WO2022059815A1 - Artificial intelligence-based solar module diagnosis method and system using thermal image captured by drone - Google Patents
Artificial intelligence-based solar module diagnosis method and system using thermal image captured by drone Download PDFInfo
- Publication number
- WO2022059815A1 WO2022059815A1 PCT/KR2020/012504 KR2020012504W WO2022059815A1 WO 2022059815 A1 WO2022059815 A1 WO 2022059815A1 KR 2020012504 W KR2020012504 W KR 2020012504W WO 2022059815 A1 WO2022059815 A1 WO 2022059815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- failure
- deterioration
- artificial intelligence
- analysis
- solar
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 47
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000015556 catabolic process Effects 0.000 claims abstract description 39
- 238000006731 degradation reaction Methods 0.000 claims abstract description 39
- 238000004458 analytical method Methods 0.000 claims description 101
- 230000006866 deterioration Effects 0.000 claims description 80
- 238000012545 processing Methods 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000011109 contamination Methods 0.000 claims description 7
- 230000001788 irregular Effects 0.000 claims description 7
- 238000009499 grossing Methods 0.000 claims description 5
- 208000009119 Giant Axonal Neuropathy Diseases 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 201000003382 giant axonal neuropathy 1 Diseases 0.000 claims description 3
- 238000001824 photoionisation detection Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 11
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/60—Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a photovoltaic module management technology, and more particularly, a photovoltaic module for analyzing failure/deterioration with a thermal image of a photovoltaic module taken with a drone in a photovoltaic power plant, predicting output, and judging a grade It relates to a diagnostic method and system.
- the solar module of the solar power plant is a stable product that has been operating for more than 25 years.
- failure/deterioration of the solar module may occur due to incorrect installation by the operator, initial failure, natural disaster, negligent management, and the like.
- the failure/deterioration of a solar module appears in many different ways.
- the present invention has been devised to solve the above problems, and an object of the present invention is to analyze failure/deterioration based on artificial intelligence using thermal images of solar modules photographed by a drone, predict output, and grade To provide a solar module diagnostic method and system for determining
- a solar module diagnosis method includes: acquiring thermal images of the solar modules; An analysis step of inputting the thermal image obtained in the acquisition step into the artificial intelligence model to analyze the failure and deterioration of the solar modules; It is an artificial intelligence model trained with the deterioration region and mode as output.
- a method for diagnosing a solar module includes: predicting the output of the solar modules by using the thermal image acquired in the acquisition step and the analysis result in the analysis step; determining a rating for each of the solar modules based on the output predicted in the prediction step; and visualizing and outputting the analysis result in the analysis step, the prediction result in the prediction step, and the determination result in the determination step.
- the artificial intelligence model is a Generative Adversarial Network (GAN), and GANs for Anomaly Detection (GAN-AD) may be applied.
- GAN Generative Adversarial Network
- GAN-AD GANs for Anomaly Detection
- the analysis step may include: a first analysis step of inputting the thermal image obtained in the acquisition step into the first artificial intelligence model, and analyzing the failure and deterioration of the solar modules; converting the thermal image acquired in the acquisition step by image processing based on the analysis result in the first analysis step; A second analysis step of inputting the thermal image converted in the conversion step into the second artificial intelligence model, and analyzing the failure and deterioration of the solar modules; may include.
- the conversion step may perform image processing for emphasizing faulty and deteriorated areas.
- the failure and degradation modes may include at least one of hot spots, bypass diode failure (BDF), shading, contamination, potential induced degradation (PID), short circuit, and disconnection.
- BDF bypass diode failure
- PID potential induced degradation
- image processing is performed to detect and emphasize the point shape for the failure and degradation areas analyzed as hotspots, PIDs, or shorts in the failure and degradation modes in the first analysis step, and failure and degradation in the first analysis step
- Image processing is performed to detect and emphasize the bar shape for the failure and deterioration area analyzed by BDF mode, and the surface shape is detected for the failure and deterioration area analyzed as a single line in the failure and deterioration mode in the first analysis step.
- the conversion step may further perform image processing for smoothing the area in which the failure and deterioration appear.
- the analysis step may further include; a third analysis step of collecting the analysis results in the first analysis step and the analysis results in the second analysis step, and analyzing the failure and deterioration of the solar modules.
- a solar module diagnosis system the acquisition unit for acquiring thermal images of the solar modules; and an analysis unit that inputs the thermal image obtained in the acquisition unit to the artificial intelligence model and analyzes the failure and deterioration of the solar modules, wherein the artificial intelligence model receives the thermal image as an input, and It is an artificial intelligence model trained with the deterioration region and mode as output.
- FIG. 1 is a view provided for conceptual explanation of a solar module diagnostic system according to an embodiment of the present invention
- FIG. 2 is a block diagram of the solar module diagnostic system shown in FIG. 1;
- FIG. 3 is a detailed block diagram of the solar module diagnostic platform 200 shown in FIG. 2 ;
- FIG. 5 is a diagram illustrating visual information output as a diagnosis result
- FIG. 6 is a block diagram of a solar module diagnostic platform according to another embodiment of the present invention.
- FIG. 7 is a block diagram of a solar module diagnostic platform according to another embodiment of the present invention.
- FIG. 1 is a diagram provided to explain the concept of a solar module diagnosis system according to an embodiment of the present invention.
- the solar module diagnosis platform 200 analyzes the captured thermal images, It is a system built to diagnose a solar module and provide a diagnostic result through the solar power plant manager terminal 300 .
- FIG. 2 is a block diagram of the solar module diagnostic system shown in FIG. 1 .
- the solar module diagnosis system according to the embodiment of the present invention is configured to include a drone 100 , a solar module diagnosis platform 200 , and a solar power plant manager terminal 300 as shown.
- the drone 100 creates thermal images of solar modules by photographing as if scanning the sky above the solar power plant.
- the thermal image taken by the drone 100 is transmitted to the solar module diagnosis platform 200 .
- the solar module diagnosis platform 200 analyzes the failure/deterioration of the solar modules based on artificial intelligence using the thermal image received from the drone 100, predicts the output based on this, and determines the grade.
- the photovoltaic power plant manager terminal 300 is a terminal possessed/carried by the photovoltaic power plant manager, and receives and displays a diagnosis result from the photovoltaic module diagnosis platform 200 . Through this, the photovoltaic power plant manager can understand the status of the photovoltaic modules, and establish an after-sales service and preventive maintenance plan.
- FIG. 3 is a detailed block diagram of the solar module diagnostic platform 200 shown in FIG. 2 .
- the solar module diagnosis platform 200 includes a thermal image acquisition unit 210, a failure/degradation analysis unit 220, a module output prediction unit 230 and a module grade determination unit 240, and a diagnosis result It is configured to include an output unit 250 , a diagnosis result storage unit 260 , and a diagnosis result analysis unit 270 .
- the thermal image acquisition unit 210 receives and acquires thermal images of solar modules photographed by the drone 100 , and uses the acquired thermal images to the failure/deterioration analysis unit 220 and the module output prediction unit 230 . Enter
- the failure/deterioration analysis unit 220 inputs the thermal image input by the thermal image acquisition unit 210 into the artificial intelligence model for failure/deterioration analysis, and identifies the failure and deterioration of the solar modules.
- the artificial intelligence model provided in the failure/deterioration analysis unit 220 is an artificial intelligence model learned by taking thermal images of solar modules as input and outputting failure/deterioration regions and modes of solar modules.
- the failure/deterioration mode can be classified into seven types as shown in FIG. 4 .
- module substring due to bypass diode failure, uniform high temperature, 1/3, 2/3 uniform brightness of rod (rectangular)-shaped module
- Non-uniform high temperature of string represented by multiple dots of multiple connected modules
- a uniform high temperature of the string manifested by the uniform brightness of a number of connected modules
- the AI model can be implemented as a Generative Adversarial Network (GAN), which is the most suitable model for detecting failure/degradation areas, and GAN-AD (GANs for Anomaly Detection) can be applied.
- GAN Generative Adversarial Network
- GAN-AD GANs for Anomaly Detection
- the failure/deterioration analysis unit 220 outputs the failure/deterioration region and mode of the solar modules, so that it is possible to analyze the failure/deterioration status and mode for each solar module.
- the module output prediction unit 230 predicts the output of the solar modules using the following data.
