WO2022061607A1 - 悬架控制方法、悬架控制装置和车辆 - Google Patents

悬架控制方法、悬架控制装置和车辆 Download PDF

Info

Publication number
WO2022061607A1
WO2022061607A1 PCT/CN2020/117209 CN2020117209W WO2022061607A1 WO 2022061607 A1 WO2022061607 A1 WO 2022061607A1 CN 2020117209 W CN2020117209 W CN 2020117209W WO 2022061607 A1 WO2022061607 A1 WO 2022061607A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
suspension
yaw rate
angle
steering
Prior art date
Application number
PCT/CN2020/117209
Other languages
English (en)
French (fr)
Inventor
靳彪
张永生
刘栋豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20954461.8A priority Critical patent/EP4206005A4/en
Priority to PCT/CN2020/117209 priority patent/WO2022061607A1/zh
Priority to CN202080005087.5A priority patent/CN112689569A/zh
Publication of WO2022061607A1 publication Critical patent/WO2022061607A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0521Roll rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/052Angular rate
    • B60G2400/0523Yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • B60G2400/412Steering angle of steering wheel or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/22Spring constant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/40Steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/09Feedback signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • B60G2800/244Oversteer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • B60G2800/246Understeer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis

Definitions

  • the present application relates to the field of vehicle control, and in particular to a suspension control method, a suspension control device and a vehicle.
  • the vehicle may oversteer or understeer.
  • the driving direction of the vehicle can be adjusted by applying the braking operation to one tire.
  • the driving direction of the vehicle is adjusted by means of braking, which consumes a large amount of energy and causes wear and tear of the vehicle braking system.
  • the present application provides a suspension control method and device, which can flexibly control the driving direction of the vehicle when the vehicle is turning.
  • a suspension control method wherein the suspension is applied to a vehicle, the method comprising: determining the steering of the vehicle; in response to the determination of the steering, adjusting a deformation parameter of the suspension to Adjust the direction of travel of the vehicle.
  • the driving direction of the vehicle is adjusted by controlling the deformation parameters of the vehicle suspension without taking braking measures, thereby avoiding large energy consumption and wear of the vehicle braking system.
  • the method further includes: determining a correlation between the predicted yaw rate of the vehicle and the deformation parameters of the suspension according to the state parameters of the vehicle; The adjustment of the deformation parameters of the suspension reduces the deviation between the expected yaw rate of the vehicle and the predicted yaw rate.
  • the deformation parameters of the suspension are adjusted so that the deviation between the expected yaw angular velocity of the vehicle and the predicted yaw angular velocity is reduced, so that the predicted yaw angular velocity of the vehicle is reduced.
  • the expected yaw rate is as close as possible to improve the control stability and comfort of the vehicle.
  • the state parameters include: lateral acceleration, center of mass slip angle, front wheel steering angle corresponding to steering wheel angle, longitudinal vehicle speed, sprung mass roll angle, sprung mass side angle Inclination speed.
  • the predicted yaw rate of the vehicle and the speed of the suspension are determined.
  • the relationship between the deformation parameters is more accurate and the control stability of the vehicle is improved.
  • the method further includes: determining the expected yaw rate according to the longitudinal speed of the vehicle and the steering wheel angle.
  • the expected yaw angular velocity is determined, so that the expected yaw angular velocity is more accurate, thereby improving the control stability of the vehicle.
  • the suspension includes a shock absorber
  • the deformation parameter of the suspension includes the damping of the shock absorber
  • Adjusting shock damping is easier than adjusting suspension spring rates.
  • a suspension control device comprising a processing module and an adjustment module, the processing module is used to determine the steering of the vehicle; in response to the determination of the steering, the adjustment module is used to adjust the steering The deformation parameters of the suspension to adjust the driving direction of the vehicle.
  • the processing module is further configured to, according to the state parameters of the vehicle, determine the correlation between the predicted yaw rate of the vehicle and the deformation parameters of the suspension relationship; the adjustment of the deformation parameters of the suspension reduces the deviation between the expected yaw rate of the vehicle and the predicted yaw rate.
  • the state parameters include: lateral acceleration, center of mass slip angle, front wheel steering angle corresponding to steering wheel angle, longitudinal vehicle speed, sprung mass roll angle, sprung mass side angle Inclination speed.
  • the processing module is further configured to determine the expected yaw rate according to the longitudinal speed of the vehicle and the steering wheel angle.
  • the suspension includes a shock absorber
  • the deformation parameter of the suspension includes the damping of the shock absorber
  • a suspension control device comprising a memory and a processor, the memory is used for storing program instructions, when the program instructions are executed in the processor, the processor is used for executing the first the method described in the aspect.
  • a computer program storage medium wherein the computer program storage medium has program instructions, and when the program instructions are executed, the method described in the first aspect is executed.
  • a fifth aspect provides a chip, the chip system includes at least one processor, and when program instructions are executed in the at least one processor, the method of the first aspect is executed.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the method in any one of the implementations of the first aspect or the second aspect.
  • the above chip may specifically be a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC).
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • a sixth aspect provides a vehicle comprising a suspension and the suspension control device of the second or third aspect.
  • FIG. 1 is a schematic diagram of the way of adjusting the driving direction of the vehicle when the vehicle is understeered.
  • FIG. 2 is a schematic diagram of the way of adjusting the driving direction of the vehicle when the vehicle steers too much.
  • FIG. 3 is a schematic flowchart of a suspension control method provided by an embodiment of the present application.
  • 4 is a schematic diagram of the relationship between tire load force and tire maximum lateral force.
  • FIG. 5 is a schematic structural diagram of a vehicle.
  • FIG. 6 is a schematic structural diagram of a suspension control system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of shock absorber damping output by a suspension control system provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the variation of the yaw rate with time.
  • FIG. 9 is a schematic structural diagram of a suspension control device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another suspension control device provided by an embodiment of the present application.
  • the vehicle may oversteer or understeer.
  • Electronic stability control system can obtain the driving speed and steering wheel angle of the vehicle to determine the target driving state of the vehicle.
  • the ESC system can obtain the actual driving state of the vehicle.
  • the ESC system controls the braking operation on one or more wheels to adjust the driving direction of the vehicle.
  • the driver controls the steering of the vehicle by turning the steering wheel.
  • the expected driving trajectory of the vehicle can be calculated, as shown by the solid line in Fig. 1 . Due to factors such as too small road friction, if the driver has no feedback during the steering process of the vehicle, the actual driving route of the vehicle may be shown as the dotted line in Figure 1, and understeer may occur.
  • ESC can determine the actual driving route of the vehicle according to the yaw rate of the vehicle and the driving speed of the vehicle.
  • the ESC may control the braking operation of the inside wheels, and/or control the engine to reduce the rotational speed of the inside wheels. For example, the ESC determines that the vehicle is understeering when turning left, and the ESC controls the braking operation of the left wheel of the vehicle, thereby causing the vehicle to steer further to the left, following the desired trajectory of the vehicle.
  • the vehicle may also have problems with oversteering.
  • the ESC may control the braking operation to the outside wheels, and/or control the engine to reduce the speed of the outside wheels. As shown in Figure 2, the ESC determines that the vehicle is oversteering when steering to the left, and the ESC controls the braking operation on the right wheel of the vehicle, thereby reducing the vehicle steering to the left and allowing the vehicle to travel along the desired trajectory.
  • ESC can adjust the longitudinal force along the vehicle's forward direction and the lateral force along the vehicle's steering direction on each wheel by controlling the braking system and/or power system, control the yaw rate of the vehicle, and then correct the driving direction of the vehicle. and driving trajectory.
  • ESC adjusts the change of the driving direction of the vehicle by braking, so the energy consumption is large, and the braking system of the vehicle is worn out. Adjustment.
  • a suspension control method and control device which can reduce the energy consumption and wear of the vehicle braking system caused by the adjustment of the driving direction of the vehicle during the steering process of the vehicle, and improve the comfort and safety of the vehicle. sex.
  • FIG. 3 is a schematic flowchart of a suspension control method provided by an embodiment of the present application.
