WO2022059673A1 - 追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム - Google Patents

追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム Download PDF

Info

Publication number
WO2022059673A1
WO2022059673A1 PCT/JP2021/033750 JP2021033750W WO2022059673A1 WO 2022059673 A1 WO2022059673 A1 WO 2022059673A1 JP 2021033750 W JP2021033750 W JP 2021033750W WO 2022059673 A1 WO2022059673 A1 WO 2022059673A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ventilation
ventilation device
volume
conditioning
Prior art date
Application number
PCT/JP2021/033750
Other languages
English (en)
French (fr)
Inventor
伸哉 村井
遼太 須原
弘宗 松岡
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180063314.4A priority Critical patent/CN116209860A/zh
Priority to EP21869359.6A priority patent/EP4215830A4/en
Publication of WO2022059673A1 publication Critical patent/WO2022059673A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Definitions

  • the selection method of the additional ventilation device Regarding the selection method of the additional ventilation device, the selection method of the additional ventilation device and the air conditioning device, and the air conditioning ventilation system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-300112
  • pathogen infection As one of the measures against infection by pathogens such as viruses and bacteria (hereinafter referred to as pathogen infection), it is required to increase the ventilation volume.
  • the method of selecting the additional ventilation device from the first viewpoint is the method of selecting the additional ventilation device when a different ventilation device is newly installed as the additional ventilation device in the indoor space where the existing first ventilation device is provided. It is a selection method.
  • the ventilation volume per hour is the first ventilation volume.
  • the method of selecting the additional ventilation device according to the first aspect includes a first step, a second step, and a third step.
  • the first step the second ventilation volume is obtained based on the size of the indoor space. As the size of the interior space, the floor area of the interior space, the volume of the interior space, the number of people accommodated in the interior space, and the like can be used.
  • the second ventilation volume is the ventilation volume per hour required as a countermeasure against pathogen infection.
  • the difference between the second ventilation volume and the first ventilation volume is obtained as the additional ventilation volume.
  • a ventilation device capable of ventilating an additional ventilation volume is selected as the additional ventilation device.
  • the additional ventilation is based on the unprecedented excellent idea that the first ventilation volume of the existing first ventilation device is used as it is and the ventilation of the insufficient ventilation volume (additional ventilation volume) is supplemented by the additional ventilation device.
  • the device is selected.
  • ventilation of the second ventilation volume required as a countermeasure against pathogen infection is realized while suppressing the cost.
  • the method of selecting the additional ventilation device and the air conditioner from the second viewpoint is the method of selecting the additional ventilation device and the air conditioner by selecting the additional ventilation device according to the selection method of the first viewpoint and further selecting the air conditioner.
  • An air conditioner is a device that air-conditions an indoor space.
  • the method of selecting the additional ventilation device and the air conditioner according to the second aspect includes a fourth step and a fifth step in addition to the first step, the second step, and the third step. In the fourth step, the sum of the first air conditioning load, the second air conditioning load, and the third air conditioning load is obtained as the total air conditioning load.
  • the first air conditioning load is determined based on the size of the indoor space.
  • the second air conditioning load is an air conditioning load generated by ventilation by the existing first ventilation device.
  • the third air conditioning load is an air conditioning load generated by ventilation by the additional ventilation device selected in the third step.
  • an air conditioner having an air conditioning capacity capable of processing the total air conditioning load is selected from a plurality of candidates for air conditioners having different air conditioning capacities.
  • an additional ventilation device is installed in the indoor space in addition to the existing first ventilation device, it is expected that the ventilation load of the indoor space will increase due to the ventilation by the additional ventilation device. If this is not taken into consideration, the thermal environment of the indoor space may deteriorate.
  • the method of selecting the additional ventilation device and the air conditioning device from the second aspect it is possible to select an air conditioning device capable of processing the total air conditioning load including the air conditioning load generated by the ventilation of the additional ventilation device.
  • the method of selecting the additional ventilation device and the air conditioner of the third viewpoint is the selection method of the second viewpoint, and in the third step, the ventilation device having the heat exchange unit is selected as the additional ventilation device.
  • the heat exchange unit exchanges heat between the outside air, which is the air supplied to the interior space, and the return air, which is the exhaust air from the interior space.
  • the third air conditioning load is obtained in consideration of the heat exchange amount in the heat exchange unit of the selected additional ventilation device.
  • a ventilation device having a heat exchange unit that exchanges heat between supply air and exhaust air is selected as an additional ventilation device. Therefore, the deterioration of the thermal environment of the indoor space due to the ventilation of the additional ventilation device can be suppressed to a small extent. Further, since the third air conditioning load is obtained in consideration of the heat exchange amount in the heat exchange unit, the total air conditioning load is not excessively calculated. This makes it possible to correctly recognize the required air conditioning capacity of the air conditioner and select an air conditioner that is just right.
  • the method of selecting the additional ventilation device and the air conditioner of the fourth viewpoint is the selection method of the second viewpoint or the third viewpoint, and further includes the sixth step and the seventh step.
  • the sixth step it is determined whether or not the air volume at the maximum ventilation volume of the additional ventilation device selected in the third step is 30% or less of the rated air volume of the air conditioner selected in the fifth step. ..
  • the 7th step when it is determined in the 6th step that the air volume at the maximum ventilation volume of the additional ventilation device exceeds 30% of the rated air volume of the air conditioner, the selection of the additional ventilation device and the air conditioner is reviewed. ..
  • the sixth step and the seventh step are further performed, and the selection of the additional ventilation device and the air conditioner is reviewed. This makes it possible, for example, to select an air conditioner having a higher rated air volume and air conditioning capacity, thereby reducing the running cost of air conditioning and ventilation.
  • the method of selecting the additional ventilator and the air conditioner from the fifth viewpoint is one of the selection methods from the second viewpoint to the fourth viewpoint, and in the third step, candidates for a plurality of ventilation devices having different maximum ventilation volumes are selected. An additional ventilation system is selected from among them. Further, the number of candidates for the plurality of air conditioners in the fifth step is larger than the number of candidates for the plurality of ventilation devices in the third step.
  • the air-conditioning ventilation system of the sixth aspect is installed in an indoor space provided with an existing first ventilation device having a floor area of 70 m 2 or more and 95 m 2 or less and an hourly ventilation volume of the first ventilation volume. It is an air-conditioning ventilation system, and is equipped with an air conditioner having a cooling rated capacity of about 12.5 kW and a ventilation device having a maximum ventilation volume of 250 m 3 / h.
  • this air-conditioning ventilation system is installed in an indoor space in an existing building with the above-mentioned floor area where the first ventilation volume is secured, the ventilation volume required as a countermeasure against pathogen infection can be obtained.
  • the total air conditioning load of the indoor space including the air conditioning load due to the increased ventilation volume, can be processed by the air conditioner.
  • the air-conditioning ventilation system of the seventh aspect is installed in an indoor space provided with an existing first ventilation device having a floor area of 40 m 2 or more and 60 m 2 or less and an hourly ventilation volume of the first ventilation volume. It is an air-conditioning ventilation system, and is equipped with an air conditioner having a cooling rated capacity of about 7.1 kW and a ventilation device having a maximum ventilation volume of 150 m 3 / h.
  • this air-conditioning ventilation system is installed in an indoor space in an existing building with the above-mentioned floor area where the first ventilation volume is secured, the ventilation volume required as a countermeasure against pathogen infection can be obtained.
  • the total air conditioning load of the indoor space including the air conditioning load due to the increased ventilation volume, can be processed by the air conditioner.
  • the air-conditioning ventilation system of the eighth viewpoint is the air-conditioning ventilation system of the sixth viewpoint or the seventh viewpoint, and the air conditioner has an air supply port.
  • the air supply port receives air supply from outside the interior space.
  • the ventilator has an air supply fan.
  • the air supply fan is a fan for sending the outside air to the air conditioner as supply air.
  • the air-conditioning ventilation system of the eighth aspect further includes a supply air passage forming member.
  • the air supply channel forming member is connected to the ventilation device and the air conditioner to form the air supply channel.
  • the air supply path is a flow path of air that guides the supply air from the ventilation device to the air supply port of the air conditioner.
  • the ventilation device, the air conditioner, and the air supply path forming member are packaged, so that the ventilation device and the air conditioner are connected by using parts such as ducts procured locally. In comparison, the introduction cost including the installation work cost can be suppressed. Further, since the air supply from the ventilation device is received by the air conditioner, the temperature of the supply air can be changed by the air conditioner and then supplied to the indoor space.
  • the air-conditioning ventilation system of the ninth aspect is the air-conditioning ventilation system of the eighth aspect, and the ventilation device further includes a casing, an exhaust fan, and a heat exchanger.
  • the casing houses the air supply fan and the exhaust fan.
  • the exhaust fan is a fan for sending the air in the interior space to the outside of the interior space as exhaust gas.
  • the heat exchanger exchanges heat between the outside air and the return air that becomes the exhaust gas.
  • the casing is formed with a first opening, a second opening, a third opening, and a fourth opening.
  • the third opening is an opening for taking in outside air.
  • a supply air passage forming member is connected to the fourth opening.
  • the first opening is an opening for taking in the air in the indoor space as return air.
  • the second opening is an opening for sending the return air out of the indoor space as exhaust gas.
  • the air-conditioning ventilation system of the ninth aspect further includes a pressure adjusting unit.
  • the pressure adjusting unit reduces the difference between the pressure of the return air flowing from the first opening to the second opening in the ventilation device and the pressure of the outside air flowing from the third opening to the fourth opening in the ventilation device. Adjust the air pressure.
  • the air in the interior space is taken into the casing as return air from the first opening, and is sent out as exhaust from the second opening to the outside of the interior space.
  • the air supply fan operates, outside air is taken into the casing from the third opening, flows from the third opening to the fourth opening, and the supply air is sent from the fourth opening to the air conditioner via the air supply passage. Be done.
  • the return air taken into the casing from the first opening and the outside air taken into the casing from the third opening are heat exchanged in the heat exchanger. As a result, it is possible to suppress an increase in the air conditioning load in the indoor space due to ventilation.
  • a pressure adjusting unit is provided so that the difference between the pressure of the outside air and the pressure of the return air that exchange heat with each other becomes small. As a result, problems such as mixing of outside air and return air in a heat exchanger or the like are suppressed.