- the module output prediction unit 230 may be implemented as an artificial intelligence model learned using the above data as an input and the expected output of the solar modules as an output, or may be implemented as an algorithm using a decision engine.
- the module grade determination unit 240 determines a grade for each of the solar modules based on the output predicted by the module output prediction unit 230 .
- the module grade determination unit 240 may be implemented as an artificial intelligence model learned by inputting the prediction result of the module output prediction unit 230 and outputting the grades of solar modules, or may be implemented as an algorithm using a decision engine. .
- the diagnosis result output unit 250 visualizes and outputs the analysis result of the failure/degradation analysis unit 220 , the prediction result of the module output prediction unit 230 , and the determination result of the module grade determination unit 240 .
- the diagnosis result output unit 250 displays the corresponding information on the photovoltaic power plant map showing the arrangement state of the photovoltaic modules. 5 exemplifies information output by the diagnosis result output unit 250 .
- information on the failure/degradation status and mode of the solar module is displayed on a module-by-module basis, and in the center of FIG. In the lower part, information about the grade determined for each of the solar modules is shown as a visualization result.
- the diagnosis result output unit 250 transmits the visualized information shown in FIG. 5 to the solar power plant manager terminal 300 .
- the diagnosis result storage unit 260 receives the analysis result of the failure/degradation analysis unit 220 , the prediction result of the module output prediction unit 230 , and the determination result of the module grade determination unit 240 from the thermal image acquisition unit 210 . It is saved together with the input thermal image.
- the diagnosis result analysis unit 270 analyzes the data stored in the diagnosis result storage unit 260 to manage preventive maintenance and A/S of the solar modules.
- the solar module diagnosis platform 200 includes a thermal image acquisition unit 210 , a failure/degradation analysis unit-1 221 , an image processing unit 222 , and a failure/deterioration Including the analysis unit-2 223 , the module output prediction unit 230 , the module grade determination unit 240 , the diagnosis result output unit 250 , the diagnosis result storage unit 260 , and the diagnosis result analysis unit 270 , is composed
- the solar module diagnosis platform shown in FIG. 6 includes the 'failure/deterioration analysis unit 220' of the solar module diagnosis platform shown in FIG. ) and failure/deterioration analysis unit-2(223)'.
- FIG. 6 the rest of the configurations except for the 'failure/degradation analysis unit-1 (221), the image processing unit 222, and the failure/degradation analysis unit-2(223)' can be inferred from the description of FIG. 3 .
- the 'failure/degradation analysis unit-1 (221), the image processing unit 222, and the failure/degradation analysis unit-2(223)' will be described, and detailed descriptions of the remaining components will be omitted.
- the failure/deterioration analysis unit-1 221 inputs the thermal image input by the thermal image acquisition unit 210 into the artificial intelligence model for failure/deterioration analysis, and identifies the failure and deterioration of the solar modules.
- the artificial intelligence model provided in the failure/degradation analysis unit-1 (221) is an artificial intelligence model learned by inputting thermal images of solar modules and outputting failure/deterioration regions and modes of the solar modules.
- the failure/deterioration mode is classified into seven types as described above.
- the image processing unit 222 converts the thermal image input by the thermal image acquisition unit 210 by image processing, and transmits the converted thermal image to the failure/degradation analysis unit-2 223 .
- the image processing performed is different according to the analysis result by the failure/deterioration analysis unit-1 (221). Specifically,
- Image processing for detecting and emphasizing irregular shapes is performed on the photovoltaic module whose failure mode is analyzed as shadow and pollution by the failure/degradation analysis unit-1 (221).
- the failure/deterioration analysis unit-2 223 inputs the thermal image converted by the image processing unit 222 into the artificial intelligence model for failure/deterioration analysis, and identifies the failure and deterioration of the solar modules.
- the artificial intelligence model provided in the failure/degradation analysis unit-2 (222) is an artificial intelligence model learned by inputting the thermal image converted by thermal image processing and outputting the failure/deterioration region and mode of the solar modules. . Failure/deterioration modes are classified into 7 categories.
- the failure/degradation analysis unit-2 (223) can utilize an artificial intelligence model of the same structure as the failure/degradation analysis unit-1 (221), but the input image is different during learning (original thermal image vs. image processing converted to thermal image), the parameters of the artificial intelligence model are set differently.
- the failure/deterioration region and mode of the photovoltaic modules output from the failure/deterioration analysis unit-2 223 are output to the module output prediction unit 230 as a final analysis result for the failure and deterioration of the photovoltaic modules.
- the image processing unit 222 performs image processing for emphasizing by detecting a point shape, a bar shape, a planar shape, and an irregular shape, but variations are possible. For instance,
- the image processing unit 222 further generates a thermal image in which the corresponding shape is smoothed in addition to the thermal image in which the corresponding shape is emphasized, and the failure/deterioration analysis unit-2 222 uses both the thermal images to generate a solar module. Analyze their failure/deterioration areas and modes.
- the solar module diagnosis platform 200 includes a thermal image acquisition unit 210 , a failure/degradation analysis unit-1 221 , an image processing unit 222 , and a failure/deterioration Analysis unit-2 (223), failure/degradation analysis unit-3 (224), module output prediction unit 230 and module grade determination unit 240, diagnosis result output unit 250, diagnosis result storage unit 260 and a diagnosis result analysis unit 270 .
- the solar module diagnosis platform shown in FIG. 7 is a failure/deterioration analysis unit-3 224 added to the solar module diagnosis platform shown in FIG. 6 .
- the failure/deterioration analysis unit-3 (224) collects the failure/deterioration analysis result in the failure/degradation analysis unit-1 (221) and the failure/deterioration analysis result in the failure/deterioration analysis unit-2 (223), The failure/deterioration region and mode of the solar modules are finally analyzed, and the result is output to the module output prediction unit 230 .
- the failure/deterioration analysis unit-3 (224) takes the failure/deterioration analysis results of the previous failure/degradation analysis units (221,223) as input and outputs the failure/deterioration region and mode of the solar modules as an output, and an artificial intelligence model learned It can be implemented as an algorithm using Decision Engine.
- the failure/deterioration analyzers 220 , 221 , and 223 received the thermal images of the Taeyoung Kwang modules as input and analyzed the failure/deterioration regions and modes of the solar modules, and input data may be added.
- input data For example, weather/environment data at the time of thermal image shooting by the drone 100 and/or standard/specification data of a solar module may be added to the input.
- the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
- the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium.
- the computer-readable recording medium may be any data storage device readable by the computer and capable of storing data.
- the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like.
- the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photovoltaic Devices (AREA)
Abstract
Provided is an artificial intelligence-based solar module diagnosis method and system using a thermal image captured by a drone. A solar module diagnosis method according to an embodiment of the present invention comprises: acquiring a thermal image of solar modules; and inputting the acquired thermal image to an artificial intelligence model, so as to analyze the failure and degradation of the solar modules, wherein the artificial intelligence model is an artificial intelligence model obtained through learning using the thermal image as an input and failure and degradation areas and modes of the solar modules as an output. Accordingly, it is possible to analyze the failure/degradation of solar modules on the basis of artificial intelligence, predict an output therefrom, and determine a grade thereof, by using a thermal image of the solar modules captured by a drone, so as to perform solar module diagnosis objectively, quickly, and easily without an expert.
Description
본 발명은 태양광 모듈 관리 기술에 관한 것으로, 더욱 상세하게는 태양광 발전소에서 드론으로 촬영한 태양광 모듈의 열화상으로 고장/열화를 분석하고, 출력을 예측하여 등급을 판정하기 위한 태양광 모듈 진단 방법 및 시스템에 관한 것이다.The present invention relates to a photovoltaic module management technology, and more particularly, a photovoltaic module for analyzing failure/deterioration with a thermal image of a photovoltaic module taken with a drone in a photovoltaic power plant, predicting output, and judging a grade It relates to a diagnostic method and system.
태양광 발전소의 태양광 모듈은 25년 이상 운영되는 안정적인 제품이다. 그러나, 작업자의 잘못된 설치, 초기 불량, 자연재해, 소홀한 관리 등에 의해 태양광 모듈의 고장/열화가 발생할 수 있다. 태양광 모듈의 고장/열화는 아주 다양한 양상으로 나타난다.The solar module of the solar power plant is a stable product that has been operating for more than 25 years. However, failure/deterioration of the solar module may occur due to incorrect installation by the operator, initial failure, natural disaster, negligent management, and the like. The failure/deterioration of a solar module appears in many different ways.
