WO2022061568A1 - 一种四轴数控机床加工中工件最大变形量检测装置及方法 - Google Patents

一种四轴数控机床加工中工件最大变形量检测装置及方法 Download PDF

Info

Publication number
WO2022061568A1
WO2022061568A1 PCT/CN2020/117060 CN2020117060W WO2022061568A1 WO 2022061568 A1 WO2022061568 A1 WO 2022061568A1 CN 2020117060 W CN2020117060 W CN 2020117060W WO 2022061568 A1 WO2022061568 A1 WO 2022061568A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
support body
detection unit
detecting
maximum deformation
Prior art date
Application number
PCT/CN2020/117060
Other languages
English (en)
French (fr)
Inventor
周微
宗玉
郭靖
祁燕斌
Original Assignee
常州机电职业技术学院
伊犁技师培训学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州机电职业技术学院, 伊犁技师培训学院 filed Critical 常州机电职业技术学院
Priority to PCT/CN2020/117060 priority Critical patent/WO2022061568A1/zh
Publication of WO2022061568A1 publication Critical patent/WO2022061568A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the invention belongs to the field of numerical control machining, in particular to a device and a method for detecting the maximum deformation of a workpiece in four-axis numerical control machine tool machining.
  • the present invention proposes a device and method for detecting the maximum deformation of a workpiece in the processing of a four-axis numerically controlled machine tool.
  • a device for detecting the maximum deformation of a workpiece in the processing of a four-axis numerically controlled machine tool which comprises a top, a connecting rod, a second support body, a first displacement detection unit, a first support body, A controller, a base and a second displacement detection unit, one end of the connecting rod is fixedly connected to the top, the other end is fixedly connected to the first support body, the second support body is located between the top and the first support body, and is connected to the connecting rod.
  • the rod is fixedly connected, the bottom of the second support body is connected to the base through an elastic member, the bottom of the first support body is connected to the base through a rotating shaft, the support height of the first support body and the second support body are the same, and the first support body is at the same height as the second support body.
  • the displacement detection unit is located between the first support body and the second support body, and is fixedly connected with the connecting rod, the second displacement detection unit is fixedly connected to the bottom of the second support body, and the first displacement detection unit and the second support body are fixedly connected.
  • the displacement detection units are all connected with the controller in communication.
  • first displacement detection unit and the second displacement detection unit are both eddy current sensors
  • the first displacement detection unit is a first eddy current sensor
  • the second displacement detection unit includes a second eddy current sensor and a third eddy current sensor.
  • the second eddy current sensor and the third eddy current sensor are symmetrical with respect to the projection of the connecting rod axis on the horizontal plane, and the straight line formed by the second eddy current sensor and the third eddy current sensor is on the horizontal plane with the connecting rod axis.
  • the projection on is vertical.
  • first displacement detection unit and the second displacement detection unit are both connected in communication with a wireless transmitter, the wireless transmitter is in communication connection with the controller, and the wireless transmitter is connected with a battery.
  • the second support body is connected with the elastic member through the telescopic support portion.
  • controller is connected with the display.
  • top is a replaceable live center.
  • the elastic member is a spring.
  • controller is an 89C52 single-chip microcomputer.
  • the invention also provides a method for detecting the maximum deformation of the workpiece in the processing of the four-axis CNC machine tool, which comprises the following steps:
  • Step 1 Connect the top to the workpiece, and the workpiece is deformed by the cutting force to drive the top and the connecting rod to generate displacement h;
  • Step 2 measure the distance between the workpiece and the second support body as L 1 , measure the distance between the second support body and the first support body as L 2 ,
  • Step 3 The displacement of the connecting rod detected by the first displacement detection unit is b, and the displacement of the second support body is detected by the second displacement detection unit as a;
  • Step 4 Apply the formula Calculate the maximum deformation of the workpiece, where h is the maximum deformation of the workpiece.
  • the present invention has the beneficial effects that the present invention solves the problem that the radial deformation of the workpiece cannot be measured when the workpiece is processed in the prior art.
  • the invention indirectly measures the maximum radial deformation of the workpiece by using the high-precision eddy current displacement sensor and the corresponding structural form, provides data support for the error compensation of the CNC machine tool, and ensures the machining accuracy of the workpiece.
  • the detection device can accurately detect the deformation of the workpiece of the four-axis CNC machine tool due to processing on-line.