  • the air-conditioning ventilation system is the air-conditioning ventilation system according to any one of the sixth aspect to the ninth aspect, and further includes a remote controller for controlling the air conditioner and the ventilation device.
  • a remote controller is used to link the start / stop of the air conditioner and the ventilation device, or to control the ventilation device so as not to perform ventilation when the air conditioner is not operating. Will be possible.
  • FIG. 1A shows the installation state of the first ventilation device 10 and the air-conditioning ventilation system 100 in the building H.
  • the first ventilation device 10 and the air conditioning ventilation system 100 are installed in one predetermined interior space SI in the building H.
  • the air-conditioning ventilation system 100 mainly includes a second ventilation device 20, an air-conditioning indoor unit 30, ducts 21 to 24, and a remote controller 90.
  • the first ventilation device 10 is a ventilation device that has already been installed in the interior space SI before the second ventilation device 20 is installed.
  • the air-conditioning indoor unit 30 of the air-conditioning ventilation system 100 is also a device that has already been installed in the indoor space SI before the second ventilation device 20 is installed.
  • FIG. 1B shows the state of the building H before the second ventilation device 20 is installed.
  • the second ventilation device 20 and the ducts 21 to 24 of the air-conditioning ventilation system 100 are additionally installed later with respect to the indoor space SI in which the first ventilation device 10 and the air-conditioning indoor unit 30 are already installed. ..
  • the first ventilation device 10 and the air-conditioning indoor unit 30 shown in FIGS. 1A and 1B are already installed, and the second ventilation device 20 and ducts 21 to 24 shown in FIG. 1A are now installed. It will be explained as the one at the design examination stage.
  • the first ventilation device 10 is a ventilation fan having a propeller fan or a ventilation device having a sirocco fan.
  • the first ventilation device 10 shown in FIGS. 1A and 1B sucks in the indoor air of the indoor space SI and discharges it to the outside of the building H (outdoor space SO).
  • the intake port of the first ventilation device 10 is connected to the first return air port 16 provided on the ceiling of the interior space SI.
  • the air outlet of the first ventilation device 10 is connected to the first exhaust port 18 opened in the outer wall of the building H.
  • the first ventilation device 10 has, for example, a ventilation volume of 500 m 3 / h.
  • the air conditioner indoor unit 30 is a device that constitutes an air conditioner together with an air conditioner outdoor unit (not shown) installed on the roof of the building H or outside.
  • the air conditioner is a device that cools and heats the interior space SI by a steam compression type refrigeration cycle.
  • the air-conditioning indoor unit 30 includes a heat exchanger 37 constituting a refrigeration cycle, an indoor fan 35 for sending indoor air to the heat exchanger 37 and returning it to the indoor space SI, and the like. is doing.
  • the casing of the air-conditioning indoor unit 30 is rectangular in a plan view, a suction port 31 is formed in the center of the lower surface, and an outlet 32 is formed along each of the four sides of the lower surface. Indoor air is sucked in from the suction port 31 (see arrow Ain in FIG. 1A), and the air after air conditioning is returned to the indoor space SI from the air outlet 32 (see arrow Aout in FIG. 1A).
  • the air-conditioning indoor unit 30 shown in FIG. 1A is equipped with the air supply air intake member 30a shown in FIG. 2 as an optional device.
  • the air supply intake member 30a is a member that forms a flow path through which air flows. The air that has entered from the inlet 33 of the air supply air intake member 30a flows out to the vicinity of the suction port 31 of the casing of the air conditioning indoor unit 30.
  • the second ventilation device 20 is arranged in the space SC behind the ceiling of the indoor space SI of the building H, and ventilates the indoor space SI.
  • the heat is exchanged between the outside air OA, which is the supply air SA, and the return air RA, which is the exhaust EA.
  • the ducts 21 to 24 are a return air duct 21, an exhaust duct 22, an outside air introduction duct 23, and an air supply duct 24.
  • the second ventilation device 20 has a casing 50, an air supply fan 26, an exhaust fan 28, a heat exchange element 40 having a substantially quadrangular prism shape, and a ventilation control unit 70.
  • the casing 50 houses the heat exchange element 40, the air supply fan 26, the exhaust fan 28, and the like inside. Further, the casing 50 has a first opening 51 to which the return air duct 21 is connected, a second opening 52 to which the exhaust duct 22 is connected, a third opening 53 to which the outside air introduction duct 23 is connected, and an air supply duct. A fourth opening 54 to which the 24 is connected is formed.
  • heat exchange is performed with the first space 51a between the first opening 51 and the heat exchange element 40, the second space 52a between the second opening 52 and the heat exchange element 40, and the third opening 53.
  • the air supply fan 26 is arranged in the fourth space 54a and has an air supply fan motor 26m.
  • the exhaust fan 28 is arranged in the second space 52a and has an exhaust fan motor 28m.
  • the return air duct 21 connects the first opening 51 of the second ventilation device 20 and the second return air port 81 provided on the ceiling of the interior space SI to form a return air passage 21a through which the return air RA flows. ..
  • the exhaust duct 22 connects the second opening 52 of the second ventilation device 20 and the second exhaust port 82 opened in the outer wall of the building H to form an exhaust passage 22a through which the exhaust EA flows.
  • the outside air introduction duct 23 connects the third opening 53 of the second ventilation device 20 and the outside air introduction port 83 opened in the outer wall of the building H to form an outside air introduction path 23a through which the outside air OA flows.
  • the air supply duct 24 connects the fourth opening 54 of the second ventilation device 20 and the inlet 33 of the air supply intake member 30a additionally installed in the air conditioning indoor unit 30, and the air supply passage 24a through which the air supply SA flows flows. To form.
  • the air supply duct 24 is bifurcated and connected to two inlets 33. By splitting into two, the air passage area can be increased and the pressure loss in the air supply duct can be reduced.
  • the ventilation control unit 70 is connected to an air supply fan motor 26 m, an exhaust fan motor 28 m, a remote controller 90, and the like.
  • the ventilation control unit 70 is realized by a computer.
  • the ventilation control unit 70 includes a control arithmetic unit and a storage device.
  • a processor such as a CPU or GPU can be used as the control arithmetic unit.
  • the control arithmetic unit reads out a program stored in the storage device, and performs predetermined image processing and arithmetic processing according to this program. Further, the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • the ventilation control unit 70 turns on and off the air supply fan 26 and the exhaust fan 28 in response to a command from the remote controller 90, which will be described later.
  • outside air temperature sensor or room temperature sensor can be connected to the ventilation control unit 70, and the sensor value can be used for control.
  • the remote controller 90 is for a user in the indoor space SI to perform various setting operations for the air conditioning indoor unit 30 and the second ventilation device 20.
  • the remote controller 90 is also realized by a computer like the ventilation control unit 70.
  • the remote controller 90, the ventilation control unit 70, and the control unit (not shown) of the air conditioning indoor unit 30 are connected via a communication line.
  • the remote controller 90 operates the second ventilation device 20 when the indoor fan 35 of the air conditioning indoor unit 30 is operating. In other words, when it is necessary to operate the second ventilation device 20, the remote controller 90 also operates the air conditioning indoor unit 30.
  • the supply air fan 26 and the exhaust fan 28 of the second ventilation device 20 are operated, the outside air OA of the outdoor space SO reaches the heat exchange element 40 from the outside air introduction path 23a, and the air passing through the heat exchange element 40 is supplied with air. It passes through the fan 26 and is supplied to the indoor space SI as fresh air supply SA.
  • the indoor air in the indoor space SI reaches the heat exchange element 40 as the return air RA via the return air passage 21a, and the air that has passed through the heat exchange element 40 passes through the exhaust fan 28 and becomes the exhaust EA and becomes the outdoor space SO. Is discharged to.
  • heat exchange element 40 heat exchange is performed between the outside air OA and the return air RA, and an increase in the air conditioning load due to ventilation by the second ventilation device 20 is suppressed.
  • Method of selecting a second ventilation device to be additionally installed to increase the ventilation volume of the indoor space and a method of selecting an air-conditioning indoor unit
  • the indoor space SI of the installed building H is required to increase the ventilation volume as one of the measures against infection by pathogens such as viruses and bacteria.
  • the ventilation volume was designed at 20 m 3 / h per person and the ventilation volume of the first ventilation device 10 was determined, a ventilation volume of 10 m 3 / h in total is required. Is expected. In other words, it is required to increase the current ventilation volume by 1.5 times.
  • the second ventilation device 20 to be additionally installed is selected by each of the following steps.
  • the second ventilation volume required for the second ventilation device 20 to be additionally installed is obtained based on the size of the indoor space SI.
  • the first step includes a step of calculating the maximum number of people who can enter the indoor space SI and a step of calculating the ventilation volume required in the indoor space SI from the maximum number of people.
  • the amount of ventilation required for the interior space SI is the exclusive use of the floor area (m 2 ) of the interior space SI, which is determined by the purpose of the interior space SI (room) (general shops, offices, etc.). It is the value divided by the area (m 2 ) and multiplied by the hourly ventilation volume (m 3 / h) required per person.
  • the occupied area (m 2 ) per person determined by the use of the interior space SI is determined to be, for example, 3 m 2 , 5 m 2 , or the like depending on the use.
  • the required ventilation volume may be calculated using the volume of the interior space SI (m 3 ) and the required ventilation frequency of the room.
  • the first ventilation volume (m 3 / h) is, for example, the ventilation volume required for the interior space SI based on the amount of carbon dioxide emitted by a person.
  • the second ventilation volume (m 3 / h) is the ventilation volume per hour required for the interior space SI as a countermeasure against pathogen infection.
  • the pathogens targeted for infection control are viruses or bacteria such as influenza virus, norovirus, coronavirus, and tuberculosis bacterium.
  • the second ventilation volume (m 3 / h) is a larger value than the first ventilation volume (m 3 / h).
  • the difference between the second ventilation volume and the first ventilation volume is obtained as the additional ventilation volume (m 3 / h).
  • the first ventilation volume (m 3 / h) is the ventilation volume of the first ventilation device 10 already installed for the interior space SI.
  • a ventilation device capable of ventilating an additional ventilation volume is selected as the second ventilation device 20 to be added.
  • the second ventilation device 20 is selected from the ventilation device candidates V1 to V6 shown in (7-2) below.
  • Ventilation device candidates V1 to V6 Candidates for ventilation equipment Ventilation device V1, with a ventilation volume of 150 m 3 / h, Ventilation device V2, with a ventilation volume of 250 m 3 / h, Ventilation device V3, with a ventilation volume of 350 m 3 / h, Ventilation device V4, with a ventilation volume of 500 m 3 / h, Ventilation device V5 with a ventilation volume of 650 m 3 / h, and Ventilation device V6, with a ventilation volume of 800 m 3 / h, Is.
  • the first air-conditioning load is an air-conditioning load determined based on the size of the indoor space SI, and is based on the heat load of people and equipment in the room, the solar heat entering through windows and walls, and the temperature difference between inside and outside. It is calculated by adding up the heat load, etc.
  • the air-conditioning load (first air-conditioning load) for cooling and heating per unit floor area is known depending on the use (general store, office, etc.) of the indoor space SI (room) of the building H.
  • the second air conditioning load is an air conditioning load generated by ventilation by the existing first ventilation device 10.
  • This outside air load is the second air conditioning load generated by ventilation.
  • the third air conditioning load is the air conditioning load generated by the ventilation of the second ventilation device 20 selected in the third step.