  • Suspension is a general term for the force transmission connection device between the frame (or load-bearing body) of the car and the axle (or wheel), its function is to transmit the force and torsion between the wheel and the frame, and buffer the The impact force transmitted to the frame or body by the uneven road, and the vibration caused by it is reduced to ensure that the car can run smoothly.
  • Suspensions are used in vehicles.
  • the steering of the vehicle that is, the change of the driving direction of the vehicle, is no longer in the longitudinal direction pointed by the front of the vehicle, and the vehicle speed includes the longitudinal vehicle speed along the longitudinal direction and the lateral vehicle speed along the lateral direction perpendicular to the longitudinal direction.
  • the steering of the vehicle may be determined.
  • the size of the steering wheel angle of the vehicle corresponds to the size of the front wheel angle of the vehicle.
  • the steering of the vehicle may also be determined when the front wheel turning angle of the vehicle is greater than a preset angle.
  • the steering of the vehicle can be determined according to the information sent by the sensor for measuring the steering wheel angle, or the steering of the vehicle can be determined according to the information sent by the sensor used to measure the steering angle of the front wheels or other on-board sensors.
  • Suspension includes springs and shock absorbers. Deformation parameters of the suspension may include shock absorber damping and/or spring rates.
  • the vehicle can have active suspension or semi-active suspension.
  • Active suspension and semi-active suspension are both controllable suspension systems.
  • the deformation parameters of the semi-active suspension such as spring stiffness, shock absorber damping, etc. can be adjusted.
  • the deformation parameters of the active suspension can be adjusted, and it can also apply force to the tires.
  • the vehicle may employ a semi-active suspension. Adjusting shock damping is easier than adjusting spring rates.
  • the change of the driving direction of the vehicle can be adjusted to realize flexible control of the driving direction of the vehicle. Specifically, reference may be made to the description of FIG. 4 .
  • the adjustment of the driving direction of the vehicle can be understood as the adjustment of the yaw angular velocity of the vehicle, and can also be understood as the adjustment of the yaw angular acceleration of the vehicle.
  • the yaw rate also known as the yaw rate, is the time derivative of the angle the car rotates about an axis perpendicular to the ground.
  • the deformation parameters of the suspension can be adjusted according to the deviation of the actual yaw rate of the vehicle from the expected yaw rate.
  • the relationship between the predicted yaw rate of the vehicle and the deformation parameters of the suspension may also be determined according to the state parameters of the vehicle. By adjusting the deformation parameters of the suspension, the deviation between the expected yaw rate of the vehicle and the predicted yaw rate is reduced.
  • the relationship between the predicted yaw rate of the vehicle and the deformation parameters of the suspension may be determined.
  • the state parameters of the vehicle can be measured, and the relationship between the predicted yaw rate of the vehicle and the deformation parameters of the suspension can be determined according to the state parameters of the vehicle.
  • the state parameters of the vehicle may include lateral acceleration, center of mass slip angle, front wheel steering angle corresponding to steering wheel angle, longitudinal vehicle speed, sprung mass roll angle, sprung mass roll angular velocity, and the like.
  • the longitudinal speed and steering wheel angle of the vehicle may be acquired.
  • the expected yaw rate in the direction in which the vehicle is traveling can be determined.
  • the longitudinal speed of the vehicle and the front wheel angle of the vehicle can also be obtained, and the expected yaw in the driving direction of the vehicle can be determined according to the longitudinal speed of the vehicle and the front wheel angle of the vehicle. angular velocity.
  • the deformation parameters of the suspension of the vehicle may be adjusted to reduce the deviation between the expected yaw rate of the vehicle and the predicted yaw rate . That is to say, according to the relationship between the predicted yaw rate of the vehicle and the deformation parameters of the suspension, the relationship between the deviation of the expected yaw rate of the vehicle and the predicted yaw rate and the deformation parameters of the suspension can be determined, The deformation parameters of the suspension can thus be adjusted to minimize this deflection. For example, the adjustment of the deformation parameters of the suspension can make the deviation between the expected yaw rate of the vehicle and the predicted yaw rate less than a preset value.
  • the suspension control system shown in FIG. 6 can be used to adjust the deformation parameters of the suspension.
  • Figure 4 is a schematic diagram of tire load force and tire maximum lateral force.
  • the adjustment to the deformation parameters of the suspension may be to increase or decrease the damping of the shock absorber of the vehicle.
  • the relationship curve between the load force of the tire and the maximum lateral force of the tire is a convex function. As the load force of the tire increases, the maximum lateral force of the tire increases, and the increase of the maximum lateral force of the tire decreases.
  • the adjustment of the suspension deformation parameters can affect the driving direction of the vehicle.
  • FIG. 5 is a schematic structural diagram of a vehicle.
  • the longitudinal direction and the lateral direction are both along the horizontal direction and perpendicular to each other, and the vertical direction is the direction perpendicular to both the longitudinal direction and the lateral direction.
  • the direction in which the front of the vehicle is pointed is the longitudinal direction
  • the longitudinal vehicle speed is the longitudinal component of the vehicle speed
  • the lateral speed is the lateral component of the vehicle speed.
  • the center of mass slip angle of a vehicle is the angle between the direction of the vehicle's travel speed and the longitudinal direction.
  • the lateral acceleration of the vehicle is the derivative of lateral velocity with respect to time.
  • the load force F zi of each tire is in the vertical direction, pointing to the side away from the ground.
  • the vehicle includes 4 tires.
  • Vehicles can have independent or non-independent suspension.
  • the structural feature of the non-independent suspension is that the wheels on both sides are connected by an integral axle, and the wheels together with the axle are suspended under the frame or body through elastic suspension.
  • Independent suspension is where the wheels on each side are individually suspended from the frame or under the body by elastic suspension.
  • Sprung mass is a concept relative to unsprung mass. For a car, we can divide it into two parts: sprung mass and unsprung mass. Unsprung mass refers to the mass that is not supported by elastic elements in the suspension system, generally including wheels, springs, shock absorbers and other related components. The sprung mass refers to the mass supported by the suspension system.
  • the sprung mass roll angle refers to the angle between the direction of the force provided by the elastic element in the suspension system and the vertical direction.
  • FIG. 6 is a schematic structural diagram of a suspension control system provided by an embodiment of the present application. This suspension control system is suitable for vehicles with independent or non-independent suspension, including 4 tires.
  • the deformation parameters of the left and right suspensions of the front axle can be the same, and the deformation parameters of the left and right suspensions of the rear axle can be the same.
  • the difficulty of determining the deformation parameters of the suspension can be reduced.
  • the suspension control system includes the body open-loop model, the tire slip angle model, the suspension dynamic model, the expected yaw rate model, the tire lateral force model, the yaw dynamic model and the MPC model.
  • the simplified body open-loop model does not need to perform iterative calculations, and the open-loop prediction is performed according to the current vehicle state to obtain the variation trend of lateral acceleration and centroid slip angle, and record them in the form of time series.
  • the simplified open-loop model of the body can be expressed as:
  • a y is the lateral acceleration of the vehicle and is a function of time. Beta center of mass slip angle of the vehicle.
  • a y ⁇ is the steady state value of lateral acceleration determined according to the front wheel rotation angle and longitudinal vehicle speed
  • is the steady state value of the center of mass slip angle determined according to the front wheel rotation angle and longitudinal vehicle speed.
  • C 1 , c 2 , c 3 , and c 4 can be respectively expressed as:
  • the suspension dynamic model can be expressed as:
  • F zi is the load force on tire i
  • F zi0 is the load force on tire i when the vehicle is stationary
  • C j is the shock absorber damping of suspension j.
  • the value range of i is ⁇ 1, 2, 3, 4 ⁇ .
  • shock absorber damping C f of the front axle suspension is used to calculate the load force F z1 of tire 1 and the load force F z2 of tire 2 to which the front axle suspension is connected
  • shock absorber damping C r of the rear axle suspension Used to calculate the load force F z3 of the tire 3 and the load force F z4 of the tire 2 to which the rear axle suspension is connected. That is, C j is C r or C f .
  • the center of mass side-slip angle ⁇ output by the body open-loop prediction model, the load force F zi of each tire output by the suspension dynamic model, and the front wheel angle ⁇ corresponding to the longitudinal vehicle speed v x and the steering wheel angle are input into the tire side-slip angle model.
  • the relationship between the slip angle ⁇ i of each tire and the yaw rate r is obtained.
  • the tire slip angle model can be expressed as:
  • ⁇ 1,2 represents the tire slip angle of the front wheel of the vehicle
  • ⁇ 3,4 represents the tire side slip angle of the rear wheel of the vehicle
  • l r is the rear wheelbase of the vehicle (that is, the longitudinal distance from the center of mass of the vehicle to the center of the rear axle)
  • lf is the front wheelbase of the vehicle (ie the longitudinal distance from the center of mass of the vehicle to the center of the front axle).