  • the double eddy current sensor at the end near the top can improve the detection accuracy.
  • the controller has good real-time performance and clear detection results. It is a high-precision four-axis
  • the tool error compensation of CNC machining provides data support. Data acquisition, filtering and calculation are completed by compiling software, which has good reliability, wide application and broad application prospects.
  • FIG. 1 is a schematic diagram of bending deformation of a four-axis CNC machining workpiece according to the present invention
  • FIG. 2 is a schematic structural diagram of a device for detecting the maximum deformation of a workpiece in the processing of a four-axis CNC machine tool according to the present invention
  • Fig. 3 is the measurement schematic diagram of the present invention.
  • FIG. 4 is a flowchart of a method for detecting the maximum deformation of a workpiece in the processing of a four-axis CNC machine tool according to the present invention
  • Fig. 5 is the controller main program flow chart of the present invention.
  • Fig. 6 is the flow chart that the controller of the present invention collects the detection data of each eddy current sensor in real time
  • Fig. 7 is the relationship diagram of the center of the present invention and the initial position of the workpiece
  • Fig. 8 is the positional relationship diagram when the center according to the present invention is inserted into the workpiece
  • FIG. 9 is an electrical schematic diagram of the controller hardware according to the present invention.
  • a device for detecting the maximum deformation of a workpiece in four-axis CNC machine tool processing includes a center 1, a connecting rod 2, a second support body 3, a first displacement detection unit 4, and a first support 5, the controller 6, the base 10 and the second displacement detection unit 12, one end of the connecting rod 2 is fixedly connected to the top 1, and the other end is fixedly connected to the first support 5, and the second support 3 is located in the top 1
  • the bottom of the second support body 3 is connected to the base 10 through the elastic member 13
  • the bottom of the first support body 5 is connected to the base 10 through the rotating shaft 9.
  • the first support body 5 and the second support body 3 are supported at the same height.
  • the first displacement detection unit 4 is located between the first support body 5 and the second support body 3 and is fixedly connected to the connecting rod 2.
  • the second displacement detecting unit 12 is fixedly connected to the bottom of the second supporting body 3 , and both the first displacement detecting unit 4 and the second displacement detecting unit 12 are connected to the controller 6 in communication.
  • the workpiece 17 is fixed by the fixture 16.
  • the workpiece 17 is subjected to the cutting force of the CNC milling cutter 15, resulting in The axial deformation h is detected by the detection device shown in FIG. 2 to detect the maximum radial deformation of the workpiece 17 .
  • the first displacement detection unit 4 and the second displacement detection unit 12 are both eddy current sensors, the first displacement detection unit 4 is a first eddy current sensor, and the second displacement detection unit 12 includes a second eddy current sensor and a third eddy current sensor , the second eddy current sensor and the third eddy current sensor are symmetrical with respect to the projection of the axis of the connecting rod 2 on the horizontal plane, and the straight line formed by the second eddy current sensor and the third eddy current sensor is perpendicular to the projection of the axis of the connecting rod 2 on the horizontal plane,
  • the first displacement detection unit 4 and the second displacement detection unit 12 are all connected with the wireless transmitter 7 in communication, the wireless transmitter 7 is connected with the controller 6 in communication, the wireless transmitter 7 is connected with the battery, and the battery 8 is used to supply the wireless transmitter ( 7) Power supply, the second support body 3 is connected with the elastic member 13 through the telescopic support portion 14 for adjusting the height of the second support body 3, the controller 6 is connected with the display for
  • the present embodiment is a method for detecting the maximum deformation of a workpiece in the processing of a four-axis CNC machine tool, which includes the following steps:
  • Step 1 Connect the top 1 with the workpiece 17, and the workpiece 17 is deformed by the cutting force, which drives the top 1 and the connecting rod 2 to generate displacement h;
  • Step 2 measure the distance between the workpiece 17 and the second support body 3 as L 1 , measure the distance between the second support body 3 and the first support body 5 as L 2 ,
  • Step 3 The displacement of the connecting rod 2 detected by the first displacement detection unit 4 is b, and the displacement of the second support body 3 detected by the second displacement detection unit 12 is a;
  • Step 4 Apply the formula Calculate the maximum deformation of the workpiece 17 , where h is the maximum deformation of the workpiece 17 .
  • the replaceable live center When the detection device is in operation, the replaceable live center is connected to the workpiece 17, and the workpiece 17 is deformed by the cutting force to drive the center 1 and the connecting rod 2 to generate displacement h, and the second displacement detection unit 12 can detect the tiny position of the second support body 3.