  • a third air conditioning load is required in consideration of the amount of heat exchange due to heat exchange between the outside air OA and the return air RA in the heat exchange element 40 of the second ventilation device 20.
  • the heat exchange element 40 is provided to recover the total heat (sensible heat and latent heat) of the air conditioning energy lost by ventilation, and the recovery amount is taken into consideration in the fourth step.
  • the air conditioner indoor unit 30 having an air conditioning capacity capable of processing the total air conditioning load is selected from the candidates of a plurality of air conditioner indoor units having different air conditioning capacities.
  • the air-conditioning indoor unit 30 is selected from the candidates A1 to A9 of the air-conditioning indoor unit shown in (7-4) below.
  • Candidates for air conditioning indoor units A1 to A9 Candidates for air-conditioning indoor units for indoor space SI are 1.5 horsepower (3.6 kW) air-conditioning indoor unit A1, suitable for a floor area of 22-25 m 2 .
  • 1.8 horsepower (4.0 kW) air-conditioning indoor unit A2 suitable for a floor area of 25-28 m 2 .
  • 2 horsepower (4.5 kW) air conditioning indoor unit A3 suitable for a floor area of 28-31 m 2 .
  • 2.3 horsepower (5.0 kW) air-conditioning indoor unit A4 suitable for a floor area of 31-35 m 2 .
  • 2.5 horsepower (5.6 kW) air-conditioning indoor unit A5 suitable for a floor area of 35-39 m 2 .
  • the number of candidates A1 to A9 of the air-conditioning indoor unit is larger than the number of candidates V1 to V6 of the above-mentioned ventilation device.
  • the air volume at the maximum ventilation volume of the second ventilation device 20 selected in the third step is selected in the fifth step. It is determined whether or not the air volume is 30% or less of the rated air volume of the air conditioning indoor unit 30.
  • the seventh step when it is determined in the sixth step that the air volume at the maximum ventilation volume of the second ventilation device 20 exceeds 30% of the rated air volume of the air conditioning indoor unit 30, the second ventilation device and the second ventilation device and Review the selection of air conditioning indoor units.
  • the air-conditioning indoor unit 30 is newly selected from the candidates for the air-conditioning indoor unit with a larger rated air volume, or the second ventilation device 20 is newly selected from the candidates for the ventilation device with a smaller maximum ventilation volume. Will be done.
  • an air-conditioning indoor unit 30 having 5 horsepower (5 HP) and a first ventilation device 10 having a ventilation volume of 500 m 3 / h are installed in an indoor space SI of a certain store. And.
  • the occupied area (m 2 ) per person determined by the use of the interior space SI is 3 m 2 in the case of a general store. If a store with an indoor space SI with a floor area of 75 m 2 and an indoor space SI with a capacity of 25 people has designed the ventilation volume at 20 m 3 / h per person in the past, the ventilation volume is 500 m 3 / h.
  • the first ventilation device 10 of h is installed.
  • the air-conditioning indoor unit 30 In a general store, 12.5 kW, which is the air-conditioning capacity of the 5-horsepower air-conditioning indoor unit 30, can air-condition the room with a floor area of 83 m 3 .
  • the air conditioning capacity required for the indoor space SI of a general store with a floor area of 75 m 2 is 11.3 kW. Therefore, the air-conditioning indoor unit 30 having 5 horsepower has a surplus capacity of about 10% with respect to the floor area of 75 m 2 of the current indoor space SI.
  • window opening ventilation is a candidate.
  • the air-conditioning capacity (12.5 kW) of the existing 5-horsepower air-conditioning indoor unit 30 is insufficient, so shops that open windows ventilate by removing the 5-horsepower air-conditioning indoor unit 30 and newly 6 horsepower. It will be necessary to install an air-conditioning indoor unit of (14.0 kW).
  • step 1 based on the size of the indoor space SI (floor area 75 m 2 and capacity 25 people), the second ventilation volume required for the indoor space SI as a countermeasure against pathogen infection. Ask for. As a countermeasure against pathogen infection, the second ventilation volume is calculated as 750 m 3 / h (25 ⁇ 30 m 3 / h), assuming that 30 m 3 / h is required per person.
  • the difference between the second ventilation volume and the first ventilation volume is obtained as the additional ventilation volume (m 3 / h).
  • the additional ventilation volume is determined to be 250 m 3 / h (second ventilation volume 750 m 3 / h-first ventilation volume 500 m 3 / h of the first ventilation device 10).
  • a ventilation device capable of ventilating an additional ventilation volume is selected from the above ventilation device candidates V1 to V6, and the ventilation device is selected as the second ventilation device 20.
  • the ventilation device V2 having a ventilation volume of 250 m 3 / h is selected as the second ventilation device 20.
  • the second air conditioning load is the air conditioning load generated by ventilation by the existing first ventilation device 10.
  • the total of the second air-conditioning load generated by the ventilation by the existing first ventilation device 10 (ventilation volume 500 m 3 / h) and the first air-conditioning load is the total of the indoor space SI with a floor area of 75 m 2 in a general store. It becomes the above 11.3 kW.
  • the third air conditioning load is an additional air conditioning load associated with the ventilation operation of the second ventilation device 20 caused by the additional installation of the second ventilation device 20.
  • the additional air conditioning load (third air conditioning load) is when the ventilation device selected as the second ventilation device 20 is a ventilation device V2 having a ventilation volume of 250 m 3 / h and the outside air temperature is 35 ° C. and the room temperature is 27 ° C. It is 0.6 kW.
  • the pressure is 1.5 kW under the same conditions, but when the second ventilation device 20 is adopted, the total heat exchange in the heat exchange element 40 is performed, so that the additional air conditioning load is 0.6 kW. .. Therefore, the total air conditioning load is 11.9 kW (11.3 kW + 0.6 kW).
  • the additional air conditioning load and other numerical values for each combination of the candidate for the second ventilation device 20 and the candidate for the air conditioner indoor unit 30 are shown in FIG.
  • the air-conditioning indoor unit 30 having an air-conditioning capacity capable of processing the total air-conditioning load is selected from the above-mentioned air-conditioning indoor unit candidates A1 to A9.
  • the air-conditioning indoor unit A8 having 5 horsepower (12.5 kW) already installed in the indoor space SI is selected as the air-conditioning indoor unit 30. This is because the total air conditioning load (11.9 kW) can be processed with 5 horsepower (12.5 kW).
  • the air volume at the maximum ventilation volume of the second ventilation device 20 selected in the third step is 30% or less of the rated air volume of the air conditioning indoor unit 30 selected in the fifth step. Judge whether or not.
  • the air volume at the maximum ventilation volume of the second ventilation device 20 is 30% or less of the rated air volume of the air conditioning indoor unit 30. Therefore, the selection of the second ventilation device and the air-conditioning indoor unit in the seventh step is not reviewed.
  • a second ventilation device 20 having a heat exchange element 40 for performing total heat exchange is additionally installed, and the second ventilation device 20 and the existing 5-horsepower air conditioner are additionally installed.
  • the indoor unit 30 constitutes the air conditioning ventilation system 100.
  • the second ventilation device 20 having the heat exchange element 40 for heat exchange between the supply air SA and the exhaust EA is used as an additional ventilation device. It has been selected. Therefore, the deterioration of the thermal environment of the indoor space SI due to the ventilation of the second ventilation device 20 can be suppressed to a small extent. Since the third air conditioning load (air conditioning load associated with additional ventilation) is obtained in consideration of the heat exchange amount in the heat exchange element 40, the total air conditioning load is not excessively calculated. As a result, the required air-conditioning capacity is correctly recognized, and the air-conditioning indoor unit 30 is selected without excess or deficiency.
  • FIG. 9 Variations and features of air conditioning ventilation system (9-1)
  • the air-conditioning room unit 30 has already been installed, but the second ventilation device 20, the air-conditioning room unit 30, and the air-conditioning room unit 30 are described as the air-conditioning ventilation system 100.
  • Ducts 21 to 24 such as the air supply duct 24 forming the flow path of the air supply SA may be packaged.
  • Ducts 21 to 24 connected to the second ventilation device so that the air volume supplied to the room becomes the target ventilation air volume when the fan of the second ventilation device 20 is operated at a predetermined rotation speed, and air supply intake described later.
  • the member 30a is configured to have a constant flow path resistance.
  • the packaged means that the desired flow path resistance is generated only by connecting the ducts 21 to 24 having the flow path resistance and the air supply air intake member 30a to the air conditioning indoor unit 30 and the second ventilation device 20. It means a system that can supply the target ventilation air volume without the need to calculate the flow path resistance on site. If the packaged air-conditioning ventilation system 100 is adopted, the introduction cost including the installation cost is compared with the case where the ventilation device and the indoor unit of the air conditioning device are connected by using parts such as ducts procured locally. Is suppressed.
  • the air conditioning ventilation system 100 includes a remote controller 90 that controls the air conditioning indoor unit 30 and the second ventilation device 20.
  • a remote controller 90 controls the air conditioning indoor unit 30 and the second ventilation device 20.
  • the operation / stop of the air conditioning indoor unit 30 and the second ventilation device 20 can be linked, and the ventilation by the second ventilation device 20 can be controlled so as not to be performed when the air conditioning indoor unit 30 is not operating. It will be possible to do.
  • the air-conditioning ventilation system installed in the indoor space where the floor area is 70 m 2 or more and 95 m 2 or less is the maximum with the air-conditioning indoor unit having a cooling rated capacity of about 12.5 kW. It is preferably equipped with a second ventilation device having a ventilation volume of 250 m 3 / h.
  • This air-conditioning ventilation system is used in an indoor space in an existing building with the above-mentioned floor area where the first ventilation volume (for example, the ventilation volume twice the maximum ventilation volume of the second ventilation device) is secured. If installed in a space, the ventilation volume required as a countermeasure against pathogen infection can be obtained, and the total air conditioning load in the indoor space including the air conditioning load due to the increased ventilation volume can be processed by the air conditioner.
  • the first ventilation volume for example, the ventilation volume twice the maximum ventilation volume of the second ventilation device
  • the air-conditioning ventilation system installed in the indoor space where the floor area is 40 m 2 or more and 60 m 2 or less is the maximum with the air-conditioning indoor unit having a cooling rated capacity of about 7.1 kW. It is preferably equipped with a second ventilation device having a ventilation volume of 150 m 3 / h.
  • This air-conditioning ventilation system is used in an indoor space in an existing building with the above-mentioned floor area where the first ventilation volume (for example, the ventilation volume twice the maximum ventilation volume of the second ventilation device) is secured. If installed in a space, the ventilation volume required as a countermeasure against pathogen infection can be obtained, and the total air conditioning load in the indoor space including the air conditioning load due to the increased ventilation volume can be processed by the air conditioner.
  • the first ventilation volume for example, the ventilation volume twice the maximum ventilation volume of the second ventilation device
  • the air supply SA requires a certain amount of static pressure in order to pass through the narrow flow path in the air conditioning indoor unit 30 to which the air supply intake member 30a is mounted. Therefore, there is a possibility that a pressure difference may occur between the flow path of the return air RA and the exhaust EA having a small flow path resistance and the flow path of the outside air OA and the supply air SA having a large flow path resistance.
  • a pressure reducing member 58 such as an obstacle plate or a damper is provided in the first space 51a of the second ventilation device 20 of FIG. 1A to increase the flow path resistance of the return air RA and the exhaust EA. Then, the pressure difference becomes small, and the problem that the outside air and the return air are mixed in the heat exchange element 40 hardly occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

