WO2021060772A1 - Machine learning-based photovoltaic power generation operation management system and management method - Google Patents

Machine learning-based photovoltaic power generation operation management system and management method Download PDF

Info

Publication number
WO2021060772A1
WO2021060772A1 PCT/KR2020/012536 KR2020012536W WO2021060772A1 WO 2021060772 A1 WO2021060772 A1 WO 2021060772A1 KR 2020012536 W KR2020012536 W KR 2020012536W WO 2021060772 A1 WO2021060772 A1 WO 2021060772A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference pattern
management server
machine learning
connection panel
parameter
Prior art date
Application number
PCT/KR2020/012536
Other languages
French (fr)
Korean (ko)
Inventor
전형덕
김명환
이민규
Original Assignee
주식회사 아이팔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190116795A external-priority patent/KR102084784B1/en
Priority claimed from KR1020190116765A external-priority patent/KR102084783B1/en
Application filed by 주식회사 아이팔 filed Critical 주식회사 아이팔
Publication of WO2021060772A1 publication Critical patent/WO2021060772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a machine learning-based solar power generation operation management system and management method.
  • solar cells and other green energy sources have great advantages in that they do not use fossil fuels, which are limited to the earth, and that they do not emit carbon dioxide gas, so they can minimize environmental pollution.
  • These advantages are global warming and fossil fuels. Considering the position of modern people who must prepare for the near future when exhaustion becomes serious, the importance of this is bound to be very high.
  • Korean Patent Registration No. 10-0999978 measures a plurality of solar cell modules that convert and output solar energy into electrical energy, an inverter that converts power output from the plurality of solar cell modules, and the generated voltage and current.
  • a photovoltaic power generation monitoring control device that monitors and controls the presence or absence of overvoltage, overcurrent, or reverse current in the circuit group to which each solar cell module is connected, and a switching unit that cuts off the power according to the monitoring result, and its information are received. It is characterized by consisting of a data collection and monitoring device that collects and monitors data.
  • the Applicant provides a machine learning-based solar power generation operation management system that predicts changes in parameters collected in real time using a reference pattern analyzed based on machine learning, and controls the access panel when an abnormality is detected through the predicted change. I want to.
  • a machine learning-based photovoltaic power generation operation management system for achieving the above object includes a solar cell including a plurality of solar cell modules, a connection panel, and the amount of sunlight of the solar cell, and It includes a management server that monitors current and humidity as parameters,
  • connection panel predicts a change trend of the parameter by comparing a reference pattern for each parameter previously analyzed in consideration of the installation location and environmental factors of the solar cell with a parameter collected in real time, and a predicted inflection point extracted from the predicted change trend. And parameter information used for predicting change trends may be used as change data.
  • the management server receives the change data for each parameter from the access panel, transmits a reference pattern for each parameter by analyzing the received change data for each parameter based on machine learning, to the access panel, and from the received change data
  • a notification and a control signal for abnormality control may be provided to the connection panel.
  • the access panel predicts the change trend for each parameter, but predicts the change trend in units of a preset interest section for the parameter collected in real time, and generates change data only when the change trend is predicted in the interest section and manages the above. Can be sent to the server.
  • the management server generates a correlation model that analyzes the correlation between the sunlight amount reference pattern and the current amount reference pattern, and analyzes the correlation between the measured amount of sunlight and the measured amount of current from the change data collected in real time, and the degree of similarity with the correlation model. If is less than the preset rate, it can be judged as more than the current.
  • the management server may notify the manager terminal and transmit a control signal for turning off the switch of the corresponding solar cell module determined as the current abnormality to the connection panel.
  • the access panel includes a heat pump for controlling the internal humidity
  • the management server controls the driving of the heat pump so that the predicted humidity analyzed from the change data collected in real time becomes the pre-analyzed reference humidity.
  • a signal can be transmitted to the connection panel.
  • the access panel transmits a thermal image sensor that generates a thermal image for each area by dividing the interior of the access panel, and transmits a thermal image for each area generated in real time to the management server.
  • the management server may include a control unit for notifying the management server when the temperature increases compared to the reference pattern in a specific region.
  • control unit of the access panel may drive a fire extinguishing unit when a fire is expected due to a sudden increase in temperature in a specific area analyzed by the generated thermal image, and may notify the occurrence of a fire to the management server.
  • the management server may analyze the thermal image for each area based on machine learning, and generate a temperature reference pattern for each area in which environmental factors of the access panel are considered and transmit it to the access panel.
  • a solar cell including a plurality of solar cell modules; Connection panel; And a management server for monitoring the amount of sunlight of the solar cell, current and humidity of the connection panel as parameters, the method of operating and managing a system based on photovoltaic power generation, in the connection panel, collecting the parameters in real time, the In a connection panel, predicting a change trend of the parameter by comparing a reference pattern for each parameter previously analyzed in consideration of the installation location and environmental factors of the solar cell and the parameters collected in real time, and in the connection panel, the predicted change Generating the predicted inflection point extracted from the trend and parameter information used for predicting the change trend as change data and transmitting it to the management server, the management server analyzing the change data to detect an abnormal prediction, and the management server In the case of detecting an abnormality prediction, it may include providing a control signal for abnormality control to the connection panel.
  • the parameter collected in real time is predicted in units of a preset interest section, but change data can be generated and transmitted to the management server only when the change trend is predicted in the interest section. have.
  • the step of detecting the abnormal prediction may include generating a correlation model that analyzes the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current, and by analyzing the correlation between the amount of sunlight and the amount of current measured from the change data collected in real time. If the degree of similarity with the correlation model is less than or equal to a preset rate, it can be determined as more than the current.
  • a control signal for notifying the manager terminal and turning off the switch of the corresponding solar cell module determined as the current abnormality may be transmitted to the connection panel.
  • control signal includes the heat pump provided in the connection panel so that the predicted humidity analyzed from the change data collected in real time becomes a pre-analyzed reference humidity.
  • a control signal for controlling driving may be transmitted to the connection panel.
  • connection panel when a fire is expected due to a sudden increase in temperature in a specific area analyzed by the generated thermal image, the step of driving a fire extinguishing unit and notifying the occurrence of a fire to the management server may be further included.
  • the management server generating a sunlight amount reference pattern, a current reference pattern, and a humidity reference pattern by analyzing the amount of sunlight, current and humidity collected in real time by applying an environmental factor, in the management server, the thermal image for each area
  • the image is analyzed based on machine learning, but may further include generating a temperature reference pattern for each region in which environmental factors are considered, and transmitting a reference pattern for each parameter to the connection panel.
  • the machine learning-based photovoltaic power generation operation management system and management method of the present invention uses the reference pattern analyzed by big data in consideration of the installation location and environmental factors (time, season, shade, weather, etc.) of the solar cell. Based on this, it is possible to predict changes in parameters collected in real time and detect abnormalities.
  • a notification is provided to the manager terminal, and the operation of the access panel can be controlled using a control signal.
  • the fire extinguishing unit is immediately operated at the connection panel to prevent major damage from the fire, and the occurrence of reverse current can be prevented by turning off a switch in which an abnormal current is detected.
  • FIG. 1 is a block diagram showing a schematic configuration of a machine learning-based solar power generation operation management system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the control unit of FIG. 1.
  • FIG. 3 is a graph for explaining prediction of a parameter change trend according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the management server of FIG. 1.
  • FIG. 5 is a graph for explaining a correlation between a reference pattern of a change in the amount of sunlight and the amount of current according to an embodiment of the present invention.
  • FIG. 6 is a graph for explaining an abnormality in a pattern of changes in the amount of sunlight and the amount of current collected in real time according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of operating and managing photovoltaic power generation based on machine learning according to an embodiment of the present invention.
  • a machine learning-based photovoltaic operation management system (hereinafter referred to as a system) according to an embodiment of the present invention includes a solar cell 100, a sunlight sensor 110, a connection panel 200, a management server 300, and a DB It may include (400).
  • the system of the present invention provides visually by monitoring the amount of sunlight, current amount, humidity and temperature of the connection panel 200 of the solar cell 100 as parameters during solar power generation operation, and a manager terminal when a risk factor is predicted during monitoring. You can notify (not shown).
  • the system of the present invention predicts a change trend by comparing the parameter collected in real time with a reference pattern analyzed based on big data machine learning, and periodically updates the reference pattern based on this, thereby accurately predicting the change trend.
  • the solar cell 100 converts light energy incident from the sun into electrical energy and outputs it.
  • the solar cell 100 includes a plurality of solar cell arrays 100a to 100n.
  • the solar cell array includes a plurality of solar cell modules. A number of solar cell modules, which are components of each solar cell array, are configured by being connected in series with each other.
  • the amount of sunlight sensor 110 is installed on the panel of the solar cell 100 to sense the amount of sunlight at the location where the solar cell 100 is installed in real time, and the sensed amount of sunlight is controlled through the communication unit 240 of the connection panel 200. It can be transmitted to 230.
  • connection panel 200 compares the amount of sunlight received in real time from the sunlight amount sensor 110, the output current received from the solar cell 100, and the humidity and temperature in the connection panel 200 with a corresponding reference pattern to determine the change trend for each parameter. It is predictable.
  • the connection panel 200 includes a switch 210, a sensor unit 220, a control unit 230 (MCU), a communication unit 240, a control circuit unit 250, a heat pump 260, and a fire extinguishing unit ( 270, and the sensor unit 220 may include a current sensor 221, a humidity sensor 222, and a thermal image sensor 223.
  • the connection board 200 may be packaged using a functional fiber such as Gore-Tex, and a bolt to which Gore-Tex is applied may be used even when the enclosure is combined.
  • connection panel 200 when a differential pressure occurs due to a temperature change, pressure is balanced inside and outside the connection panel 200 by packaging and coupling bolts of the connection panel 200 using Gore-Tex to prevent external fluids (e.g., rain, etc.). It can prevent penetration and prevent condensation from occurring.
  • Gore-Tex to prevent external fluids (e.g., rain, etc.). It can prevent penetration and prevent condensation from occurring.
  • the switch 210 may receive the output power of the solar cell 100 in units of strings.
  • the control circuit unit 250 may merge output power in units of strings received under the control of the controller 230 and provide them to the inverter.
  • the current sensor 222 may sense the current in each string unit from the output power received in the string unit of the solar cell 100 and provide it to the controller 230.
  • the humidity sensor 222 may sense the humidity in the connection panel 300 in real time and provide it to the control unit 230.
  • the thermal image sensor 223 may provide the controller 230 with a thermal image obtained by capturing a thermal image in the connection panel 300 in real time.
  • the thermal image may be obtained by dividing the area within the connection panel 300 into a plurality of areas and photographing each area.
  • the control circuit unit 250 having a high heat generation temperature may be intensively sensed.
  • the thermal image sensor 220 may divide the area of the control circuit unit 250 by circuit configuration or by a unit area to obtain a real-time thermal image for each area location of the control circuit unit 250.
  • the thermal image generated in real time may be transmitted to the controller 230.
  • the controller 230 may include a memory 231 and a processor 232.