  • the amount of change, the small position change is output in the form of current, and the controller 6 converts the displacement change through the program after detecting the current change.
  • two eddy current sensors are designed for the second support body 3 , namely, the second eddy current sensor and the third eddy current sensor. After the two sensors detect the position change of the second support body 3, the detected values are averaged to obtain the displacement amount a.
  • the first displacement detection unit 4 that is, the first eddy current sensor, detects the displacement change b of the connecting rod 2. It is known that the distance between the workpiece 17 and the second support body 3 is L 1 , and the known second support body 3 The distance from the first support body 5 is L 2 , the maximum deformation h of the workpiece 17 can be calculated according to the similar triangle principle, and the detection data of the eddy current sensor is sent to the controller 6 through the wireless transmitter 7 .
  • a 1 is the detection amount of the second eddy current sensor
  • a 2 is the detection amount of the third eddy current sensor
  • a is the average value of the physical measurement of the second support
  • b is the detection amount of the first eddy current sensor
  • L 1 is the The distance between the workpiece and the second support body
  • L 2 is the distance between the second support body and the first support body
  • h is the maximum deformation of the workpiece.
  • the maximum deformation h of the workpiece is 1.421mm.
  • the controller 6 realizes the above calculation process by programming.
  • an online detection method for the maximum deformation of a workpiece in the processing of a four-axis CNC machine tool includes the following steps:
  • Adopt formula Calculate the displacement of the second support 3, where a is the displacement of the second support
  • Adopt formula Calculate the maximum deformation of the workpiece, where h is the maximum deformation of the workpiece.
  • buttons are designed with the functions of "record (K1)”, “start (K2)”, “end (K3)”, “input” (K4)", “Cursor left (K5)”, “Cursor right (K6)”, “Data plus 1 (K7)”, “Data minus 1 (K8)”.
  • the main program control flow is shown in Figure 5.
  • the controller 6 initializes each module to ensure the normal operation of the system, that is, detects whether each hardware module is normal and assigns an initial value.
  • the sensor data is collected, filtered, stored, and key scanned. If any key is pressed, enter the key subroutine. If no key is pressed, the screen displays basic information, the indicator light is on, and returns.
  • the "Start" button function as shown in Figure 6, after pressing the "Start” button, the controller 6 reads the data information of the three eddy current sensors, filters and stores them, according to the previously undistorted measurement record value and the deformed measurement. Variations a 1 , a 2 , and b are obtained by calculating the values.
  • the lengths L 1 and L 2 are fixed values.
  • the deformation h is calculated using the similar triangle principle.
  • the second eddy current sensor and the third electric The measured value of the eddy current sensor is averaged to obtain a, the calculation result and related parameters are displayed on the display, and the main program is returned.
  • Step 1 Before the four-axis machine tool is processed, install the precision cross slide on the operation table of the four-axis CNC machine tool, install the detection device on the precision cross slide, and operate the cross slide, as shown in Figure 7, to make the detection device
  • the top 1 is close to the top process hole of the workpiece 17;
  • Step 2 Manually adjust the telescopic support 14 to keep the center of the center 1 and the workpiece 17 level.
  • the telescopic support 14 is composed of nuts and bolts. Manually rotate the nuts to move the bolts up and down to drive the second support 3 to adjust up and down. Adjust the first A support body 5, as shown in Figure 8, manually operates the precision cross slide, and inserts the center 1 into the process center hole of the workpiece 17;
  • Step 3 Press the “record” button on the controller 6, the controller 6 collects the detection data of the three eddy current sensors at this time, and stores them in the controller storage area. At the same time, use the keyboard to input L 1 and L 2 value, press the "OK"key;
  • Step 4 After the four-axis machine tool starts processing, press the "Start" button, and the controller 6 collects the detection data of each eddy current sensor in real time, that is, the deformation amount of 2.
  • the controller 6 records the three sensor data before processing according to the data, namely The data when the workpiece 17 is not processed and deformed and the collected data, calculate the deformation amount of the workpiece 17, and display the result value on the display in real time;
  • Step 5 When the processing is finished or when measurement is not required, press the "end” button, the controller 6 automatically saves the recorded deformation data and stops working.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