第2換気装置(20)の選定方法は、既存の第1換気装置(10)が設けられている室内空間(SI)、に対して、別の換気装置を第2換気装置(20)として新たに設置する際の、第2換気装置(20)の選定方法である。既存の第1換気装置(10)は、1時間当たりの換気量が、第1換気量である。第1ステップでは、室内空間の大きさに基づいて、第2換気量を求める。第2換気量は、病原体感染の対策として必要とされる1時間当たりの換気量である。第2ステップでは、第2換気量と第1換気量との差を、追加換気量として求める。第3ステップでは、追加換気量の換気が可能な換気装置を、第2換気装置(20)として選定する。

Description

追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム
 追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム、に関する。
 従来から、室内空気を外に排気したり室外空気を室内に給気したりする換気装置が広く使われている(例えば、特許文献1(特開2005-300112号公報)を参照)。
 既存の建物の多くには、換気装置が設置されており、ある程度の換気が為されている。
 一方、最近、ウィルスや細菌などの病原体による感染(以下、病原体感染という。)の対策の1つとして、換気量を増やすことが求められている。
 しかし、既存の換気装置を取り換える場合、装置のコストや設置コストが高額になる。
 第1観点の追加換気装置の選定方法は、既存の第1換気装置が設けられている室内空間、に対して、別の換気装置を追加換気装置として新たに設置する際の、追加換気装置の選定方法である。既存の第1換気装置は、1時間当たりの換気量が、第1換気量である。第1観点の追加換気装置の選定方法は、第1ステップ、第2ステップ、および、第3ステップを備えている。第1ステップは、室内空間の大きさに基づいて、第2換気量を求める。室内空間の大きさとしては、室内空間の床面積、室内空間の容積、室内空間の収容人数、などを用いることができる。第2換気量は、病原体感染の対策として必要とされる1時間当たりの換気量である。第2ステップは、第2換気量と第1換気量との差を、追加換気量として求める。第3ステップは、追加換気量の換気が可能な換気装置を、追加換気装置として選定する。
 ここでは、既存の第1換気装置の第1換気量をそのまま利用し、足りない換気量(追加換気量)の換気を追加換気装置によって補う、という従来にない優れた考え方に沿って、追加換気装置が選定される。これにより、コストを抑えながら、病原体感染の対策として必要とされる第2換気量の換気が実現される。
 第2観点の追加換気装置および空気調和装置の選定方法は、第1観点の選定方法によって追加換気装置を選定し、さらに、空気調和装置を選定する、追加換気装置および空気調和装置の選定方法である。空気調和装置は、室内空間を空調する装置である。第2観点の追加換気装置および空気調和装置の選定方法は、第1ステップ、第2ステップ、および、第3ステップに加え、第4ステップと第5ステップとを備えている。第4ステップは、第1の空調負荷と第2の空調負荷と第3の空調負荷との和を、合計空調負荷として求める。第1の空調負荷は、室内空間の大きさに基づいて決められる。第2の空調負荷は、既存の第1換気装置による換気によって生じる空調負荷である。第3の空調負荷は、第3ステップにおいて選定された追加換気装置による換気によって生じる空調負荷である。第5ステップは、合計空調負荷を処理できる空調能力を持つ空気調和装置を、空調能力が異なる複数の空気調和装置の候補の中から選定する。
 既存の第1換気装置に加え、追加換気装置を室内空間に対して設置した場合、追加換気装置による換気で室内空間の空調負荷が増えることが想定される。そのことを考慮しなければ、室内空間の温熱環境が悪化する可能性がある。このことに鑑み、第2観点の追加換気装置および空気調和装置の選定方法では、追加換気装置の換気によって生じる空調負荷を含む合計空調負荷を処理できるだけの空気調和装置を選定することができる。
 第3観点の追加換気装置および空気調和装置の選定方法は、第2観点の選定方法であって、第3ステップにおいて、熱交換部を有する換気装置、を追加換気装置として選定する。熱交換部は、室内空間への給気となる外気と、室内空間からの排気となる還気と、の間で熱交換を行わせる。また、第4ステップでは、選定された追加換気装置の熱交換部における熱交換量を考慮して、第3の空調負荷を求める。
 ここでは、給気と排気との間で熱交換を行わせる熱交換部を有する換気装置を、追加換気装置として選定している。このため、追加換気装置の換気による室内空間の温熱環境の悪化を小さく抑えることができる。そして、熱交換部における熱交換量を考慮して第3の空調負荷を求めているため、合計空調負荷を過大に算出してしまうことが無くなる。これにより、必要な空気調和装置の空調能力を正しく認識し、過不足のない空気調和装置の選定が可能となる。
 第4観点の追加換気装置および空気調和装置の選定方法は、第2観点又は第3観点の選定方法であって、第6ステップおよび第7ステップをさらに備える。第6ステップでは、第3ステップにおいて選定された追加換気装置の最大換気量のときの風量が、第5ステップにおいて選定された空気調和装置の定格風量の30%以下であるか否かを判定する。第7ステップでは、第6ステップにおいて追加換気装置の最大換気量のときの風量が空気調和装置の定格風量の30%を超えると判定された場合に、追加換気装置および空気調和装置の選定を見直す。
 追加換気装置の最大換気量のときの風量が空気調和装置の定格風量の30%を超える場合、空気調和装置の空調能力によって合計空調負荷の処理ができたとしても、空気調和装置の運転効率が悪くなってランニングコストが高額になってしまう恐れがある。このことに鑑み、第4観点の追加換気装置および空気調和装置の選定方法では、第6ステップおよび第7ステップをさらに行い、追加換気装置および空気調和装置の選定を見直している。これにより、例えば、より定格風量や空調能力が高い空気調和装置を選定し、それによって空調および換気のランニングコストを下げることが可能になる。
 第5観点の追加換気装置および空気調和装置の選定方法は、第2観点から第4観点のいずれかの選定方法であって、第3ステップにおいて、最大換気量が異なる複数の換気装置の候補の中から、追加換気装置が選定される。また、第5ステップにおける複数の空気調和装置の候補の数は、第3ステップにおける複数の換気装置の候補の数よりも多い。
 ここでは、多くの空気調和装置の候補を用意することで、選定された追加換気装置に応じて、より適切な空気調和装置を選定することができるようになる。これにより、装置のコストや装置の設置コストを抑制できる。
 第6観点の空調換気システムは、床面積が70m以上95m以下であり、1時間当たりの換気量が第1換気量である既存の第1換気装置が設けられている室内空間に設置する空調換気システムであって、冷房定格能力が約12.5kWである空気調和装置と、最大換気量が250m/hである換気装置と、を備えている。
 この空調換気システムを、既存の建物の中の室内空間であって、第1換気量が確保されている上記の床面積の室内空間、に設置すれば、病原体感染の対策として必要な換気量を得ることができるとともに、増えた換気量による空調負荷を含む室内空間の合計空調負荷を空気調和装置によって処理することができる。
 第7観点の空調換気システムは、床面積が40m以上60m以下であり、1時間当たりの換気量が第1換気量である既存の第1換気装置が設けられている室内空間に設置する空調換気システムであって、冷房定格能力が約7.1kWである空気調和装置と、最大換気量が150m/hである換気装置と、を備えている。
 この空調換気システムを、既存の建物の中の室内空間であって、第1換気量が確保されている上記の床面積の室内空間、に設置すれば、病原体感染の対策として必要な換気量を得ることができるとともに、増えた換気量による空調負荷を含む室内空間の合計空調負荷を空気調和装置によって処理することができる。
 第8観点の空調換気システムは、第6観点又は第7観点の空調換気システムであって、空気調和装置は、給気口を有している。給気口は、室内空間の外からの給気を受け入れる。換気装置は、給気ファンを有している。給気ファンは、外気を空気調和装置に給気として送るためのファンである。また、第8観点の空調換気システムは、給気路形成部材をさらに備えている。給気路形成部材は、換気装置および空気調和装置に接続され、給気路を形成する。給気路は、給気を換気装置から空気調和装置の給気口へと導く、空気の流路である。
 この空調換気システムは、換気装置、空気調和装置、および、給気路形成部材がパッケージ化されているため、換気装置と空気調和装置とを現地で調達したダクト等の部品を使って接続させる場合に比べて、設置工事のコストを含む導入コストが抑えられる。また、換気装置からの給気が空気調和装置に受け入れられるため、給気の温度を空気調和装置で変更してから室内空間に供給することが可能になる。
 第9観点の空調換気システムは、第8観点の空調換気システムであって、換気装置は、ケーシングと、排気ファンと、熱交換器と、をさらに有している。ケーシングは、給気ファンおよび排気ファンを収容する。排気ファンは、室内空間の空気を、室内空間の外に排気として送るためのファンである。熱交換器は、外気と、排気となる還気と、を熱交換させる。ケーシングには、第1開口、第2開口、第3開口、および、第4開口が形成されている。第3開口は、外気を取り込むための開口である。第4開口には、給気路形成部材が接続される。第1開口は、室内空間の空気を還気として取り込むための開口である。第2開口は、還気を室内空間の外に排気として送り出すための開口である。また、第9観点の空調換気システムは、圧力調整部をさらに備えている。圧力調整部は、換気装置において第1開口から第2開口へと流れる還気の圧力と、換気装置において第3開口から第4開口へと流れる外気の圧力と、の差が小さくなるように、空気の圧力を調整する。