  • the memory 231 may receive a sensing value for each parameter sensed from each of the sensors 110 and 220. That is, the memory 231 may store the amount of sunlight, the amount of current for each string, the amount of humidity, and the thermal image for each region, and may store a reference pattern for each parameter that is updated from the management server 300 at a preset period.
  • the reference pattern for each parameter is a pattern in which the amount of change of each parameter is analyzed based on big data machine learning in the management server 300, and environmental conditions such as the installation location (location, shade, etc.) of the solar cell, weather, season, time, etc. It can be analyzed in consideration of factors.
  • the installation location of the solar cell may be divided into a region and a plurality of locations installed within the region, and the system of the present invention may analyze and manage parameters for each location and region for monitoring. Meanwhile, the analysis of the reference pattern for each parameter will be described in detail when the management server 300 is described.
  • the processor 232 may compare the sensing value for each parameter stored in the memory 231 in real time with a reference pattern of a corresponding parameter to predict a change trend of the real-time parameter sensing value. With reference to FIG. 3, the prediction of the parameter change trend of the processor 232 will be described.
  • the processor 232 may compare a pattern of parameters collected in real time (actual measurement) with a reference pattern previously stored in the memory 231.
  • the pattern of the measured parameter and the reference pattern may represent a degree of change in the sensing value of the parameter sensing value over time.
  • the processor 232 samples the sensing values of the parameters collected in real time in units of a preset time interval, sets an interest interval (sampled unit interval) for predicting the trend of sensing values, and sets the sensing values of the parameters in the interest interval and
  • the trend of sensing values may be predicted based on the current point t1 by comparing pattern values in the corresponding interest section of the reference pattern.
  • the sensing value trend prediction may use a short-term load forecasting (STLF) analysis technique.
  • STLF short-term load forecasting
  • the processor 232 may extract the predicted inflection point P from the predicted sensing value trend pattern through the STLF analysis method.
  • the processor 232 When extracting the predicted inflection point (P), the processor 232 generates metadata including the amount of change in the sensing value and the predicted inflection point (P) in the interest section used for predicting the predicted inflection point (P) as change data, and the management server 300 ). That is, the related information may be transmitted to the management server 300 only when a change trend of a parameter according to the reference pattern is predicted.
  • the parameter may be an amount of sunlight, an amount of current, an amount of humidity, and the like, and may be a vector including time information.
  • the processor 232 may transmit a thermal image for each area collected in real time from the thermal image sensor 222 to the management server 300 through the communication unit 240. At this time, the processor 232 compares the thermal image for each region generated in real time with a temperature reference pattern for each region in which a pre-stored environmental factor is considered, and if the temperature increases compared to the reference pattern, the temperature for the region increases. Can be notified to the management server 300.
  • the processor 232 immediately drives the fire extinguishing unit 270 to extinguish the fire when a spark occurs in a specific area or the temperature in a specific area rapidly rises above a preset temperature and a fire is expected, and the management server 300 Fire occurrence can be notified by.
  • the communication unit 240 may receive a sensing value received from the sunlight amount sensor 110 and the sensor unit 120 in real time, and may perform data transmission/reception between the control unit 230 and the management server 300.
  • the control circuit unit 250 may control driving of the switch 210, the heat pump 260, and the fire extinguishing unit 270 according to the control of the controller 230.
  • the control unit 230 may control the driving of each component with the control circuit unit 250 according to the control signal received from the management server 300.
  • control signal may be a signal for controlling off of a switch in which an abnormal current is detected, driving of a heat pump for humidity control, and the like.
  • the heat pump 260 may prevent the occurrence of condensation in the connection panel 200.
  • a heat pump 260 of an air heat source type is provided in the connection panel 200 to control cooling and heating inside the connection panel, thereby controlling humidity.
  • the reference for cooling and heating control may be a reference humidity for preventing condensation.
  • the control circuit unit 250 may control driving of the heat pump 260 by receiving a heat pump driving control signal for controlling the humidity inside the connection panel 200 to become the reference humidity from the analysis server 300. That is, the heat pump 260 is driven according to the control signal of the control circuit unit 250 to adjust the humidity inside the connection panel 200.
  • connection panel 200 prevents condensation from occurring by a control signal that controls the packaging of the connection panel 200 using Gore-Tex and the bolt coupling structure and driving of the heat pump 260. Can be prevented.
  • the management server 300 may include a data collection unit 310, a reference pattern generation unit 320, a correlation analysis unit 330, an abnormality prediction unit 340, and a monitoring unit 350. have.
  • the data collection unit 310 may collect parameter sensing values transmitted from at least one connection panel 200 and store them in the DB 400. That is, change data for each amount of sunlight, amount of current, and amount of humidity collected in real time, and thermal image images for each region may be stored based on time. In this case, each of the pieces of information may be classified for each connection panel 200.
  • the data collection unit 310 may collect information such as weather, temperature, humidity, rainfall, and amount of sunlight for each location of the solar cell 100 connected to the connection panel 200 from the meteorological office and store it in the DB 400.
  • the reference pattern generation unit 320 may generate a model for each parameter, that is, a reference pattern, using data collected by the data collection unit 310 and stored in the DB 400.
  • the reference pattern generation unit 320 generates a reference pattern for each connection panel 200, but considers environmental factors (solar cell installation location, shade, season, weather, etc.), and parameters for a preset period (for example, a day). You can create patterns. Accordingly, the reference pattern for each parameter of the amount of sunlight, current, and humidity is not a pattern having a fixed threshold, but may be generated in different models even at the same time according to environmental factors.
  • the reference pattern generation unit 320 analyzes the thermal image for each region based on machine learning, but generates a temperature reference pattern for each region in which environmental factors of the connection panel are considered and transmits it to the connection panel.
  • the reference pattern generation unit 320 may transmit and update the generated basic pattern to the connection panel 200 at a preset period.
  • the correlation analysis unit 330 may generate a correlation model that analyzes the correlation between the analyzed basic pattern of sunlight amount and the basic pattern of the amount of current analyzed based on change data of the collected amount of sunlight based on the collected sunlight amount change data. .
  • a correlation model may also be generated in consideration of environmental factors.
  • FIG. 5 is a graph for explaining the correlation between the amount of sunlight and the amount of current reference pattern according to an embodiment of the present invention. Referring to FIG. 5, the amount of sunlight and the amount of electric current can be checked for a change over time. Through this, it is possible to grasp the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current according to the time trend.
  • the abnormality prediction unit 340 predicts the current abnormality through analysis of the sunlight change data and current change data collected in real time, predicts the humidity abnormality through analysis of the humidity change data, and analyzes the thermal image collected in real time for each area.
  • the temperature abnormality can be predicted through
  • the abnormality prediction unit 340 analyzes the correlation between the measured amount of sunlight and the measured amount of current from the change data collected in real time, and determines the degree of similarity with the correlation model that analyzed the correlation between the amount of sunlight reference pattern and the current amount reference pattern. If is less than the preset rate, it can be judged as more than the current.
  • the measured sunlight amount pattern may be a pattern generated by analyzing sunlight amount change data based on machine learning.
  • the measured current amount pattern may be a pattern generated by analyzing current amount change data based on machine learning.
  • the abnormality predictor 340 may determine a degree of similarity between the correlation between the measured sunlight amount pattern and the measured current amount pattern with the correlation between the sunlight amount reference pattern and the current amount reference pattern of FIG. 5. Referring to FIG. 6, when comparing the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current, the occurrence of an abnormality is predicted at a location where the correlation between the measured amount of sunlight pattern and the measured amount of current pattern is different, that is, a portion with low correlation similarity (abnormality prediction). Can be.
  • the abnormality predicting unit 340 When determining a current abnormality, notifies the manager terminal (not shown), and transmits a control signal for turning off the switch of the corresponding solar cell module determined as the current abnormality to the connection panel 200, and By controlling 210, reverse current can be prevented.
  • the abnormality prediction unit 340 is a heat pump for controlling the estimated humidity analyzed from the humidity change data collected in real time to become a pre-analyzed reference humidity by determining it as the abnormal humidity when the analyzed predicted humidity is outside the error range of the previously analyzed reference humidity
  • the driving control signal may be transmitted to the connection panel 200.
  • the monitoring unit 350 uses the monitoring unit 350 to monitor the heat of the corresponding area. Temperature patterns according to image images and abnormalities due to temperature rise can be notified to the manager terminal.
  • the monitoring unit 350 visually provides a change trend predicted based on the change data collected in real time and a reference pattern, and may provide a mark and a notification sound that can be recognized when a notification occurs.
  • connection panel 200 in the connection panel 200, the amount of sunlight, the amount of current, the humidity of the connection panel 200, and the thermal image for each area may be collected in real time in the connection panel 200 (S10). ).
  • connection panel 200 may determine whether a change trend is predicted by comparing an interest section of each collected parameter with a pre-analyzed reference pattern (S15).
  • abnormal prediction can be made according to the parameter.
  • the current abnormality prediction analyzes the correlation between the measured amount of sunlight and the measured amount of current from the amount of sunlight change data and current change data collected in real time, and the degree of similarity with the correlation model that analyzes the correlation between the amount of sunlight reference pattern and the current amount reference pattern. By judging, if the degree of similarity is less than or equal to a preset rate, it can be determined as more than the current.
  • the humidity abnormality prediction may be detected as abnormal humidity when the predicted humidity analyzed from the humidity change data collected in real time is out of the error range of the previously analyzed reference humidity.
  • a control signal of the access panel 200 according to the abnormality prediction may be generated and transmitted to the access panel 200 (S35).
  • the connection panel 200 receiving this may control the switch 210 and the heat pump 260 according to the control signal.
  • the monitoring unit 350 when a thermal image abnormality is predicted, that is, when a notification by temperature rise is received from the thermal image of a specific area, the monitoring unit 350 enables the monitoring unit 350 to monitor the temperature in a temperature pattern according to the thermal image of the corresponding area. And an abnormality due to temperature rise may be notified to the manager terminal.
  • the reference pattern may be updated at a preset period by parameters collected in real time, and the updated reference pattern may be transmitted to the access panel 200.
  • FIGS. 1 to 6 what has been described with reference to FIGS. 1 to 6 above is a description of only the main matters of the present invention, and the present invention is limited to the configuration of FIGS. 1 to 6 as various designs are possible within the technical scope. It is self-evident that it is not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a machine learning-based photovoltaic power generation operation management system. More specifically, the present invention relates to a machine learning-based photovoltaic power generation operation management system comprising: solar cells; a connection board which compares parameters of the solar cells collected in real time with a reference pattern previously analyzed in consideration of the installation position and environmental factors of the solar cells so as to predict a change trend of the parameters, and generates, as change data, parameter information used for predicting the change trend and a predicted inflection point extracted from the predicted change trend; and a management server which receives change data for each parameter from the connection board, transmits a reference pattern for each parameter, obtained by analyzing the received change data for each parameter on the basis of machine learning, to the connection board, and, when an abnormality is detected from the received change data, provides an alarm, and provides a control signal for controlling the abnormality to the connection board.