  • the rear wheelbase lr and the front wheelbase lf of the vehicle are related to the current cargo and passenger loading conditions of the vehicle. Under normal circumstances, in the process of running the vehicle, the rear wheelbase l r and the front wheel base lf of the vehicle can be understood as fixed values. The rear wheelbase l r and the front wheelbase lf of the vehicle can be determined by measuring the front and rear axle loads when the vehicle is static.
  • the tire lateral force model is used to represent the relationship between the lateral force F yi received by the tire i and the load force F zi of the tire i.
  • the tire lateral force model can be expressed as:
  • P 1 , P 2 , and P 3 are functions of the tire slip angle.
  • the yaw dynamic model can be expressed as:
  • the derivative r' of the predicted yaw rate r of the vehicle with respect to time is a function of Cj .
  • F y1 , F y2 , F y3 , and F y4 are the lateral forces of the four tires of the vehicle, respectively, and I zz is the moment of inertia of the vehicle steering.
  • Moment of inertia is the inertia of a rigid body when it rotates around an axis.
  • the moment of inertia Izz of the vehicle steering can be understood as the moment of inertia of the vehicle around the axis in the vertical direction.
  • the predicted yaw angular velocity r and the shock absorber damping C f of the front axle suspension and the damping of the rear axle suspension are the control quantities. That is, by adjusting C f and C r , the predicted yaw rate can be adjusted.
  • the expected yaw rate model can be expressed as:
  • r des is the expected yaw rate
  • r 0 can be expressed as:
  • m is the vehicle mass
  • vx is the longitudinal speed of the vehicle
  • is the front wheel angle of the vehicle
  • K r is the cornering stiffness of the tire connected to the rear axle suspension
  • K f is the cornering stiffness of the tire connected to the front axle suspension Stiffness
  • K r , K f are all preset values.
  • the front wheel angle ⁇ of the vehicle is determined by the steering wheel angle.
  • the MPC model can be used to represent the deviation between the expected yaw rate and the predicted yaw rate.
  • the MPC model can be expressed as:
  • r is the predicted yaw rate of the vehicle
  • k and k C are constant coefficients
  • the value of k is generally 10 12.5
  • the value of k C is generally 1
  • r des is the expected yaw rate
  • C j is the front axle suspension.
  • C j and C r can be optimized as C j respectively through the MPC model.
  • the shock absorber damping C j By adjusting the value of the shock absorber damping C j to minimize the deviation L between the expected yaw angular velocity and the predicted yaw angular velocity, the shock absorber damping C j that minimizes the deviation L can be obtained.
  • the roll dynamic model can be used to determine the roll angle acceleration of the sprung mass sprung mass roll angular acceleration is the sprung mass roll angular velocity
  • the derivative of can be understood as the sprung mass roll angular velocity changing trend.
  • the roll dynamic model is:
  • I xx is the rolling moment of inertia of the vehicle
  • h s is the height difference between the center of mass of the vehicle and the center of roll (that is, the moment arm of the roll motion).
  • the roll moment of inertia I xx can be understood as the moment of inertia of the rolling motion of the vehicle, ie the moment of inertia of the vehicle about an axis along the longitudinal direction.
  • the prediction time domain T may be, for example, 0.2 seconds (second, s), and the sampling time dt may be, for example, 0.01s, and the number of prediction steps of the MPC module is 20.
  • the damping of the shock absorber can be constrained.
  • the adjustment range of the suspension damper is 0 to 30,000 Newtons per meter (N ⁇ s/m).
  • the damping establishment time of the common magnetorheological shock absorber is about 10ms, so the damping output of the controller cannot change too much.
  • the damping of the shock absorber can be adjusted by means of incremental control. Incremental control of the damping of the shock absorber, that is, controlling the change process of the damping of the shock absorber, so that the increase amount of the shock absorber damping per unit time remains unchanged (or the decrease amount remains unchanged), which can be to a certain extent. Suppression control mutation.
  • the stroke of the suspension is generally about 10cm, not more than 15cm.
  • the stroke of the suspension refers to the difference between the maximum spring compression deformation and the maximum tensile deformation of the suspension, that is, the distance from the lowest point to the highest telescopic deformation.
  • the damping of the shock absorber of the vehicle suspension is adjusted when the vehicle is turning, so as to adjust the load force of each tire of the vehicle to adjust the lateral direction of the tire. force to adjust the yaw rate.
  • the suspension control system shown in Figure 6 comprehensively considers the rolling motion and steering motion of the vehicle during the steering process, which makes the steering control of the vehicle more precise and reduces the impact of the control of the driving direction of the vehicle on the vehicle braking system when the vehicle is turning. wear and tear, improving the comfort and safety of the vehicle.
  • the suspension control system shown in Figure 6 is used to adjust the shock absorber damping of the vehicle's suspension, and the CarMaker software is used for simulation.
  • the shock absorber damping of the front and rear axle suspensions of the vehicle output by the MPC model is shown in Figure 7.
  • the damping of the shock absorber of the front and rear axle suspensions of the vehicle is adjusted, and the actual yaw rate of the vehicle changes with time as shown in the curve corresponding to "Controlled” in Figure 8 .
  • the change of the actual yaw rate of the vehicle over time without adjusting the damping of the shock absorber of the suspension is shown in the curve corresponding to "no control" in Fig. 8 .
  • the suspension control method provided by the embodiment of the present application has a certain inhibitory effect on the overshoot of the yaw angular velocity of the vehicle at about 6400 milliseconds (ms) and 7000 ms, so as to improve the performance of the suspension control method.
  • the suspension control method provided by the embodiment of the present application realizes the transient control of the yaw angular velocity, and has a high response speed to the yaw angular velocity of the vehicle, so that the maneuverability and stability of the vehicle are better.
  • the suspension control method provided by the embodiment of the present application can be used together with the method for adjusting the driving direction of the vehicle by braking, so as to improve the accurate control of the driving direction of the vehicle.
  • FIG. 9 is a schematic structural diagram of a suspension control device provided by an embodiment of the present application.
  • the suspension control device 2000 includes a processing module 2010 and an adjustment module 2020 .
  • the processing module 2010 is used to determine the steering of the vehicle.
  • the adjustment module 2020 is configured to, in response to the determination of the steering, adjust the deformation parameters of the suspension to adjust the driving direction of the vehicle.
  • the processing module 2010 is further configured to, according to the state parameters of the vehicle, determine the correlation between the predicted yaw rate of the vehicle and the deformation parameters of the suspension.
  • the adjustment of the deformation parameters of the suspension reduces the deviation between the expected yaw rate of the vehicle and the predicted yaw rate.
  • the state parameters include: lateral acceleration, center of mass slip angle, front wheel steering angle corresponding to steering wheel angle, longitudinal vehicle speed, sprung mass roll angle, and sprung mass roll angular velocity.
  • the processing module 2010 is further configured to determine the expected yaw rate according to the longitudinal speed of the vehicle and the steering wheel angle.
  • the suspension includes a shock absorber, and the deformation parameter of the suspension includes the damping of the shock absorber.
  • FIG. 10 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 3000 includes a memory 3010 and a processor 3020 .
  • Memory 3010 is used to store program instructions.
  • the processor 3020 When the program instructions are executed in the processor 3020, the processor 3020 is used to:
  • a deformation parameter of the suspension is adjusted to adjust the direction of travel of the vehicle.
  • the processor 3020 is further configured to, according to the state parameters of the vehicle, determine the correlation between the predicted yaw rate of the vehicle and the deformation parameters of the suspension.
  • the adjustment of the deformation parameters of the suspension reduces the deviation between the expected yaw rate of the vehicle and the predicted yaw rate.
  • the state parameters include: lateral acceleration, center of mass slip angle, front wheel steering angle corresponding to steering wheel angle, longitudinal vehicle speed, sprung mass roll angle, and sprung mass roll angular velocity.
  • the processor 3020 is further configured to determine the expected yaw rate according to the longitudinal speed of the vehicle and the steering wheel angle.
  • the suspension includes a shock absorber
  • the deformation parameter of the suspension includes the damping of the shock absorber
  • Embodiments of the present application also provide a vehicle, including a suspension and the aforementioned suspension control device.
  • An embodiment of the present application further provides a computer program storage medium, characterized in that, the computer program storage medium has program instructions, and when the program instructions are executed, the foregoing method is executed.
  • An embodiment of the present application further provides a chip system, characterized in that, the chip system includes at least one processor, and when a program instruction is executed in the at least one processor, the foregoing method is executed.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate the existence of A alone, the existence of A and B at the same time, and the existence of B alone. where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种悬架控制方法,该悬架控制方法包括:确定车辆转向;响应于转向的确定,调整悬架的形变参数,以调整车辆的行驶方向。还公开了一种悬架控制装置、一种计算机程序存储介质、一种芯片和一种车辆。在车辆转向时,通过控制车辆悬架的形变参数,调整车辆的行驶方向,无需采取制动措施,避免了较大的能耗和车辆制动系统的磨损。

