positive standard deviation and the negative standard deviation.
  • the collection module includes:
  • the acquisition unit is used to collect the action duration of the clamp cylinder based on the PLC data acquisition technology, and record the number of times corresponding to the action duration;
  • a filter unit used for filtering the action duration and the number of times corresponding to the action duration according to the ideal design value of the clamp cylinder;
  • the transmission unit is configured to transmit the filtered action duration and the number of times corresponding to the action duration to the server.
  • the output module includes:
  • a first obtaining unit configured to obtain the filtered action duration and the number of times of the action duration
  • the first output unit is configured to output the average value of the action duration after processing the filtered action duration and the number of corresponding action durations by using the mean value algorithm;
  • the second output unit is configured to output the standard deviation of the action duration after processing the filtered action duration and the number of corresponding action durations in combination with the action duration mean and standard deviation algorithm.
  • the determining module includes:
  • a second obtaining unit configured to obtain a preset multiple value
  • a third output unit configured to process the average value of the action duration and the standard deviation of the action duration in combination with the preset positive standard deviation function and the preset multiple value, and output the positive standard deviation;
  • the fourth output unit is configured to process the average value of the action duration and the standard deviation of the action duration in combination with a preset negative standard deviation function and a preset multiple value, and output the negative standard deviation.
  • the determination module includes:
  • a screening unit configured to screen the action data based on the positive standard deviation and the negative standard deviation, and output the number of valid action data within the range of the positive standard deviation and the negative standard deviation;
  • a determination unit is used to compare the ratio of the number of valid action data to the number of times of the action duration with a preset ratio, and if the ratio is greater than or equal to the preset ratio, the fixture is determined to be stable, and if the ratio is not greater than the preset ratio The preset ratio determines that the fixture is unstable.
  • the third technical scheme adopted by the present invention is:
  • An apparatus the memory for storing at least one program, and the processor for loading the at least one program to perform the above method.
  • the fourth technical scheme adopted by the present invention is:
  • the beneficial effects of the present invention are: analyzing the collected clamp cylinder action data through the server, processing the action data based on the standard deviation algorithm and the mean algorithm, and then outputting the standard deviation of the action duration and the average action duration of the clamp; and then using a preset
  • the positive standard deviation function and the preset negative standard function process the average value of the action duration and the standard deviation of the action duration to determine the positive standard deviation and the negative standard deviation, and finally realize the determination of the stability of the fixture based on the preset ratio, the positive/negative standard deviation value and the action data , so as to avoid the time-consuming problem of troubleshooting and on-site debugging time, while improving the accuracy and work efficiency of stability test results.
  • Fig. 1 is a flow chart of the steps of a fixture stability testing method provided by an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a fixture stability testing system provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a fixture stability test flow diagram provided by a specific embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a result interface of a fixture stability test provided by a specific embodiment of the present invention.
  • a fixture stability testing method, system, device and storage medium provided by an embodiment of the present invention include:
  • the action data includes each time the clamp cylinder is opened, the duration of the relationship, and the corresponding number of times;
  • the preset multiple value is a multiple value set according to the standard value of the clamp cylinder and conforming to a normal distribution, and its value can be set to 1 /2/3, etc., the purpose is to eliminate the interference of small probability events that do not conform to the normal distribution;
  • the preset ratio refers to the threshold set according to the fixture stability test application scenario and actual needs.
  • the preset ratio can be 80%, 85% or 95%, the size of the specific preset ratio is set according to the application scenario and actual needs of the fixture;
  • the preset positive standard deviation function and the preset negative standard deviation function are respectively the functions set for the technical solution of the present application.
  • the purpose is to find the positive standard deviation (Stable Action Data Upper Limit) and negative standard deviation (Stable Action Data Lower Limit).
  • the collected action data of the clamp cylinder is transmitted to the server, the standard deviation algorithm and the mean value algorithm are used to process the collected action data respectively, and the standard deviation of the action duration and the average action duration of the clamp are output, and then combined with the pre-set based on the standard value of the cylinder.
  • Set the multiple value use the preset positive standard deviation function and the preset negative standard deviation function to process the standard deviation of the action duration and the average value of the action to determine the positive standard deviation and negative standard deviation, and finally fall within the range of positive standard deviation and negative standard deviation.
  • the ratio of the obtained action data to the collected action data and the preset ratio determine the stability of the fixture.
  • the present invention can improve the accuracy of the stability test results, avoid time-consuming troubleshooting and save on-site debugging time, and realize changes in the data records of the fixture stability test process. , to improve the overall stability testing efficiency.