Description

머신러닝기반 태양광발전운영 관리시스템 및 관리방법Machine learning-based photovoltaic power generation operation management system and management method
본 발명은 머신러닝기반 태양광발전운영 관리시스템 및 관리방법에 관한 것이다.The present invention relates to a machine learning-based solar power generation operation management system and management method.
최근 화석연료의 과대한 사용에 따라 지구의 온난화 등 환경문제가 심각해지면서 국제적으로 이산화탄소 배출을 줄이기 위한 대책 마련이 시급한 실정이며 이의 대안으로 신재생 에너지에 대한 관심이 높아지고 있다. Recently, as environmental problems such as global warming have become serious due to excessive use of fossil fuels, it is urgent to prepare measures to reduce carbon dioxide emissions internationally, and interest in renewable energy is increasing as an alternative.
또한, 태양전지를 비롯한 그린에너지 공급원들은 지구에 한정적으로 존재하는 화석연료를 사용하지 않는다는 장점과 이산화탄소 가스의 배출이 없으므로 환경 오염을 최소화할 수 있다는 큰 장점이 있으며, 이러한 장점들은 지구 온난화와 화석연료 고갈이 심각해 지는 가까운 미래를 대비해야 하는 현대인의 입장을 고려할 때 이의 중요도는 매우 높을 수밖에 없다.In addition, solar cells and other green energy sources have great advantages in that they do not use fossil fuels, which are limited to the earth, and that they do not emit carbon dioxide gas, so they can minimize environmental pollution.These advantages are global warming and fossil fuels. Considering the position of modern people who must prepare for the near future when exhaustion becomes serious, the importance of this is bound to be very high.
우리나라의 경우에도, 근래 이산화탄소 배출을 규제하기 위해 태양광발전을 선두로 하여 신재생 에너지 보급에 대한 장려정책이 제도화되어 실시되고 있고, 이에 따라 태양광 발전시스템은 최근 몇 년간 주요한 신재생 에너지의 우선적인 발전시스템으로 권장되면서 수많은 발전설비 및 이의 운영에 필요한 인프라 시설들이 개발되었고 현재 수천MW 용량의 태양광발전 시설이 현장에서 설치 운용중에 있다.In the case of Korea, in recent years, in order to regulate the emission of carbon dioxide, a policy to encourage the supply of new and renewable energy has been institutionalized and implemented, leading to solar power generation. Accordingly, the solar power generation system has become a major priority for renewable energy in recent years. As recommended as a phosphorus power generation system, numerous power generation facilities and infrastructure facilities necessary for their operation have been developed, and thousands of MW capacity solar power generation facilities are currently being installed and operated in the field.
이러한 태양전지모듈은 일사량을 많이 얻을 수 있는 건물의 옥상에 설치되거나 일조권이 잘 확보될 수 있는 야산과 같은 한적한 곳에 태양광에 직접 노출되어 설치되므로, 운영자의 접근이 대개 용이치 못하고 발전시스템이 설치되어 있는 현장에서 직접 육안으로 체크하는 방안이 현실적이지 못한 상황이다. 따라서, 원격 모니터링이나 발전시스템에 대한 자동 고장 인식의 중요도가 높아지게 되었다.These solar cell modules are installed on the roof of a building where a lot of insolation can be obtained, or directly exposed to sunlight in a quiet place such as a hill where the right of sunlight can be secured, so the operator's access is usually not easy and the power generation system is installed. It is not practical to check directly with the naked eye at the site. Therefore, the importance of remote monitoring or automatic fault recognition for a power generation system has increased.
한국등록특허 제10-0999978호는 태양광 에너지를 전기에너지로 변환하여 출력하는 다수의 태양전지모듈과, 상기 다수의 태양전지모듈로부터 출력되는 전력을 변환하는 인버터와, 발전된 전압과 전류를 측정함과 함께 각 태양전지모듈이 연결된 회로군에서 과전압 또는 과전류, 역전류의 이상 유무를 감시하고 제어하는 태양광발전 감시 제어 장치와, 이의 감시결과에 따라 전원을 차단하는 스위칭부 및 이의 정보를 전달받아 데이터를 수집하고 모니터링하는 데이터수집 및 모니터링 장치로 구성되는 것을 특징으로 하고 있다.Korean Patent Registration No. 10-0999978 measures a plurality of solar cell modules that convert and output solar energy into electrical energy, an inverter that converts power output from the plurality of solar cell modules, and the generated voltage and current. In addition, a photovoltaic power generation monitoring control device that monitors and controls the presence or absence of overvoltage, overcurrent, or reverse current in the circuit group to which each solar cell module is connected, and a switching unit that cuts off the power according to the monitoring result, and its information are received. It is characterized by consisting of a data collection and monitoring device that collects and monitors data.
하지만, 종래 기술에 따른 태양광 발전 관련 기술은 태양광 발전 설비를 구성하는 각 모듈의 개별적 성능 및 특정 파라미터 개선에만 주안점을 두고 그 개발이 이루어졌다. 이에, 태양광 발전 설비에 대한 전반적인 운용상의 효율성을 개선시키기 위한 기술 개발이 요구된다.However, the technology related to photovoltaic power generation according to the prior art has been developed with an emphasis only on improving individual performance and specific parameters of each module constituting a photovoltaic power generation facility. Accordingly, there is a need for technology development to improve overall operational efficiency for solar power generation facilities.
따라서, 본 출원인은 머신러닝기반으로 분석된 기준패턴을 이용하여 실시간 수집되는 파라미터의 변화를 예측하고, 예측된 변화를 통해 이상감지시 접속반을 제어하는 머신러닝기반 태양광발전운영 관리시스템을 제공하고자 한다.Therefore, the Applicant provides a machine learning-based solar power generation operation management system that predicts changes in parameters collected in real time using a reference pattern analyzed based on machine learning, and controls the access panel when an abnormality is detected through the predicted change. I want to.
본 발명의 목적은, 본 발명은 머신러닝기반으로 분석된 기준패턴을 이용하여 실시간 수집되는 파라미터의 변화를 예측하고, 예측된 변화를 통해 이상감지시 접속반을 제어하는 머신러닝기반 태양광발전운영 관리시스템 및 관리방법을 제공하는 데 있다.It is an object of the present invention to predict changes in parameters collected in real time using a reference pattern analyzed based on machine learning, and control a connection panel when an abnormality is detected through the predicted change. It is to provide a management system and management method.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 머신러닝기반 태양광발전운영 관리시스템은 복수의 태양전지모듈을 포함하는 태양전지, 접속반 및 상기 태양전지의 일조량, 상기 접속반의 전류 및 습도를 파라미터로 모니터링하는 관리서버를 포함하고,A machine learning-based photovoltaic power generation operation management system according to an embodiment of the present invention for achieving the above object includes a solar cell including a plurality of solar cell modules, a connection panel, and the amount of sunlight of the solar cell, and It includes a management server that monitors current and humidity as parameters,
상기 접속반은, 상기 태양전지의 설치위치 및 환경요인을 고려하여 기분석된 파라미터별 기준패턴과 실시간 수집되는 파라미터와 비교하여 상기 파라미터의 변화추이를 예측하고, 예측된 변화추이로부터 추출된 예측 변곡점 및 변화추이 예측에 이용된 파라미터 정보를 변화데이터로 할 수 있다.The connection panel predicts a change trend of the parameter by comparing a reference pattern for each parameter previously analyzed in consideration of the installation location and environmental factors of the solar cell with a parameter collected in real time, and a predicted inflection point extracted from the predicted change trend. And parameter information used for predicting change trends may be used as change data.
또한, 상기 관리서버는, 상기 접속반으로부터 파라미터별 변화데이터를 수신하고, 수신된 파라미터별 변화데이터를 머신러닝기반으로 분석한 파라미터별 기준패턴을 상기 접속반으로 전송하며, 상기 수신된 변화데이터로부터 이상감지시 알림 및 상기 접속반으로 이상제어를 위한 제어신호를 제공할 수 있다.In addition, the management server receives the change data for each parameter from the access panel, transmits a reference pattern for each parameter by analyzing the received change data for each parameter based on machine learning, to the access panel, and from the received change data When an abnormality is detected, a notification and a control signal for abnormality control may be provided to the connection panel.
또한, 상기 접속반은, 파라미터별로 변화추이를 예측하되, 실시간 수집되는 파라미터를 기설정된 관심구간 단위로 변화추이를 예측하고, 해당 관심구간에서 변화추이가 예측되는 경우에만 변화데이터를 생성하여 상기 관리서버로 전송할 수 있다.In addition, the access panel predicts the change trend for each parameter, but predicts the change trend in units of a preset interest section for the parameter collected in real time, and generates change data only when the change trend is predicted in the interest section and manages the above. Can be sent to the server.
또한, 상기 관리서버는, 일조량 기준패턴 및 전류량 기준패턴의 상관관계를 분석한 상관모델을 생성하고, 상기 실시간 수집되는 변화데이터로부터 실측 일조량 및 실측 전류량의 상관관계를 분석하여 상기 상관모델과의 유사도가 기설정률 이하이면 전류이상으로 판단할 수 있다.In addition, the management server generates a correlation model that analyzes the correlation between the sunlight amount reference pattern and the current amount reference pattern, and analyzes the correlation between the measured amount of sunlight and the measured amount of current from the change data collected in real time, and the degree of similarity with the correlation model. If is less than the preset rate, it can be judged as more than the current.
또한, 상기 관리서버는, 상기 전류이상을 판단시, 관리자 단말로 알림하고, 전류이상으로 판단된 해당 태양전지모듈의 스위치를 오프시키는 제어신호를 상기 접속반으로 전송할 수 있다.In addition, when determining the current abnormality, the management server may notify the manager terminal and transmit a control signal for turning off the switch of the corresponding solar cell module determined as the current abnormality to the connection panel.
또한, 상기 접속반은 내부 습도 조절을 위한 히트펌프를 포함하고, 상기 관리서버는, 상기 실시간 수집되는 변화데이터로부터 분석된 예측습도가 기분석된 기준습도가 되도록 상기 히트펌프의 구동을 제어하는 제어신호를 상기 접속반으로 전송할 수 있다.In addition, the access panel includes a heat pump for controlling the internal humidity, and the management server controls the driving of the heat pump so that the predicted humidity analyzed from the change data collected in real time becomes the pre-analyzed reference humidity. A signal can be transmitted to the connection panel.
또한, 상기 접속반은, 접속반 내부를 구분하여 영역별로 열화상 이미지를 생성하는 열화상 센서, 실시간 생성되는 영역별 열화상 이미지를 상기 관리서버로 전송하되, 기저장된 환경요인이 고려된 영역별 온도 기준패턴과 비교시, 특정 영역에서 기준패턴 대비 온도가 상승하면 상기 관리서버로 알림하는 제어부를 포함할 수 있다.In addition, the access panel transmits a thermal image sensor that generates a thermal image for each area by dividing the interior of the access panel, and transmits a thermal image for each area generated in real time to the management server. When compared with the temperature reference pattern, it may include a control unit for notifying the management server when the temperature increases compared to the reference pattern in a specific region.
또한, 상기 접속반의 제어부는, 상기 생성된 열화상 이미지로 분석된 특정 영역에서의 온도가 급상승하여 화재가 예상되면 소화부를 구동시키고, 상기 관리서버로 화재발생을 알림할 수 있다.In addition, the control unit of the access panel may drive a fire extinguishing unit when a fire is expected due to a sudden increase in temperature in a specific area analyzed by the generated thermal image, and may notify the occurrence of a fire to the management server.
또한, 상기 관리서버는, 상기 영역별 열화상 이미지를 머신러닝기반으로 분석하되, 접속반의 환경요인이 고려된 영역별 온도 기준패턴을 생성하여 상기 접속반으로 전송할 수 있다.In addition, the management server may analyze the thermal image for each area based on machine learning, and generate a temperature reference pattern for each area in which environmental factors of the access panel are considered and transmit it to the access panel.
본 발명의 일 실시 예에 따르면, 복수의 태양전지모듈을 포함하는 태양전지; 접속반; 및 상기 태양전지의 일조량, 상기 접속반의 전류 및 습도를 파라미터로 모니터링하는 관리서버를 포함하는 시스템의 머신러닝기반 태양광발전운영관리방법은, 상기 접속반에서, 상기 파리미터를 실시간 수집하는 단계, 상기 접속반에서, 상기 태양전지의 설치위치 및 환경요인을 고려하여 기분석된 파라미터별 기준패턴과 상기 실시간 수집된 파라미터를 비교하여 상기 파라미터의 변화추이를 예측하는 단계, 상기 접속반에서, 예측된 변화추이로부터 추출된 예측 변곡점 및 변화추이 예측에 이용된 파라미터 정보를 변화데이터로 생성하여 상기 관리서버로 전송하는 단계, 상기 관리서버에서, 상기 변화데이터를 분석하여 이상예측을 감지하는 단계 및 상기 관리서버에서, 이상예측 감지시 상기 접속반으로 이상제어를 위한 제어신호를 제공하는 단계를 포함할 수 있다.According to an embodiment of the present invention, a solar cell including a plurality of solar cell modules; Connection panel; And a management server for monitoring the amount of sunlight of the solar cell, current and humidity of the connection panel as parameters, the method of operating and managing a system based on photovoltaic power generation, in the connection panel, collecting the parameters in real time, the In a connection panel, predicting a change trend of the parameter by comparing a reference pattern for each parameter previously analyzed in consideration of the installation location and environmental factors of the solar cell and the parameters collected in real time, and in the connection panel, the predicted change Generating the predicted inflection point extracted from the trend and parameter information used for predicting the change trend as change data and transmitting it to the management server, the management server analyzing the change data to detect an abnormal prediction, and the management server In the case of detecting an abnormality prediction, it may include providing a control signal for abnormality control to the connection panel.