提供了一种四轴数控机床加工中工件最大变形量检测装置及采用其的检测方法,其中检测装置包括顶尖(1)、连杆(2)、第二支撑体(3)、第一位移检测单元(4)、第一支撑体(5)、控制器(6)、底座(10)和第二位移检测单元(12),连杆一端与顶尖固定连接,另一端与第一支撑体固定连接,第二支撑体位于顶尖与第一支撑体之间,并与连杆固定连接,第二支撑体底部通过弹性部件(13)与底座相连,第一支撑体底部通过转轴(9)与底座相连,第一支撑体与第二支撑体支撑高度相同,第一位移检测单元位于第一支撑体与第二支撑体之间,并与连杆固定连接,第二位移检测单元固定连接于第二支撑体的底部。此装置和方法主要用于检测机床加工中工件的最大变形量,解决了现有加工工件时,工件产生的径向变形无法测量的问题。

Description

一种四轴数控机床加工中工件最大变形量检测装置及方法 技术领域
本发明属于数控加工领域,特别是涉及一种四轴数控机床加工中工件最大变形量检测装置及方法。
背景技术
随着数控加工技术的不断发展,四轴数控机床应用越来越广泛。在四轴机床加工工件时,利用数控铣刀自身旋转对工件进行切削加工。在加工过程中,工件受到刀具切削力,产生径向变形,极大影响加工精度。因此,迫切需要一种在线检测装置来检测工件最大变形,为刀具的实时动态补偿提供数据支持。
发明内容
本发明为了解决现有技术中的问题,提出一种四轴数控机床加工中工件最大变形量检测装置及方法。
为实现上述目的,本发明采用以下技术方案:一种四轴数控机床加工中工件最大变形量检测装置,它包括顶尖、连杆、第二支撑体、第一位移检测单元、第一支撑体、控制器、底座和第二位移检测单元,所述连杆一端与顶尖固定连接,另一端与第一支撑体固定连接,所述第二支撑体位于顶尖与第一支撑体之间,并与连杆固定连接,所述第二支撑体底部通过弹性部件与底座相连,所述第一支撑体底部通过转轴与底座相连,所述第一支撑体与第二支撑体支撑高度相同,所述第一位移检测单元位于第一支撑体与第二支撑体之间,并与连杆固定连接,所述第二位移检测单元固定连接于第二支撑体的底部,所述第一位移检测单元和第二位移检测单元均与控制器通讯连接。
更进一步的,所述第一位移检测单元和第二位移检测单元均为电涡流传感器,所述第一位移检测单元为第一电涡流传感器,所述第二位移检测单元包括第二电涡流传感器和第三电涡流传感器。
更进一步的,所述第二电涡流传感器和第三电涡流传感器关于连杆轴线在水平面上的投影对称,所述第二电涡流传感器和第三电涡流传感器构成的直线与连杆轴线在水平面上的投影垂直。
更进一步的,所述第一位移检测单元和第二位移检测单元均与无线发射器通讯连接,所述无线发射器与控制器通讯连接,所述无线发射器与电池相连。
更进一步的,所述第二支撑体通过伸缩支撑部与弹性部件相连。
更进一步的,所述控制器与显示器相连。
更进一步的,所述顶尖为可更换活顶尖。
更进一步的,所述弹性部件为弹簧。
更进一步的,所述控制器为89C52型单片机。
本发明还提供了一种四轴数控机床加工中工件最大变形量的检测方法,它包括以下步骤:
步骤一:使顶尖与工件相接,工件件受切削力变形则带动顶尖和连杆产生位移h;
步骤二:测量工件与第二支撑体的距离为L 1,测量第二支撑体与第一支撑体的距离为L 2
步骤三:通过第一位移检测单元检测到连杆的位移量为b,通过第二位移检测单元检测到第二支撑体的位移量为a;
步骤四:采用公式
Figure PCTCN2020117060-appb-000001
计算工件最大变形量,其中,h为工件的最大变形量。
与现有技术相比,本发明的有益效果是:本发明解决了现有加工工件时,工件产生的径向变形无法测量的问题。本发明通过使用高精度电涡流位移传感器及对应的结构形式,间接测量工件最大径向变形量,为数控机床刀具误差补偿提供数据支撑,保证工件加工精度。本检测装置能够在线精确的检测四轴数控机床工件因加工产生的变形量,靠近顶尖的一端设置双电涡流传感器更能提高检测精度,控制器实时性好,检测结果清晰,为高精度四轴数控加工的刀具误差补偿提供了数据支持。通过编制软件完成数据采集、滤波及计算等,可靠性好,应用广泛,具有广阔的应用前景。
附图说明
图1为本发明所述的四轴数控加工工件弯曲变形示意图;