  • the action data includes the action duration of the clamp cylinder and the number of times corresponding to the action duration
  • step S1 specifically includes the following steps:
  • PLC data acquisition technology is used to collect the action duration of the clamp cylinder, and the collected data is stable and reliable.
  • the ideal design value of the clamp cylinder is the standard value for the cylinder to work continuously and stably in a certain normal action time. Filtering the action duration and the number of corresponding action durations by the ideal design value of the clamp cylinder is beneficial to the accuracy of the stability test.
  • step of step S2 specifically includes the following steps:
  • the standard deviation is selected as the basic characteristic value of the data sample, and the value of the standard deviation is in the same order of magnitude as the data itself, which is beneficial to numerical statistics.
  • step of step S3 specifically includes the following steps:
  • step of step S4 specifically includes the following steps:
  • a structural block diagram of a fixture stability testing system provided by an embodiment of the present invention includes:
  • the acquisition module is used to collect the action data of the clamp cylinder and transmit the action data to the server;
  • the output module is used to combine the action data, the standard deviation algorithm and the mean value algorithm to output the standard deviation of the action duration and the average action duration of the fixture;
  • the determining module is used to determine the positive standard deviation and the negative standard deviation by using the preset positive standard deviation function and the preset negative standard deviation function to process the average value of the action duration and the standard deviation of the action duration after obtaining the preset multiple value;
  • the judgment module is used to judge the stability of the fixture in combination with the action data, the preset ratio, the positive standard deviation and the negative standard deviation.
  • the acquisition module includes:
  • the acquisition unit is used to collect the action duration of the clamp cylinder based on the PLC data acquisition technology, and record the number of times corresponding to the action duration;
  • the filter unit is used to filter the action duration and the number of corresponding action durations according to the ideal design value of the clamp cylinder;
  • the transmission unit is configured to transmit the filtered action duration and the number of times corresponding to the action duration to the server.
  • the output module includes:
  • a first obtaining unit used to obtain the filtered action duration and the number of action durations
  • the first output unit is configured to output the average value of the action duration after processing the filtered action duration and the number of corresponding action durations by using the mean value algorithm;
  • the second output unit is configured to output the standard deviation of the action duration after processing the filtered action duration and the number of corresponding action durations in combination with the action duration mean and standard deviation algorithm.
  • the determining module includes:
  • a second obtaining unit configured to obtain a preset multiple value
  • the third output unit is used to process the average value of the action duration and the standard deviation of the action duration in combination with the preset positive standard deviation function and the preset multiple value, and output the positive standard deviation;
  • the fourth output unit is configured to process the average value of the action duration and the standard deviation of the action duration in combination with the preset negative standard deviation function and the preset multiple value, and output the negative standard deviation.
  • the determination module includes:
  • the screening unit is used to filter the action data based on the positive standard deviation and the negative standard deviation, and output the valid action data within the range of the positive standard deviation and the negative standard deviation;
  • the determination unit is configured to compare the ratio of the effective action data to the action data with a preset ratio, and if the ratio is greater than or equal to the preset ratio, the fixture is determined to be stable, and if the ratio is smaller than the preset ratio, the fixture is determined to be unstable.
  • An apparatus with a memory for storing at least one program and a processor for loading the at least one program to perform a method embodiment method.
  • a device in this embodiment can execute the fixture stability testing method provided by the method embodiment of the present invention, and can execute any combination of implementation steps of the method embodiment, and has corresponding functions and beneficial effects of the method.
  • the storage medium of this embodiment can execute the fixture stability test method provided by the method embodiment 1 of the present invention, can execute any combination of implementation steps of the method embodiments, and has corresponding functions and beneficial effects of the method.
  • FIG. 3 is a schematic flow chart of a fixture stability test method, which specifically includes the following steps:
  • the cylinder numbered MZ14aV is used to test the fixture, the time interval is March 10, 2020, and the standard value from 0 to twice is selected, that is, the action data that exceeds twice the standard value is not included in the calculation.
  • the standard value is determined according to the design ideal value of the cylinder MZ14aV.
  • the number of runs is set to be greater than 1000 times
  • the fixture is continuously opened and closed for less than 1000 times, it will be reset. If the fixture has been opened and closed continuously for 1000 times, the subsequent data acquisition steps will be performed.
  • the collector continuously scans the PLC at a rate of 30ms, collects the time stamp of the opening of the clamp cylinder, in place, and calculates the duration of the action.
  • the collector directly performs high-speed acquisition on the on-site controller PLC, performs simple calculation, and sends it to the database after buffering.