태양광 모듈의 상태 파악을 위해서 열화상 카메라로 태양광 모듈을 촬영하여, 고장/열화 진단이 가능하다. 하지만, 전문가에 의해 수작업으로 진단을 해야 한다는 점, 그렇게 한다 하더라도 많은 시간과 노력이 소요된다는 점 등의 문제가 있다.In order to understand the state of the photovoltaic module, it is possible to diagnose the failure/deterioration by photographing the photovoltaic module with a thermal imaging camera. However, there are problems such as the fact that the diagnosis has to be manually performed by an expert, and that it takes a lot of time and effort even if it is done.
또한, 전문가에 의한다 하더라도, 주관적인 진단으로부터 완전히 자유로울 수 없다. 즉, 전문가가 누구인지에 따라 진단 결과가 각기 달라, 객관성을 담보할 수 없다는 문제도 있다.In addition, even by an expert, it cannot be completely free from subjective diagnosis. In other words, there is a problem that the diagnosis results are different depending on who the expert is, so objectivity cannot be guaranteed.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 드론으로 촬영한 태양광 모듈들의 열화상을 이용하여 인공지능 기반으로 고장/열화를 분석하고, 출력을 예측하며 등급을 판정하는 태양광 모듈 진단 방법 및 시스템을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to analyze failure/deterioration based on artificial intelligence using thermal images of solar modules photographed by a drone, predict output, and grade To provide a solar module diagnostic method and system for determining
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 태양광 모듈 진단 방법은, 태양광 모듈들의 열화상을 획득하는 단계; 획득 단계에서 획득된 열화상을 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 분석단계;를 포함하고, 인공지능 모델은, 열화상을 입력으로 하고, 태양광 모듈들의 고장과 열화 영역 및 모드를 출력으로 하여 학습된 인공지능 모델이다.According to an embodiment of the present invention for achieving the above object, a solar module diagnosis method includes: acquiring thermal images of the solar modules; An analysis step of inputting the thermal image obtained in the acquisition step into the artificial intelligence model to analyze the failure and deterioration of the solar modules; It is an artificial intelligence model trained with the deterioration region and mode as output.
본 발명의 일 실시예에 따른 태양광 모듈 진단 방법은, 획득 단계에서 획득된 열화상과 분석단계에서의 분석 결과를 이용하여, 태양광 모듈들의 출력을 예측하는 단계; 예측 단계에서 예측된 출력을 기초로, 태양광 모듈들 각각에 대한 등급을 판정하는 단계; 및 분석단계에서의 분석 결과, 예측 단계에서의 예측 결과 및 판정 단계에서의 판정 결과를 시각화 하여 출력하는 단계;를 더 포함할 수 있다.A method for diagnosing a solar module according to an embodiment of the present invention includes: predicting the output of the solar modules by using the thermal image acquired in the acquisition step and the analysis result in the analysis step; determining a rating for each of the solar modules based on the output predicted in the prediction step; and visualizing and outputting the analysis result in the analysis step, the prediction result in the prediction step, and the determination result in the determination step.
인공지능 모델은, GAN(Generative Adversarial Network)이고, GAN-AD(GANs for Anomaly Detection)이 적용될 수 있다.The artificial intelligence model is a Generative Adversarial Network (GAN), and GANs for Anomaly Detection (GAN-AD) may be applied.
분석 단계는, 획득 단계에서 획득된 열화상을 제1 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 제1 분석단계; 제1 분석단계에서의 분석 결과를 기초로, 획득 단계에서 획득된 열화상을 화상 처리하여 변환하는 단계; 변환 단계에서 변환된 열화상을 제2 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 제2 분석단계;를 포함할 수 있다.The analysis step may include: a first analysis step of inputting the thermal image obtained in the acquisition step into the first artificial intelligence model, and analyzing the failure and deterioration of the solar modules; converting the thermal image acquired in the acquisition step by image processing based on the analysis result in the first analysis step; A second analysis step of inputting the thermal image converted in the conversion step into the second artificial intelligence model, and analyzing the failure and deterioration of the solar modules; may include.
변환 단계는, 고장과 열화 영역을 강조하기 위한 화상 처리를 수행할 수 있다.The conversion step may perform image processing for emphasizing faulty and deteriorated areas.
고장과 열화 모드는, 핫스팟, BDF(Bypass Diode Failure), 음영, 오염, PID(Potential Induced Degradation), 단락 및 단선 중 적어도 하나를 포함할 수 있다.The failure and degradation modes may include at least one of hot spots, bypass diode failure (BDF), shading, contamination, potential induced degradation (PID), short circuit, and disconnection.
변환 단계는, 제1 분석단계에서 고장과 열화 모드가 핫스팟, PID 또는 단락으로 분석된 고장과 열화 영역에 대해서는 점 형상을 검출하여 강조하기 위한 화상 처리를 수행하고, 제1 분석단계에서 고장과 열화 모드가 BDF로 분석된 고장과 열화 영역에 대해서는 막대 형상을 검출하여 강조하기 위한 화상 처리를 수행하며, 제1 분석단계에서 고장과 열화 모드가 단선으로 분석된 고장과 열화 영역에 대해서는 면 형상을 검출하여 강조하기 위한 화상 처리를 수행하고, 제1 분석단계에서 고장과 열화 모드가 음영 또는 오염으로 분석된 고장과 열화 영역에 대해서는 불규칙적인 형상을 검출하여 강조하기 위한 화상 처리를 수행할 수 있다.In the conversion step, image processing is performed to detect and emphasize the point shape for the failure and degradation areas analyzed as hotspots, PIDs, or shorts in the failure and degradation modes in the first analysis step, and failure and degradation in the first analysis step Image processing is performed to detect and emphasize the bar shape for the failure and deterioration area analyzed by BDF mode, and the surface shape is detected for the failure and deterioration area analyzed as a single line in the failure and deterioration mode in the first analysis step. Thus, image processing for emphasizing is performed, and image processing for emphasizing by detecting irregular shapes can be performed on the failure and deterioration areas analyzed as shadows or contamination in the first analysis step.
변환 단계는, 고장과 열화가 나타난 영역을 스무딩하기 위한 화상 처리를 더 수행할 수 있다.The conversion step may further perform image processing for smoothing the area in which the failure and deterioration appear.
분석 단계는, 제1 분석단계에서의 분석 결과와 제2 분석단계에서의 분석 결과를 취합하여, 태양광 모듈들의 고장과 열화를 분석하는 제3 분석단계;를 더 포함할 수 있다.The analysis step may further include; a third analysis step of collecting the analysis results in the first analysis step and the analysis results in the second analysis step, and analyzing the failure and deterioration of the solar modules.
한편, 본 발명의 다른 실시예에 따른, 태양광 모듈 진단 시스템은, 태양광 모듈들의 열화상을 획득하는 획득부; 획득부에서 획득된 열화상을 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 분석부;를 포함하고, 인공지능 모델은, 열화상을 입력으로 하고, 태양광 모듈들의 고장과 열화 영역 및 모드를 출력으로 하여 학습된 인공지능 모델이다.On the other hand, according to another embodiment of the present invention, a solar module diagnosis system, the acquisition unit for acquiring thermal images of the solar modules; and an analysis unit that inputs the thermal image obtained in the acquisition unit to the artificial intelligence model and analyzes the failure and deterioration of the solar modules, wherein the artificial intelligence model receives the thermal image as an input, and It is an artificial intelligence model trained with the deterioration region and mode as output.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 드론으로 촬영한 태양광 모듈들의 열화상을 이용하여 인공지능 기반으로 고장/열화를 분석하고, 출력을 예측하며 등급을 판정함으로써, 전문가 없이 객관적이면서도 빠르고 간편하게 태양광 모듈을 진단할 수 있게 된다.As described above, according to embodiments of the present invention, by analyzing failure/deterioration based on artificial intelligence using thermal images of solar modules photographed by a drone, predicting output, and judging grade, objectively without an expert At the same time, it is possible to diagnose the solar module quickly and easily.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈 진단 시스템의 개념 설명에 제공되는 도면,1 is a view provided for conceptual explanation of a solar module diagnostic system according to an embodiment of the present invention;
도 2는, 도 1에 도시된 태양광 모듈 진단 시스템의 블럭도,2 is a block diagram of the solar module diagnostic system shown in FIG. 1;
도 3은, 도 2에 도시된 태양광 모듈 진단 플랫폼(200)의 상세 블럭도,3 is a detailed block diagram of the solar module diagnostic platform 200 shown in FIG. 2 ;
도 4는 고장/열화 모드의 설명에 제공되는 도면,4 is a diagram provided for explanation of failure/degradation mode;
도 5는 진단 결과로 출력되는 시각 정보들을 예시한 도면,5 is a diagram illustrating visual information output as a diagnosis result;
도 6은 본 발명의 다른 실시예에 따른 태양광 모듈 진단 플랫폼의 블럭도, 그리고,6 is a block diagram of a solar module diagnostic platform according to another embodiment of the present invention, and
도 7은 본 발명의 또 다른 실시예에 따른 태양광 모듈 진단 플랫폼의 블럭도이다.7 is a block diagram of a solar module diagnostic platform according to another embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈 진단 시스템의 개념 설명에 제공되는 도면이다.1 is a diagram provided to explain the concept of a solar module diagnosis system according to an embodiment of the present invention.