또한, 상기 변화추이를 예측하는 단계는, 실시간 수집되는 파라미터를 기설정된 관심구간 단위로 변화추이를 예측하되, 해당 관심구간에서 변화추이가 예측되는 경우에만 변화데이터를 생성하여 상기 관리서버로 전송할 수 있다.In addition, in the predicting of the change trend, the parameter collected in real time is predicted in units of a preset interest section, but change data can be generated and transmitted to the management server only when the change trend is predicted in the interest section. have.
또한, 상기 이상예측을 감지하는 단계는, 일조량 기준패턴 및 전류량 기준패턴의 상관관계를 분석한 상관모델을 생성하는 단계 및 상기 실시간 수집되는 변화데이터로부터 실측 일조량 및 실측 전류량의 상관관계를 분석하여 상기 상관모델과의 유사도가 기설정률 이하이면 전류이상으로 판단할 수 있다.In addition, the step of detecting the abnormal prediction may include generating a correlation model that analyzes the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current, and by analyzing the correlation between the amount of sunlight and the amount of current measured from the change data collected in real time. If the degree of similarity with the correlation model is less than or equal to a preset rate, it can be determined as more than the current.
또한, 상기 제어신호를 제공하는 단계는, 상기 전류이상을 판단시, 관리자 단말로 알림하고, 전류이상으로 판단된 해당 태양전지모듈의 스위치를 오프시키는 제어신호를 상기 접속반으로 전송할 수 있다.In addition, in the providing of the control signal, when determining the current abnormality, a control signal for notifying the manager terminal and turning off the switch of the corresponding solar cell module determined as the current abnormality may be transmitted to the connection panel.
또한, 상기 제어신호를 제공하는 단계는, 상기 실시간 수집되는 변화데이터로부터 분석된 예측습도가 기분석된 기준습도가 되도록 상기 접속반에 구비된 히트펌프의 구동을 제어하는 제어신호를 상기 접속반으로 전송할 수 있다.In addition, the providing of the control signal includes the heat pump provided in the connection panel so that the predicted humidity analyzed from the change data collected in real time becomes a pre-analyzed reference humidity. A control signal for controlling driving may be transmitted to the connection panel.
또한, 상기 접속반에서, 접속반 내부를 구분하여 영역별로 열화상 이미지를 실시간으로 생성하여 상기 관리서버로 전송하는 단계 및 기저장된 환경요인이 고려된 영역별 온도 기준패턴과 비교시, 특정 영역에서 기준패턴 대비 온도가 상승하면 상기 관리서버로 알림하는 단계를 더 포함할 수 있다.In addition, in the connection panel, the step of generating a thermal image for each area in real time by dividing the inside of the access panel and transmitting it to the management server, and when comparing the temperature reference pattern for each area in which the pre-stored environmental factors are considered, in a specific area It may further include the step of notifying the management server when the temperature rises compared to the reference pattern.
또한, 상기 접속반에서, 상기 생성된 열화상 이미지로 분석된 특정 영역에서의 온도가 급상승하여 화재가 예상되면 소화부를 구동시키는 단계 및 상기 관리서버로 화재발생을 알림하는 단계를 더 포함할 수 있다.In addition, in the connection panel, when a fire is expected due to a sudden increase in temperature in a specific area analyzed by the generated thermal image, the step of driving a fire extinguishing unit and notifying the occurrence of a fire to the management server may be further included. .
또한, 상기 관리서버에서, 환경요인을 적용하여 상기 실시간 수집된 일조량, 전류 및 습도를 분석한 일조량 기준패턴, 전류 기준패턴 및 습도 기준패턴을 생성하는 단계, 상기 관리서버에서, 상기 영역별 열화상 이미지를 머신러닝기반으로 분석하되, 환경요인이 고려된 영역별 온도 기준패턴을 생성하는 단계 및 상기 접속반으로 파라미터별 기준패턴을 전송하는 단계를 더 포함할 수 있다.In addition, in the management server, generating a sunlight amount reference pattern, a current reference pattern, and a humidity reference pattern by analyzing the amount of sunlight, current and humidity collected in real time by applying an environmental factor, in the management server, the thermal image for each area The image is analyzed based on machine learning, but may further include generating a temperature reference pattern for each region in which environmental factors are considered, and transmitting a reference pattern for each parameter to the connection panel.
이상에서 설명한 바와 같이, 본 발명의 머신러닝기반 태양광발전운영 관리시스템 및 관리방법은 태양전지의 설치위치 및 환경요인(시간, 계절, 음영, 날씨 등)을 고려하여 빅데이터 분석된 기준패턴을 기반으로, 실시간 수집되는 파라미터의 변화추이를 예측하고 이상감지를 할 수 있다.As described above, the machine learning-based photovoltaic power generation operation management system and management method of the present invention uses the reference pattern analyzed by big data in consideration of the installation location and environmental factors (time, season, shade, weather, etc.) of the solar cell. Based on this, it is possible to predict changes in parameters collected in real time and detect abnormalities.
또한, 실시간 수집되는 파라미터의 변화추이 예측시에만 관련 정보를 관리서버로 전송하고, 이를 빅데이터 분석함으로써 환경변화시에도 변화추이의 정확성을 향상시킬 수 있다.In addition, it is possible to improve the accuracy of the change trend even when the environment changes by transmitting the related information to the management server only when predicting the change trend of parameters collected in real time, and analyzing it with big data.
또한, 파라미터의 이상감지시 관리자 단말로 알림을 제공하고, 제어신호를 이용하여 접속반의 구동을 제어할 수 있다. 특히, 온도의 급상승 및 스파클 등으로 인한 화재예측시 접속반에서 즉시 소화부를 동작시킴으로써 화재로 인한 큰 피해를 방지하고, 전류이상이 감지된 스위치를 오프시켜 역전류 발생을 방지할 수 있다.In addition, when a parameter abnormality is detected, a notification is provided to the manager terminal, and the operation of the access panel can be controlled using a control signal. Particularly, when a fire is predicted due to a sudden increase in temperature or sparkle, the fire extinguishing unit is immediately operated at the connection panel to prevent major damage from the fire, and the occurrence of reverse current can be prevented by turning off a switch in which an abnormal current is detected.
또한, 실시간 수집되는 파라미터의 변화추이 및 이상감지에 따른 파라미터 정보를 시각화하여 제공함으로써 모니터링할 수 있다.In addition, it is possible to monitor by visualizing and providing parameter information according to the change trend and abnormality detection of parameters collected in real time.
도 1은 본 발명의 일 실시 예에 따른 머신러닝기반 태양광발전운영 관리시스템의 개략적인 구성을 나타내는 블록도이다. 1 is a block diagram showing a schematic configuration of a machine learning-based solar power generation operation management system according to an embodiment of the present invention.
도 2는 도 1의 제어부의 구성을 나타내는 블록도이다. FIG. 2 is a block diagram showing the configuration of the control unit of FIG. 1.
도 3은 본 발명의 일 실시 예에 따른 파라미터 변화추이 예측을 설명하기 위한 그래프이다.3 is a graph for explaining prediction of a parameter change trend according to an embodiment of the present invention.
도 4는 도 1의 관리서버의 구성을 나타내는 블록도이다.4 is a block diagram showing the configuration of the management server of FIG. 1.
도 5는 본 발명의 일 실시 예에 따른 일조량 및 전류량 변화 기준패턴의 상관관계를 설명하기 위한 그래프이다.5 is a graph for explaining a correlation between a reference pattern of a change in the amount of sunlight and the amount of current according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 실시간 수집되는 일조량 및 전류량 변화패턴의 이상를 설명하기 위한 그래프이다.6 is a graph for explaining an abnormality in a pattern of changes in the amount of sunlight and the amount of current collected in real time according to an embodiment of the present invention.
도 7은 본 발명의 일 실시 예에 따른 머신러닝기반 태양광발전운영 관리방법을 설명하기 위한 흐름도이다.7 is a flowchart illustrating a method of operating and managing photovoltaic power generation based on machine learning according to an embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Accordingly, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all the technical spirit of the present invention, and thus various equivalents that can replace them at the time of application It should be understood that there may be water and variations.
이하, 도면을 참조하여 설명하기에 앞서, 본 발명의 요지를 드러내기 위해서 필요하지 않은 사항 즉 통상의 지식을 가진 당업자가 자명하게 부가할 수 있는 공지 구성에 대해서는 도시하지 않거나, 구체적으로 기술하지 않았음을 밝혀둔다.Hereinafter, prior to description with reference to the drawings, matters that are not necessary to reveal the gist of the present invention, that is, known configurations that can be obviously added by those skilled in the art are not shown or specifically described. Make the note clear.
도 1은 본 발명의 일 실시 예에 따른 머신러닝기반 태양광발전운영 관리시스템의 개략적인 구성을 나타내는 블록도이다. 본 발명의 일 실시 예에 따른 머신러닝기반 태양광발전운영 관리시스템(이하, 시스템이라함)은 태양전지(100), 일조량센서(110), 접속반(200), 관리서버(300) 및 DB(400)를 포함할 수 있다.1 is a block diagram showing a schematic configuration of a machine learning-based solar power generation operation management system according to an embodiment of the present invention. A machine learning-based photovoltaic operation management system (hereinafter referred to as a system) according to an embodiment of the present invention includes a solar cell 100, a sunlight sensor 110, a connection panel 200, a management server 300, and a DB It may include (400).
본 발명의 시스템은, 태양광발전운영시 태양전지(100)의 일조량, 전류량, 접속반(200)의 습도 및 온도를 파라미터로 모니터링하여 시각적으로 제공하고, 모니터링시 위험요소가 예측될 때 관리자 단말(미도시)로 알림할 수 있다. The system of the present invention provides visually by monitoring the amount of sunlight, current amount, humidity and temperature of the connection panel 200 of the solar cell 100 as parameters during solar power generation operation, and a manager terminal when a risk factor is predicted during monitoring. You can notify (not shown).
이때, 본 발명의 시스템은 실시간 수집되는 파라미터를 빅데이터 머신러닝기반으로 분석된 기준패턴과 비교하여 변화추이를 예측하고, 이를 기반으로 기준패턴을 주기적으로 업데이트함으로써 변화추이를 정확하게 예측할 수 있다.At this time, the system of the present invention predicts a change trend by comparing the parameter collected in real time with a reference pattern analyzed based on big data machine learning, and periodically updates the reference pattern based on this, thereby accurately predicting the change trend.
태양전지(100)는 태양으로부터 입사되는 빛 에너지를 전기에너지로 변환하여 출력시킨다. 이러한 태양전지(100)는 다수의 태양전지 어레이(100a 내지 100n)를 포함한다. 또한, 태양전지 어레이는 다수의 태양전지 모듈을 포함한다. 각 태양전지 어레이의 구성요소인 다수의 태양전지 모듈은 상호 직렬로 연결되어 구성된다. The solar cell 100 converts light energy incident from the sun into electrical energy and outputs it. The solar cell 100 includes a plurality of solar cell arrays 100a to 100n. In addition, the solar cell array includes a plurality of solar cell modules. A number of solar cell modules, which are components of each solar cell array, are configured by being connected in series with each other.
일조량 센서(110)는 태양전지(100)의 패널에 설치되어, 태양전지(100)가 설치된 위치의 일조량을 실시간으로 센싱하고, 센싱되는 일조량을 접속반(200)의 통신부(240)를 통해 제어부(230)로 전송할 수 있다.The amount of sunlight sensor 110 is installed on the panel of the solar cell 100 to sense the amount of sunlight at the location where the solar cell 100 is installed in real time, and the sensed amount of sunlight is controlled through the communication unit 240 of the connection panel 200. It can be transmitted to 230.
접속반(200)은 일조량 센서(110)로부터 실시간 수신되는 일조량, 태양전지(100)로부터 수신되는 출력전류, 접속반(200) 내의 습도 및 온도를 대응되는 기준패턴과 비교하여 파라미터별로 변화추이를 예측할 수 있다. The connection panel 200 compares the amount of sunlight received in real time from the sunlight amount sensor 110, the output current received from the solar cell 100, and the humidity and temperature in the connection panel 200 with a corresponding reference pattern to determine the change trend for each parameter. It is predictable.
도 1을 참고하면, 접속반(200)은 스위치(210), 센서부(220), 제어부(230:MCU), 통신부(240), 제어회로부(250), 히트펌프(260) 및 소화부(270)를 포함하고, 센서부(220)는 전류센서(221), 습도센서(222) 및 열화상센서(223)를 포함할 수 있다. 또한, 접속반(200)은 고어텍스(Gore-Tex) 같은 기능성 섬유를 이용하여 패키징될 수 있고, 함체 결합시에도 고어텍스를 적용한 볼트 등을 이용할 수 있다. 이에, 온도 변화로 인한 차압 발생시, 고어텍스를 이용한 접속반(200)의 패키징 및 결합볼트 등에 의해, 접속반(200) 내외부의 압력 평형을 이루어 외부 유체(일예로, 비(雨) 등)의 침투를 방지하고, 결로발생을 방지할 수 있다..Referring to FIG. 1, the connection panel 200 includes a switch 210, a sensor unit 220, a control unit 230 (MCU), a communication unit 240, a control circuit unit 250, a heat pump 260, and a fire extinguishing unit ( 270, and the sensor unit 220 may include a current sensor 221, a humidity sensor 222, and a thermal image sensor 223. In addition, the connection board 200 may be packaged using a functional fiber such as Gore-Tex, and a bolt to which Gore-Tex is applied may be used even when the enclosure is combined. Accordingly, when a differential pressure occurs due to a temperature change, pressure is balanced inside and outside the connection panel 200 by packaging and coupling bolts of the connection panel 200 using Gore-Tex to prevent external fluids (e.g., rain, etc.). It can prevent penetration and prevent condensation from occurring.