  • This specific embodiment has no special technical requirements on the server database, and any database can be used for data reception, storage and subsequent data distribution and calculation, and here, a Mysql database can be selected.
  • the data analysis is mainly to calculate the positive and negative of the cylinder action to mark you.
  • the calculation formula is as follows:
  • Positive standard deviation average value of cylinder action + ⁇ multiple ⁇ standard deviation
  • Negative standard deviation average value of cylinder action - ⁇ multiple x standard deviation
  • the fixture is stable; if it is not more than 80%, the stability of the fixture is poor.
  • FIG. 4 and Table 1 are schematic diagrams and data showing the results of the stability test of the cylinder numbered MZ14aV in this specific embodiment, respectively.
  • the abscissa is the cylinder action time, and the ordinate is the number of cylinder actions; there is a numbered MZ14aV cylinder, by selecting the time interval March 10, 2020; the value is 0 to Twice the standard value, that is, the data that exceeds the double standard value is not included in the calculation.
  • the standard value is set according to the design ideal value of the cylinder; the ⁇ multiple is 3 times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Debugging And Monitoring (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种夹具稳定性测试方法、系统、装置和存储介质,其中方法包括采集夹具气缸的动作数据,及将动作数据传输至服务器(S1);结合动作数据、标准差算法、均值算法输出夹具的动作时长标准差与动作时长平均值(S2);获取预设倍数值后,分别采用预置正标准差函数和预置负标准差函数处理动作时长均值和动作时长标准差确定正标准差与负标准差(S3);结合动作数据、预设比值、正标准差和负标准差判定夹具的稳定性(S4)。通过采用标准差作为基础特征对采集的夹具动作数据进行分析,能够提高稳定性测试结果的准确度,避免排查问题耗时的难题与节约现场调试时间,实现对夹具稳定性测试过程数据记录的变化,提高整体稳定性测试工作效率。

Description

一种夹具稳定性测试方法、系统、装置和存储介质 技术领域
本发明涉及机械制造生产技术领域,尤其涉及一种夹具稳定性测试方法、系统、装置和存储介质。
背景技术
可编程逻辑控制器(Programmable Logic Controller:PLC)作为一种专门在工业环境下应用而设计的数字运算操作电子系统,通常是采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作程序,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。
夹具是指机械制造过程中用来固定加工对象,使之占有正确位置,以接受施工或检测的装置。从广义上说,在工艺过程中的任何工序,用来迅速、方便、安全地安装工件的装置均可称之为夹具。
在机械制造生产过程中,夹具是用来保证机械加工质量、提高生产效率、减轻劳动强度、降低对工人技术过高要求实现生产过程自动化不可或缺的重要工艺装备。通常夹具在出厂前均需要经过严格的稳定性测试。现有技术方案中测试夹具稳定性的方法是通过PLC驱动夹具气缸连续运行一段时间,再观察夹具变化情况;此方法只能通过肉眼判断夹具变化情况,夹具稳定性测试过程中并无数据记录夹具发生的变化,而且排查问题耗时,这种方法测试的夹具,到现场后往往还需要大量的调试时间,整体工作效率低,而且稳定性测试结果准确度低。