 ここでは、排気ファンが作動すると、室内空間の空気が第1開口から還気としてケーシング内に取り込まれ、第2開口から室内空間の外に排気として送り出される。また、給気ファンが作動すると、第3開口からケーシング内に外気が取り込まれ、第3開口から第4開口へと流れ、第4開口から給気路を介して空気調和装置に給気が送られる。第1開口からケーシング内に取り込まれる還気と、第3開口からケーシング内に取り込まれる外気とは、熱交換器において熱交換される。これにより、換気による室内空間の空調負荷の増大を抑制することができる。
 また、第9観点の空調換気システムでは、互いに熱交換される外気の圧力と還気の圧力との差が小さくなるように、圧力調整部が備えられている。これにより、熱交換器などにおいて外気と還気とが混じり合う、といった不具合が抑制される。
 第10観点の空調換気システムは、第6観点から第9観点のいずれかに記載の空調換気システムであって、空気調和装置と換気装置とを制御するリモートコントローラ、をさらに備えている。
 ここでは、例えば、リモートコントローラによって、空気調和装置と換気装置との運転・停止を連動させたり、空気調和装置が作動していないときに換気装置による換気を行わせないように制御したりすることが可能になる。
第1換気装置および空調換気システムが設置された、建物の状態図である。 第2換気装置が追加設置される前の、建物の状態図である。 空調室内機、空調室内機に装着される給気取入部材、および、給気ダクトの組立用の斜視図である。 空調換気システムの制御ブロック図である。 第2換気装置を設置する前の、第1換気装置による室内の換気状態を示す図である。 第2換気装置を設置せずに窓を開けて換気量を増やした場合の、室内の換気状態を示す図である。 第2換気装置を追加設置した場合の、室内の換気状態を示す図である。 第2換気装置の候補と空調室内機の候補との組合せに対する各種数値を示す表である。
 (1)第1換気装置および空調換気システムの全体構成
 図1Aに、建物Hにおける、第1換気装置10および空調換気システム100の設置状態を示す。第1換気装置10および空調換気システム100は、建物Hの中の1つの所定の室内空間SIに対して設置される。空調換気システム100は、主として、第2換気装置20と、空調室内機30と、ダクト21~24と、リモコン90と、を備える。
 第1換気装置10は、第2換気装置20が設置される前に、既に室内空間SIに対して設置されていた換気装置である。
 空調換気システム100の空調室内機30も、第2換気装置20が設置される前に、既に室内空間SIに対して設置されていた機器である。
 図1Bに、第2換気装置20が設置される前の建物Hの状態を示す。
 空調換気システム100の第2換気装置20やダクト21~24は、第1換気装置10や空調室内機30が既に設置されている室内空間SIに対して、後から追加で設置されるものである。
 本実施形態では、図1Aおよび図1Bに示す第1換気装置10や空調室内機30は既に設置されているもの、図1Aに示す第2換気装置20やダクト21~24は今から設置される設計検討段階のもの、として説明を行う。
 (2)第1換気装置の詳細
 第1換気装置10は、プロペラファンを有する換気扇、あるいは、シロッコファンを有する換気装置である。図1A、図1Bに示す第1換気装置10は、室内空間SIの室内空気を吸い込み、建物Hの外部(屋外空間SO)に排出する。第1換気装置10の吸気口は、室内空間SIの天井に設けられた第1還気口16に接続されている。第1換気装置10の送風口は、建物Hの外壁に開けられる第1排気口18に接続されている。第1換気装置10は、例えば、500m/hの換気量である。
 (3)空調室内機の詳細
 空調室内機30は、建物Hの屋上あるいは外部に設置される空調室外機(図示せず)とともに空気調和装置を構成する機器である。空気調和装置は、蒸気圧縮式の冷凍サイクルによって、室内空間SIの冷房や暖房を行う装置である。空調室内機30は、図1Aあるいは図1Bに示すように、冷凍サイクルを構成する熱交換器37、室内空気を熱交換器37に送って室内空間SIに戻すための室内ファン35、などを有している。空調室内機30のケーシングは、平面視において矩形であり、下面中央に吸込口31が形成されており、下面の四辺それぞれに沿って吹出口32が形成されている。吸込口31から室内空気が吸い込まれ(図1Aの矢印Ainを参照)、吹出口32から空気調和後の空気が室内空間SIに戻される(図1Aの矢印Aoutを参照)。
 また、図1Aに示す空調室内機30には、図2に示す給気取入部材30aが、オプション機器として装着されている。給気取入部材30aは、空気が流れる流路を形成する部材である。給気取入部材30aの入口33から入った空気は、空調室内機30のケーシングの吸込口31の近傍に流れ出る。
 (4)空調室内機とともに空調換気システムを構成する、第2換気装置およびダクトの詳細
 第2換気装置20は、建物Hの室内空間SIの天井裏の空間SCに配置され、室内空間SIの換気を行いつつ、給気SAとなる外気OAと、排気EAとなる還気RAとの間で熱交換を行わせる。
 ダクト21~24は、還気ダクト21、排気ダクト22、外気導入ダクト23、および、給気ダクト24である。
 第2換気装置20は、ケーシング50、給気ファン26、排気ファン28、略四角柱形状の熱交換エレメント40、および、換気制御部70を有している。
 ケーシング50は、内部に、熱交換エレメント40、給気ファン26、排気ファン28等を収容している。また、ケーシング50には、還気ダクト21が接続される第1開口51、排気ダクト22が接続される第2開口52、外気導入ダクト23が接続される第3開口53、および、給気ダクト24が接続される第4開口54が形成されている。
 ケーシング50の内部には、第1開口51と熱交換エレメント40との間の第1空間51a、第2開口52と熱交換エレメント40との間の第2空間52a、第3開口53と熱交換エレメント40との間の第3空間53a、および、第4開口54と熱交換エレメント40との間の第4空間54a、が存在している。
 給気ファン26は、第4空間54aに配置されており、給気ファンモータ26mを有している。排気ファン28は、第2空間52aに配置されており、排気ファンモータ28mを有している。
 還気ダクト21は、第2換気装置20の第1開口51と、室内空間SIの天井に設けられた第2還気口81と、を結び、還気RAが流れる還気路21aを形成する。
 排気ダクト22は、第2換気装置20の第2開口52と、建物Hの外壁に開けられる第2排気口82とを結び、排気EAが流れる排気路22aを形成する。
 外気導入ダクト23は、第2換気装置20の第3開口53と、建物Hの外壁に開けられる外気導入口83とを結び、外気OAが流れる外気導入路23aを形成する。
 給気ダクト24は、第2換気装置20の第4開口54と、空調室内機30に追加設置される給気取入部材30aの入口33と、を結び、給気SAが流れる給気路24aを形成する。給気ダクト24は二股に分かれて2つの入口33に接続される。二股に分かれることで風路面積を大きくでき、給気ダクトにおける圧力損失を小さくできる。
 換気制御部70は、図3に示すように、給気ファンモータ26m、排気ファンモータ28m、リモコン90、などと接続されている。換気制御部70は、コンピュータにより実現されるものである。換気制御部70は、制御演算装置と記憶装置とを備える。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。後述するリモコン90からの指令などに応じて、換気制御部70は、給気ファン26および排気ファン28のON、OFFを行う。
 なお、ここでは図示、説明を省略しているが、外気温度センサや室内温度センサと換気制御部70とを接続し、センサ値を制御に利用することもできる。
 (5)リモコンの詳細
 リモコン90は、室内空間SIに居るユーザが空調室内機30および第2換気装置20について、各種設定操作するためのものである。リモコン90も、換気制御部70と同様に、コンピュータにより実現されるものである。
 リモコン90、換気制御部70、および、空調室内機30の制御部(図示せず)は、通信線を介して接続されている。
 (6)空調換気システムによる換気の詳細
 リモコン90は、空調室内機30の室内ファン35が作動しているときに、第2換気装置20を作動させる。言い換えると、第2換気装置20を作動させる必要があるときには、リモコン90は、空調室内機30も作動させる。第2換気装置20の給気ファン26および排気ファン28が作動すると、屋外空間SOの外気OAは、外気導入路23aから熱交換エレメント40に至り、熱交換エレメント40を通過した空気は、給気ファン26を通り、新鮮な給気SAとして室内空間SIに供給される。室内空間SIの室内空気は、還気路21aを介して還気RAとして熱交換エレメント40に至り、熱交換エレメント40を通過した空気は、排気ファン28を通り、排気EAとなって屋外空間SOに排出される。
 熱交換エレメント40では、外気OAと還気RAとの間で熱交換が行われ、第2換気装置20による換気に伴う空調負荷の増加を抑制している。
 (7)室内空間の換気量を増やすために追加設置する第2換気装置の選定方法、および、空調室内機の選定方法
 図1Bに示すような、既に第1換気装置10および空調室内機30が設置されている建物Hの室内空間SIに対し、ウィルスや細菌などの病原体による感染の対策の1つとして、換気量を増やすことが求められたとする。例えば、換気量の設計を1人当たり20m/hで行って、第1換気装置10の換気量が決められていたけれども、さらに10m/h、合計で30m/hの換気量が求められることが想定される。言い換えると、今の換気量を1.5倍にすることが要求されている。その場合に、以下の各ステップによって、追加設置する第2換気装置20が選定される。
 (7-1)第2換気装置の選定方法