Description

悬架控制方法、悬架控制装置和车辆 技术领域
本申请涉及车辆控制领域,具体涉及一种悬架控制方法、悬架控制装置和车辆。
背景技术
车辆在行驶过程中,可能出现过多转向或者转向不足。可以通过对一侧轮胎实施制动操作,调整车辆的行使方向。通过制动的方式对车辆的行驶方向进行调整,耗能较大,并且造成车辆制动系统的磨损。
发明内容
本申请提供一种悬架控制方法和装置,能够在车辆转向时灵活控制车辆的行驶方向。
第一方面,提供一种悬架控制方法,所述悬架应用于车辆中,所述方法包括:确定所述车辆转向;响应于所述转向的确定,调整所述悬架的形变参数,以调整所述车辆的行驶方向。
在车辆转向时,通过控制车辆悬架的形变参数,调整车辆的行驶方向,无需采取制动措施,避免了较大的能耗和车辆制动系统的磨损。
结合第一方面,在一些可能的实现方式中,所述方法还包括:根据所述车辆的状态参数,确定所述车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系;所述悬架的形变参数的调整使得所述车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
根据预测横摆角速度与形变参数之间的关联关系,对悬架的形变参数进行调整,以使得车辆的预期横摆角速度与预测横摆角速度之间的偏离减小,使得车辆的预测横摆角速度尽可能符合预期的横摆角速度,提高车辆的控制稳定性和舒适性。
结合第一方面,在一些可能的实现方式中,所述状态参数包括:侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度。
根据侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度等车辆的状态参数确定车辆的预测横摆角速度与悬架的形变参数的关联关系,该关联关系更加准确,提高车辆的控制稳定性。
结合第一方面,在一些可能的实现方式中,所述方法还包括:根据所述车辆的纵向车速和方向盘转角,确定所述预期横摆角速度。
根据车辆的纵向车速和方向盘转角,确定预期横摆角速度,使得预期横摆角速度更加准确,从而提高车辆的控制稳定性。
结合第一方面,在一些可能的实现方式中,所述悬架包括减震器,所述悬架的形变参数包括所述减震器的阻尼。
与调整悬架弹簧刚度相比,调整减震器阻尼更为容易。
第二方面,提供一种悬架控制装置,包括处理模块和调整模块,所述处理模块用于, 确定所述车辆转向;响应于所述转向的确定,所述调整模块用于,调整所述悬架的形变参数,以调整所述车辆的行驶方向。
结合第二方面,在一些可能的实现方式中,所述处理模块还用于,根据所述车辆的状态参数,确定所述车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系;所述悬架的形变参数的调整使得所述车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
结合第二方面,在一些可能的实现方式中,所述状态参数包括:侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度。
结合第二方面,在一些可能的实现方式中,所述处理模块还用于,根据所述车辆的纵向车速和方向盘转角,确定所述预期横摆角速度。
结合第二方面,在一些可能的实现方式中,所述悬架包括减震器,所述悬架的形变参数包括所述减震器的阻尼。
第三方面,提供一种悬架控制装置,包括存储器和处理器,所述存储器用于存储程序指令,当所述程序指令在所述处理器中执行时,所述处理器用于执行如第一方面所述的方法。
第四方面,提供一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被执行时,使得第一方面所述的方法被执行。
第五方面,提供一种芯片,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得第一方面所述的方法被执行。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第一方面或第二方面中的任意一种实现方式中的方法。
上述芯片具体可以是现场可编程门阵列(field-programmable gate array,FPGA)或者专用集成电路(application-specific integrated circuit,ASIC)。
第六方面,提供一种车辆,包括悬架和第二方面或第三方面所述的悬架控制装置。
附图说明
图1是车辆转向不足时对车辆行驶方向的调整方式的示意图。
图2是车辆转向过多时对车辆行驶方向的调整方式的示意图。
图3是本申请实施例提供的一种悬架控制方法的示意性流程图。
图4是轮胎载荷力与轮胎最大侧向力的关系的示意图。
图5是一种车辆的示意性结构图。
图6是本申请实施例提供的一种悬架控制系统的示意性结构图。
图7是本申请实施例提供的一种悬架控制系统输出的减震器阻尼的示意图。
图8是横摆角速度随时间的变化情况的示意图。
图9本申请一个实施例提供的一种悬架控制装置的示意性结构图。
图10本申请一个实施例提供的另一种悬架控制装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
车辆在行驶过程中,可能出现过多转向或者转向不足。
电子稳定控制系统(electronic stability controller,ESC)可以获取车辆的行驶速度和方向盘转角,以确定车辆的目标行驶状态。ESC系统可以获取车辆的实际行驶状态。当车辆的实际行驶状态与车辆的目标行驶状态存在差异时,ESC系统控制对一个或多个车轮实施制动操作,以调整车辆的行驶方向。
驾驶员通过转动方向盘控制车辆转向。根据车辆的行驶速度和方向盘转角,可以计算车辆的期望行驶轨迹,如图1中的实线所示。由于路面摩擦力过小等因素,如果驾驶员在车辆转向过程中无反馈,车辆的实际行驶路线可能如图1中的虚线所示,出现转向不足的情况。
ESC根据车辆的横摆角速度和车辆的行驶速度,可以确定车辆的实际行驶路线。
当车辆的转向不足时,ESC可以控制对内侧车轮实施制动操作,和/或控制发动机以降低内侧车轮的转速。例如,ESC确定车辆在向左转向时转向不足,ESC控制对车辆的左侧车轮实施制动操作,从而使得车辆进一步向左转向,沿车辆的期望行驶轨迹行驶。
当然,车辆也可能出现转向过多的问题。ESC可以控制对外侧车轮实施制动操作,和/或控制发动机以降低外侧车轮的转速。如图2所示,ESC确定车辆在向左转向时转向过多,ESC控制对车辆的右侧车轮实施制动操作,从而减少车辆向左转向,使得车辆沿期望行驶轨迹行驶。
ESC可以通过对制动系统和/或动力系统的控制,调节各个车轮受到的沿车辆前进方向的纵向力、沿车辆转向方向的侧向力,控制车辆的横摆角速度,进而修正车辆的行驶方向和行驶轨迹。
在车辆转向过程中ESC通过制动的方式对车辆行驶方向的变化进行调整,因此耗能较大,并且造成的车辆制动系统磨损,仅在出现转向不足或转向过多的情况下对车辆进行调整。
为了解决对上述问题,本身请提出了一种悬架控制方法和控制装置,能够降低车辆转向过程中对车辆行驶方向的调整引起的能量消耗和车辆制动系统磨损,提高车辆的舒适性和安全性。
图3是本申请实施例提供的一种悬架控制方法的示意性流程图。