图2为本发明所述的一种四轴数控机床加工中工件最大变形量检测装置结构示意图;
图3为本发明所述的测量示意图;
图4为本发明所述的一种四轴数控机床加工中工件最大变形量的检测方法流程图;
图5为本发明所述的控制器主程序流程图;
图6为本发明所述的控制器实时采集各个电涡流传感器检测数据流程图;
图7为本发明所述的顶尖与工件初始位置关系图;
图8为本发明所述的顶尖插入工件时位置关系图;
图9为本发明所述的控制器硬件电气原理图。
1-顶尖,2-连杆,3-第二支撑体,4-第一位移检测单元,5-第一支撑体,6-控制器,7- 无线发射器,8-电池,9-转轴,10-底座,11-支撑钉,12-第二位移检测单元,13-弹性部件,14-伸缩支撑部,15-铣刀,16-夹具,17-工件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地阐述。
参见图1-9说明本实施方式,一种四轴数控机床加工中工件最大变形量检测装置,它包括顶尖1、连杆2、第二支撑体3、第一位移检测单元4、第一支撑体5、控制器6、底座10和第二位移检测单元12,所述连杆2一端与顶尖1固定连接,另一端与第一支撑体5固定连接,所述第二支撑体3位于顶尖1与第一支撑体5之间,并与连杆2固定连接,所述第二支撑体3底部通过弹性部件13与底座10相连,所述第一支撑体5底部通过转轴9与底座10相连,所述第一支撑体5与第二支撑体3支撑高度相同,所述第一位移检测单元4位于第一支撑体5与第二支撑体3之间,并与连杆2固定连接,所述第二位移检测单元12固定连接于第二支撑体3的底部,所述第一位移检测单元4和第二位移检测单元12均与控制器6通讯连接。
如图1所示,在四轴机床加工工件时,工件17被夹具16固定,利用数控铣刀15自身旋转对工件17进行切削加工的过程中,工件17受到数控铣刀15的切削力,产生轴向变形h,通过图2所示的检测装置,来检测工件17最大径向变形量。第一位移检测单元4和第二位移检测单元12均为电涡流传感器,第一位移检测单元4为第一电涡流传感器,第二位移检测单元12包括第二电涡流传感器和第三电涡流传感器,第二电涡流传感器和第三电涡流传感器关于连杆2轴线在水平面上的投影对称,第二电涡流传感器和第三电涡流传感器构成的直线与连杆2轴线在水平面上的投影垂直,第一位移检测单元4和第二位移检测单元12均与无线发射器7通讯连接,无线发射器7与控制器6通讯连接,无线发射器7与电池相连,电池8用于给无线发射器(7)供电,第二支撑体3通过伸缩支撑部14与弹性部件13相连,用于调节所述第二支撑体3的高度,控制器6与显示器相连,用于显示工件17的最大变形量,顶尖1为可更换活顶尖,弹性部件13为弹簧,控制器为89C52型单片机,底座10底部设置有支撑钉11,用于支撑整个装置结构。
本实施例为一种四轴数控机床加工中工件最大变形量的检测方法,它包括以下步骤:
步骤一:使顶尖1与工件17相接,工件17件受切削力变形则带动顶尖1和连杆2产生位移h;
步骤二:测量工件17与第二支撑体3的距离为L 1,测量第二支撑体3与第一支撑体5 的距离为L 2
步骤三:通过第一位移检测单元4检测到连杆2的位移量为b,通过第二位移检测单元12检测到第二支撑体3的位移量为a;
步骤四:采用公式
Figure PCTCN2020117060-appb-000002
计算工件17最大变形量,其中,h为工件17的最大变形量。
检测装置工作时,可更换活顶尖与工件17相接,工件17受切削力变形则带动顶尖1和连杆2产生位移h,第二位移检测单元12可以检测到第二支撑体3的微小位置变化量,将微小位置变化量通过电流形式输出,控制器6检测到电流变化量后通过程序转换位移变化。为了提高检测精度弥补左右不平衡误差,为第二支撑体3设计了两个电涡流传感器,即为第二电涡流传感器和第三电涡流传感器。两个传感器检测到第二支撑体3发生位置变化后对检测值求平均值得到位移量a。同理,第一位移检测单元4也就是第一电涡流传感器则检测到连杆2位移变化量b,已知工件17与第二支撑体3的距离为L 1,已知第二支撑体3与第一支撑体5距离为L 2,根据相似三角形原理可计算出工件17的最大变形量h,电涡流传感器的检测数据通过无线发射器7发送给控制器6。