 まず、第1ステップでは、室内空間SIの大きさに基づいて、追加設置する第2換気装置20に要求される第2換気量を求める。本実施形態において、第1ステップは、室内空間SIに入る最大人数を計算するステップと、最大人数から室内空間SIにおいて必要な換気量を計算するステップとを含む。具体的には、室内空間SIにおいて必要な換気量は、室内空間SIの床面積(m)を室内空間SI(部屋)の用途(一般商店、事務所など)によって定められる1人当りの専有面積(m)で割った値に、1人あたりに必要とされる1時間当たりの換気量(m/h)をかけた値となる。室内空間SIの用途によって定められる1人当りの専有面積(m)は、例えば、用途に応じて3m、5m、などと決められる。必要な換気量を室内空間SIの容積(m)や部屋の必要換気回数を用いて計算してもよい。
 第1換気量(m/h)は、例えば人の二酸化炭素排出量に基づく室内空間SIに必要とされる換気量である。第2換気量(m/h)は、病原体感染の対策として室内空間SIに必要とされる、1時間当たりの換気量である。感染の対策を行う対象となる病原体は、例えば、インフルエンザウィルス、ノロウィルス、コロナウィルス、結核菌、などの、ウィルスあるいは細菌である。第2換気量(m/h)は第1換気量(m/h)よりも大きな値である。
 次に、第2ステップでは、第2換気量と第1換気量との差を、追加換気量(m/h)として求める。第1換気量(m/h)は、既に室内空間SIに対して設置されている第1換気装置10の換気量である。
 次に、第3ステップでは、追加換気量の換気が可能な換気装置を、追加する第2換気装置20として選定する。第3ステップでは、第2換気装置20を、以下の(7-2)に示す換気装置の候補V1~V6の中から選定する。
 (7-2)換気装置の候補V1~V6
 換気装置の候補は、
換気量150m/hの、換気装置V1、
換気量250m/hの、換気装置V2、
換気量350m/hの、換気装置V3、
換気量500m/hの、換気装置V4、
換気量650m/hの、換気装置V5、および、
換気量800m/hの、換気装置V6、
である。
 (7-3)空調室内機の選定方法
 第3ステップにおける第2換気装置20の選定が終わると、次に、第4ステップに移る。第4ステップでは、第1の空調負荷と第2の空調負荷と第3の空調負荷との和を、合計空調負荷として求める。第1の空調負荷は、室内空間SIの大きさに基づいて決められる空調負荷であって、室内に居る人間や機器の熱負荷、窓や壁を介して入ってくる太陽熱、内外温度差に基づく熱負荷、などを合計して求められる。建物Hの室内空間SI(部屋)の用途(一般商店、事務所など)に応じて、単位床面積当たりの冷房、暖房の空調負荷(第1の空調負荷)は公知である。第2の空調負荷は、既存の第1換気装置10による換気によって生じる空調負荷である。換気を行うと、ダクトや扉の隙間などを介して外気が室内空間SIに取り込まれ、その外気を室内の温湿度に保つために負荷が生じる。この外気負荷が、換気によって生じる第2の空調負荷である。第3の空調負荷は、第3ステップにおいて選定された第2換気装置20の換気によって生じる空調負荷である。
 なお、第4ステップでは、第2換気装置20の熱交換エレメント40における外気OAと還気RAとの間の熱交換による熱交換量を考慮して、第3の空調負荷が求められる。熱交換エレメント40は、換気によって失われる空調エネルギーの全熱(顕熱および潜熱)を回収するために設けられており、第4ステップでは、その回収量が考慮される。
 第5ステップでは、合計空調負荷を処理できる空調能力を持つ空調室内機30を、空調能力が異なる複数の空調室内機の候補の中から選定する。ここでは、以下の(7-4)に示す空調室内機の候補A1~A9の中から空調室内機30が選定される。
 (7-4)空調室内機の候補A1~A9
 一般商店の用途である室内空間SIに対する空調室内機の候補は、
22-25mの床面積に適した、1.5馬力(3.6kW)の空調室内機A1、
25-28mの床面積に適した、1.8馬力(4.0kW)の空調室内機A2、
28-31mの床面積に適した、2馬力(4.5kW)の空調室内機A3、
31-35mの床面積に適した、2.3馬力(5.0kW)の空調室内機A4、
35-39mの床面積に適した、2.5馬力(5.6kW)の空調室内機A5、
44-50mの床面積に適した、3馬力(7.1kW)の空調室内機A6、
62-70mの床面積に適した、4馬力(10.0kW)の空調室内機A7、
78-88mの床面積に適した、5馬力(12.5kW)の空調室内機A8、および、
89-100mの床面積に適した、6馬力(14.0kW)の空調室内機A9、
である。この空調室内機の候補A1~A9の数は、上記の換気装置の候補V1~V6の数よりも多い。
 (7-5)第2換気装置および空調室内機の選定の見直し
 第6ステップでは、第3ステップにおいて選定された第2換気装置20の最大換気量のときの風量が、第5ステップにおいて選定された空調室内機30の定格風量の30%以下であるか否かを判定する。
 次に、第7ステップでは、第6ステップにおいて第2換気装置20の最大換気量のときの風量が空調室内機30の定格風量の30%を超えると判定された場合に、第2換気装置および空調室内機の選定を見直す。選定の見直しにおいては、より定格風量が大きい空調室内機の候補から新たに空調室内機30が選定される、あるいは、より最大換気量が小さい換気装置の候補から新たに第2換気装置20が選定される。
 (7-6)選定の具体例
 次に、図4A~図4Cを参照しながら、既に第1換気装置10が設置されている建物Hの室内空間SIに対して、換気量を増やすために第2換気装置20を追加設置するときの、第2換気装置20の選定の具体例を説明する。
 図4Aに示すように、今、例えば、ある商店の室内空間SIに、5馬力(5HP)の空調室内機30と、換気量が500m/hの第1換気装置10とが設置されているとする。室内空間SIの用途によって定められる1人当りの専有面積(m)は、一般商店の場合、3mである。室内空間SIの床面積が75mで、室内空間SIの収容人数が25人である商店が、過去に換気量の設計を1人当たり20m/hで行っている場合、換気量が500m/hの第1換気装置10が設置されている。一般商店において、5馬力の空調室内機30の空調能力である12.5kWは、床面積83mの室内の空調を行うことができる。一方、今の換気量500m/hの場合、一般商店の床面積75mの室内空間SIに対して必要な空調能力は、11.3kWである。したがって、今の室内空間SIの床面積75mに対し、5馬力の空調室内機30は、約10%の余力がある。
 この商店が、病原体感染の対策として、今の換気量(1人当たり20m/h)を引き上げ、合計30m/hの換気量(1人当たり)を室内空間SIに対して確保しようと考える場合、簡易な方法として、窓開け換気が候補に挙がる。
 窓開け換気をする場合には、図4Bに示すように、窓を開けて250m/hの外気を室内空間SIに追加で取り入れる必要がある。しかし、窓を開けると、騒音の増加や、室内空間SIへの虫の侵入、室内空間SIにおける温度ムラの出現、といった不具合が生じ、商店の顧客の快適感が阻害される。また、外気導入による空調負荷の増加として、例えば、外気温35℃、室内温度27℃のときに外気負荷が1.5kWだけ増えて、室内空間SIの床面積75mに対し、12.8kW(=11.3kW+1.5kW)の空調能力が必要になる。これに対し、既存の5馬力の空調室内機30の空調能力(12.5kW)では不足になるため、窓開け換気をする商店は、5馬力の空調室内機30を外して、新たに6馬力(14.0kW)の空調室内機を設置しなければならなくなる。
 これに対し、合計30m/hの換気量を室内空間SIに対して確保する方法として、上記の(7-1)~(7-5)に示す選定方法を採用すれば、初期コストやランニングコストを抑えつつ、室内空間SIの換気量の確保および空調負荷の処理を行うことができる。
 上記の選定方法を使い、まずステップ1において、室内空間SIの大きさ(床面積75mおよび収容人数25人)に基づいて、病原体感染の対策として室内空間SIに必要とされる第2換気量を求める。病原体感染の対策として、ここでは、1人当たり30m/hが必要になるとして、第2換気量は750m/h(25×30m/h)として求まる。
 次に、第2ステップにおいて、第2換気量と第1換気量との差を、追加換気量(m/h)として求める。追加換気量は、250m/h(第2換気量750m/h-第1換気装置10の第1換気量500m/h)と決まる。
 次に、第3ステップにおいて、上記の換気装置の候補V1~V6の中から、追加換気量の換気が可能な換気装置を選び、それを第2換気装置20として選定する。ここでは、換気量250m/hの換気装置V2、を第2換気装置20として選定する。
 次に、第4ステップにおいて、第1の空調負荷と第2の空調負荷と第3の空調負荷との和を、合計空調負荷として求める。第2の空調負荷は、上記のとおり、既存の第1換気装置10による換気によって生じる空調負荷である。既存の第1換気装置10による換気(換気量500m/h)によって生じる第2の空調負荷と、第1の空調負荷との合計は、一般商店における床面積75mの室内空間SIの場合、上記の11.3kWとなる。第3の空調負荷は、第2換気装置20の追加設置によって生じる、第2換気装置20の換気運転に伴う追加空調負荷である。追加空調負荷(第3の空調負荷)は、第2換気装置20として選定された換気装置が換気量250m/hの換気装置V2である場合、外気温35℃、室内温度27℃のときに0.6kWである。上記の窓開け換気の場合、同じ条件で1.5kWであるが、第2換気装置20を採用する場合、熱交換エレメント40における全熱交換が行われるため、追加空調負荷は0.6kWとなる。したがって、合計空調負荷は、11.9kW(11.3kW+0.6kW)となる。
 参考までに、第2換気装置20の候補と空調室内機30の候補との各組合せに対する追加空調負荷およびその他の数値を、図5に示す。
 次に、第5ステップにおいて、合計空調負荷を処理できる空調能力を持つ空調室内機30を、上記の空調室内機の候補A1~A9から選定する。ここでは、既に室内空間SIに対して設置されている5馬力(12.5kW)の空調室内機A8、が空調室内機30として選定される。5馬力(12.5kW)で合計空調負荷(11.9kW)を処理できるからである。