悬架是汽车的车架(或承载式车身)与车桥(或车轮)之间的传力连接装置的总称,其作用是传递在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并减少由此引起的震动,以保证汽车能平顺地行驶。
悬架应用在车辆中。
在S310,确定车辆转向。
车辆转向,即车辆行驶方向发生变化,不再沿车头指向的纵向方向行驶,车速包括沿纵向的纵向车速以及沿着与纵向方向相垂直的侧向的侧向车速。
当车辆的方向盘转角大于预设角度时,可以确定车辆转向。
车辆的方向盘转角的大小与车辆的前轮转角的大小一一对应。当车辆的前轮转角大于预设角度时,也可以确定车辆转向。
也就是说,可以根据用于测量方向盘转角传感器发送的信息确定车辆转向,也可以根据用于测量前轮转角的传感器或其他车载传感器发送的信息,确定车辆转向。
S320,响应于所述转向的确定,调整所述悬架的形变参数,以调整所述车辆的行驶方向。
悬架包括弹簧和减震器。悬架的形变参数可以包括减震器阻尼和/或弹簧刚度。
也就是说,车辆可以采用主动悬架或半主动悬架。主动悬架与半主动悬架均为可控式悬架系统。半主动悬架的形变参数如弹簧刚度、减震器阻尼等可以调整。主动悬架的形变参数可以调整,还可以为轮胎施加作用力。
优选地,车辆可以采用半主动悬架。与调整弹簧刚度相比,调整减震器阻尼更为容易。
在车辆转向的过程中,通过调整悬架的形变参数,可以对车辆的行驶方向的变化进行调整,实现对车辆行驶方向的灵活控制。具体地,可以参见图4的说明。
车辆行驶方向的调整,可以理解为对车辆横摆角速度的调整,也可以理解为对车辆横摆角加速度的调整。
横摆角速度也可以称为横摆率,是指汽车绕垂直于地面的轴旋转的角度对时间的导数。
可以根据车辆的实际横摆角速度与预期横摆角速度的偏离,调整悬架的形变参数。
或者,也可以根据车辆的状态参数,确定车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系。通过调整悬架的形变参数,使得车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
在S320之前,可以确定车辆的预测横摆角速度与悬架的形变参数之间的关联关系。可以对车辆的状态参数进行测量,并根据车辆的状态参数确定车辆的预测横摆角速度与悬架的形变参数之间的关系。车辆的状态参数可以包括侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度等。
在确定车辆的预测横摆角速度与悬架的形变参数之间的关联关系时,还可以获取车辆的质量、车辆的后轴距、车辆的前轴距、车辆转向时的转动惯量等。
在S320之前,可以获取车辆的纵向车速和方向盘转角。从而,根据车速和方向盘转角,可以确定车辆行驶方向的预期横摆角速度。
车辆的方向盘转角与车辆的前轮转角具有一一对应关系,也可以获取车辆的纵向车速和车辆的前轮转角,并根据车辆的纵向车速和车辆的前轮转角确定车辆行驶方向的预期横摆角速度。
在S320,根据车辆的预测横摆角速度与悬架的形变参数之间的关联关系,可以调整车辆悬架的形变参数,以使得车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。也就是说,根据车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系,可以确定车辆的预期横摆角速度与预测横摆角速度的偏离与悬架的形变参数的关联关系,从而可以调整悬架的形变参数以最小化该偏离。例如,悬架的形变参数的调整可以使得车辆的预期横摆角速度与预测横摆角速度之间的偏离小于预设值。
具体地,可以利用图6所示的悬架控制系统,实现对悬架的形变参数的调整。
图4是轮胎载荷力与轮胎最大侧向力的示意图。
在车辆向左转向过程中,对悬架形变参数的调整,可以是增加或减小车辆的减震器阻尼。
在增加车辆的减震器阻尼之前,悬架中弹簧的形变量较大,车辆向右侧发生侧倾的角 度较大。由于车辆侧倾,车辆的质心向车辆右侧移动。车辆右侧车轮的载荷力较大,左侧车轮的载荷力减小。
增加车辆的减震器阻尼,悬架中弹簧的形变量减小,车辆的向右侧发生侧倾的角度减小,车辆质心向左右车轮的中心移动。车辆右侧车轮的载荷力减小,而左侧车轮的载荷力增加,左右车轮的载荷力的差值减小。
如图4所述,轮胎的载荷力与轮胎最大侧向力的关系曲线为凸函数。随着,轮胎的载荷力的增加,轮胎最大侧向力增加,轮胎最大侧向力的增加量减小。
因此,在左右车轮的载荷力之和不变的情况下,车辆质心向左右车轮的中心移动,使得左右车轮的轮胎最大侧向力之和增加,车辆的横摆角速度角速度的最大值增加。因此,对悬架形变参数的调整,可以影响车辆的行驶方向。
图5是一种车辆的示意性结构图。
当车辆位于水平路面时,纵向与侧向均沿水平方向并且相互垂直,竖直方向是与纵向和侧向均垂直的方向。
车头指向的方向为纵向,纵向车速为车辆行驶速度在纵向的分量,侧向速度为车辆行驶速度在侧向的分量。车辆的质心侧偏角是车辆行驶速度的方向与纵向方向之间的夹角。
车辆的侧向加速度是侧向速度对时间的导数。
各个轮胎的载荷力F zi沿竖直方向,指向远离地面的一侧。
该车辆包括4个轮胎。车辆可以采用独立悬架或非独立悬架。非独立悬架的结构特点是两侧车轮由一根整体式车桥相连,车轮连同车桥一起通过弹性悬架悬挂在车架或车身的下面。独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车身下面的。
簧上质量是一个相对簧下质量而言的概念。对于一辆车,我们可以将其分成簧上质量和簧下质量两个部分。簧下质量是指不由悬架系统中的弹性元件所支撑的质量,一般包括有车轮、弹簧、减震器以及其它相关部件等。簧上质量则是指由悬架系统所支撑的质量。
簧上质量侧倾角是指悬架系统中的弹性元件提供的力的方向与竖直方向的夹角。
图6是本申请实施例提供的一种悬架控制系统的示意性结构图。该悬架控制系统适用于采用独立悬架或非独立悬架,包括4个轮胎的车辆。
对于采用独立悬架的车辆,可以使得前轴的左右悬架的形变参数相同,后轴的左右悬架的形变参数相同。从而,可以降低确定悬架的形变参数的难度。
悬架控制系统包括车身开环模型、轮胎侧偏角模型、悬架动态模型、预期横摆角速度模型、轮胎侧向力模型、横摆动态模型和MPC模型。
为了降低悬架控制系统的计算量,对可以横摆-侧倾耦合动力学模型进行简化。
对于侧向运动,简化的车身开环模型无需进行迭代计算,依据当前的车辆状态进行开环预测,以得到侧向加速度和质心侧偏角的变化趋势,并以时间序列的形式进行记录。
简化的车身开环模型可以表示为:
Figure PCTCN2020117209-appb-000001
Figure PCTCN2020117209-appb-000002
a y为车辆侧向加速度,是时间的函数。β车辆的质心侧偏角。a y∞是根据前轮转角和纵向车速确定的侧向加速度稳态值,β 是根据前轮转角和纵向车速确定的质心侧偏角稳 态值。
Figure PCTCN2020117209-appb-000003
ω β
Figure PCTCN2020117209-appb-000004
τ β为常数,在一些实施例中,
Figure PCTCN2020117209-appb-000005
ω β=1.6π,
Figure PCTCN2020117209-appb-000006