具体计算由相似三角形性质可得:
Figure PCTCN2020117060-appb-000003
整理得:
Figure PCTCN2020117060-appb-000004
其中a 1为第二电涡流传感器的检测量;a 2为第三电涡流传感器的检测量;a为第二支撑体检测量的平均值;b为第一电涡流传感器的检测量;L 1为工件与第二支撑体的距离;L 2为第二支撑体与第一支撑体的距离;h为工件最大变形量。
测量某工件的在工作中的变形量数据及相关测量参数,如下表所示,
L 1(mm) L 2(mm) a 1(mm) a 2(mm) b(mm)
350.342 200.000 2.134 2.268 3.431
代入相关数值到上述公式:
Figure PCTCN2020117060-appb-000005
Figure PCTCN2020117060-appb-000006
因此,工件最大变形量h为1.421mm。控制器6通过编制程序实现以上计算过程。
如图4所示,一种四轴数控机床加工中工件最大变形量在线检测方法,包括一下步骤:
401:获取工件17与第二支撑体3的距离L 1、第二支撑体3与第一支撑体5的距离L 2、第一电涡流传感器的位移b、第二电涡流传感器的位移a1和第三电涡流传感器的位移a2;
402:采用公式
Figure PCTCN2020117060-appb-000007
计算第二支撑体3的位移量,其中a为第二支撑体位移量
403:采用公式
Figure PCTCN2020117060-appb-000008
计算工件最大变形量,其中,h为工件最大变形量。
控制器6具体硬件电路如图9所示,选择89C52为核心控制芯片,设计8个按键,功能分别为“记录(K1)”、“开始(K2)”、“结束(K3)”、“输入(K4)”、“光标左(K5)”、“光标右(K6)”、“数据加1(K7)”、“数据减1(K8)”。
主程序控制流程如图5所示,上电后控制器6为保证系统运行正常,初始化各个模块,即检测各硬件模块是否正常并赋初始值。初始化检测正常后采集传感器数据,滤波、存储,进行按键扫描,若有键按键按下,进入按键子程序,无键按下,屏幕显示基本信息,指示灯亮,返回。“开始”按键功能,如图6所示,按“开始”键后,控制器6读取三个电涡流传感器的数据信息,滤波、存储,根据之前未变形的测量记录值、变形后的测量值计算得出变化量a 1、a 2、b,长度L 1及L 2为固定值,使用相似三角形原理计算变形量h,为保证测量的精确性,将第二电涡流传感器和第三电涡流传感器的测量值求均值后得到a,计算结果及相关参数显示在显示器上,返回主程序。
使用步骤如下:
步骤1:四轴机床未加工前,在四轴数控机床操作台上安装精密十字滑台,将检测装置安装在精密十字滑台上,操作十字滑台,如图7所示,使检测装置的顶尖1接近工件17的顶尖工艺孔;
步骤2:手动调节伸缩支撑部14使得顶尖1中心与工件17保持水平,伸缩支撑部14由螺母螺栓等组成,手动旋转螺母使螺栓上下移动从而带动第二支撑体3上下调节,同样方法调整第一支撑体5,如图8所示,手动操作精密十字滑台,将顶尖1插入工件17工艺顶尖孔中;
步骤3:按控制器6上的“记录”按键,控制器6采集此时三个电涡流传感器的检测数据,并将其存储在控制器存储区中,同时,使用键盘输入L 1和L 2值,按“确定”键;
步骤4:四轴机床开始加工后,按“开始”按键,控制器6实时采集各个电涡流传感 器检测数据,即连,2的变形量,控制器6根据加工前记录的三个传感器数据,即工件17未加工变形时的数据以及采集数据,计算工件17变形量,将结果数值实时显示在显示器上;
步骤5:当加工结束后或不需要测量时,按“结束”按键,控制器6自动保存已经记录的变形量数据,并停止工作。