스위치(210)는 태양전지(100)의 출력전력을 스트링 단위로 수신할 수 있다. 이때, 제어회로부(250)는 제어부(230)의 제어에 따라 수신되는 스트링단위의 출력전력을 병합하여 인버터에 제공할 수 있다. The switch 210 may receive the output power of the solar cell 100 in units of strings. In this case, the control circuit unit 250 may merge output power in units of strings received under the control of the controller 230 and provide them to the inverter.
전류센서(222)는 태양전지(100)의 스트링단위로 수신되는 출력전력으로부터, 각 스트링단위의 전류를 센싱하여 제어부(230)에 제공할 수 있다.The current sensor 222 may sense the current in each string unit from the output power received in the string unit of the solar cell 100 and provide it to the controller 230.
습도센서(222)는 접속반(300) 내의 습도를 실시간으로 센싱하여 제어부(230)에 제공할 수 있다. The humidity sensor 222 may sense the humidity in the connection panel 300 in real time and provide it to the control unit 230.
열화상센서(223)는 접속반(300)내의 열화상을 실시간으로 촬영하여 얻어지는 열화상이미지를 제어부(230)에 제공할 수 있다. 이때, 열화상 이미지는 접속반(300)내의 영역을 복수 개로 구분하여 영역별로 촬영하여 얻어질 수 있다. 이때, 열 발생 온도가 높은 제어회로부(250)를 집중적으로 센싱할 수 있다.The thermal image sensor 223 may provide the controller 230 with a thermal image obtained by capturing a thermal image in the connection panel 300 in real time. In this case, the thermal image may be obtained by dividing the area within the connection panel 300 into a plurality of areas and photographing each area. In this case, the control circuit unit 250 having a high heat generation temperature may be intensively sensed.
구체적으로, 열화상센서(220)는 제어회로부(250)의 영역을 회로구성별로 구분하거나, 단위영역으로 구분하여 제어회로부(250)의 영역 위치별로 실시간 열화상 이미지를 획득할 수 있다. 이때, 실시간 생성되는 열화상 이미지는 제어부(230)로 전송될 수 있다.Specifically, the thermal image sensor 220 may divide the area of the control circuit unit 250 by circuit configuration or by a unit area to obtain a real-time thermal image for each area location of the control circuit unit 250. In this case, the thermal image generated in real time may be transmitted to the controller 230.
도 2를 참고하면, 제어부(230)는 메모리(231) 및 프로세서(232)를 포함할 수 있다. Referring to FIG. 2, the controller 230 may include a memory 231 and a processor 232.
메모리(231)는 각 센서(110,220)로부터 센싱된 파라미터별 센싱값을 수신할 수 있다. 즉, 메모리(231)는 일조량, 스트링별 전류량, 습도량 및 영역별 열화상 이미지를 저장하고, 관리서버(300)로부터 기설정주기로 업데이트되는 파라미터별 기준패턴을 저장할 수 있다. The memory 231 may receive a sensing value for each parameter sensed from each of the sensors 110 and 220. That is, the memory 231 may store the amount of sunlight, the amount of current for each string, the amount of humidity, and the thermal image for each region, and may store a reference pattern for each parameter that is updated from the management server 300 at a preset period.
여기서, 파라미터별 기준패턴은 관리서버(300)에서 빅데이터 머신러닝기반으로 각 파라미터의 변화량을 분석한 패턴으로, 태양전지의 설치위치(장소, 음영 등), 날씨, 계절, 시간 등의 환경적인 요인을 고려하여 분석될 수 있다. Here, the reference pattern for each parameter is a pattern in which the amount of change of each parameter is analyzed based on big data machine learning in the management server 300, and environmental conditions such as the installation location (location, shade, etc.) of the solar cell, weather, season, time, etc. It can be analyzed in consideration of factors.
이때, 태양전지의 설치위치는 지역 및 지역 내에 설치된 복수 개의 개소별로 구분될 수 있고, 본 발명의 시스템은 각 개소의 위치별, 지역별로 파라미터를 분석 및 관리하여 모니터링할 수 있다. 한편, 파라미터별 기준패턴의 분석은 관리서버(300)의 설명시 구체적으로 설명하도록 한다.At this time, the installation location of the solar cell may be divided into a region and a plurality of locations installed within the region, and the system of the present invention may analyze and manage parameters for each location and region for monitoring. Meanwhile, the analysis of the reference pattern for each parameter will be described in detail when the management server 300 is described.
프로세서(232)는 메모리(231)에 실시간 저장되는 파라미터별 센싱값과 대응되는 파라미터의 기준패턴을 비교하여, 실시간 파라미터 센싱값의 변화추이를 예측할 수 있다. 도 3을 통해, 프로세서(232)의 파라미터 변화추이 예측을 설명하도록 한다.The processor 232 may compare the sensing value for each parameter stored in the memory 231 in real time with a reference pattern of a corresponding parameter to predict a change trend of the real-time parameter sensing value. With reference to FIG. 3, the prediction of the parameter change trend of the processor 232 will be described.
도 3은 본 발명의 일 실시 예에 따른 파라미터 변화추이 예측을 설명하기 위한 그래프이다. 도 3을 참고하면, 프로세서(232)는 실시간 수집되는(실측) 파라미터의 패턴을 메모리(231)에 기저장된 기준패턴과 비교할 수 있다. 이때, 실측파라미터의 패턴 및 기준패턴은 파라미터 센싱값의 시간별 센싱값 변화정도를 나타낼 수 있다.3 is a graph for explaining prediction of a parameter change trend according to an embodiment of the present invention. Referring to FIG. 3, the processor 232 may compare a pattern of parameters collected in real time (actual measurement) with a reference pattern previously stored in the memory 231. In this case, the pattern of the measured parameter and the reference pattern may represent a degree of change in the sensing value of the parameter sensing value over time.
이때, 프로세서(232)는 실시간 수집되는 파라미터의 센싱값을 기설정 시간구간단위로 샘플링하여 센싱값 추이 예측을 위한 관심구간(샘플링된 단위구간)을 설정하고, 관심구간 내의 파라미터의 센싱값들과 기준패턴의 대응되는 관심구간 내의 패턴값들을 비교하여 현시점(t1)을 기준으로 센싱값 추이를 예측할 수 있다.At this time, the processor 232 samples the sensing values of the parameters collected in real time in units of a preset time interval, sets an interest interval (sampled unit interval) for predicting the trend of sensing values, and sets the sensing values of the parameters in the interest interval and The trend of sensing values may be predicted based on the current point t1 by comparing pattern values in the corresponding interest section of the reference pattern.
이때, 센싱값 추이 예측은 STLF(Short-term load forecasting) 분석 기법을 이용할 수 있다. 프로세서(232)는 STLF 분석기법을 통해 예측된 센싱값 추이 패턴으로부터 예측변곡점(P)을 추출할 수 있다.In this case, the sensing value trend prediction may use a short-term load forecasting (STLF) analysis technique. The processor 232 may extract the predicted inflection point P from the predicted sensing value trend pattern through the STLF analysis method.
프로세서(232)는 예측변곡점(P)을 추출시, 예측변곡점(P) 예측에 이용된 관심구간 내의 센싱값 변화량과 예측변곡점(P)를 포함하는 메타데이터를 변화데이터로 생성하여 관리서버(300)로 전송할 수 있다. 즉, 기준패턴에 따른 파라미터의 변화추이가 예측되는 경우에만 관련정보들을 관리서버(300)로 전송할 수 있다.When extracting the predicted inflection point (P), the processor 232 generates metadata including the amount of change in the sensing value and the predicted inflection point (P) in the interest section used for predicting the predicted inflection point (P) as change data, and the management server 300 ). That is, the related information may be transmitted to the management server 300 only when a change trend of a parameter according to the reference pattern is predicted.
이때, 파라미터는 일조량, 전류량 및 습도량 등이 될 수 있고, 시간정보도 포함하는 벡터가 될 수 있다.In this case, the parameter may be an amount of sunlight, an amount of current, an amount of humidity, and the like, and may be a vector including time information.
한편, 프로세서(232)는 열화상 센서(222)로부터 실시간 수집되는 영역별 열화상 이미지를 통신부(240)를 통해 관리서버(300)로 전송할 수 있다. 이때, 프로세서(232)는 실시간 생성되는 영역별 열화상 이미지를, 기저장된 환경요인이 고려된 영역별 온도 기준패턴과 비교하여 기준패턴 대비 온도가 상승하면 영역이 있는 경우, 해당 영역에 대한 온도상승을 관리서버(300)로 알림할 수 있다.Meanwhile, the processor 232 may transmit a thermal image for each area collected in real time from the thermal image sensor 222 to the management server 300 through the communication unit 240. At this time, the processor 232 compares the thermal image for each region generated in real time with a temperature reference pattern for each region in which a pre-stored environmental factor is considered, and if the temperature increases compared to the reference pattern, the temperature for the region increases. Can be notified to the management server 300.
또한, 프로세서(232)는 특정 영역에서의 스파크 발생 또는 특정 영역에서의 온도가 기설정 온도 이상으로 급상승하여 화재가 예상되면 소화부(270)를 즉시 구동시켜 화재를 진압하고, 관리서버(300)로 화재발생을 알림할 수 있다.In addition, the processor 232 immediately drives the fire extinguishing unit 270 to extinguish the fire when a spark occurs in a specific area or the temperature in a specific area rapidly rises above a preset temperature and a fire is expected, and the management server 300 Fire occurrence can be notified by.
통신부(240)는 일조량 센서(110) 및 센서부(120)로부터 수신되는 센싱값을 실시간 수신할 수 있고, 제어부(230)와 관리서버(300)간의 데이터 송수신을 수행할 수 있다. The communication unit 240 may receive a sensing value received from the sunlight amount sensor 110 and the sensor unit 120 in real time, and may perform data transmission/reception between the control unit 230 and the management server 300.
제어 회로부(250)는 제어부(230)의 제어에 따라 스위치(210), 히트펌프(260) 및 소화부(270)의 구동을 제어할 수 있다. 이때, 제어부(230)는 관리서버(300)에서 수신한 제어신호에 따라 제어 회로부(250)로 각 구성의 구동을 제어할 수 있다.The control circuit unit 250 may control driving of the switch 210, the heat pump 260, and the fire extinguishing unit 270 according to the control of the controller 230. In this case, the control unit 230 may control the driving of each component with the control circuit unit 250 according to the control signal received from the management server 300.
일 예로, 제어신호는 이상전류가 감지된 스위치의 오프, 습도조절을 위한 히트펌프의 구동 등을 제어하는 신호가 될 수 있다.As an example, the control signal may be a signal for controlling off of a switch in which an abnormal current is detected, driving of a heat pump for humidity control, and the like.
히트펌프(260)는 접속반(200) 내의 결로발생을 방지할 수 있다. 접속반(200)에 공기열원방식의 히트펌프(260)를 구비하여 접속반 내부의 냉난방을 제어함으로써 습도를 조절할 수 있다. 이때, 냉난방 제어시 기준은 결로를 방지하기 위한 기준습도가 될 수 있다.The heat pump 260 may prevent the occurrence of condensation in the connection panel 200. A heat pump 260 of an air heat source type is provided in the connection panel 200 to control cooling and heating inside the connection panel, thereby controlling humidity. In this case, the reference for cooling and heating control may be a reference humidity for preventing condensation.
제어회로부(250)는 접속반(200) 내부의 습도가 기준습도가 되도록 제어하기 위한 히트펌프 구동 제어신호를 분석서버(300)로부터 수신하여 히트펌프(260)의 구동을 제어할 수 있다. 즉, 히트펌프(260)는 제어 회로부(250)의 제어신호에 따라 구동됨으로써 접속반(200) 내부의 습도를 조절할 수 있다.The control circuit unit 250 may control driving of the heat pump 260 by receiving a heat pump driving control signal for controlling the humidity inside the connection panel 200 to become the reference humidity from the analysis server 300. That is, the heat pump 260 is driven according to the control signal of the control circuit unit 250 to adjust the humidity inside the connection panel 200.
이에 따라, 본 발명의 일 실시 예에 따른 접속반(200)은 고어텍스를 이용한 접속반(200)의 패키징 및 볼트 결합구조 및 히트펌프(260)의 구동을 제어하는 제어신호에 의해 결로발생을 방지할 수 있다.Accordingly, the connection panel 200 according to an embodiment of the present invention prevents condensation from occurring by a control signal that controls the packaging of the connection panel 200 using Gore-Tex and the bolt coupling structure and driving of the heat pump 260. Can be prevented.
도 4는 도 1의 관리서버의 구성을 나타내는 블록도이다. 도 4를 참고하면, 관리서버(300)는 데이터 수집부(310), 기준패턴 생성부(320), 상관분석부(330), 이상예측부(340) 및 모니터링부(350)를 포함할 수 있다.4 is a block diagram showing the configuration of the management server of FIG. 1. Referring to FIG. 4, the management server 300 may include a data collection unit 310, a reference pattern generation unit 320, a correlation analysis unit 330, an abnormality prediction unit 340, and a monitoring unit 350. have.
데이터 수집부(310)는 적어도 하나의 접속반(200)으로부터 전송되는 파라미터 센싱값들을 수집하여 DB(400)에 저장할 수 있다. 즉, 실시간 수집되는 일조량, 전류량 및 습도량 각각에 대한 변화데이터 및 영역별 열화상 이미지를 시간을 기준으로 저장할 수 있다. 이때, 각 정보들은 접속반(200)별로 구분될 수 있다.The data collection unit 310 may collect parameter sensing values transmitted from at least one connection panel 200 and store them in the DB 400. That is, change data for each amount of sunlight, amount of current, and amount of humidity collected in real time, and thermal image images for each region may be stored based on time. In this case, each of the pieces of information may be classified for each connection panel 200.
또한, 데이터 수집부(310)는 기상청으로부터 접속반(200)과 연결된 태양전지(100)의 위치별 날씨, 온도, 습도, 강우량, 일조량 등의 정보를 수집하여 DB(400)에 저장할 수 있다.In addition, the data collection unit 310 may collect information such as weather, temperature, humidity, rainfall, and amount of sunlight for each location of the solar cell 100 connected to the connection panel 200 from the meteorological office and store it in the DB 400.
기준패턴 생성부(320)는 데이터 수집부(310)에서 수집하여 DB(400)에 저장한 데이터들을 이용하여 각 파라미터에 대한 모델 즉, 기준패턴을 생성할 수 있다.The reference pattern generation unit 320 may generate a model for each parameter, that is, a reference pattern, using data collected by the data collection unit 310 and stored in the DB 400.