본 발명의 실시예에 따른 태양광 모듈 진단 시스템은, 도시된 바와 같이, 드론(100)으로 태양광 모듈들의 열화상을 촬영하면, 태양광 모듈 진단 플랫폼(200)이 촬영된 열화상을 분석하여 태양광 모듈을 진단하고, 태양광 발전소 관리자 단말(300)을 통해 진단 결과가 제공되도록 구축된 시스템이다.In the solar module diagnosis system according to an embodiment of the present invention, as shown, when thermal images of solar modules are taken with the drone 100, the solar module diagnosis platform 200 analyzes the captured thermal images, It is a system built to diagnose a solar module and provide a diagnostic result through the solar power plant manager terminal 300 .
도 2는, 도 1에 도시된 태양광 모듈 진단 시스템의 블럭도이다. 본 발명의 실시예에 따른 태양광 모듈 진단 시스템은, 도시된 바와 같이, 드론(100), 태양광 모듈 진단 플랫폼(200) 및 태양광 발전소 관리자 단말(300)을 포함하여 구성된다.FIG. 2 is a block diagram of the solar module diagnostic system shown in FIG. 1 . The solar module diagnosis system according to the embodiment of the present invention is configured to include a drone 100 , a solar module diagnosis platform 200 , and a solar power plant manager terminal 300 as shown.
드론(100)은 태양광 발전소 상공을 스캔하듯 촬영하여, 태양광 모듈들의 열화상을 생성한다. 드론(100)에 의해 촬영된 열화상은 태양광 모듈 진단 플랫폼(200)으로 전송된다.The drone 100 creates thermal images of solar modules by photographing as if scanning the sky above the solar power plant. The thermal image taken by the drone 100 is transmitted to the solar module diagnosis platform 200 .
태양광 모듈 진단 플랫폼(200)은 드론(100)으로부터 수신한 열화상을 이용하여 인공지능 기반으로 태양광 모듈들의 고장/열화를 분석하고, 이를 기초로 출력을 예측하여 등급을 판정한다.The solar module diagnosis platform 200 analyzes the failure/deterioration of the solar modules based on artificial intelligence using the thermal image received from the drone 100, predicts the output based on this, and determines the grade.
태양광 발전소 관리자 단말(300)는 태양광 발전소 관리자가 보유/휴대하고 있는 단말로, 태양광 모듈 진단 플랫폼(200)에서의 진단 결과를 수신하여 표시한다. 이를 통해, 태양광 발전소 관리자는 태양광 모듈들의 상태를 파악하고, A/S와 예방 정비 계획을 수립할 수 있게 된다.The photovoltaic power plant manager terminal 300 is a terminal possessed/carried by the photovoltaic power plant manager, and receives and displays a diagnosis result from the photovoltaic module diagnosis platform 200 . Through this, the photovoltaic power plant manager can understand the status of the photovoltaic modules, and establish an after-sales service and preventive maintenance plan.
이하에서는, 태양광 모듈 진단 플랫폼(200)의 상세 구조 및 동작에 대해 도 3을 참조하여 상세히 설명한다. 도 3은, 도 2에 도시된 태양광 모듈 진단 플랫폼(200)의 상세 블럭도이다.Hereinafter, the detailed structure and operation of the solar module diagnostic platform 200 will be described in detail with reference to FIG. 3 . 3 is a detailed block diagram of the solar module diagnostic platform 200 shown in FIG. 2 .
태양광 모듈 진단 플랫폼(200)는, 도시된 바와 같이, 열화상 획득부(210), 고장/열화 분석부(220), 모듈 출력 예측부(230) 및 모듈 등급 판정부(240) 및 진단 결과 출력부(250), 진단 결과 저장부(260) 및 진단 결과 분석부(270)를 포함하여 구성된다.The solar module diagnosis platform 200, as shown, includes a thermal image acquisition unit 210, a failure/degradation analysis unit 220, a module output prediction unit 230 and a module grade determination unit 240, and a diagnosis result It is configured to include an output unit 250 , a diagnosis result storage unit 260 , and a diagnosis result analysis unit 270 .
열화상 획득부(210)는 드론(100)에 의해 촬영된 태양광 모듈들의 열화상을 수신하여 획득하고, 획득한 열화상을 고장/열화 분석부(220)와 모듈 출력 예측부(230)로 입력한다.The thermal image acquisition unit 210 receives and acquires thermal images of solar modules photographed by the drone 100 , and uses the acquired thermal images to the failure/deterioration analysis unit 220 and the module output prediction unit 230 . Enter
고장/열화 분석부(220)는 열화상 획득부(210)에 의해 입력되는 열화상을 고장/열화 분석을 위한 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 파악한다.The failure/deterioration analysis unit 220 inputs the thermal image input by the thermal image acquisition unit 210 into the artificial intelligence model for failure/deterioration analysis, and identifies the failure and deterioration of the solar modules.
고장/열화 분석부(220)에 구비된 인공지능 모델은 태양광 모듈들의 열화상을 입력으로 하고, 태양광 모듈들의 고장/열화 영역과 모드를 출력으로 하여 학습된 인공지능 모델이다.The artificial intelligence model provided in the failure/deterioration analysis unit 220 is an artificial intelligence model learned by taking thermal images of solar modules as input and outputting failure/deterioration regions and modes of solar modules.
고장/열화 모드는 도 4에 도시된 바와 같이 7가지로 분류할 수 있다.The failure/deterioration mode can be classified into seven types as shown in FIG. 4 .
1) 핫스팟(Hot-spot)1) Hot-spot
셀 크랙, Snail trail, 모듈에서 셀의 점 또는 다수의 점들로 나타남Cell cracks, snail trails, appearing as dots or multiple dots in a cell in a module
2) BDF(Bypass Diode Failure : 바이패스다이오드 고장)2) BDF (Bypass Diode Failure)
바이패스 다이오드 고장에 의한 모듈 서브스트링으로 나타나며, 균일한 고온, 막대(직사각형) 모양의 모듈의 1/3, 2/3 균일한 밝기Appears as module substring due to bypass diode failure, uniform high temperature, 1/3, 2/3 uniform brightness of rod (rectangular)-shaped module
3) 음영(Shading)3) Shading
전신주, 잡초, 낙엽, 눈 등에 의한 음영 모양으로 불규칙한 모양으로 나타남Appears in irregular shape with shadows caused by telephone poles, weeds, fallen leaves, snow, etc.
4) 오염 (Contamination)4) Contamination
먼지흡착, water scale, 새 배설물, 곤충사체 등에 의한 표면 오염으로 불규칙한 모양으로 나타남Appears in irregular shape due to surface contamination by dust adsorption, water scale, bird droppings, insect carcass, etc.
5) PID(Potential Induced Degradation)5) PID (Potential Induced Degradation)
스트링 (-) 지역의 hot-spot 모듈 수의 점진적인 증가, 다수의 연결된 모듈의 다수의 점들로 나타남A gradual increase in the number of hot-spot modules in the string (-) region, represented by multiple dots of multiple connected modules.