以上对本发明所提供的一种四轴数控机床加工中工件最大变形量检测装置及方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:它包括顶尖(1)、连杆(2)、第二支撑体(3)、第一位移检测单元(4)、第一支撑体(5)、控制器(6)、底座(10)和第二位移检测单元(12),所述连杆(2)一端与顶尖(1)固定连接,另一端与第一支撑体(5)固定连接,所述第二支撑体(3)位于顶尖(1)与第一支撑体(5)之间,并与连杆(2)固定连接,所述第二支撑体(3)底部通过弹性部件(13)与底座(10)相连,所述第一支撑体(5)底部通过转轴(9)与底座(10)相连,所述第一支撑体(5)与第二支撑体(3)支撑高度相同,所述第一位移检测单元(4)位于第一支撑体(5)与第二支撑体(3)之间,并与连杆(2)固定连接,所述第二位移检测单元(12)固定连接于第二支撑体(3)的底部,所述第一位移检测单元(4)和第二位移检测单元(12)均与控制器(6)通讯连接。
  2. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述第一位移检测单元(4)和第二位移检测单元(12)均为电涡流传感器,所述第一位移检测单元(4)为第一电涡流传感器,所述第二位移检测单元(12)包括第二电涡流传感器和第三电涡流传感器。
  3. 根据权利要求2所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述第二电涡流传感器和第三电涡流传感器关于连杆(2)轴线在水平面上的投影对称,所述第二电涡流传感器和第三电涡流传感器构成的直线与连杆(2)轴线在水平面上的投影垂直。
  4. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述第一位移检测单元(4)和第二位移检测单元(12)均与无线发射器(7)通讯连接,所述无线发射器(7)与控制器(6)通讯连接,所述无线发射器(7)与电池相连。
  5. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述第二支撑体(3)通过伸缩支撑部(14)与弹性部件(13)相连。
  6. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述控制器(6)与显示器相连。
  7. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述顶尖(1)为可更换活顶尖。
  8. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征在于:所述弹性部件(13)为弹簧。
  9. 根据权利要求1所述的一种四轴数控机床加工中工件最大变形量检测装置,其特征 在于:所述控制器为89C52型单片机。
  10. 一种如权利要求1所述的四轴数控机床加工中工件最大变形量检测装置的检测方法,其特征在于:它包括以下步骤:
    步骤一:使顶尖(1)与工件(17)相接,工件(17)件受切削力变形则带动顶尖(1)和连杆(2)产生位移h;
    步骤二:测量工件(17)与第二支撑体(3)的距离为L 1,测量第二支撑体(3)与第一支撑体(5)的距离为L 2
    步骤三:通过第一位移检测单元(4)检测到连杆(2)的位移量为b,通过第二位移检测单元(12)检测到第二支撑体(3)的位移量为a;
    步骤四:采用公式
    Figure PCTCN2020117060-appb-100001
    计算工件(17)最大变形量,其中,h为工件(17)的最大变形量。
PCT/CN2020/117060 2020-09-23 2020-09-23 一种四轴数控机床加工中工件最大变形量检测装置及方法 WO2022061568A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117060 WO2022061568A1 (zh) 2020-09-23 2020-09-23 一种四轴数控机床加工中工件最大变形量检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117060 WO2022061568A1 (zh) 2020-09-23 2020-09-23 一种四轴数控机床加工中工件最大变形量检测装置及方法