发明内容
为了解决上述技术问题,本发明的目的是提供一种用于夹具稳定性测试的方法、系统、装置和存储介质。
本发明所采用的第一技术方案是:
一种夹具稳定性测试方法,包括以下步骤:
采集夹具气缸的动作数据,及将所述动作数据传输至服务器;
结合所述动作数据、标准差算法、均值算法输出所述夹具的动作时长标准差与动作时长平均值;
获取预设倍数值后,采用预置正标准差函数处理所述动作时长均值和所述动作时长标准差确定正标准差,及采用预置负标准差函数处理所述动作时长均值和所述动作时长标准差确 定负标准差;
结合所述动作数据、预设比值、正标准差和负标准差判定所述夹具的稳定性。
可选地,所述动作数据包括夹具气缸的动作时长与对应动作时长的次数,所述采集夹具气缸的动作数据,及将所述动作数据传输至服务器这一步骤,具体包括以下步骤:
基于PLC数据采集技术采集夹具气缸的动作时长,并记录对应动作时长的次数;
根据所述夹具气缸的设计理想值,对所述动作时长与对应动作时长的次数过滤;
将过滤后的动作时长与对应动作时长的次数传输至服务器。
可选地,所述结合所述动作数据、标准差算法、均值算法输出所述夹具的动作时长标准差与动作时长平均值这一步骤,具体包括以下步骤:
获取过滤后的动作时长与所述动作时长的次数;
采用均值算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长均值;
结合所述动作时长均值和标准差算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长标准差。
可选地,所述获取预设倍数值后,采用预置正标准差函数处理所述动作时长均值和所述动作时长标准差确定正标准差,及采用预置负标准差函数处理所述动作时长均值和所述动作时长标准差确定负标准差这一步骤,具体包括以下步骤:
获取预设倍数值;
结合预置正标准差函数与预设倍数值处理所述动作时长均值和所述动作时长标准差,输出正标准差;
结合预置负标准差函数与预设倍数值处理所述动作时长均值和所述动作时长标准差,输出负标准差。
可选地,所述结合所述动作数据、预设比值、正标准差和负标准差判定所述夹具的稳定性这一步骤,具体包括以下步骤:
基于所述正标准差与负标准差对所述动作数据进行筛选,输出位于正标准差与负标准差范围内的有效动作数据次数;
将有效动作数据次数与所述动作时长次数的比值与预设比值进行比较,若所述比值大于等于所述预设比值则判定所述夹具稳定,若所述比值不大于所述预设比值则判定所述夹具不稳定。
本发明所采用的第二技术方案是:
一种夹具稳定性测试系统,包括:
采集模块,用于采集夹具气缸的动作数据,及将所述动作数据传输至服务器;
输出模块,用于结合所述动作数据、标准差算法、均值算法输出所述夹具的动作时长标准差与动作时长平均值;
确定模块,用于获取预设倍数值后,采用预置正标准差函数处理所述动作时长均值和所述动作时长标准差确定正标准差,及采用预置负标准差函数处理所述动作时长均值和所述动作时长标准差确定负标准差;
判定模块,用于结合所述动作数据、预设比值、正标准差和负标准差判定所述夹具的稳定性。
可选地,所述采集模块包括:
采集单元,用于基于PLC数据采集技术采集夹具气缸的动作时长,并记录对应动作时长的次数;
过滤单元,用于根据所述夹具气缸的设计理想值,对所述动作时长与对应动作时长的次数过滤;
传输单元,用于将过滤后的动作时长与对应动作时长的次数传输至服务器。
可选地,所述输出模块包括:
第一获取单元,用于获取过滤后的动作时长与所述动作时长的次数;
第一输出单元,用于采用均值算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长均值;
第二输出单元,用于结合所述动作时长均值和标准差算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长标准差。
可选地,所述确定模块包括:
第二获取单元,用于获取预设倍数值;
第三输出单元,用于结合预置正标准差函数与预设倍数值处理所述动作时长均值和所述动作时长标准差,输出正标准差;
第四输出单元,用于结合预置负标准差函数与预设倍数值处理所述动作时长均值和所述动作时长标准差,输出负标准差。
可选地,所述判定模块包括:
筛选单元,用于基于所述正标准差与负标准差对所述动作数据进行筛选,输出位于正标准差与负标准差范围内的有效动作数据次数;
判定单元,用于将有效动作数据次数与所述动作时长次数的比值与预设比值进行比较, 若所述比值大于等于所述预设比值则判定所述夹具稳定,若所述比值不大于所述预设比值则判定所述夹具不稳定。
本发明所采用的第三技术方案是:
一种装置,所述存储器用于存储至少一个程序,所述处理器用于加载所述至少一个程序以执行上所述方法。
本发明所采用的第四技术方案是:
一种存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序在由处理器执行时用于执行如上所述方法。
本发明的有益效果是:通过服务器对采集的夹具气缸动作数据分析,基于标准差算法、均值算法处理所述动作数据后输出所述夹具的动作时长标准差与动作时长平均值;再采用预置正标准差函数和预置负标准函数处理动作时长均值与动作时长标准差确定正标准差与负标准差,最后基于预设比值、正/负标准差值和动作数据实现对夹具稳定性的判定,从而避免排查问题耗时的问题与现场调试时间,同时提高稳定性测试结果的准确度与工作效率。