6) 단락 (Short circuit)6) Short circuit
스트링의 불균일한 고온, 다수의 연결된 모듈의 다수의 점들로 나타남Non-uniform high temperature of string, represented by multiple dots of multiple connected modules
7) 단선 (Disconnection)7) Disconnection
스트링의 균일한 고온, 다수의 연결된 모듈의 균일한 밝기로 나타남A uniform high temperature of the string, manifested by the uniform brightness of a number of connected modules
인공지능 모델은 고장/열화 영역을 탐지하는데 가장 적합한 모델인 GAN(Generative Adversarial Network)로 구현하고, GAN-AD(GANs for Anomaly Detection)를 적용할 수 있다. 하지만, 이는 예시적인 것으로, 다른 방식으로 구현하는 것을 배제하지 않는다.The AI model can be implemented as a Generative Adversarial Network (GAN), which is the most suitable model for detecting failure/degradation areas, and GAN-AD (GANs for Anomaly Detection) can be applied. However, this is exemplary and does not exclude implementation in other ways.
이에 따라, 고장/열화 분석부(220)는 열화상이 입력되면, 태양광 모듈들의 고장/열화 영역과 모드를 출력하므로, 태양광 모듈 별로 고장/열화 여부 및 모드를 분석할 수 있게 된다.Accordingly, when the thermal image is input, the failure/deterioration analysis unit 220 outputs the failure/deterioration region and mode of the solar modules, so that it is possible to analyze the failure/deterioration status and mode for each solar module.
모듈 출력 예측부(230)는 다음의 데이터를 이용하여 태양광 모듈들의 출력을 예측한다. The module output prediction unit 230 predicts the output of the solar modules using the following data.
1) 열화상 획득부(210)로부터 입력되는 태양광 모듈들의 열화상1) Thermal images of solar modules input from the thermal image acquisition unit 210
2) 고장/열화 분석부(220)에 의한 분석 결과2) Analysis result by the failure/deterioration analysis unit 220
3) 드론(100)에 의한 열화상 촬영 당시의 기상/환경 데이터3) Weather/environment data at the time of thermal imaging by drone 100
4) 태양광 모듈의 규격/사양 데이터4) Photovoltaic module specification/specification data
모듈 출력 예측부(230)는 위 데이터를 입력으로 하고 태양광 모듈들의 예상 출력을 출력으로 하여 학습된 인공지능 모델로 구현할 수 있고, Decision Engine을 이용한 알고리즘으로 구현할 수도 있다.The module output prediction unit 230 may be implemented as an artificial intelligence model learned using the above data as an input and the expected output of the solar modules as an output, or may be implemented as an algorithm using a decision engine.
모듈 등급 판정부(240)는 모듈 출력 예측부(230)에 의해 예측된 출력을 기초로, 태양광 모듈들 각각에 대한 등급을 판정한다.The module grade determination unit 240 determines a grade for each of the solar modules based on the output predicted by the module output prediction unit 230 .
모듈 등급 판정부(240)는 모듈 출력 예측부(230)의 예측 결과를 입력으로 하고 태양광 모듈들의 등급을 출력으로 하여 학습된 인공지능 모델로 구현할 수 있고, Decision Engine을 이용한 알고리즘으로 구현할 수도 있다.The module grade determination unit 240 may be implemented as an artificial intelligence model learned by inputting the prediction result of the module output prediction unit 230 and outputting the grades of solar modules, or may be implemented as an algorithm using a decision engine. .
진단 결과 출력부(250)는 고장/열화 분석부(220)의 분석 결과, 모듈 출력 예측부(230)의 예측 결과 및 모듈 등급 판정부(240)의 판정 결과를 시각화 하여 출력한다.The diagnosis result output unit 250 visualizes and outputs the analysis result of the failure/degradation analysis unit 220 , the prediction result of the module output prediction unit 230 , and the determination result of the module grade determination unit 240 .
구체적으로, 진단 결과 출력부(250)는 태양광 모듈들의 배치 상태가 나타난 태양광 발전소 맵에 해당 정보들을 표시한다. 도 5에는 진단 결과 출력부(250)에 의해 출력되는 정보를 예시하였다.Specifically, the diagnosis result output unit 250 displays the corresponding information on the photovoltaic power plant map showing the arrangement state of the photovoltaic modules. 5 exemplifies information output by the diagnosis result output unit 250 .
구체적으로, 도 5의 상부에는 태양광 모듈의 고장/열화 여부 및 모드에 대한 정보가 모듈 단위로 표시된 정보, 도 5의 중앙에는 태양광 모듈들 각각에 대해 예상되는 출력에 대한 정보, 도 5의 하부에는 태양광 모듈들 각각에 대해 판정된 등급에 대한 정보가 시각화된 결과를 나타내었다.Specifically, in the upper part of FIG. 5, information on the failure/degradation status and mode of the solar module is displayed on a module-by-module basis, and in the center of FIG. In the lower part, information about the grade determined for each of the solar modules is shown as a visualization result.
진단 결과 출력부(250)는 도 5에 도시된 시각화된 정보를 태양광 발전소 관리자 단말(300)로 전송한다.The diagnosis result output unit 250 transmits the visualized information shown in FIG. 5 to the solar power plant manager terminal 300 .
진단 결과 저장부(260)는 고장/열화 분석부(220)의 분석 결과, 모듈 출력 예측부(230)의 예측 결과 및 모듈 등급 판정부(240)의 판정 결과를 열화상 획득부(210)로부터 입력되는 열화상과 함께 저장한다.The diagnosis result storage unit 260 receives the analysis result of the failure/degradation analysis unit 220 , the prediction result of the module output prediction unit 230 , and the determination result of the module grade determination unit 240 from the thermal image acquisition unit 210 . It is saved together with the input thermal image.
진단 결과 분석부(270)는 진단 결과 저장부(260)에 저장된 데이터를 분석하여, 태양광 모듈들의 예방정비와 A/S를 관리한다.The diagnosis result analysis unit 270 analyzes the data stored in the diagnosis result storage unit 260 to manage preventive maintenance and A/S of the solar modules.
도 6은 본 발명의 다른 실시예에 따른 태양광 모듈 진단 플랫폼의 블럭도이다. 본 발명의 실시예에 따른 태양광 모듈 진단 플랫폼(200)는, 도시된 바와 같이, 열화상 획득부(210), 고장/열화 분석부-1(221), 화상 처리부(222), 고장/열화 분석부-2(223), 모듈 출력 예측부(230) 및 모듈 등급 판정부(240) 및 진단 결과 출력부(250), 진단 결과 저장부(260) 및 진단 결과 분석부(270)를 포함하여 구성된다.6 is a block diagram of a solar module diagnostic platform according to another embodiment of the present invention. The solar module diagnosis platform 200 according to an embodiment of the present invention, as shown, includes a thermal image acquisition unit 210 , a failure/degradation analysis unit-1 221 , an image processing unit 222 , and a failure/deterioration Including the analysis unit-2 223 , the module output prediction unit 230 , the module grade determination unit 240 , the diagnosis result output unit 250 , the diagnosis result storage unit 260 , and the diagnosis result analysis unit 270 , is composed
도 6에 도시된 태양광 모듈 진단 플랫폼은, 도 3에 도시된 태양광 모듈 진단 플랫폼의 '고장/열화 분석부(220)'를 '고장/열화 분석부-1(221), 화상 처리부(222) 및 고장/열화 분석부-2(223)'로 대체한 것이다.The solar module diagnosis platform shown in FIG. 6 includes the 'failure/deterioration analysis unit 220' of the solar module diagnosis platform shown in FIG. ) and failure/deterioration analysis unit-2(223)'.
따라서, 도 6에서 '고장/열화 분석부-1(221), 화상 처리부(222) 및 고장/열화 분석부-2(223)'를 제외한 나머지 구성은 도 3에 대한 설명으로부터 유추가능한 바, 이하에서는 '고장/열화 분석부-1(221), 화상 처리부(222) 및 고장/열화 분석부-2(223)'에 대해서만 설명하고 나머지 구성에 대한 상세한 설명은 생략한다.Accordingly, in FIG. 6 , the rest of the configurations except for the 'failure/degradation analysis unit-1 (221), the image processing unit 222, and the failure/degradation analysis unit-2(223)' can be inferred from the description of FIG. 3 . In , only the 'failure/degradation analysis unit-1 (221), the image processing unit 222, and the failure/degradation analysis unit-2(223)' will be described, and detailed descriptions of the remaining components will be omitted.