Publications (1)

Publication Number Publication Date
WO2022061568A1 true WO2022061568A1 (zh) 2022-03-31

Family

ID=80844548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117060 WO2022061568A1 (zh) 2020-09-23 2020-09-23 一种四轴数控机床加工中工件最大变形量检测装置及方法

Country Status (1)

Country Link
WO (1) WO2022061568A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2151518A (en) * 1983-12-06 1985-07-24 Hamar M R Laser apparatus and method for effectively projecting the axis of rotation of a rotating tool holder
KR20110109663A (ko) * 2010-03-31 2011-10-06 주식회사 남선기공 문형방식 공작기계의 처짐량 측정방법
CN105252343A (zh) * 2015-11-27 2016-01-20 杭州职业技术学院 一种测量主轴径向跳动的装置
CN205496575U (zh) * 2016-04-20 2016-08-24 常州机电职业技术学院 一种高精度非接触可移动式的径向跳动检测仪
CN107414599A (zh) * 2016-05-23 2017-12-01 常州机电职业技术学院 车削刀具弯曲形变检测方法及系统
CN109175417A (zh) * 2018-09-26 2019-01-11 江苏师范大学 一种车削工件准静态变形的理论计算及动变形的实测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2151518A (en) * 1983-12-06 1985-07-24 Hamar M R Laser apparatus and method for effectively projecting the axis of rotation of a rotating tool holder
KR20110109663A (ko) * 2010-03-31 2011-10-06 주식회사 남선기공 문형방식 공작기계의 처짐량 측정방법
CN105252343A (zh) * 2015-11-27 2016-01-20 杭州职业技术学院 一种测量主轴径向跳动的装置
CN205496575U (zh) * 2016-04-20 2016-08-24 常州机电职业技术学院 一种高精度非接触可移动式的径向跳动检测仪
CN107414599A (zh) * 2016-05-23 2017-12-01 常州机电职业技术学院 车削刀具弯曲形变检测方法及系统
CN109175417A (zh) * 2018-09-26 2019-01-11 江苏师范大学 一种车削工件准静态变形的理论计算及动变形的实测方法

Similar Documents

Publication Publication Date Title
CN102927952B (zh) 一种航空发动机机匣锥形外壁直径在线检测方法
CN105397549B (zh) 机床加工孔面工件的找零点方法
CN111215967B (zh) 数控机床动态精度检测装置及方法
WO2021189298A1 (zh) 一种ca双摆头五轴数控机床摆头位置误差检测与辨识方法
CN102944417A (zh) 一种机床主轴静刚度的测试平台及方法
CN107498428B (zh) 发动机风扇转子叶尖加工机构
CN202964283U (zh) 数控铣床刀具长度的检测装置
CN102259278A (zh) 零件几何形位公差在线检测方法
CN109531274A (zh) 立式铣床的z向基准平面检测与设置方法
CN106909125A (zh) 一种电机加工性能指标的监测系统及方法
CN112556819A (zh) 一种超声加工刀具的检测装置
CN204135822U (zh) 机床外刀具同轴度检测装置
CN106112713A (zh) 数控深孔内圆磨床测量监控加工一体化装置及控制系统
WO2022061568A1 (zh) 一种四轴数控机床加工中工件最大变形量检测装置及方法
CN113618365A (zh) 一种立式装刀机
CN111678432B (zh) 一种球头铣刀磨损量检测装置及其检测方法
CN203534551U (zh) 一种压气机转子检测设备
CN112192320B (zh) 一种四轴数控机床加工中工件最大变形量检测装置及方法
CN110842647A (zh) 一种电主轴的刀柄检测装置及其检测方法
CN215998861U (zh) 一种铣削刀具变形在线测量装置
CN109297691B (zh) 一种烟机参数的检测设备及方法
CN210849432U (zh) 一种用于反面加工找正的反向寻边器
CN110465831A (zh) 一种水轮机叶片的加工在线测量方法
CN213455335U (zh) 一种基于机器人铣削平台的螺旋桨测量装置
CN110605616A (zh) 一种数控加工中虚拟销棒的制作及应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954422

Country of ref document: EP

Kind code of ref document: A1