기준패턴 생성부(320)는 접속반(200)별로 기준패턴을 생성하되, 환경요인(태양전지 설치위치, 음영, 계절, 날씨 등)을 고려하여 기설정주기(일 예로, 하루)동안의 파라미터 패턴을 생성할 수 있다. 이에, 일조량, 전류 및 습도 각각의 파라미터에 대한 기준패턴은 고정된 임계치를 갖는 패턴이 아닌, 환경요인에 따라 동일 시간이라 하더라도 서로 다른 모델로 생성될 수 있다.The reference pattern generation unit 320 generates a reference pattern for each connection panel 200, but considers environmental factors (solar cell installation location, shade, season, weather, etc.), and parameters for a preset period (for example, a day). You can create patterns. Accordingly, the reference pattern for each parameter of the amount of sunlight, current, and humidity is not a pattern having a fixed threshold, but may be generated in different models even at the same time according to environmental factors.
또한, 기준패턴 생성부(320)는 영역별 열화상 이미지를 머신러닝기반으로 분석하되, 접속반 환경요인이 고려된 영역별 온도 기준패턴을 생성하여 접속반으로 전송할 수 있다. In addition, the reference pattern generation unit 320 analyzes the thermal image for each region based on machine learning, but generates a temperature reference pattern for each region in which environmental factors of the connection panel are considered and transmits it to the connection panel.
기준패턴 생성부(320)는 생성되는 기본패턴을 기설정 주기로 접속반(200)에 전송하여 업데이트시킬 수 있다.The reference pattern generation unit 320 may transmit and update the generated basic pattern to the connection panel 200 at a preset period.
상관분석부(330)는 수집된 일조량의 변화데이터를 기반으로 분석된 일조량 기본패턴과 수집된 전류량의 변화데이터를 기반으로 분석된 전류량 기본패턴과의 상관관계를 분석한 상관모델을 생성할 수 있다. 이때, 상관모델도 환경요인을 고려하여 생성될 수 있다.The correlation analysis unit 330 may generate a correlation model that analyzes the correlation between the analyzed basic pattern of sunlight amount and the basic pattern of the amount of current analyzed based on change data of the collected amount of sunlight based on the collected sunlight amount change data. . At this time, a correlation model may also be generated in consideration of environmental factors.
도 5는 본 발명의 일 실시 예에 따른 일조량 및 전류량 기준패턴의 상관관계를 설명하기 위한 그래프이다. 도 5를 참고하면, 일조량과 전류량은 시간에 따른 변화량 추이를 확인할 수 있다. 이를 통해, 일조량 기준패턴과 전류량 기준패턴의 시간추이에 따른 상관관계를 파악할 수 있다.5 is a graph for explaining the correlation between the amount of sunlight and the amount of current reference pattern according to an embodiment of the present invention. Referring to FIG. 5, the amount of sunlight and the amount of electric current can be checked for a change over time. Through this, it is possible to grasp the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current according to the time trend.
이상 예측부(340)는 실시간 수집된 일조량 변화데이터 및 전류 변화데이터의 분석을 통해 전류 이상을 예측하고, 습도 변화데이터의 분석을 통해 습도 이상을 예측하고, 영역별 실시간 수집된 열화상 이미지의 분석을 통해 온도 이상을 예측할 수 있다. The abnormality prediction unit 340 predicts the current abnormality through analysis of the sunlight change data and current change data collected in real time, predicts the humidity abnormality through analysis of the humidity change data, and analyzes the thermal image collected in real time for each area. The temperature abnormality can be predicted through
구체적으로 이상 예측부(340)는 실시간 수집되는 변화데이터로부터 실측 일조량 및 실측 전류량의 상관관계를 분석하고, 일조량 기준패턴 및 전류량 기준패턴의 상관관계를 분석한 상관모델과의 유사도를 판단하여, 유사도가 기설정률 이하이면 전류이상으로 판단할 수 있다.Specifically, the abnormality prediction unit 340 analyzes the correlation between the measured amount of sunlight and the measured amount of current from the change data collected in real time, and determines the degree of similarity with the correlation model that analyzed the correlation between the amount of sunlight reference pattern and the current amount reference pattern. If is less than the preset rate, it can be judged as more than the current.
도 6은 본 발명의 일 실시 예에 따른 실시간 수집되는 일조량 및 전류량 변화패턴의 이상를 설명하기 위한 그래프이다. 도 6을 참고하면, 실측 일조량 패턴은 일조량 변화데이터를 머신러닝기반으로 분석하여 생성된 패턴이 될 수 있다. 또한, 실측 전류량 패턴은 전류량 변화데이터를 머신러닝기반으로 분석하여 생성된 패턴이 될 수 있다.6 is a graph for explaining an abnormality in a pattern of changes in the amount of sunlight and the amount of current collected in real time according to an embodiment of the present invention. Referring to FIG. 6, the measured sunlight amount pattern may be a pattern generated by analyzing sunlight amount change data based on machine learning. In addition, the measured current amount pattern may be a pattern generated by analyzing current amount change data based on machine learning.
이상 예측부(340)는 실측 일조량 패턴과 실측 전류량 패턴의 상관관계가 도 5의 일조량 기준패턴과 전류량 기준패턴 상관관계와의 유사도를 판단할 수 있다. 도 6을 참고하면, 일조량 기준패턴과 전류량 기준패턴의 상관관계와 비교시, 실측 일조량 패턴과 실측 전류량 패턴의 상관관계가 달라지는 위치 즉, 상관관계 유사도가 낮은 부분(이상예측)에서 이상발생이 예측될 수 있다.The abnormality predictor 340 may determine a degree of similarity between the correlation between the measured sunlight amount pattern and the measured current amount pattern with the correlation between the sunlight amount reference pattern and the current amount reference pattern of FIG. 5. Referring to FIG. 6, when comparing the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current, the occurrence of an abnormality is predicted at a location where the correlation between the measured amount of sunlight pattern and the measured amount of current pattern is different, that is, a portion with low correlation similarity (abnormality prediction). Can be.
이상 예측부(340)는 전류이상을 판단시, 관리자 단말(미도시)로 알림하고, 전류이상으로 판단된 해당 태양전지모듈의 스위치를 오프시키는 제어신호를 접속반(200)으로 전송하여 해당 스위치(210)를 제어함으로써 역전류를 방지할 수 있다.When determining a current abnormality, the abnormality predicting unit 340 notifies the manager terminal (not shown), and transmits a control signal for turning off the switch of the corresponding solar cell module determined as the current abnormality to the connection panel 200, and By controlling 210, reverse current can be prevented.
또한, 이상 예측부(340)는 실시간 수집되는 습도 변화데이터로부터 분석된 예측습도가 기분석된 기준습도의 오차범위를 벗어나면, 이상습도로 판단하여 기분석된 기준습도가 되도록 제어하기 위한 히트펌프 구동 제어신호를 접속반(200)으로 전송할 수 있다.In addition, the abnormality prediction unit 340 is a heat pump for controlling the estimated humidity analyzed from the humidity change data collected in real time to become a pre-analyzed reference humidity by determining it as the abnormal humidity when the analyzed predicted humidity is outside the error range of the previously analyzed reference humidity The driving control signal may be transmitted to the connection panel 200.
또한, 이상 예측부(340)는 접속반(200)으로부터 특정영역의 열화상 이미지로부터 온도상승에 의한 알림을 수신한 경우, 해당 영역을 집중모니터링할 수 있도록 모니터링부(350)로 해당 영역의 열화상 이미지에 따른 온도패턴 및 온도 상승에 따른 이상을 관리자 단말로 알림할 수 있다.In addition, when the abnormality prediction unit 340 receives a notification due to a temperature increase from the thermal image of a specific area from the connection panel 200, the monitoring unit 350 uses the monitoring unit 350 to monitor the heat of the corresponding area. Temperature patterns according to image images and abnormalities due to temperature rise can be notified to the manager terminal.
모니터링부(350)는 실시간 수집된 변화데이터 및 기준패턴을 기반으로 예측되는 변화추이를 시각적으로 제공하며, 알림 발생시 인지할 수 있는 표식 및 알림음 등을 제공할 수 있다.The monitoring unit 350 visually provides a change trend predicted based on the change data collected in real time and a reference pattern, and may provide a mark and a notification sound that can be recognized when a notification occurs.
도 7은 본 발명의 일 실시 예에 따른 머신러닝기반 태양광발전운영 관리방법을 설명하기 위한 흐름도이다. 도 1 내지 도 6을 참고하여 설명하면, 접속반(200)에서, 태양전지(100)의 일조량, 전류량, 접속반(200)의 습도 및 영역별 열화상 이미지를 실시간으로 수집할 수 있다(S10).7 is a flowchart illustrating a method of operating and managing photovoltaic power generation based on machine learning according to an embodiment of the present invention. Referring to FIGS. 1 to 6, in the connection panel 200, the amount of sunlight, the amount of current, the humidity of the connection panel 200, and the thermal image for each area may be collected in real time in the connection panel 200 (S10). ).
다음으로, 접속반(200)에서, 각 수집되는 파라미터의 관심구간과 기분석된 기준패턴을 비교하여(S15), 변화추이가 예측되는지 판단할 수 있다. Next, the connection panel 200 may determine whether a change trend is predicted by comparing an interest section of each collected parameter with a pre-analyzed reference pattern (S15).
이때, 변화추이가 예측되면(S20:Y), 변화추이가 예측된 예측 변곡점(P) 및 변화추이 예측에 이용된 관심구간동안 수집된 파라미터 센싱값을 포함하는 메타데이터를 변화데이터로 생성하여(S25) 관리서버(300)로 전송할 수 있다.At this time, when the change trend is predicted (S20:Y), metadata including the predicted inflection point P at which the change trend is predicted and the parameter sensing values collected during the interest period used for the change trend prediction are generated as change data ( S25) can be transmitted to the management server (300).
다음으로, 관리서버(300)에서, 변화데이터를 수신하여 이상발생을 예측할 수 있다(S30). 이때, 파라미터에 따라 이상 예측을 할 수 있다.Next, in the management server 300, it is possible to predict the occurrence of an abnormality by receiving the change data (S30). In this case, abnormal prediction can be made according to the parameter.
구체적으로, 전류 이상 예측은, 실시간 수집되는 일조량 변화데이터 및 전류 변화데이터로부터 실측 일조량 및 실측 전류량의 상관관계를 분석하고, 일조량 기준패턴 및 전류량 기준패턴의 상관관계를 분석한 상관모델과의 유사도를 판단하여, 유사도가 기설정률 이하이면 전류이상으로 판단할 수 있다.Specifically, the current abnormality prediction analyzes the correlation between the measured amount of sunlight and the measured amount of current from the amount of sunlight change data and current change data collected in real time, and the degree of similarity with the correlation model that analyzes the correlation between the amount of sunlight reference pattern and the current amount reference pattern. By judging, if the degree of similarity is less than or equal to a preset rate, it can be determined as more than the current.
또한, 습도 이상 예측은, 실시간 수집되는 습도 변화데이터로부터 분석된 예측습도가 기분석된 기준습도의 오차범위를 벗어나면, 이상습도로 감지할 수 있다.In addition, the humidity abnormality prediction may be detected as abnormal humidity when the predicted humidity analyzed from the humidity change data collected in real time is out of the error range of the previously analyzed reference humidity.
다음으로, 이상 예측시 관리자 단말로 알림하고, 이상 예측에 따른 접속반(200) 제어신호를 생성하여 접속반(200)으로 전송할 수 있다(S35). 이를 수신한 접속반(200)에서는, 제어신호에 따라 스위치(210), 히트펌프(260)를 제어할 수 있다.Next, when an abnormality is predicted, it is notified to the manager terminal, and a control signal of the access panel 200 according to the abnormality prediction may be generated and transmitted to the access panel 200 (S35). The connection panel 200 receiving this may control the switch 210 and the heat pump 260 according to the control signal.
또한, 실시간 파라미터 및 기준패턴을 모니터링할 수 있도록 시각화된 정보를 제공할 수 있다. 즉, 실시간 수집되는 파라미터의 변화추이 및 이상감지에 따른 파라미터 정보를 시각화하여 제공함으로써 모니터링할 수 있다.In addition, it is possible to provide visualized information to monitor real-time parameters and reference patterns. That is, it can be monitored by visualizing and providing parameter information according to the change trend and abnormality detection of parameters collected in real time.
특히, 열화상 이상예측시 즉, 특정영역의 열화상 이미지로부터 온도상승에 의한 알림을 수신한 경우, 해당 영역을 집중 모니터링할 수 있도록 모니터링부(350)로 해당 영역의 열화상 이미지에 따른 온도패턴 및 온도 상승에 따른 이상을 관리자 단말로 알림할 수 있다.In particular, when a thermal image abnormality is predicted, that is, when a notification by temperature rise is received from the thermal image of a specific area, the monitoring unit 350 enables the monitoring unit 350 to monitor the temperature in a temperature pattern according to the thermal image of the corresponding area. And an abnormality due to temperature rise may be notified to the manager terminal.
한편, 기준패턴은 실시간 수집되는 파라미터에 의해 기설정주기로 업데이트 될 수 있으며, 업데이트된 기준패턴은 접속반(200)으로 전송될 수 있다. Meanwhile, the reference pattern may be updated at a preset period by parameters collected in real time, and the updated reference pattern may be transmitted to the access panel 200.
한편, 상기에서 도 1 내지 도 6을 이용하여 서술한 것은, 본 발명의 주요 사항만을 서술한 것으로, 그 기술적 범위 내에서 다양한 설계가 가능한 만큼, 본 발명이 도 1 내지 도 6의 구성에 한정되는 것이 아님은 자명하다.On the other hand, what has been described with reference to FIGS. 1 to 6 above is a description of only the main matters of the present invention, and the present invention is limited to the configuration of FIGS. 1 to 6 as various designs are possible within the technical scope. It is self-evident that it is not.