고장/열화 분석부-1(221)는 열화상 획득부(210)에 의해 입력되는 열화상을 고장/열화 분석을 위한 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 파악한다.The failure/deterioration analysis unit-1 221 inputs the thermal image input by the thermal image acquisition unit 210 into the artificial intelligence model for failure/deterioration analysis, and identifies the failure and deterioration of the solar modules.
고장/열화 분석부-1(221)에 구비된 인공지능 모델은 태양광 모듈들의 열화상을 입력으로 하고, 태양광 모듈들의 고장/열화 영역과 모드를 출력으로 하여 학습된 인공지능 모델이다. 고장/열화 모드는 7가지로 분류됨은 전술한 바와 같다.The artificial intelligence model provided in the failure/degradation analysis unit-1 (221) is an artificial intelligence model learned by inputting thermal images of solar modules and outputting failure/deterioration regions and modes of the solar modules. The failure/deterioration mode is classified into seven types as described above.
화상 처리부(222)는 열화상 획득부(210)에 의해 입력되는 열화상을 화상 처리하여 변환하고, 변환된 열화상을 고장/열화 분석부-2(223)로 전달한다. 수행되는 화상 처리는 고장/열화 분석부-1(221)에 의한 분석결과에 따라 상이하다. 구체적으로,The image processing unit 222 converts the thermal image input by the thermal image acquisition unit 210 by image processing, and transmits the converted thermal image to the failure/degradation analysis unit-2 223 . The image processing performed is different according to the analysis result by the failure/deterioration analysis unit-1 (221). Specifically,
1) 고장/열화 분석부-1(221)에 의해 고장 모드가 핫스팟, PID, 단락으로 분석된 태양광 모듈에 대해서는 점 형상을 검출하여 강조(강화)하기 위한 화상 처리가 수행되고,1) For the photovoltaic module whose failure mode is analyzed as hotspot, PID, and short by the failure/degradation analysis unit-1 (221), image processing is performed to detect and emphasize (enhance) the shape of a point,
2) 고장/열화 분석부-1(221)에 의해 고장 모드가 BDF로 분석된 태양광 모듈에 대해서는 막대 형상을 검출하여 강조하기 위한 화상 처리가 수행되며,2) For the photovoltaic module whose failure mode is analyzed as BDF by the failure/degradation analysis unit-1 (221), image processing is performed to detect and emphasize the bar shape,
3) 고장/열화 분석부-1(221)에 의해 고장 모드가 단선으로 분석된 태양광 모듈에 대해서는 면 형상을 검출하여 강조하기 위한 화상 처리가 수행되고,3) For the solar module whose failure mode is analyzed as disconnection by the failure/degradation analysis unit-1 (221), image processing is performed to detect and emphasize the shape of the surface,
4) 고장/열화 분석부-1(221)에 의해 고장 모드가 음영, 오염으로 분석된 태양광 모듈에 대해서는 불규칙적인 형상을 검출하여 강조하기 위한 화상 처리가 수행된다.4) Image processing for detecting and emphasizing irregular shapes is performed on the photovoltaic module whose failure mode is analyzed as shadow and pollution by the failure/degradation analysis unit-1 (221).
고장/열화 분석부-2(223)는 화상 처리부(222)에 의해 변환된 열화상을 고장/열화 분석을 위한 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 파악한다.The failure/deterioration analysis unit-2 223 inputs the thermal image converted by the image processing unit 222 into the artificial intelligence model for failure/deterioration analysis, and identifies the failure and deterioration of the solar modules.
고장/열화 분석부-2(222)에 구비된 인공지능 모델은 열화상 처리로 변환된 열화상을 입력으로 하고, 태양광 모듈들의 고장/열화 영역과 모드를 출력으로 하여 학습된 인공지능 모델이다. 고장/열화 모드는 7가지로 분류된다.The artificial intelligence model provided in the failure/degradation analysis unit-2 (222) is an artificial intelligence model learned by inputting the thermal image converted by thermal image processing and outputting the failure/deterioration region and mode of the solar modules. . Failure/deterioration modes are classified into 7 categories.
고장/열화 분석부-2(223)는 고장/열화 분석부-1(221)과 동일한 구조의 인공지능 모델을 활용할 수 있지만, 학습시 입력되는 영상이 다르다(원본 열화상 vs 화상 처리로 변환된 열화상)는 점에서, 인공지능 모델의 파라미터는 다르게 세팅된다.The failure/degradation analysis unit-2 (223) can utilize an artificial intelligence model of the same structure as the failure/degradation analysis unit-1 (221), but the input image is different during learning (original thermal image vs. image processing converted to thermal image), the parameters of the artificial intelligence model are set differently.
고장/열화 분석부-2(223)에서 출력되는 태양광 모듈들의 고장/열화 영역과 모드가 태양광 모듈들의 고장과 열화에 대한 최종 분석 결과로써, 모듈 출력 예측부(230)로 출력된다.The failure/deterioration region and mode of the photovoltaic modules output from the failure/deterioration analysis unit-2 223 are output to the module output prediction unit 230 as a final analysis result for the failure and deterioration of the photovoltaic modules.
위 실시예에서, 화상 처리부(222)는 점 형상, 막대 형상, 면 형상 및 불규칙적인 형상을 검출하여 강조하는 화상 처리를 수행하는 것을 상정하였는데, 변형이 가능하다. 이를 테면, In the above embodiment, it has been assumed that the image processing unit 222 performs image processing for emphasizing by detecting a point shape, a bar shape, a planar shape, and an irregular shape, but variations are possible. For instance,
1) 고장/열화 분석부-1(221)에 의해 고장 모드가 핫스팟, PID, 단락으로 분석된 태양광 모듈에 대해서는 점 형상을 검출하여, 강조(강화)하는 화상 처리 외에 스무딩(약화)시키기 위한 화상 처리가 더 수행되고,1) For photovoltaic modules whose failure modes are analyzed as hotspots, PIDs, and shorts by the failure/degradation analysis unit-1 (221), point shapes are detected and smoothed (weakened) in addition to image processing to emphasize (enhance) image processing is further performed,
2) 고장/열화 분석부-1(221)에 의해 고장 모드가 BDF로 분석된 태양광 모듈에 대해서는 막대 형상을 검출하여, 강조하는 화상 처리 외에 스무딩시키기 위한 화상 처리가 더 수행되며,2) For the photovoltaic module whose failure mode is analyzed as BDF by the failure/degradation analysis unit-1 (221), image processing for smoothing is further performed in addition to image processing to detect and emphasize the bar shape,
3) 고장/열화 분석부-1(221)에 의해 고장 모드가 단선으로 분석된 태양광 모듈에 대해서는 면 형상을 검출하여, 강조하는 화상 처리 외에 스무딩시키기 위한 화상 처리가 더 수행되고,3) For the solar module whose failure mode is analyzed as disconnection by the failure/degradation analysis unit-1 (221), image processing for smoothing is further performed in addition to image processing to detect and emphasize the surface shape,
4) 고장/열화 분석부-1(221)에 의해 고장 모드가 음영, 오염으로 분석된 태양광 모듈에 대해서는 불규칙적인 형상을 검출하여, 강조하는 화상 처리 외에 스무딩시키기 위한 화상 처리가 더 수행되는 것이다.4) An irregular shape is detected for the solar module whose failure mode is analyzed as shading and contamination by the failure/degradation analysis unit-1 (221), and image processing for smoothing is further performed in addition to image processing to emphasize .
이 경우, 화상 처리부(222)에서는 해당 형상이 강조된 열화상 외에 해당 형상이 스무딩된 열화상이 더 생성되며, 고장/열화 분석부-2(222)는 2가지 열화상 모두를 이용하여 태양광 모듈들의 고장/열화 영역과 모드를 분석한다.In this case, the image processing unit 222 further generates a thermal image in which the corresponding shape is smoothed in addition to the thermal image in which the corresponding shape is emphasized, and the failure/deterioration analysis unit-2 222 uses both the thermal images to generate a solar module. Analyze their failure/deterioration areas and modes.