附图说明
图1是本发明实施例提供的夹具稳定性测试方法步骤流程图;
图2是本发明实施例提供的夹具稳定性测试系统结构框图;
图3是本发明具体实施例提供的夹具稳定性测试流程示意图;
图4是本发明具体实施例提供的夹具稳定性测试结果界面展示示意图。
具体实施方式
如图1所示,本发明实施例提供的一种夹具稳定性测试方法、系统、装置和存储介质,包括:
S1、采集夹具气缸的动作数据,及将动作数据传输至服务器;
S2、结合动作数据、标准差算法、均值算法输出夹具的动作时长标准差与动作时长平均值;
S3、获取预设倍数值后,采用预置正标准差函数处理动作时长均值和动作时长标准差确定正标准差,及采用预置负标准差函数处理动作时长均值和动作时长标准差确定负标准差;
S4、结合动作数据、预设比值、正标准差和负标准差判定夹具的稳定性。
本实施例中,动作数据包括夹具气缸每次打开、关系的时长,以及对应的次数;预设倍数值是根据夹具气缸标准值设置的符合正态分布的倍数值,其值可设置为如1/2/3等,目的是排除不符合正态分布的小概率事件的干扰;预设比值指根据夹具稳定性测试应用场景和实际 需求设置的阈值如预设比值可以为80%、85%或者95%,具体预设比值的大小根据夹具的应用场景和实际需求设置;预置正标准差函数和预置负标准差函数分别是针对本申请技术方案而设置的函数目的是求的正标准差(稳定动作数据上限)和负标准差(稳定动作数据下限)。具体地,将采集的夹具气缸的动作数据传送至服务器,分别采用标准差算法与均值算法处理采集的动作数据输出夹具的动作时长标准差与动作时长平均值,然后结合基于气缸标准值设置的预设倍数值、分别采用预置正标准差函数和预置负标准差函数处理动作时长标准差与动作平均值确定正标准差与负标准差,最后根据落入正标准差与负标准差范围内的动作数据与采集的动作数据的比值和预设比值的大小对夹具的稳定性做出判定。本发明通过采用标准差作为基础特征对采集的夹具动作数据进行分析,能够提高稳定性测试结果的准确度,避免排查问题耗时与节约现场调试时间,实现对夹具稳定性测试过程数据记录的变化,提高整体稳定性测试工作效率。
可选地,动作数据包括夹具气缸的动作时长与对应动作时长的次数,步骤S1具体包括以下步骤:
S11、基于PLC数据采集技术采集夹具气缸的动作时长,并记录对应动作时长的次数;
S12、根据夹具气缸的设计理想值,对动作时长与对应动作时长的次数过滤;
S13、将过滤后的动作时长与对应动作时长的次数传输至服务器。
本实施例中,采用PLC数据采集技术对夹具气缸的动作时长进行采集,其采集的数据稳定可靠,夹具气缸的设计理想值是气缸连续稳定工作在某一正常动作时长的标准值。通过夹具气缸的设计理想值对动作时长与对应动作时长的次数过滤有利于稳定性测试的准确度。
可选地,步骤S2这一步骤具体包括以下步骤:
S21、获取过滤后的动作时长与动作时长的次数;
S22、采用均值算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长均值;
S23、结合动作时长均值和标准差算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长标准差。
本实施例中,基于本方案属于最典型的正态分布模型,因此选择标准差作为数据样本的基础特征值,而且标准差的数值与其数据本身在一个数量级,有利于数值统计。
可选地,步骤S3这一步骤具体包括以下步骤:
S31、获取预设倍数值;
S32、结合预置正标准差函数与预设倍数值处理动作时长均值和动作时长标准差,输出正标准差;
S33、结合预置负标准差函数与预设倍数值处理动作时长均值和动作时长标准差,输出负标准差。
具体地,预置正标准差函数可以表示为:正标准差=气缸动作时长平均值+σ倍数×动作时长标准差;预置负标准差函数可以表示为:负标准差=气缸动作时长平均值-σ倍数×动作时长标准差;其中σ倍数即为预设倍数值,其值可以是1/2/3,具体可以根据稳定性测试需要和应用场景进行设置。
可选地,步骤S4这一步骤具体包括以下步骤:
S41、基于正标准差与负标准差对动作数据进行筛选,输出位于正标准差与负标准差范围内的有效动作数据;
S42、将有效动作数据与动作数据的比值与预设比值进行比较,若比值大于等于预设比值则判定夹具稳定,若比值不大于预设比值则判定夹具不稳定。
如图2所示,本发明实施例提供的一种夹具稳定性测试系统结构框图,包括:
采集模块,用于采集夹具气缸的动作数据,及将动作数据传输至服务器;
输出模块,用于结合动作数据、标准差算法、均值算法输出夹具的动作时长标准差与动作时长平均值;
确定模块,用于获取预设倍数值后,分别采用预置正标准差函数和预置负标准差函数处理动作时长均值和动作时长标准差确定正标准差与负标准差;
判定模块,用于结合动作数据、预设比值、正标准差和负标准差判定夹具的稳定性。
可选地,采集模块包括:
采集单元,用于基于PLC数据采集技术采集夹具气缸的动作时长,并记录对应动作时长的次数;
过滤单元,用于根据夹具气缸的设计理想值,对动作时长与对应动作时长的次数过滤;
传输单元,用于将过滤后的动作时长与对应动作时长的次数传输至服务器。
可选地,输出模块包括:
第一获取单元,用于获取过滤后的动作时长与动作时长的次数;
第一输出单元,用于采用均值算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长均值;