Claims (16)

  1. 복수의 태양전지모듈을 포함하는 태양전지; 접속반; 및 상기 태양전지의 일조량, 상기 접속반의 전류 및 습도를 파라미터로 모니터링하는 관리서버;를 포함하고,A solar cell including a plurality of solar cell modules; Connection panel; And a management server for monitoring the amount of sunlight of the solar cell, current and humidity of the connection panel as parameters,
    상기 접속반은, The connection panel,
    상기 태양전지의 설치위치 및 환경요인을 고려하여 기분석된 파라미터별 기준패턴과 실시간 수집되는 파라미터와 비교하여 상기 파라미터의 변화추이를 예측하고, 예측된 변화추이로부터 추출된 예측 변곡점 및 변화추이 예측에 이용된 파라미터 정보를 변화데이터로 생성하며,In consideration of the installation location of the solar cell and environmental factors, by comparing the reference pattern for each parameter analyzed in advance with the parameter collected in real time, the change trend of the parameter is predicted, and the predicted inflection point and the change trend extracted from the predicted change trend are predicted. Generates the used parameter information as change data,
    상기 관리서버는,The management server,
    상기 접속반으로부터 파라미터별 변화데이터를 수신하고, 수신된 파라미터별 변화데이터를 머신러닝기반으로 분석한 파라미터별 기준패턴을 상기 접속반으로 전송하며, 상기 수신된 변화데이터로부터 이상감지시, 알림 및 상기 접속반으로 이상제어를 위한 제어신호를 제공하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.Receives parameter-specific change data from the access panel, transmits a parameter-specific reference pattern, which is analyzed based on machine learning, of the received parameter-specific change data to the access panel, and when an abnormality is detected from the received change data, a notification and the A machine learning-based solar power generation operation management system, characterized in that it provides a control signal for abnormality control to a connection panel.
  2. 제1항에 있어서,The method of claim 1,
    상기 접속반은, 파라미터별로 변화추이를 예측하되,The connection panel predicts the change trend for each parameter,
    실시간 수집되는 파라미터를 기설정된 관심구간 단위로 변화추이를 예측하고, 해당 관심구간에서 변화추이가 예측되는 경우에만 변화데이터를 생성하여 상기 관리서버로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.Machine learning-based photovoltaic power generation operation, characterized in that the parameters collected in real time are predicted in units of a preset interest section, and change data is generated and transmitted to the management server only when the change trend is predicted in the interest section. Management system.
  3. 제2항에 있어서,The method of claim 2,
    상기 관리서버는, The management server,
    일조량 기준패턴 및 전류량 기준패턴의 상관관계를 분석한 상관모델을 생성하고, 상기 실시간 수집되는 변화데이터로부터 실측 일조량 및 실측 전류량의 상관관계를 분석하여 상기 상관모델과의 유사도가 기설정률 이하이면 전류이상으로 판단하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.A correlation model that analyzes the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current is generated, and the correlation between the measured amount of sunlight and the measured amount of current is analyzed from the change data collected in real time. Machine learning-based solar power generation operation management system, characterized in that the above is determined.
  4. 제3항에 있어서,The method of claim 3,
    상기 관리서버는, The management server,
    상기 전류이상을 판단시, 관리자 단말로 알림하고, 전류이상으로 판단된 해당 태양전지모듈의 스위치를 오프시키는 제어신호를 상기 접속반으로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.A machine learning-based photovoltaic power generation operation management system, characterized in that when determining the current abnormality, a control signal for notifying a manager terminal and turning off a switch of a corresponding solar cell module determined as a current abnormality is transmitted to the connection panel.
  5. 제2항에 있어서,The method of claim 2,
    상기 접속반은 내부 습도 조절을 위한 히트펌프를 포함하고,The connection panel includes a heat pump for internal humidity control,
    상기 관리서버는, The management server,
    상기 실시간 수집되는 변화데이터로부터 분석된 예측습도가 기분석된 기준습도가 되도록 상기 히트펌프의 구동을 제어하는 제어신호를 상기 접속반으로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.A machine learning-based photovoltaic power generation operation management system, characterized in that transmitting a control signal for controlling driving of the heat pump to the connection panel so that the predicted humidity analyzed from the change data collected in real time becomes the pre-analyzed reference humidity.
  6. 제1항에 있어서,The method of claim 1,
    상기 접속반은,The connection panel,
    접속반 내부를 구분하여 영역별로 열화상 이미지를 생성하는 열화상 센서;A thermal image sensor that divides the interior of the connection panel and generates a thermal image for each area;
    실시간 생성되는 영역별 열화상 이미지를 상기 관리서버로 전송하되, 기저장된 환경요인이 고려된 영역별 온도 기준패턴과 비교시, 특정 영역에서 기준패턴 대비 온도가 상승하면 상기 관리서버로 알림하는 제어부를 포함하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.A control unit that transmits the thermal image for each region generated in real time to the management server, and notifies the management server when the temperature increases compared to the reference pattern in a specific region when comparing the temperature reference pattern for each region in which a pre-stored environmental factor is considered Machine learning-based photovoltaic operation management system comprising a.
  7. 제6항에 있어서,The method of claim 6,
    상기 접속반의 제어부는,The control unit of the connection panel,
    상기 생성된 열화상 이미지로 분석된 특정 영역에서의 온도가 급상승하여 화재가 예상되면 소화부를 구동시키고, 상기 관리서버로 화재발생을 알림하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.When a fire is expected due to a sudden increase in temperature in a specific area analyzed by the generated thermal image, the fire extinguishing unit is driven and the fire occurrence is notified to the management server.
  8. 제6항에 있어서,The method of claim 6,
    상기 관리서버는, The management server,
    상기 영역별 열화상 이미지를 머신러닝기반으로 분석하되, 환경요인이 고려된 영역별 온도 기준패턴을 생성하여 상기 접속반으로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리시스템.A machine learning-based photovoltaic power generation operation management system, characterized in that the thermal image for each area is analyzed based on machine learning, and a temperature reference pattern for each area in which environmental factors are considered is generated and transmitted to the connection panel.
  9. 복수의 태양전지모듈을 포함하는 태양전지; 접속반; 및 상기 태양전지의 일조량, 상기 접속반의 전류 및 습도를 파라미터로 모니터링하는 관리서버를 포함하는 시스템의 머신러닝기반 태양광발전운영관리방법에 있어서,A solar cell including a plurality of solar cell modules; Connection panel; And In the machine learning-based solar power generation operation management method of a system comprising a management server for monitoring the amount of sunlight of the solar cell, the current and humidity of the connection panel as parameters,
    상기 접속반에서, 상기 파리미터를 실시간 수집하는 단계;In the connection panel, collecting the parameters in real time;
    상기 접속반에서, 상기 태양전지의 설치위치 및 환경요인을 고려하여 기분석된 파라미터별 기준패턴과 상기 실시간 수집된 파라미터를 비교하여 상기 파라미터의 변화추이를 예측하는 단계;At the connection panel, predicting a change trend of the parameter by comparing a reference pattern for each parameter previously analyzed in consideration of the installation location and environmental factors of the solar cell and the parameters collected in real time;
    상기 접속반에서, 예측된 변화추이로부터 추출된 예측 변곡점 및 변화추이 예측에 이용된 파라미터 정보를 변화데이터로 생성하여 상기 관리서버로 전송하는 단계;Generating a predicted inflection point extracted from the predicted change trend and parameter information used for predicting the change trend as change data and transmitting it to the management server;
    상기 관리서버에서, 상기 변화데이터를 분석하여 이상예측을 감지하는 단계; 및Detecting an abnormal prediction by analyzing the change data in the management server; And
    상기 관리서버에서, 이상예측 감지시 상기 접속반으로 이상제어를 위한 제어신호를 제공하는 단계를 포함하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.And providing, at the management server, a control signal for abnormality control to the access panel upon detection of abnormality prediction.
  10. 제9항에 있어서,The method of claim 9,
    상기 변화추이를 예측하는 단계는,The step of predicting the change trend,
    실시간 수집되는 파라미터를 기설정된 관심구간 단위로 변화추이를 예측하되, 해당 관심구간에서 변화추이가 예측되는 경우에만 변화데이터를 생성하여 상기 관리서버로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.Machine learning-based photovoltaic power generation operation, characterized in that the parameters collected in real time are predicted in units of a preset interest section, but only when the change trend is predicted in the interest section, change data is generated and transmitted to the management server. Management method.
  11. 제10항에 있어서,The method of claim 10,
    상기 이상예측을 감지하는 단계는,The step of detecting the abnormal prediction,
    일조량 기준패턴 및 전류량 기준패턴의 상관관계를 분석한 상관모델을 생성하는 단계; 및Generating a correlation model by analyzing the correlation between the reference pattern of the amount of sunlight and the reference pattern of the amount of current; And
    상기 실시간 수집되는 변화데이터로부터 실측 일조량 및 실측 전류량의 상관관계를 분석하여 상기 상관모델과의 유사도가 기설정률 이하이면 전류이상으로 판단하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.A machine learning-based photovoltaic power generation operation management method, characterized in that the correlation between the measured amount of sunlight and the measured amount of current is analyzed from the change data collected in real time, and if the similarity with the correlation model is less than or equal to a preset rate, it is determined that the current is higher.
  12. 제11항에 있어서,The method of claim 11,
    상기 제어신호를 제공하는 단계는,Providing the control signal,
    상기 전류이상을 판단시, 관리자 단말로 알림하고, 전류이상으로 판단된 해당 태양전지모듈의 스위치를 오프시키는 제어신호를 상기 접속반으로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.When determining the current abnormality, the manager terminal is notified, and a control signal for turning off a switch of a corresponding solar cell module determined as a current abnormality is transmitted to the connection panel.
  13. 제10항에 있어서,The method of claim 10,
    상기 제어신호를 제공하는 단계는,Providing the control signal,
    상기 실시간 수집되는 변화데이터로부터 분석된 예측습도가 기분석된 기준습도가 되도록 상기 접속반에 구비된 히트펌프의 구동을 제어하는 제어신호를 상기 접속반으로 전송하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.Machine learning-based solar power, characterized in that the control signal for controlling driving of the heat pump provided in the connection panel is transmitted to the connection panel so that the predicted humidity analyzed from the change data collected in real time becomes the pre-analyzed reference humidity. Power generation operation management method.
  14. 제9항에 있어서,The method of claim 9,
    상기 접속반에서, 접속반 내부를 구분하여 영역별로 열화상 이미지를 실시간으로 생성하여 상기 관리서버로 전송하는 단계; 및 At the access panel, generating a thermal image for each area in real time by dividing the inside of the access panel and transmitting it to the management server; And
    기저장된 환경요인이 고려된 영역별 온도 기준패턴과 비교시, 특정 영역에서 기준패턴 대비 온도가 상승하면 상기 관리서버로 알림하는 단계를 더 포함하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.When comparing the temperature reference pattern for each region in which a pre-stored environmental factor is considered, the step of notifying the management server when the temperature increases compared to the reference pattern in a specific region. .
  15. 제14항에 있어서,The method of claim 14,
    상기 접속반에서, 상기 생성된 열화상 이미지로 분석된 특정 영역에서의 온도가 급상승하여 화재가 예상되면 소화부를 구동시키는 단계; 및In the connection panel, driving a fire extinguishing unit when a fire is expected due to a sudden increase in temperature in a specific area analyzed by the generated thermal image; And
    상기 관리서버로 화재발생을 알림하는 단계를 더 포함하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.Machine learning-based photovoltaic power generation operation management method further comprising the step of notifying the occurrence of fire to the management server.
  16. 제14항에 있어서,The method of claim 14,
    상기 관리서버에서, 환경요인을 적용하여 상기 실시간 수집된 일조량, 전류 및 습도를 분석한 일조량 기준패턴, 전류 기준패턴 및 습도 기준패턴을 생성하는 단계; Generating, in the management server, a sunlight amount reference pattern, a current reference pattern, and a humidity reference pattern by analyzing the amount of sunlight, current and humidity collected in real time by applying an environmental factor;
    상기 관리서버에서, 상기 영역별 열화상 이미지를 머신러닝기반으로 분석하되, 환경요인이 고려된 영역별 온도 기준패턴을 생성하는 단계; 및The management server, analyzing the thermal image for each area based on machine learning, and generating a temperature reference pattern for each area in which environmental factors are considered; And
    상기 접속반으로 파라미터별 기준패턴을 전송하는 단계를 더 포함하는 것을 특징으로 하는 머신러닝기반 태양광발전운영 관리방법.Machine learning-based photovoltaic operation management method, further comprising the step of transmitting a reference pattern for each parameter to the access panel.
PCT/KR2020/012536 2019-09-23 2020-09-17 Machine learning-based photovoltaic power generation operation management system and management method WO2021060772A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190116795A KR102084784B1 (en) 2019-09-23 2019-09-23 Method for managing the operation of Photovoltaic Power Generation based on machine learning
KR1020190116765A KR102084783B1 (en) 2019-09-23 2019-09-23 System for managing the operation of Photovoltaic Power Generation based on machine learning
KR10-2019-0116795 2019-09-23
KR10-2019-0116765 2019-09-23