도 7은 본 발명의 또 다른 실시예에 따른 태양광 모듈 진단 플랫폼의 블럭도이다. 본 발명의 실시예에 따른 태양광 모듈 진단 플랫폼(200)는, 도시된 바와 같이, 열화상 획득부(210), 고장/열화 분석부-1(221), 화상 처리부(222), 고장/열화 분석부-2(223), 고장/열화 분석부-3(224), 모듈 출력 예측부(230) 및 모듈 등급 판정부(240) 및 진단 결과 출력부(250), 진단 결과 저장부(260) 및 진단 결과 분석부(270)를 포함하여 구성된다.7 is a block diagram of a solar module diagnostic platform according to another embodiment of the present invention. The solar module diagnosis platform 200 according to an embodiment of the present invention, as shown, includes a thermal image acquisition unit 210 , a failure/degradation analysis unit-1 221 , an image processing unit 222 , and a failure/deterioration Analysis unit-2 (223), failure/degradation analysis unit-3 (224), module output prediction unit 230 and module grade determination unit 240, diagnosis result output unit 250, diagnosis result storage unit 260 and a diagnosis result analysis unit 270 .
도 7에 도시된 태양광 모듈 진단 플랫폼은, 도 6에 도시된 태양광 모듈 진단 플랫폼에서 고장/열화 분석부-3(224)가 추가된 것이다.The solar module diagnosis platform shown in FIG. 7 is a failure/deterioration analysis unit-3 224 added to the solar module diagnosis platform shown in FIG. 6 .
고장/열화 분석부-3(224)는 고장/열화 분석부-1(221)에서의 고장/열화 분석 결과와 고장/열화 분석부-2(223)에서의 고장/열화 분석 결과를 취합하여, 태양광 모듈들의 고장/열화 영역과 모드를 최종적으로 분석하고, 그 결과를 모듈 출력 예측부(230)로 출력한다.The failure/deterioration analysis unit-3 (224) collects the failure/deterioration analysis result in the failure/degradation analysis unit-1 (221) and the failure/deterioration analysis result in the failure/deterioration analysis unit-2 (223), The failure/deterioration region and mode of the solar modules are finally analyzed, and the result is output to the module output prediction unit 230 .
이전 실시예에서는, 고장/열화 분석부-2(223)에서의 고장/열화 분석 결과를 최종 결과로 모듈 출력 예측부(230)로 출력하였다는 점에서 차이가 있다.In the previous embodiment, there is a difference in that the failure/deterioration analysis result of the failure/degradation analysis unit-2 223 is output to the module output prediction unit 230 as a final result.
고장/열화 분석부-3(224)는 앞선 고장/열화 분석부들(221,223)의 고장/열화 분석 결과들을 입력으로 하고, 태양광 모듈들의 고장/열화 영역과 모드를 출력으로 하여 학습된 인공지능 모델로 구현할 수 있고, Decision Engine을 이용한 알고리즘으로 구현할 수도 있다.The failure/deterioration analysis unit-3 (224) takes the failure/deterioration analysis results of the previous failure/degradation analysis units (221,223) as input and outputs the failure/deterioration region and mode of the solar modules as an output, and an artificial intelligence model learned It can be implemented as an algorithm using Decision Engine.
지금까지, 드론으로 촬영한 열화상을 이용한 인공지능 기반의 태양광 모듈 진단 방법 및 시스템에 대해 바람직한 실시예를 들어 상세히 설명하였다.So far, a preferred embodiment has been described in detail for a method and system for diagnosing an artificial intelligence-based solar module using a thermal image taken by a drone.
위 실시예에서, 고장/열화 분석부들(220,221,223)은 태영광 모듈들의 열화상을 입력으로 하여, 태양광 모듈들의 고장/열화 영역과 모드를 분석하였는데, 입력 데이터를 추가할 수 있다. 이를 테면, 드론(100)에 의한 열화상 촬영 당시의 기상/환경 데이터 및/또는 태양광 모듈의 규격/사양 데이터를 입력에 추가할 수도 있다.In the above embodiment, the failure/ deterioration analyzers 220 , 221 , and 223 received the thermal images of the Taeyoung Kwang modules as input and analyzed the failure/deterioration regions and modes of the solar modules, and input data may be added. For example, weather/environment data at the time of thermal image shooting by the drone 100 and/or standard/specification data of a solar module may be added to the input.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.On the other hand, it goes without saying that the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment. In addition, the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable codes recorded on a computer-readable recording medium. The computer-readable recording medium may be any data storage device readable by the computer and capable of storing data. For example, the computer-readable recording medium may be a ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, or the like. In addition, the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between computers.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims In addition, various modifications are possible by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.
Claims (10)
- 태양광 모듈들의 열화상을 획득하는 단계;obtaining thermal images of solar modules;획득 단계에서 획득된 열화상을 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 분석단계;를 포함하고,An analysis step of analyzing the failure and deterioration of solar modules by inputting the thermal image obtained in the acquisition step into the artificial intelligence model;인공지능 모델은,artificial intelligence model,열화상을 입력으로 하고, 태양광 모듈들의 고장과 열화 영역 및 모드를 출력으로 하여 학습된 인공지능 모델인 것을 특징으로 하는 태양광 모듈 진단 방법.A solar module diagnosis method, characterized in that it is an artificial intelligence model learned by taking a thermal image as an input and outputting the failure and deterioration regions and modes of the solar modules.
- 청구항 1에 있어서,The method according to claim 1,획득 단계에서 획득된 열화상과 분석단계에서의 분석 결과를 이용하여, 태양광 모듈들의 출력을 예측하는 단계;predicting the output of the solar modules by using the thermal image acquired in the acquisition step and the analysis result in the analysis step;예측 단계에서 예측된 출력을 기초로, 태양광 모듈들 각각에 대한 등급을 판정하는 단계; 및determining a rating for each of the solar modules based on the output predicted in the predicting step; and분석단계에서의 분석 결과, 예측 단계에서의 예측 결과 및 판정 단계에서의 판정 결과를 시각화 하여 출력하는 단계;를 더 포함하는 것을 특징으로 하는 태양광 모듈 진단 방법.Visualizing and outputting the analysis result in the analysis step, the prediction result in the prediction step, and the determination result in the determination step; Solar module diagnosis method further comprising a.
- 청구항 1에 있어서,The method according to claim 1,인공지능 모델은,artificial intelligence model,GAN(Generative Adversarial Network)이고, GAN-AD(GANs for Anomaly Detection)이 적용된 것을 특징으로 하는 태양광 모듈 진단 방법.A solar module diagnosis method, characterized in that it is a Generative Adversarial Network (GAN) and GAN-AD (GANs for Anomaly Detection) is applied.
- 청구항 1에 있어서,The method according to claim 1,분석 단계는,The analysis step is획득 단계에서 획득된 열화상을 제1 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 제1 분석단계; 및a first analysis step of inputting the thermal image obtained in the acquisition step into the first artificial intelligence model, and analyzing the failure and deterioration of the solar modules; and제1 분석단계에서의 분석 결과를 기초로, 획득 단계에서 획득된 열화상을 화상 처리하여 변환하는 단계;converting the thermal image acquired in the acquisition step by image processing based on the analysis result in the first analysis step;변환 단계에서 변환된 열화상을 제2 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 제2 분석단계;를 포함하는 것을 특징으로 하는 태양광 모듈 진단 방법.A method for diagnosing a solar module comprising: inputting the thermal image converted in the conversion step into a second artificial intelligence model, and analyzing the failure and deterioration of the solar modules.
- 청구항 4에 있어서,5. The method according to claim 4,변환 단계는,The conversion step is고장과 열화 영역을 강조하기 위한 화상 처리를 수행하는 것을 특징으로 하는 태양광 모듈 진단 방법.A method for diagnosing a solar module, characterized in that image processing is performed to highlight areas of failure and deterioration.
- 청구항 5에 있어서,6. The method of claim 5,고장과 열화 모드는,Failure and deterioration modes are핫스팟, BDF(Bypass Diode Failure), 음영, 오염, PID(Potential Induced Degradation), 단락 및 단선 중 적어도 하나를 포함하는 것을 특징으로 하는 태양광 모듈 진단 방법.A method for diagnosing a solar module comprising at least one of hotspots, BDF (Bypass Diode Failure), shading, contamination, PID (Potential Induced Degradation), short circuit and disconnection.
- 청구항 6에 있어서,7. The method of claim 6,변환 단계는,The conversion step is제1 분석단계에서 고장과 열화 모드가 핫스팟, PID 또는 단락으로 분석된 고장과 열화 영역에 대해서는 점 형상을 검출하여 강조하기 위한 화상 처리를 수행하고,In the first analysis step, image processing is performed to detect and emphasize point shapes for the failure and deterioration areas analyzed as hotspots, PIDs, or short circuits in failure and deterioration modes;제1 분석단계에서 고장과 열화 모드가 BDF로 분석된 고장과 열화 영역에 대해서는 막대 형상을 검출하여 강조하기 위한 화상 처리를 수행하며,In the first analysis step, image processing is performed to detect and emphasize the bar shape for the failure and deterioration areas analyzed by BDF in the failure and deterioration modes,제1 분석단계에서 고장과 열화 모드가 단선으로 분석된 고장과 열화 영역에 대해서는 면 형상을 검출하여 강조하기 위한 화상 처리를 수행하고,In the first analysis step, image processing is performed to detect and emphasize the shape of the failure and deterioration areas analyzed as disconnection in the failure and deterioration modes;제1 분석단계에서 고장과 열화 모드가 음영 또는 오염으로 분석된 고장과 열화 영역에 대해서는 불규칙적인 형상을 검출하여 강조하기 위한 화상 처리를 수행하는 것을 특징으로 하는 태양광 모듈 진단 방법.A method for diagnosing a photovoltaic module, characterized in that, in the first analysis step, image processing is performed to detect and emphasize irregular shapes for the failure and deterioration areas analyzed as shadows or contamination in the failure and deterioration modes.
- 청구항 5에 있어서,6. The method of claim 5,변환 단계는,The conversion step is고장과 열화가 나타난 영역을 스무딩하기 위한 화상 처리를 더 수행하는 것을 특징으로 하는 태양광 모듈 진단 방법.A method for diagnosing a photovoltaic module, characterized in that further image processing is performed for smoothing the area in which the failure and deterioration appear.
- 청구항 4에 있어서,5. The method according to claim 4,분석 단계는,The analysis step is제1 분석단계에서의 분석 결과와 제2 분석단계에서의 분석 결과를 취합하여, 태양광 모듈들의 고장과 열화를 분석하는 제3 분석단계;를 더 포함하는 것을 특징으로 하는 태양광 모듈 진단 방법.A photovoltaic module diagnosis method further comprising; a third analysis step of collecting the analysis results in the first analysis step and the analysis results in the second analysis step to analyze the failure and deterioration of the solar modules.
- 태양광 모듈들의 열화상을 획득하는 획득부;an acquisition unit for acquiring thermal images of solar modules;획득부에서 획득된 열화상을 인공지능 모델에 입력하여, 태양광 모듈들의 고장과 열화를 분석하는 분석부;를 포함하고,An analysis unit that inputs the thermal image obtained by the acquisition unit into the artificial intelligence model and analyzes the failure and deterioration of the solar modules;인공지능 모델은,artificial intelligence model,열화상을 입력으로 하고, 태양광 모듈들의 고장과 열화 영역 및 모드를 출력으로 하여 학습된 인공지능 모델인 것을 특징으로 하는 태양광 모듈 진단 시스템.A solar module diagnosis system, characterized in that it is an artificial intelligence model learned by taking thermal images as input and outputting failure and deterioration regions and modes of solar modules.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0118314 | 2020-09-15 | ||
KR1020200118314A KR102431935B1 (en) | 2020-09-15 | 2020-09-15 | Artificial Intelligence based Solar Module Diagnosis Method and System using Thermal Images Taken by Drone |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022059815A1 true WO2022059815A1 (en) | 2022-03-24 |
Family
ID=80776792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/012504 WO2022059815A1 (en) | 2020-09-15 | 2020-09-16 | Artificial intelligence-based solar module diagnosis method and system using thermal image captured by drone |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102431935B1 (en) |
WO (1) | WO2022059815A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101541032B1 (en) * | 2015-02-13 | 2015-08-03 | (주)하이레벤 | System for collecting and analyzing data regarding module surface temperature of solar photovoltaic power facilities using unmanned air vehicle |
US20180003656A1 (en) * | 2016-06-30 | 2018-01-04 | Unmanned Innovation Inc. | Solar panel inspection using unmanned aerial vehicles |
KR101832454B1 (en) * | 2017-01-24 | 2018-04-13 | 전주비전대학교산학협력단 | Solar cell exothermic position analysis method using drone based thermal infrared sensor |
KR101967638B1 (en) * | 2017-11-30 | 2019-04-10 | (주) 포에버정보 | Photovoltaic power generation module management system using drones |
KR102084783B1 (en) * | 2019-09-23 | 2020-03-04 | 주식회사 아이팔 | System for managing the operation of Photovoltaic Power Generation based on machine learning |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200099267A (en) * | 2019-02-14 | 2020-08-24 | 한국에너지전환사업단(유) | smart solar energy generation system for sending self failure signal |
KR102133224B1 (en) * | 2020-03-26 | 2020-07-13 | 주식회사 스카이텍 | An automatic diagnosis system of solar array that is using a CAD design drawing that overlapped pictures taken by a thermal imaging camera of a drone |
-
2020
- 2020-09-15 KR KR1020200118314A patent/KR102431935B1/en active IP Right Grant
- 2020-09-16 WO PCT/KR2020/012504 patent/WO2022059815A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101541032B1 (en) * | 2015-02-13 | 2015-08-03 | (주)하이레벤 | System for collecting and analyzing data regarding module surface temperature of solar photovoltaic power facilities using unmanned air vehicle |
US20180003656A1 (en) * | 2016-06-30 | 2018-01-04 | Unmanned Innovation Inc. | Solar panel inspection using unmanned aerial vehicles |
KR101832454B1 (en) * | 2017-01-24 | 2018-04-13 | 전주비전대학교산학협력단 | Solar cell exothermic position analysis method using drone based thermal infrared sensor |
KR101967638B1 (en) * | 2017-11-30 | 2019-04-10 | (주) 포에버정보 | Photovoltaic power generation module management system using drones |
KR102084783B1 (en) * | 2019-09-23 | 2020-03-04 | 주식회사 아이팔 | System for managing the operation of Photovoltaic Power Generation based on machine learning |
Also Published As
Publication number | Publication date |
---|---|
KR102431935B1 (en) | 2022-08-12 |
KR20220036115A (en) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017039259A1 (en) | Apparatus and method for diagnosing electric power equipment using thermal imaging camera | |
WO2021054719A1 (en) | A method and system for battery-management in devices | |
WO2016125941A1 (en) | System and method for predicting environmental pollution | |
WO2019221467A1 (en) | Solar module cleaning system using internet of things and drone | |
CN104901617B (en) | A kind of photovoltaic module cleans realization method and system | |
WO2020145488A1 (en) | System for detecting defects of solar panel by using big data | |
WO2017022882A1 (en) | Apparatus for classifying pathological diagnosis of medical image, and pathological diagnosis system using same | |
WO2016171341A1 (en) | Cloud-based pathology analysis system and method | |
WO2015126029A1 (en) | Power entry point energy measuring apparatus and energy measurement information labeling system using same | |
WO2020004749A1 (en) | Apparatus and method for allowing equipment to learn by using video file | |
CN112924471B (en) | Equipment fault diagnosis system and diagnosis method thereof | |
WO2022181931A1 (en) | System and method for monitoring abnormal water quality by using impedance measurement method | |
WO2022114654A1 (en) | Process monitoring system and method | |
WO2022114653A1 (en) | Data boundary deriving system and method | |
WO2019132476A1 (en) | System and method for evaluating operational conditions of blast furnace | |
US20210397837A1 (en) | Apparatus for monitoring a switchgear | |
WO2023090876A1 (en) | Preemptive wind power generation maintenance system | |
WO2020138977A1 (en) | Apparatus and method for monitoring performance of network device in wireless communication system | |
WO2023120977A1 (en) | Method and system for examining solar photovoltaic power station using unmanned aerial vehicle | |
CN117374789A (en) | Intelligent inspection method and system applied to transformer substation | |
WO2016064107A1 (en) | Pan/tilt/zoom camera based video playing method and apparatus | |
WO2022059815A1 (en) | Artificial intelligence-based solar module diagnosis method and system using thermal image captured by drone | |
WO2022197044A1 (en) | Bladder lesion diagnosis method using neural network, and system thereof | |
WO2021060772A1 (en) | Machine learning-based photovoltaic power generation operation management system and management method | |
WO2023158068A1 (en) | Learning system and method for improving object detection rate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20954211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20954211 Country of ref document: EP Kind code of ref document: A1 |