 次に、第6ステップでは、第3ステップにおいて選定された第2換気装置20の最大換気量のときの風量が、第5ステップにおいて選定された空調室内機30の定格風量の30%以下であるか否かを判定する。ここでは、第2換気装置20の最大換気量のときの風量が空調室内機30の定格風量の30%以下である。このため、第7ステップにおける第2換気装置および空調室内機の選定の見直しは行われない。
 このように、ここでは、図4Cに示すように、全熱交換を行うための熱交換エレメント40を有する第2換気装置20を追加設置し、その第2換気装置20と既存の5馬力の空調室内機30によって空調換気システム100が構成されることになる。
 なお、上記のように、病原体感染の対策として窓開け換気を採用する場合には、5馬力の空調室内機30を外して、新たに6馬力(14.0kW)の空調室内機を設置しなければならないけれども、全熱交換を行うための熱交換エレメント40を有する第2換気装置20を追加設置する場合には、既存の5馬力の空調室内機30をそのまま継続して使用することができる。
 (8)第2換気装置の選定方法の特徴
 (8-1)
 上記の(7)で説明した第2換気装置の選定方法によれば、既存の第1換気装置10の第1換気量をそのまま利用し、足りない追加換気量の換気を第2換気装置20によって補う、という従来にない優れた考え方に沿って、第2換気装置20が選定される。これにより、コストを抑えながら、病原体感染の対策として必要とされる第2換気量の換気が実現される。
 (8-2)
 既存の第1換気装置10に加え、追加の第2換気装置20を室内空間SIに対して設置した場合、第2換気装置20による換気で室内空間SIの空調負荷が増えることが想定される。そのことを考慮しなければ、室内空間SIの温熱環境が悪化する可能性がある。このことに鑑み、上記の第2換気装置20および空調室内機30の選定方法では、換気によって生じる空調負荷を含む合計空調負荷を処理できるだけの空調室内機30を選定している。これにより、室内空間SIに既に配備されている空調室内機30をそのまま使うことができるか、それとも、より空調能力が高い、新しい空調室内機30に入れ替える必要があるか、を判断することができる。
 (8-3)
 上記の(7)で説明した第2換気装置の選定方法では、給気SAと排気EAとの間で熱交換を行わせる熱交換エレメント40を有する第2換気装置20を、追加の換気装置として選定している。このため、第2換気装置20の換気による室内空間SIの温熱環境の悪化を小さく抑えることができている。そして、熱交換エレメント40における熱交換量を考慮して第3の空調負荷(追加換気に伴う空調負荷)を求めているため、合計空調負荷を過大に算出してしまうことが無い。これにより、必要な空調能力を正しく認識し、過不足のない空調室内機30の選定が為される。
 (8-4)
 病原体感染の対策として追加する第2換気装置20の最大換気量のときの風量が空調室内機30の定格風量の30%を超える場合、空調室内機30の空調能力によって合計空調負荷の処理ができたとしても、空気調和装置の運転効率が悪くなってランニングコストが高額になってしまう恐れがある。このことに鑑み、本実施形態の第2換気装置および空調室内機の選定方法では、第6ステップおよび第7ステップを行い、第2換気装置および空調室内機の選定を見直している。これにより、例えば、より定格風量や空調能力が高い空調室内機を選定し、それによって空調および換気のランニングコストを下げることが可能になる。
 (8-5)
 上記実施形態では、上記(7-4)で示す多くの空調室内機の候補を用意することによって、選定された第2換気装置20に応じて、より適切な空調室内機30を選定すること、ができるようになる。これにより、空調換気システム100のランニングコストや設置コストを抑制できる。
 (9)空調換気システムのバリエーションおよび特徴
 (9-1)
 上記の(1)~(6)の空調換気システム100では、空調室内機30は既に設置されているものとして説明したが、空調換気システム100として第2換気装置20、空調室内機30、および、給気SAの流路を形成する給気ダクト24などのダクト21~24がパッケージ化されていてもよい。第2換気装置20のファンを所定回転数で運転させたときに、室内に供給される風量が目標換気風量になるように第2換気装置に繋がるダクト21~24や、後述する給気取入部材30aが、一定の流路抵抗を有するものとして構成されている。パッケージ化されているとは、流路抵抗を有するダクト21~24および給気取入部材30aを空調室内機30と第2換気装置20とに接続するだけで所望の流路抵抗が生じる結果、現地で流路抵抗を計算する必要なく目標換気風量を供給できるシステムを意味する。パッケージ化された空調換気システム100を採用すれば、換気装置と空気調和装置の室内機とを現地で調達したダクト等の部品を使って接続させる場合に比べて、設置工事のコストを含む導入コストが抑えられる。
 (9-2)
 また、空調換気システム100では、第2換気装置20からの給気SAが空調室内機30に入るので、給気SAの温度を空調室内機30で温度調整あるいは湿度調整してから、室内空間SIに供給することができる。
 (9-3)
 空調換気システム100は、空調室内機30と第2換気装置20とを制御するリモコン90を備えている。これにより、空調室内機30と第2換気装置20との運転・停止を連動させたり、空調室内機30が作動していないときに第2換気装置20による換気を行わせないように制御したりすることが可能になる。
 なお、空調換気システム100では、空調室内機30が作動していないときに第2換気装置20による換気が行われると、空調室内機30の吸込フィルタに付いた塵埃が室内空間SIに落下するという不具合が生じる可能性がある。この不具合は、リモコン90の設置および空調室内機30と第2換気装置20との連動制御によって、阻止することができる。
 (10)空調換気システムの具体例
 (10-1)
 上記の(7-6)の第2換気装置の選定の具体例では、ある商店の室内空間SI(床面積75m)に、5馬力(5HP)の空調室内機30と、換気量が500m/hの第1換気装置10とが設置されていると仮定して、病原体感染の対策として、今の換気量(1人当たり20m/h)を引き上げ、1人当たり合計30m/hの換気量を室内空間SIに対して確保しようと考える場合について説明した。
 この具体例と同様の考え方によって選定を行うと、床面積が70m以上95m以下である室内空間に設置する空調換気システムは、冷房定格能力が約12.5kWである空調室内機と、最大換気量が250m/hである第2換気装置と、を備えるものであることが好ましい。
 この空調換気システムを、既存の建物の中の室内空間であって、第1換気量(例えば第2換気装置の最大換気量の2倍の換気量)が確保されている上記の床面積の室内空間、に設置すれば、病原体感染の対策として必要な換気量を得ることができるとともに、増えた換気量による空調負荷を含む室内空間の合計空調負荷を空気調和装置によって処理することができる。
 (10-2)
 上記の(7-6)の第2換気装置の選定の具体例では、ある商店の室内空間SI(床面積75m)に、5馬力(5HP)の空調室内機30と、換気量が500m/hの第1換気装置10とが設置されていると仮定して、病原体感染の対策として、今の換気量(1人当たり20m/h)を引き上げ、1人当たり合計30m/hの換気量を室内空間SIに対して確保しようと考える場合について説明した。
 この具体例と同様の考え方によって選定を行うと、床面積が40m以上60m以下である室内空間に設置する空調換気システムは、冷房定格能力が約7.1kWである空調室内機と、最大換気量が150m/hである第2換気装置と、を備えるものであることが好ましい。
 この空調換気システムを、既存の建物の中の室内空間であって、第1換気量(例えば第2換気装置の最大換気量の2倍の換気量)が確保されている上記の床面積の室内空間、に設置すれば、病原体感染の対策として必要な換気量を得ることができるとともに、増えた換気量による空調負荷を含む室内空間の合計空調負荷を空気調和装置によって処理することができる。
 (11)変形例
 (11-1)
 上記実施形態の空調換気システム100では、室内空間SIの室内空気は、還気路21aを介して還気RAとして熱交換エレメント40に至り、熱交換エレメント40を通過した空気は、排気ファン28を通り、排気EAとなって屋外空間SOに排出される。一方、屋外空間SOの外気OAは、外気導入路23aから熱交換エレメント40に至り、熱交換エレメント40を通過した空気は、給気ファン26を通り、新鮮な給気SAとして室内空間SIに供給される。但し、給気SAは、給気取入部材30aが装着された空調室内機30の中の狭い流路を通過させるために、ある程度の静圧が必要である。このため、流路抵抗が小さい還気RAおよび排気EAの流路と、流路抵抗が大きい外気OAおよび給気SAの流路との間に圧力差が生じる恐れがある。
 このため、給気SAの圧力損失がかなり大きくなる場合には、空調換気システム100に圧力調整部を追加で配備することが好ましい。
 例えば、圧力調整部として、図1Aの第2換気装置20の第1空間51aに邪魔板やダンパーといった減圧部材58を設けて、還気RAおよび排気EAの流路抵抗を大きくする。すると、上記の圧力差が小さくなり、熱交換エレメント40において外気と還気とが混じり合うような不具合が殆ど生じなくなる。
 (11-2)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  10  第1換気装置
  20  第2換気装置(換気装置、追加換気装置)
  24  給気路形成部材
  24a 給気路
  26  給気ファン
  28  排気ファン
  30  空調室内機(空気調和装置)
  30a 給気取入部材
  33  給気取入部材の入口(給気口)
  40  熱交換エレメント
  50  ケーシング
  51  第1開口
  52  第2開口
  53  第3開口
  54  第4開口
  58  減圧部材(圧力調整部)
  90  リモコン(コントローラ)
 100  空調換気システム
  EA  排気
  OA  外気
  RA  還気
  SA  給気
  SI  室内空間
  SO  屋外空間(室内空間の外)
特開2005-300112号公報