Publications (1)

Publication Number Publication Date
WO2021060772A1 true WO2021060772A1 (en) 2021-04-01

Family

ID=75165062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012536 WO2021060772A1 (en) 2019-09-23 2020-09-17 Machine learning-based photovoltaic power generation operation management system and management method

Country Status (1)

Country Link
WO (1) WO2021060772A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131755A (en) * 2023-02-23 2023-05-16 呼和浩特市语能科技有限责任公司 Intelligent control system and method for solar power generation equipment
CN116388685A (en) * 2023-04-07 2023-07-04 江苏新之阳新能源科技有限公司 Solar cell panel operation control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462247B1 (en) * 2014-03-10 2014-11-21 삼성영상보안주식회사 Smart fire detection system based on infrared thermal-image and interface platform for auto-fire extinguishing apparatus
KR101761686B1 (en) * 2017-03-31 2017-07-31 (주)하모니앤유나이티드 Real time predicting system for energy management system using machine learning
KR101825725B1 (en) * 2017-06-29 2018-02-06 (주)위너스엔지니어링 Method and device for diagnosing deterioration of solar cell module
KR101922016B1 (en) * 2018-07-19 2018-11-27 이우식 Apparatus of photovoltaic power generation system with dew condensation prediction and preventional function
KR20190007250A (en) * 2017-07-12 2019-01-22 (주)유에너지 Moving type defect diagnosis system and diagnosis method for photovoltaic power generation equipment
KR102084783B1 (en) * 2019-09-23 2020-03-04 주식회사 아이팔 System for managing the operation of Photovoltaic Power Generation based on machine learning
KR102084784B1 (en) * 2019-09-23 2020-05-26 주식회사 아이팔 Method for managing the operation of Photovoltaic Power Generation based on machine learning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462247B1 (en) * 2014-03-10 2014-11-21 삼성영상보안주식회사 Smart fire detection system based on infrared thermal-image and interface platform for auto-fire extinguishing apparatus
KR101761686B1 (en) * 2017-03-31 2017-07-31 (주)하모니앤유나이티드 Real time predicting system for energy management system using machine learning
KR101825725B1 (en) * 2017-06-29 2018-02-06 (주)위너스엔지니어링 Method and device for diagnosing deterioration of solar cell module
KR20190007250A (en) * 2017-07-12 2019-01-22 (주)유에너지 Moving type defect diagnosis system and diagnosis method for photovoltaic power generation equipment
KR101922016B1 (en) * 2018-07-19 2018-11-27 이우식 Apparatus of photovoltaic power generation system with dew condensation prediction and preventional function
KR102084783B1 (en) * 2019-09-23 2020-03-04 주식회사 아이팔 System for managing the operation of Photovoltaic Power Generation based on machine learning
KR102084784B1 (en) * 2019-09-23 2020-05-26 주식회사 아이팔 Method for managing the operation of Photovoltaic Power Generation based on machine learning

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116131755A (en) * 2023-02-23 2023-05-16 呼和浩特市语能科技有限责任公司 Intelligent control system and method for solar power generation equipment
CN116131755B (en) * 2023-02-23 2024-04-26 青岛中筑新能源有限公司 Intelligent control system and method for solar power generation equipment
CN116388685A (en) * 2023-04-07 2023-07-04 江苏新之阳新能源科技有限公司 Solar cell panel operation control system
CN116388685B (en) * 2023-04-07 2024-04-09 江苏新之阳新能源科技有限公司 Solar cell panel operation control system
CN116388685B8 (en) * 2023-04-07 2024-04-26 青岛中筑新能源有限公司 Solar cell panel operation control system

Similar Documents

Publication Publication Date Title
WO2021060772A1 (en) Machine learning-based photovoltaic power generation operation management system and management method
WO2019103230A1 (en) Solar light power generation management system
KR102084784B1 (en) Method for managing the operation of Photovoltaic Power Generation based on machine learning
US6653549B2 (en) Photovoltaic power generation systems and methods of controlling photovoltaic power generation systems
WO2021066259A1 (en) System and method for analyzing data of photovoltaic power plant
KR102262547B1 (en) Accident Management System of Solar Combiner Box
KR102084783B1 (en) System for managing the operation of Photovoltaic Power Generation based on machine learning
WO2019059525A1 (en) Photovoltaic lighting system having integrated control board, and monitoring system using same
WO2021221249A1 (en) Smart livestock management system and method for same
WO2021045576A1 (en) Battery protection apparatus and method using gas sensor
KR102054613B1 (en) Fire monitoring system and method for solar power connector
WO2023003356A1 (en) Gantry crane real-time monitoring system
WO2022085833A1 (en) System for diagnosing degradation of photovoltaic generation
WO2018155848A1 (en) Electrical fire prevention system of solar power generation facility
WO2021201369A1 (en) Fire outbreak prediction system and method therefor
WO2018043875A1 (en) Photovoltaic generation device having fire prevention function and breakdown diagnosis function
WO2018199659A1 (en) Method for asset management of substation
WO2019190049A1 (en) System for managing circuit breaker in distribution switchboard
WO2018056503A1 (en) System and method for switching line short-circuit fault section in inverter-based stand-alone microgrid
WO2020013619A1 (en) Substation asset management method and apparatus based on power system reliability index
WO2024071607A1 (en) Smart platform for explosion-proof inspection in industrial site
WO2018199656A1 (en) Method for asset management of substation
WO2017099335A1 (en) Method and system for maintaining wind power facility on basis of weather information
WO2015170904A1 (en) Remote diagnostic system and method for photovoltaic module
WO2022102812A1 (en) Ess fire prevention system and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868408

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20868408

Country of ref document: EP

Kind code of ref document: A1