τ β=-1.2。c 1、c 2根据侧向加速度稳态值a y∞以及t=0时刻的侧向加速度a y0计算得到的,c 3、c 4是根据质心侧偏角稳态值β 以及t=0时刻的质心侧偏角β 0计算得到的,c 1、c 2、c 3、c 4可以分别表示为:
c 2=a y0-a y∞
Figure PCTCN2020117209-appb-000007
c 4=β 0
Figure PCTCN2020117209-appb-000008
悬架动态模型可以表示为:
Figure PCTCN2020117209-appb-000009
其中,F zi为轮胎i受到的的载荷力,F zi0为车辆静止状态下轮胎i受到的载荷力,
Figure PCTCN2020117209-appb-000010
Figure PCTCN2020117209-appb-000011
均为为常数系数,
Figure PCTCN2020117209-appb-000012
为簧上质量侧倾角,
Figure PCTCN2020117209-appb-000013
为簧上质量侧倾角速度(即簧上质量侧倾角对时间的导数),C j为悬架j的减震器阻尼。对于包括4个车轮的车辆,i的取值范围为{1,2,3,4}。
应当理解,前轴悬架的减震器阻尼C f用于计算前轴悬架连接的轮胎1的载荷力F z1和轮胎2的载荷力F z2,后轴悬架的减震器阻尼C r用于计算后轴悬架连接的轮胎3的载荷力F z3和轮胎2的载荷力F z4。也就是说,C j为C r或C f
将车身开环预测模型输出的质心侧偏角β,悬架动态模型输出的各个轮胎的载荷力F zi,以及纵向车速v x、方向盘转角对应的前轮转角δ输入轮胎侧偏角模型,可以得到各个轮胎的侧偏角α i与横摆角速度r之间的关系。轮胎侧偏角模型可以表示为:
Figure PCTCN2020117209-appb-000014
Figure PCTCN2020117209-appb-000015
其中,α 1,2表示车辆前轮的轮胎侧偏角,α 3,4表示车辆后轮的轮胎侧偏角,l r为车辆的后轴距(即车辆质心到后轴中心的纵向距离),l f为车辆的前轴距(即车辆质心到前轴中心的纵向距离)。
车辆的后轴距l r、前轴距l f与车辆当前的载货、载客的情况与关。一般情况下,在车辆行驶的过程中,车辆的后轴距l r与前轴距l f可以理解为固定值。可通过测量车辆静态时的前后轴载荷确定车辆的后轴距l r与前轴距l f
轮胎侧向力模型用于表示轮胎i受到的侧向力F yi与轮胎i的载荷力F zi之间的关系。轮胎侧向力模型可以表示为:
Figure PCTCN2020117209-appb-000016
其中,P 1、P 2、P 3是与轮胎侧偏角的函数。
横摆动态模型可以表示为:
Figure PCTCN2020117209-appb-000017
也就是说,车辆的预测横摆角速度r对时间的导数r'是C j的函数。
F y1、F y2、F y3、F y4分别为车辆四个轮胎的侧向力,I zz为车辆转向的转动惯量。
转动惯量(moment of inertia),是刚体绕轴转动时惯性。车辆转向的转动惯量I zz可以理解为车辆绕竖直方向的轴的转动惯量。
根据上述车身开环预测模型、悬架动态模型、轮胎侧偏角模型、轮胎侧向力模型、横摆动态模型,可以得到预测横摆角速度r与前轴悬架的减震器阻尼C f、后轴悬架的减震器阻尼C r之间的关系。
利用本申请实施例提供的悬架控制系统对悬架的减震器阻尼进行调整的过程中,在预测横摆角速度r与前轴悬架的减震器阻尼C f、后轴悬架的减震器阻尼C r之间的关系中,前轴悬架的减震器阻尼C f、后轴悬架的减震器阻尼C r为控制量。也就是说,通过调整C f、C r,可以调整预测横摆角速度。
预期横摆角速度模型可以表示为:
Figure PCTCN2020117209-appb-000018
其中,r des为预期横摆角速度,r 0可以表示为:
Figure PCTCN2020117209-appb-000019
其中,m为车辆质量,v x为车辆纵向车速,δ为车辆的前轮转角,K r为后轴悬架连接的轮胎的侧偏刚度,K f为前轴悬架连接的轮胎的侧偏刚度,K r、K f均为预设值。车辆的前轮转角δ由方向盘转角确定。
MPC模型可以用于表示预期横摆角速度与预测横摆角速度之间的偏离。MPC模型可以表示为:
Figure PCTCN2020117209-appb-000020
其中,r为车辆的预测横摆角速度,k与k C常数系数,k的值一般为10 12.5,k C的值一般为1,r des为预期横摆角速度,C j为前轴悬架的减震器阻尼C f或后轴悬架的减震器阻尼C r
当前轴悬架与后轴悬架均为半主动悬架时,可以通过MPC模型分别将C j和C r作为C j进行优化。
通过调整减震器阻尼C j的值,最小化预期横摆角速度与预测横摆角速度之间的偏离L,可以得到使得偏离L最小的减震器阻尼C j
在MPC模型的积分运算中,可以通过侧倾动态模型,确定为簧上质量侧倾角加速度
Figure PCTCN2020117209-appb-000021
簧上质量侧倾角加速度
Figure PCTCN2020117209-appb-000022
是簧上质量侧倾角速度
Figure PCTCN2020117209-appb-000023
的导数,可以理解为簧上质量 侧倾角速度
Figure PCTCN2020117209-appb-000024
的变化趋势。侧倾动态模型为:
Figure PCTCN2020117209-appb-000025
其中,I xx为车辆的侧倾转动惯量,
Figure PCTCN2020117209-appb-000026
均为常数系数,h s为车辆质心与侧倾中心之间的高度差(也就是侧倾运动的力臂)。侧倾转动惯量I xx可以理解为车辆侧倾运动的转动惯量,即车辆绕沿着纵向方向的轴转动的转动惯量。
在MPC模型的积分运算中,预测时域T例如可以是0.2秒(second,s),采样时间dt例如可以是0.01s,则MPC模块的预测步数为20。
为了使得控制过程中悬架的机械参数与实际情况相符,需对悬架的形变参数进行约束。
可以对对减震器阻尼进行约束。一般情况下,悬架阻尼器的调节范围在0~30000牛秒每米(N·s/m)。同时,目前常见的磁流变减震器的阻尼建立时间为10ms左右,因此控制器输出的阻尼不能变化过大。可以采用增量控制的方式对减震器的阻尼进行调整。对减震器的阻尼的增量控制,即控制减震器的阻尼的变化过程,使得单位时间减震器阻尼的增加量保持不变(或减小量保持不变),可以在一定程度上抑制控制量突变。
悬架的行程一般在10cm左右,不超过15cm。悬架的行程是指悬架的弹簧压缩形变最大值与拉伸形变最大值之间的差值,即伸缩形变的最低点到最高之间的距离。
采用图6所示的悬架控制系统,以横摆角速度为控制目标,在车辆转向时对车辆悬架的减震器阻尼进行调整,从而调整车辆各个轮胎的载荷力,以调整轮胎的侧向力,实现对横摆角速度的调整。图6所示的悬架控制系统,综合考虑了车辆在转向过程中的侧倾运动和转向运动,使得对车辆转向的控制更加精确,降低车辆转向时车辆行驶方向的控制对车辆制动系统的磨损,提高车辆的舒适性和安全性。
采用图6所示的悬架控制系统对车辆的悬架的减震器阻尼进行调整,利用CarMaker软件进行仿真,MPC模型输出的车辆的前后轴悬架的减震器阻尼如图7所示。