Claims (10)

  1.  1時間当たりの換気量が第1換気量である既存の第1換気装置(10)が設けられている室内空間(SI)、に対して、別の換気装置を追加換気装置(20)として新たに設置する際の、追加換気装置の選定方法であって、
     病原体感染の対策として必要とされる1時間当たりの換気量である第2換気量を、前記室内空間(SI)の大きさに基づいて求める、第1ステップと、
     前記第2換気量と前記第1換気量との差を、追加換気量として求める、第2ステップと、
     前記追加換気量の換気が可能な換気装置を、前記追加換気装置(20)として選定する、第3ステップと、
    を備える、追加換気装置の選定方法。
  2.  請求項1に記載の選定方法によって追加換気装置(20)を選定し、さらに、前記室内空間を空調する空気調和装置(30)を選定する、追加換気装置および空気調和装置の選定方法であって、
     前記室内空間(SI)の大きさに基づいて決められる第1の空調負荷と、前記既存の第1換気装置による換気によって生じる第2の空調負荷と、前記第3ステップにおいて選定された前記追加換気装置による換気によって生じる第3の空調負荷との和を、合計空調負荷として求める、第4ステップと、
     前記合計空調負荷を処理できる空調能力を持つ空気調和装置(30)を、空調能力が異なる複数の空気調和装置の候補の中から選定する、第5ステップと、
    を備える、追加換気装置および空気調和装置の選定方法。
  3.  前記第3ステップにおいて、前記室内空間への給気(SA)となる外気(OA)と前記室内空間からの排気(EA)となる還気(RA)との間で熱交換を行わせる熱交換部(40)を有する換気装置、を前記追加換気装置(20)として選定し、
     前記第4ステップにおいて、選定された前記追加換気装置の前記熱交換部(40)における熱交換量を考慮して、前記第3の空調負荷を求める、
    請求項2に記載の、追加換気装置および空気調和装置の選定方法。
  4.  前記第3ステップにおいて選定された前記追加換気装置の最大換気量のときの風量が、前記第5ステップにおいて選定された前記空気調和装置の定格風量の30%以下であるか否かを判定する、第6ステップと、
     前記第6ステップにおいて前記追加換気装置の最大換気量のときの風量が前記空気調和装置の定格風量の30%を超えると判定された場合に、前記追加換気装置および前記空気調和装置の選定を見直す、第7ステップと、
    をさらに備える、
    請求項2又は3に記載の、追加換気装置および空気調和装置の選定方法。
  5.  前記第3ステップでは、最大換気量が異なる複数の換気装置の候補の中から、前記追加換気装置が選定され、
     前記第5ステップにおける前記複数の空気調和装置の候補の数は、前記第3ステップにおける前記複数の換気装置の候補の数よりも多い、
    請求項2から4のいずれかに記載の、追加換気装置および空気調和装置の選定方法。
  6.  床面積が70m以上95m以下であり、1時間当たりの換気量が第1換気量である既存の第1換気装置(10)が設けられている室内空間に設置する空調換気システムであって、
     冷房定格能力が約12.5kWである空気調和装置と、
     最大換気量が250m/hである換気装置(20)と、
    を備える、空調換気システム。
  7.  床面積が40m以上60m以下であり、1時間当たりの換気量が第1換気量である既存の第1換気装置(10)が設けられている室内空間に設置する空調換気システムであって、
     冷房定格能力が約7.1kWである空気調和装置と、
     最大換気量が150m/hである換気装置(20)と、
    を備える、空調換気システム。
  8.  前記空気調和装置は、前記室内空間の外からの給気(SA)を受け入れる給気口(33)を有しており、
     前記換気装置(20)は、外気(OA)を前記空気調和装置に前記給気(SA)として送るための給気ファン(26)を有しており、
     前記換気装置および前記空気調和装置に接続され、前記給気(SA)を前記換気装置から前記空気調和装置の前記給気口へと導く給気路(24a)を形成する、給気路形成部材(24)、
    をさらに備える、請求項6又は7に記載の空調換気システム。
  9.  前記換気装置(20)は、前記給気ファン(26)を収容するケーシング(50)と、前記ケーシングに収容され前記室内空間(SI)の空気を前記室内空間の外(SO)に排気(EA)として送るための排気ファン(28)と、前記排気(EA)となる還気(RA)と前記外気(OA)とを熱交換させる熱交換器(40)と、をさらに有しており、
     前記ケーシングには、前記室内空間の空気を前記還気(RA)として取り込む第1開口(51)、前記還気(RA)を前記室内空間の外に前記排気(EA)として送り出すための第2開口(52)、前記外気(OA)を取り込む第3開口(53)、および、前記給気路形成部材が接続される第4開口(54)、が形成されており、
     前記換気装置において前記第1開口(51)から前記第2開口(52)へと流れる前記還気(RA)の圧力と、前記換気装置において前記第3開口(53)から前記第4開口(54)へと流れる前記外気(OA)の圧力と、の差が小さくなるように、空気の圧力を調整する圧力調整部(58)、
    をさらに備える、請求項8に記載の空調換気システム。
  10.  前記空気調和装置と前記換気装置とを制御するリモートコントローラ(90)、
    をさらに備える、請求項6から9のいずれかに記載の空調換気システム。
PCT/JP2021/033750 2020-09-18 2021-09-14 追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム WO2022059673A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180063314.4A CN116209860A (zh) 2020-09-18 2021-09-14 追加换气装置的选定方法、追加换气装置及空调装置的选定方法以及空调换气系统
EP21869359.6A EP4215830A4 (en) 2020-09-18 2021-09-14 SUPPLEMENTARY FAN SELECTION METHOD, SUPPLEMENTARY FAN AND AIR CONDITIONER SELECTION METHOD, AND AIR CONDITIONER VENTILATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157151 2020-09-18
JP2020157151A JP7132526B2 (ja) 2020-09-18 2020-09-18 追加換気装置および空気調和装置の選定方法、および、空調換気システム

Publications (1)

Publication Number Publication Date
WO2022059673A1 true WO2022059673A1 (ja) 2022-03-24

Family

ID=80776135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033750 WO2022059673A1 (ja) 2020-09-18 2021-09-14 追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム

Country Status (4)

Country Link
EP (1) EP4215830A4 (ja)
JP (2) JP7132526B2 (ja)
CN (1) CN116209860A (ja)
WO (1) WO2022059673A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413038A (ja) * 1990-04-27 1992-01-17 Daikin Ind Ltd 空気調和装置
JP2005300112A (ja) 2004-04-15 2005-10-27 Daikin Ind Ltd 熱交換ユニット
JP2010175229A (ja) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp 空調制御装置
JP2011137595A (ja) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp 空気調和システム
WO2020003405A1 (ja) * 2018-06-27 2020-01-02 三菱電機株式会社 空調制御システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100565593B1 (ko) * 2003-06-04 2006-03-30 엘지전자 주식회사 급배기 직결형 환기겸용 공조시스템
KR100587313B1 (ko) * 2004-02-09 2006-06-08 엘지전자 주식회사 공기청정장치 일체형 환기시스템
WO2019082377A1 (ja) * 2017-10-27 2019-05-02 三菱電機株式会社 ヒートポンプシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413038A (ja) * 1990-04-27 1992-01-17 Daikin Ind Ltd 空気調和装置
JP2005300112A (ja) 2004-04-15 2005-10-27 Daikin Ind Ltd 熱交換ユニット
JP2010175229A (ja) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp 空調制御装置
JP2011137595A (ja) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp 空気調和システム
WO2020003405A1 (ja) * 2018-06-27 2020-01-02 三菱電機株式会社 空調制御システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS ~: "Ventilation Methods to Improve Poorly-Ventilated Closed Spaces. ", MINISTRY OF HEALTH, LABOUR AND WELFARE, 3 April 2020 (2020-04-03), pages 1 - 2, XP055914062, Retrieved from the Internet <URL:https://www.mhlw.go.jp/content/10900000/000618969.pdf> [retrieved on 20220420] *
See also references of EP4215830A4
SHOUJI SATOU; ISAO NAKANISHI: "Deployment of BIM in Construction. Equipment industry centered on 3D CAD for equipment BIM. Deployment of BIM in Construction", KUKI CHOWA EISEI KOGAKU - FROZEN , vol. 84, no. 1044, 1 October 2014 (2014-10-01), JP , pages 36 - 39, XP009535200, ISSN: 0386-4081 *

Also Published As

Publication number Publication date
JP7132526B2 (ja) 2022-09-07
JP2022050947A (ja) 2022-03-31
EP4215830A1 (en) 2023-07-26
JP7564456B2 (ja) 2024-10-09
CN116209860A (zh) 2023-06-02
JP2022168323A (ja) 2022-11-07
EP4215830A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
EP3346203B1 (en) Air conditioning system
WO2020213657A1 (ja) ファンユニット、ファンユニットシステム及び空気処理システム
US20200182489A1 (en) Modular heat pump system
WO2015182461A1 (ja) エアコン室内機
WO2018056191A1 (ja) 熱交換形換気装置
KR20090117043A (ko) 공기조화시스템
JP2000304302A (ja) 空気調和装置
JPWO2020166503A1 (ja) 空調システム
JP2002162067A (ja) 空気調和装置
JP2009121793A (ja) 浴室換気空調装置
WO2020213656A1 (ja) 空気調和システム
JP7002918B2 (ja) 換気システム、空調システム、換気方法及びプログラム
WO2022059673A1 (ja) 追加換気装置の選定方法、追加換気装置および空気調和装置の選定方法、および、空調換気システム
WO2020213216A1 (ja) 空気調和システム
KR100672602B1 (ko) 공기조화장치의 실내 열교환유닛
JP2010054110A (ja) 換気システム及び建物
JP6856154B2 (ja) 空気調和システム
JP2677079B2 (ja) 換気機能付き空気調和装置
EP1657503A2 (en) Air conditioner
JP4451766B2 (ja) 換気機能付き空気調和機及び全館換気空調装置
JP2022050948A (ja) 空調換気システム
JP2007024467A (ja) ドレンレス空調システム
WO2022259361A1 (ja) 空気調和システム
JP4282499B2 (ja) 空気調和装置
JP2005282949A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021869359

Country of ref document: EP

Effective date: 20230418