第二输出单元,用于结合动作时长均值和标准差算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长标准差。
可选地,确定模块包括:
第二获取单元,用于获取预设倍数值;
第三输出单元,用于结合预置正标准差函数与预设倍数值处理动作时长均值和动作时长标准差,输出正标准差;
第四输出单元,用于结合预置负标准差函数与预设倍数值处理动作时长均值和动作时长标准差,输出负标准差。
可选地,判定模块包括:
筛选单元,用于基于正标准差与负标准差对动作数据进行筛选,输出位于正标准差与负标准差范围内的有效动作数据;
判定单元,用于将有效动作数据与动作数据的比值与预设比值进行比较,若比值大于等于预设比值则判定夹具稳定,若比值小于预设比值则判定夹具不稳定。
一种装置,存储器用于存储至少一个程序,处理器用于加载至少一个程序以执行方法实施例方法。
本实施例的一种装置,可执行本发明方法实施例所提供的一种夹具稳定性测试方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
一种存储介质,其中存储有处理器可执行的程序,处理器可执行的程序在由处理器执行时用于执行方法实施例方法。
本实施例的一种存储介质,可执行本发明方法实施例一所提供的一种夹具稳定性测试方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
具体实施例
如图3所示是一种夹具稳定性测试方法流程示意图,具体包括下列步骤:
1.开始进行稳定性测试
本具体实施例选用编号为MZ14aV的气缸对该夹具进行测试,选择时间区间为2020年3月10日,选择0至两倍标准值,即超过两倍标准值部分的动作数据不列入计算范畴,标准值根据气缸MZ14aV的设计理想值而定。
2.夹具硬件连接
3.PLC IO信号配置
若出现信号报错则重新进行PLC IO信号配置或夹具硬件连接;若无信号报错则进行后续测试步骤。
4.运行次数设定大于1000次
若夹具连续开合运行少于1000次则重置,若夹具连续开合1000次则进行后续数据采集 步骤。
5.数据采集
选择现场边缘端的硬件工控机采集器,采集器以30ms的速率连续扫描PLC,采集夹具气缸打开、到位时间戳,并计算动作时长。采集器直接对现场控制器PLC进行高速采集,简单计算,缓存后上发到数据库。
6.发往服务器数据库
本具体实施例对服务器数据库无特殊技术要求,任何数据库均可用于数据接收,存储和后续的数据分发计算,在此,可选为Mysql数据库。
7.根据夹具气缸每次打开、关闭时长计算标准差
数据分析主要是计算气缸动作的正负标注出你哈,通过选择某时段气缸的动作时长数据,计算气缸动作时长在正负标准差内所占的比例,计算公式如下:
正标准差=气缸动作平均值+σ倍数×标准差
负标准差=气缸动作平均值-σ倍数×标准差
8.将落入正标准差与负标准差内的样本数量与采集的所有样本数量的比值与预设比值80%进行比较来判定夹具的稳定性。
若大于80%,则夹具稳定;若不大于80%,则夹具稳定性差。
如图4和表1分别是本具体实施例对编号为MZ14aV的气缸稳定性测试的结果展示示意图和数据。
具体地,对于表1中的数据,如图4所示,横坐标为气缸动作时长,纵坐标为气缸动作次数;有编号MZ14aV气缸,通过选择时间区间2020年3月10日;取值0至两倍标准值,即超出两倍标准值部分的数据不列入计算范畴,标准值根据气缸的设计理想值设定;σ倍数选择3倍。气缸动作数据如图2所示,气缸动作平均值=(0.3×2+0.31×9+…+0.51×3)÷(2+9+…+3)=0.41s;根据标准差计算公式可得出,气缸动作标准差为0.3,则气缸动作的正标准差=0.41+3×0.3=0.5;气缸动作的负标准差=0.41-3×0.3=0.32;气缸动作持续时长在正负标准差范围内的次数共计923次,气缸动作时长在正负标准差内所占比例=923÷937=98.51%;则可判定此夹具稳定性测试合格。
Figure PCTCN2020140963-appb-000001
表1
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种夹具稳定性测试方法,其特征在于,包括以下步骤:
    采集夹具气缸的动作数据,及将所述动作数据传输至服务器;
    结合所述动作数据、标准差算法、均值算法输出所述夹具的动作时长标准差与动作时长平均值;
    获取预设倍数值后,采用预置正标准差函数处理所述动作时长均值和所述动作时长标准差确定正标准差,及采用预置负标准差函数处理所述动作时长均值和所述动作时长标准差确定负标准差;
    结合所述动作数据、预设比值、正标准差和负标准差判定所述夹具的稳定性。
  2. 根据权利要求1所述的一种夹具稳定性测试方法,其特征在于,所述动作数据包括夹具气缸的动作时长与对应动作时长的次数,所述采集夹具气缸的动作数据,及将所述动作数据传输至服务器这一步骤,具体包括以下步骤:
    基于PLC数据采集技术采集夹具气缸的动作时长,并记录对应动作时长的次数;
    根据所述夹具气缸的设计理想值,对所述动作时长与对应动作时长的次数过滤;
    将过滤后的动作时长与对应动作时长的次数传输至服务器。
  3. 根据权利要求1所述的一种夹具稳定性测试方法,其特征在于,所述结合所述动作数据、标准差算法、均值算法输出所述夹具的动作时长标准差与动作时长平均值这一步骤,具体包括以下步骤:
    获取过滤后的动作时长与所述动作时长的次数;
    采用均值算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长均值;
    结合所述动作时长均值和标准差算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长标准差。
  4. 根据权利要求1所述的一种夹具稳定性测试方法,其特征在于,所述获取预设倍数值后,采用预置正标准差函数处理所述动作时长均值和所述动作时长标准差确定正标准差,及采用预置负标准差函数处理所述动作时长均值和所述动作时长标准差确定负标准差这一步骤,具体包括以下步骤:
    获取预设倍数值;
    结合预置正标准差函数与预设倍数值处理所述动作时长均值和所述动作时长标准差,输出正标准差;
    结合预置负标准差函数与预设倍数值处理所述动作时长均值和所述动作时长标准差,输出负标准差。
  5. 根据权利要求1所述的一种夹具稳定性测试方法,其特征在于,所述结合所述动作数据、预设比值、正标准差和负标准差判定所述夹具的稳定性这一步骤,具体包括以下步骤:
    基于所述正标准差与负标准差对所述动作数据进行筛选,输出位于正标准差与负标准差范围内的有效动作数据次数;
    将有效动作数据次数与所述动作时长次数的比值与预设比值进行比较,若所述比值大于等于所述预设比值则判定所述夹具稳定,若所述比值不大于所述预设比值则判定所述夹具不稳定。
  6. 一种夹具稳定性测试系统,其特征在于,包括:
    采集模块,用于采集夹具气缸的动作数据,及将所述动作数据传输至服务器;
    输出模块,用于结合所述动作数据、标准差算法、均值算法输出所述夹具的动作时长标准差与动作时长平均值;
    确定模块,用于获取预设倍数值后,采用预置正标准差函数处理所述动作时长均值和所述动作时长标准差确定正标准差,及采用预置负标准差函数处理所述动作时长均值和所述动作时长标准差确定负标准差;
    判定模块,用于结合所述动作数据、预设比值、正标准差和负标准差判定所述夹具的稳定性。
  7. 根据权利要求6所述的一种夹具稳定性测试系统,其特征在于,所述采集模块包括:
    采集单元,用于基于PLC数据采集技术采集夹具气缸的动作时长,并记录对应动作时长的次数;
    过滤单元,用于根据所述夹具气缸的设计理想值,对所述动作时长与对应动作时长的次数过滤;
    传输单元,用于将过滤后的动作时长与对应动作时长的次数传输至服务器。
  8. 根据权利要求6所述的一种夹具稳定性测试系统,其特征在于,所述输出模块包括:
    第一获取单元,用于获取过滤后的动作时长与所述动作时长的次数;
    第一输出单元,用于采用均值算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长均值;
    第二输出单元,用于结合所述动作时长均值和标准差算法处理过滤后的动作时长与对应动作时长的次数后,输出动作时长标准差。
  9. 一种装置,其特征在于,包括存储器和处理器,所述存储器用于存储至少一个程序,所述处理器用于加载所述至少一个程序以执行权利要求1-5任一项所述方法。
  10. 一种存储介质,其中存储有处理器可执行的程序,其特征在于,所述处理器可执行的程序在由处理器执行时用于执行如权利要求1-5任一项所述方法。
PCT/CN2020/140963 2020-09-25 2020-12-29 一种夹具稳定性测试方法、系统、装置和存储介质 WO2022062251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011026316.XA CN112364445B (zh) 2020-09-25 2020-09-25 一种夹具稳定性测试方法、系统、装置和存储介质
CN202011026316.X 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022062251A1 true WO2022062251A1 (zh) 2022-03-31

Family

ID=74507485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140963 WO2022062251A1 (zh) 2020-09-25 2020-12-29 一种夹具稳定性测试方法、系统、装置和存储介质

Country Status (2)

Country Link
CN (1) CN112364445B (zh)
WO (1) WO2022062251A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616994A (zh) * 2022-09-30 2023-01-17 广州明珞装备股份有限公司 一种设备稳定性分析方法及系统、设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085353A1 (en) * 2009-01-14 2012-04-12 The Ohio State University Joint stability arrangement and method
CN102567578A (zh) * 2011-12-20 2012-07-11 北京卫星环境工程研究所 航天器振动试验夹具评价系统
CN109014709A (zh) * 2018-06-30 2018-12-18 武汉佰起科技有限公司 一种高稳定性的汽车工装用夹具
CN110672019A (zh) * 2019-05-15 2020-01-10 常州铂美思自动化系统有限公司 一种用于激光在线测厚仪的全自动msa量具及其检验方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840322A (zh) * 2016-12-21 2017-06-13 潍坊市计量测试所 一种计量器具在线软校准的方法和实现该方法的装置
CN108599995B (zh) * 2018-03-28 2020-10-27 北京大米科技有限公司 网络线路故障判定方法及服务器
CN109711570A (zh) * 2018-12-26 2019-05-03 中国移动通信集团江苏有限公司 设备运行检测的方法、装置、设备和介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085353A1 (en) * 2009-01-14 2012-04-12 The Ohio State University Joint stability arrangement and method
CN102567578A (zh) * 2011-12-20 2012-07-11 北京卫星环境工程研究所 航天器振动试验夹具评价系统
CN109014709A (zh) * 2018-06-30 2018-12-18 武汉佰起科技有限公司 一种高稳定性的汽车工装用夹具
CN110672019A (zh) * 2019-05-15 2020-01-10 常州铂美思自动化系统有限公司 一种用于激光在线测厚仪的全自动msa量具及其检验方法

Also Published As

Publication number Publication date
CN112364445A (zh) 2021-02-12
CN112364445B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN109711659B (zh) 一种工业生产的良率提升管理系统和方法
WO2022062251A1 (zh) 一种夹具稳定性测试方法、系统、装置和存储介质
WO2006018738A1 (en) A method for evaluating the quality of data collection in a manufacturing environment
WO2020181759A1 (zh) 微型变压器生产线的设备故障和潜在不良品智能预测系统
WO2022095736A1 (zh) 报表测试方法、装置、计算机设备及计算机可读存储介质
CN104794492A (zh) 基于功率特征模型的机床设备加工运行状态在线识别方法
KR20150006439A (ko) 테스트 셀 컨트롤러의 결정 및 실행 트리의 생성 및 스케줄링
CN116992391B (zh) 一种硬碳工艺环保监测数据采集处理方法
CN111061647A (zh) 一种软件性能自动化测试方法、装置及电子设备
CN111176226A (zh) 一种基于运行工况的设备特征参数报警阈值自动分析方法
TWI623840B (zh) 適應性機台稼動率分析系統及方法
CN112528230A (zh) 基于精密度和分布转换修正的参数一致性控制方法及装置
CN111599033B (zh) 一种诊断卷烟机故障的处理方法
CN103185610A (zh) 一种除尘系统管网阻力平衡的评估与调试方法
CN115080342A (zh) 一种电源板卡试验数据自动处理方法及系统
CN108958220A (zh) 一种流体机械测控系统的智能仪表组态软件及方法
JP2011237952A (ja) プラント運転管理・支援システム
CN103543157B (zh) 离线带材表面图像模拟动态采集方法及装置
CN110826292A (zh) 一种数字控制的可视化图形化辅助分析方法
CN112107977A (zh) 一种基于脱硫系统的pH值自动调节方法、系统和装置
Rybnikár et al. The Influence of Ergonomics as a Quality Parameter on the Evaluation of Manual Assembly Processes
CN107942658A (zh) 一种采用自适应滤波器的大圆机旋转周期预测方法及系统
CN106607921B (zh) 一种机器人末端位置获取方法
CN118132996B (zh) 一种基于工业数字孪生的自适应生产调度优化方法
CN110532116B (zh) 一种系统可靠性建模方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955092

Country of ref document: EP

Kind code of ref document: A1