按照图7所示的MPC模型输出量,对车辆的前后轴悬架的减震器阻尼进行调整,车辆的实际横摆角速度随时间的变化情况如图8中“有控制”对应的曲线所示。未对悬架的减震器阻尼进行调整情况下车辆的实际横摆角速度随时间的变化情况如图8中“无控制”对应的曲线所示。
由图7和图8可以看出,采用本申请实施例提供的悬架控制方法,在约6400毫秒(ms)和7000ms处对车辆的横摆角速度的超调具有一定的抑制作用,从而可以提高车辆驾驶的舒适性。
本申请实施例提供的悬架控制方法,实现了横摆角速度的瞬态控制,对车辆的横摆角速度具有较高的响应速度,使得车辆的操控性和稳定性较好。
本申请实施例提供的悬架控制方法可以与通过制动的方式对车辆行驶方向进行调整的方法共同使用,以提高对于车辆行驶方向的准确控制。
图9是本申请实施例提供的一种悬架控制装置的示意性结构图,
悬架控制装置2000包括处理模块2010和调整模块2020。
处理模块2010用于,确定车辆转向。
调整模块2020用于,响应于所述转向的确定,调整所述悬架的形变参数,以调整所 述车辆的行驶方向。
可选地,处理模块2010还用于,根据所述车辆的状态参数,确定所述车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系。
所述悬架的形变参数的调整使得所述车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
可选地,所述状态参数包括:侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度。
可选地,处理模块2010还用于,根据所述车辆的纵向车速和方向盘转角,确定所述预期横摆角速度。
所述悬架包括减震器,所述悬架的形变参数包括所述减震器的阻尼。
图10是本申请实施例提供的一种通信装置的示意性结构图。
通信装置3000包括存储器3010和处理器3020。
存储器3010用于存储程序指令。
当程序指令在处理器3020中执行时,处理器3020用于:
确定所述车辆转向;
响应于所述转向的确定,调整所述悬架的形变参数,以调整所述车辆的行驶方向。
可选地,处理器3020还用于,根据所述车辆的状态参数,确定所述车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系。
所述悬架的形变参数的调整使得所述车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
可选地,所述状态参数包括:侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度。
可选地,处理器3020还用于,根据所述车辆的纵向车速和方向盘转角,确定所述预期横摆角速度。
可选地,所述悬架包括减震器,所述悬架的形变参数包括所述减震器的阻尼。
本申请实施例还提供一种车辆,包括悬架和前文所述的悬架控制装置。
本申请实施例还提供一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被执行时,使得前文中的方法被执行。
本申请实施例还提供一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得前文中的方法被执行。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单 独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种悬架控制方法,其特征在于,所述悬架应用于车辆中,所述方法包括:
    确定所述车辆转向;
    响应于所述转向的确定,调整所述悬架的形变参数,以调整所述车辆的行驶方向。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述车辆的状态参数,确定所述车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系;
    所述悬架的形变参数的调整使得所述车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
  3. 根据权利要求2所述的方法,其特征在于,所述状态参数包括:侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:根据所述车辆的纵向车速和方向盘转角,确定所述预期横摆角速度。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述悬架包括减震器,所述悬架的形变参数包括所述减震器的阻尼。
  6. 一种悬架控制装置,其特征在于,所述悬架应用于车辆中,所述装置包括:处理模块和调整模块,
    所述处理模块用于,确定所述车辆转向;
    响应于所述转向的确定,所述调整模块用于,调整所述悬架的形变参数,以调整所述车辆的行驶方向。
  7. 根据权利要求6所述的装置,其特征在于,
    所述处理模块还用于,根据所述车辆的状态参数,确定所述车辆的预测横摆角速度与所述悬架的形变参数之间的关联关系;
    所述悬架的形变参数的调整使得所述车辆的预期横摆角速度与预测横摆角速度之间的偏离减小。
  8. 根据权利要求7所述的装置,其特征在于,所述状态参数包括:侧向加速度、质心侧偏角、方向盘转角对应的前轮转向角、纵向车速、簧上质量侧倾角、簧上质量侧倾角速度。
  9. 根据权利要求7或8所述的装置,其特征在于,所述处理模块还用于,根据所述车辆的纵向车速和方向盘转角,确定所述预期横摆角速度。
  10. 根据权利要求6-9中任一项所述的装置,其特征在于,所述悬架包括减震器,所述悬架的形变参数包括所述减震器的阻尼。
  11. 一种计算机程序存储介质,其特征在于,所述计算机程序存储介质具有程序指令,当所述程序指令被执行时,使得如权利要求1至5中任一项所述的方法被执行。
  12. 一种芯片,其特征在于,所述芯片包括至少一个处理器,当程序指令被所述至少一个处理器中执行时,使得如权利要求1至5中任一项所述的方法被执行。
  13. 一种车辆,其特征在于,包括悬架和权利要求6-10中任一项所述的悬架控制装置。
PCT/CN2020/117209 2020-09-23 2020-09-23 悬架控制方法、悬架控制装置和车辆 WO2022061607A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20954461.8A EP4206005A4 (en) 2020-09-23 2020-09-23 SUSPENSION CONTROL METHOD, SUSPENSION CONTROL APPARATUS AND VEHICLE
PCT/CN2020/117209 WO2022061607A1 (zh) 2020-09-23 2020-09-23 悬架控制方法、悬架控制装置和车辆
CN202080005087.5A CN112689569A (zh) 2020-09-23 2020-09-23 悬架控制方法、悬架控制装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117209 WO2022061607A1 (zh) 2020-09-23 2020-09-23 悬架控制方法、悬架控制装置和车辆

Publications (1)

Publication Number Publication Date
WO2022061607A1 true WO2022061607A1 (zh) 2022-03-31

Family

ID=75457739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117209 WO2022061607A1 (zh) 2020-09-23 2020-09-23 悬架控制方法、悬架控制装置和车辆

Country Status (3)

Country Link
EP (1) EP4206005A4 (zh)
CN (1) CN112689569A (zh)
WO (1) WO2022061607A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173044A (zh) * 2021-06-08 2021-07-27 安徽三联学院 一种车身稳定系统、防侧撞系统
CN113978196B (zh) * 2021-12-27 2022-05-10 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种用于无人驾驶车辆的悬架侧倾抑制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080040000A1 (en) * 2006-08-08 2008-02-14 Gm Global Technology Operations, Inc. Vehicle Yaw/Roll Stability Control with Semi-Active Suspension
CN103847455A (zh) * 2014-02-20 2014-06-11 南京航空航天大学 一种车辆弯道悬架调节装置
CN108327478A (zh) * 2017-01-20 2018-07-27 通用汽车环球科技运作有限责任公司 带有可调节减振器的车辆和用于其的控制方法
CN110271377A (zh) * 2019-07-04 2019-09-24 爱驰汽车有限公司 汽车悬架急弯补偿的方法、系统、设备及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505108B2 (en) * 2000-03-01 2003-01-07 Delphi Technologies, Inc. Damper based vehicle yaw control
JP3781114B2 (ja) * 2002-08-07 2006-05-31 トヨタ自動車株式会社 車両用接地荷重制御装置
DE60331390D1 (de) * 2002-08-20 2010-04-08 Mando Corp Aufhängungsvorrichtung zur Begrenzung des Wankens oder des Gierens für Fahrzeuge
DE102004040876A1 (de) * 2004-03-11 2005-12-29 Continental Teves Ag & Co. Ohg Verfahren zur Fahrdynamikregelung eines Fahrzeugs, Vorrichtung zur Durchführung des Verfahrens und ihre Verwendung
JP4333660B2 (ja) * 2005-10-07 2009-09-16 トヨタ自動車株式会社 ロール角制御とロール剛性前後配分比制御を組み合わせた車輌
KR20170084830A (ko) * 2016-01-13 2017-07-21 현대자동차주식회사 현가장치를 이용한 차량의 요(yaw) 운동 제어 방법 및 장치
CN107215165B (zh) * 2017-06-08 2018-05-11 南京林业大学 基于大阻尼力磁流变半主动悬架的汽车主动倾摆控制方法
DE102018203182A1 (de) * 2018-03-02 2019-09-19 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Regelung der Fahrzeugquerdynamik
EP3911527A4 (en) * 2019-01-16 2022-11-02 Clearmotion, Inc. METHOD AND DEVICE FOR DYNAMIC CONTROL OF THE SUSPENSION SYSTEM OF A VEHICLE
CN111267835B (zh) * 2020-03-26 2021-04-27 桂林电子科技大学 基于模型预测算法的四轮独立驱动汽车稳定性控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080040000A1 (en) * 2006-08-08 2008-02-14 Gm Global Technology Operations, Inc. Vehicle Yaw/Roll Stability Control with Semi-Active Suspension
CN103847455A (zh) * 2014-02-20 2014-06-11 南京航空航天大学 一种车辆弯道悬架调节装置
CN108327478A (zh) * 2017-01-20 2018-07-27 通用汽车环球科技运作有限责任公司 带有可调节减振器的车辆和用于其的控制方法
CN110271377A (zh) * 2019-07-04 2019-09-24 爱驰汽车有限公司 汽车悬架急弯补偿的方法、系统、设备及存储介质

Also Published As

Publication number Publication date
EP4206005A4 (en) 2023-10-18
CN112689569A (zh) 2021-04-20
EP4206005A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US8718872B2 (en) Vehicle attitude controller
US8855856B2 (en) Vehicle roll control method using controllable friction force of MR dampers
EP4101665B1 (en) Method to control the active shock absorbers of a road vehicle featuring the lowering of the centre of gravity
EP4101664A1 (en) Method to control the active shock absorbers of a road vehicle featuring the adjustment of the roll angle and of the pitch angle
JP6286091B1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、及びサスペンション装置。
WO2022061607A1 (zh) 悬架控制方法、悬架控制装置和车辆
WO2020003550A1 (ja) ステアリング制御装置及びステアリング装置
EP3865359B1 (en) Method to control, while driving along a curve, a road vehicle with a variable stiffness and with rear steering wheels
KR102589031B1 (ko) 액티브 서스펜션 제어유닛 및 액티브 서스펜션 제어방법
JP2018090248A (ja) 車両制御装置、および、車両
JP2005225302A (ja) スタビライザ制御装置
JP2006062505A (ja) 車両用サスペンション装置
JP5316279B2 (ja) 車両振動抑制装置
WO2018220862A1 (ja) サスペンション制御装置、及びサスペンション装置
JP4639914B2 (ja) 車両挙動制御装置
US11945428B2 (en) Vehicle motion control apparatus
JP2009078759A (ja) 車両用サスペンション制御装置
GB2563561B (en) Suspension control system
WO2020003549A1 (ja) ステアリング制御装置及びステアリング装置
KR20180068742A (ko) 급제동 차량의 안정화 제어 방법 및 안정화 제어 시스템
CN113071282B (zh) 一种车辆调节方法及装置
JP5157683B2 (ja) サスペンション制御装置
JP2009078758A (ja) 車両用サスペンション制御装置
KR20180068744A (ko) Ars를 이용한 차량의 안정화 제어 방법 및 안정화 제어 시스템
JP3008143B2 (ja) 車両用サスペンション制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020954461

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE