WO2022059636A1 - 路面評価装置および路面評価方法 - Google Patents

路面評価装置および路面評価方法 Download PDF

Info

Publication number
WO2022059636A1
WO2022059636A1 PCT/JP2021/033492 JP2021033492W WO2022059636A1 WO 2022059636 A1 WO2022059636 A1 WO 2022059636A1 JP 2021033492 W JP2021033492 W JP 2021033492W WO 2022059636 A1 WO2022059636 A1 WO 2022059636A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
road surface
vehicle
road
acceleration
Prior art date
Application number
PCT/JP2021/033492
Other languages
English (en)
French (fr)
Inventor
明 飯星
康夫 大石
篤樹 柿沼
武雄 徳永
寛之 鬼丸
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US18/026,182 priority Critical patent/US20230358559A1/en
Priority to JP2022550543A priority patent/JP7430272B2/ja
Publication of WO2022059636A1 publication Critical patent/WO2022059636A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3841Data obtained from two or more sources, e.g. probe vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. potholes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2756/00Output or target parameters relating to data
    • B60W2756/10Involving external transmission of data to or from the vehicle

Definitions

  • the present invention relates to a road surface evaluation device and a road surface evaluation method for evaluating a road surface profile representing an uneven shape of a road surface.
  • the road surface evaluation device includes a driving information acquisition unit that acquires driving information of each of a plurality of vehicles including position information of a plurality of vehicles in motion and acceleration information indicating acceleration of the plurality of vehicles.
  • a map information acquisition unit that acquires map information including road information, a roughness evaluation unit that evaluates the roughness of the road surface based on acceleration information of a plurality of vehicles acquired by the driving information acquisition unit, and a roughness evaluation unit. It is provided with an output unit that outputs the road surface roughness information evaluated by the evaluation unit in association with the road information acquired by the map information acquisition unit.
  • the road surface evaluation method includes a step of acquiring driving information of each of a plurality of vehicles including position information of a plurality of vehicles in motion and acceleration information indicating acceleration of the plurality of vehicles, and a road.
  • the step of attaching and outputting is included to be executed by a computer.
  • the road surface profile of a road can be efficiently evaluated.
  • FIG. 4 is a diagram showing an example of traveling information acquired by a road surface evaluation device from a vehicle traveling on the road of FIG. 4A.
  • the figure which shows an example of the synthetic driving information The figure for demonstrating the teacher data of the road surface roughness value.
  • the figure which shows an example of the synthetic running information after applying a variable filter The figure which shows an example of the road surface profile information. The figure which shows an example of the data accumulation degree information.
  • the flowchart which shows an example of the process executed by the arithmetic unit of FIG. The figure which shows an example of the correction coefficient table.
  • the road surface evaluation device is a device for evaluating the road surface profile of the road on which the vehicle travels.
  • FIG. 1 is a diagram showing an example of a configuration of a road surface evaluation system including a road surface evaluation device according to the present embodiment.
  • the road surface evaluation system 1 includes a road surface evaluation device 10 and an in-vehicle terminal 30.
  • the road surface evaluation device 10 is composed of, for example, a server device.
  • the in-vehicle terminal 30 is configured to be able to communicate with the road surface evaluation device 10 via the communication network 2.
  • the communication network 2 includes not only public wireless communication networks represented by Internet networks and mobile phone networks, but also closed communication networks provided for each predetermined management area, such as wireless LAN and Wi-Fi (registered trademark). ), Bluetooth®, etc. are also included.
  • the in-vehicle terminal 30 is mounted on the vehicle 20.
  • the vehicle 20 includes a plurality of vehicles 20-1, 20-2, ..., 20-n.
  • the vehicle 20 may be a manually driven vehicle or an automatically driven vehicle. Further, the vehicle 20 may include vehicles having different vehicle types and grades.
  • FIG. 2 is a block diagram showing a configuration of a main part of the in-vehicle terminal 30 according to the present embodiment.
  • the in-vehicle terminal 30 includes an electronic control unit (ECU) 31, a positioning sensor 32, an acceleration sensor 33, a steering angle sensor 34, a vehicle speed sensor 35, and a TCU (Telematic Control Unit) 36.
  • ECU electronice control unit
  • TCU Telematic Control Unit
  • the positioning sensor 32 is, for example, a GPS sensor, which receives a positioning signal transmitted from a GPS satellite and detects the absolute position (latitude, longitude, etc.) of the vehicle 20.
  • the positioning sensor 32 includes not only a GPS sensor but also a sensor for positioning using radio waves transmitted from satellites of various countries called GNSS satellites such as a quasi-zenith orbit satellite.
  • the acceleration sensor 33 detects the left-right acceleration of the vehicle 20, that is, the lateral acceleration.
  • the acceleration sensor 33 may be configured to detect the lateral acceleration of the vehicle 20 as well as the acceleration in the front-rear direction and the acceleration in the vertical direction.
  • the steering angle sensor 34 detects the steering angle of the steering wheel (not shown) of the vehicle 20.
  • the vehicle speed sensor 35 detects the vehicle speed of the vehicle 20.
  • the ECU 31 includes a computer having a calculation unit 310 such as a CPU (processor), a storage unit 320 such as a ROM and RAM, and other peripheral circuits (not shown) such as an I / O interface. It is composed.
  • the calculation unit 310 functions as a sensor value acquisition unit 311 and a communication control unit 312 by executing a program stored in the storage unit 320 in advance.
  • the sensor value acquisition unit 311 acquires the detected values of the sensors 33 to 35 and the absolute position of the vehicle 20 detected by the positioning sensor 32 at a predetermined cycle, for example, at 1 Hz (every 1 s).
  • the communication control unit 312 transmits the information acquired by the sensor value acquisition unit 311 (hereinafter referred to as travel information) to the road surface evaluation device 10 via the TCU 36 together with the vehicle ID that can identify the vehicle 20. ..
  • the road surface evaluation device 10 detects the uneven shape of the road surface, that is, the roughness of the road surface (hereinafter, also referred to as a road surface profile) based on the detection value of the acceleration sensor 33 of the vehicle 20 (vehicle-mounted terminal 30).
  • the detected road surface profile information is output to a terminal owned by the road management company or the like, and is used as reference data when the road management company or the like examines the necessity of repair. That is, the detected value of the acceleration sensor 33 is used to evaluate the road surface profile.
  • FIG. 3 is a block diagram showing a main configuration of the road surface evaluation device 10 according to the present embodiment.
  • the road surface evaluation device 10 includes a computer having a calculation unit 110 such as a CPU, a storage unit 120 such as a ROM and a RAM, and other peripheral circuits (not shown) such as an I / O interface.
  • the storage unit 120 stores map information including a road map and various information processed by the calculation unit 110.
  • the calculation unit 110 functions as an information acquisition unit 111, a road surface roughness evaluation unit 112, an evaluation result output unit 113, and a communication control unit 114 by executing a program stored in the storage unit 120.
  • the information acquisition unit 111 receives travel information from the in-vehicle terminals 30 of each of the plurality of vehicles 20 traveling on the road via the communication control unit 114.
  • the information acquisition unit 111 can specify the vehicle 20 from which the travel information is transmitted by the vehicle ID attached to the travel information.
  • the information acquisition unit 111 stores the traveling information received from the plurality of vehicles 20 (vehicle-mounted terminals 30) in the storage unit 120 in chronological order.
  • the traveling information stored in the storage unit 120 in time series is referred to as time-series traveling information.
  • the information acquisition unit 111 acquires map information including information on the road on which the vehicle 20 travels from the storage unit 120.
  • the road surface roughness evaluation unit 112 evaluates the amount (depth or height) of the unevenness of the road surface, that is, the road surface roughness, based on the traveling information of the plurality of vehicles 20 acquired by the information acquisition unit 111. More specifically, the road surface roughness evaluation unit 112 derives a road surface roughness value indicating the degree of road surface roughness based on the lateral acceleration of the plurality of vehicles 20.
  • the road surface roughness value is, for example, a value represented by IRI (International Roughness Index), which is an international index.
  • IRI International Roughness Index
  • FIG. 4A is a diagram showing an example of a map of the road on which the vehicle 20 travels.
  • FIG. 4A shows a predetermined range (a section of latitudes Y to Z of national highway X) to be evaluated for the roughness of the road surface.
  • the upward direction corresponds to the north direction
  • the right direction corresponds to the east direction.
  • the range to be evaluated for the road surface roughness can be specified by the user as described later.
  • the user may be able to specify the lane to be evaluated for the road surface roughness.
  • the traveling information acquired in the in-vehicle terminal 30 at a predetermined sampling cycle (for example, 1 Hz) is transmitted to the road surface evaluation device 10 via the communication control unit 312.
  • the traveling information includes information on the lateral acceleration of the vehicle 20 detected by the acceleration sensor 33 at the time of sampling (hereinafter referred to as acceleration information) and information on the absolute position of the vehicle 20 detected by the positioning sensor 32 at the time of sampling. (Hereinafter referred to as location information) and at least are included.
  • FIG. 4B shows an example of time-series traveling information acquired by the road surface evaluation device 10 from the in-vehicle terminals 30 of a plurality of vehicles 20 traveling in the predetermined range of FIG. 4A (the section of latitude Y to Z of the national highway X).
  • the horizontal axis in the figure is the position (latitude) in the traveling direction along the traveling lane of the vehicle 20, and the vertical axis is the lateral acceleration of the vehicle 20.
  • the characteristics D1, D2, ..., Dn represent time-series traveling information of the vehicles 20-1, 20-2, ..., 20-n, respectively.
  • the accuracy of the road surface roughness value derived by the road surface roughness evaluation unit 112 can be improved, and the road surface profile can be sufficiently evaluated.
  • the sampling cycle of the traveling information is high (for example, 100 Hz)
  • the processing load of the in-vehicle terminal 30 is increased.
  • the band of the communication network 2 may be compressed in order to increase the amount of data of the traveling information transmitted to the road surface evaluation device 10. Therefore, in consideration of this point, in the present embodiment, the traveling information of the first cycle (for example, 1Hz) transmitted from the n vehicles 20 is synthesized, and the combined traveling information of the second cycle (1 ⁇ nHz) is synthesized. Is generated, and the road surface roughness value is derived based on the synthetic driving information.
  • the generation of synthetic travel information will be described with reference to FIG.
  • FIG. 5 is a diagram showing an example of synthetic travel information generated based on travel information acquired from in-vehicle terminals 30 of a plurality of vehicles 20 traveling on the road of FIG. 4A.
  • the combined travel information is information obtained by synthesizing the acceleration information of each vehicle 20 based on the position information of each vehicle 20.
  • the synthetic traveling information shown in FIG. 5 can be obtained. Since the vehicle speed of each vehicle 20 and the point at which each vehicle 20 starts sampling are different, even if the sampling cycle of the traveling information in each vehicle 20 is the same, the timing at which the traveling information is sampled differs for each vehicle 20. It is considered to be.
  • the road surface roughness evaluation unit 112 evaluates the road surface roughness of the road on which each vehicle 20 travels, based on the synthetic travel information obtained in this way.
  • the road surface roughness evaluation unit 112 derives the road surface roughness value corresponding to the vehicle position on the road from the lateral acceleration by using the information indicating this correlation (hereinafter referred to as correlation data).
  • the road surface roughness evaluation unit 112 performs machine learning using the previously measured road surface roughness value and the lateral acceleration as teacher data, and derives the correlation between the road surface roughness value and the lateral acceleration.
  • 6A and 6B are diagrams for explaining the teacher data of the road surface roughness value and the lateral acceleration, respectively.
  • the vehicle V1 shown in FIG. 6A is a dedicated vehicle equipped with a measuring device MA for measuring road surface roughness.
  • the measuring device MA measures the road surface roughness value of the road RD when the vehicle V1 is traveling on a predetermined road (measurement course or the like) RD.
  • the characteristic P1 of FIG. 6A shows the road surface roughness value measured at this time.
  • FIG. 6B shows how the vehicle 20 of FIG. 1 travels on the same road RD as that of FIG. 6A.
  • the characteristic P2 of FIG. 6B shows the lateral acceleration detected by the acceleration sensor 33 provided in the vehicle 20 while the vehicle 20 is traveling on a predetermined road RD.
  • the characteristic P1 of FIG. 6A and the characteristic P2 shown in FIG. 6B are used as teacher data when the road surface roughness evaluation unit 112 derives the correlation between the road surface roughness value and the lateral acceleration, respectively.
  • the data of the characteristics P1 and the characteristics P2, that is, the teacher data of the road surface roughness value and the lateral acceleration may be stored in the storage unit 120 of the road surface evaluation device 10 or may be stored in an external storage device.
  • the road surface roughness evaluation unit 112 performs machine learning using the teacher data of the road surface roughness value and the lateral acceleration read from the storage unit 120 or an external storage device, and derives the correlation between the road surface roughness value and the lateral acceleration. do.
  • the road surface roughness evaluation unit 112 may perform machine learning by adding a traveling speed, a longitudinal acceleration, and a steering angle (steering angle) as teacher data.
  • the road surface roughness evaluation unit 112 derives the road surface roughness value of the road on which the plurality of vehicles 20 have traveled, based on the correlation between the derived road surface roughness value and the lateral acceleration and the synthetic travel information.
  • the acceleration sensor 33 is not only lateral acceleration generated by unevenness of the road surface when the vehicle 20 is traveling on a curved road, but also lateral acceleration due to centrifugal force generated according to the speed and steering angle of the vehicle 20. And lateral acceleration due to roll motion may be detected. That is, the lateral acceleration detected by the acceleration sensor 33 of the vehicle-mounted terminal 30 is a mixture of the lateral acceleration caused by the unevenness of the road surface and the lateral acceleration caused by the roll motion or the centrifugal force of the vehicle 20. Will be.
  • the road surface roughness evaluation unit 112 is caused by the roll motion or centrifugal force of the vehicle 20 from the lateral acceleration of the vehicle 20 indicated by the acceleration information in order to derive the road surface roughness value more accurately.
  • the lateral acceleration caused by the unevenness of the road surface is extracted by removing the lateral acceleration.
  • the road surface roughness evaluation unit 112 acquires the vehicle speed information detected by the vehicle speed sensor 35 and the steering angle information detected by the steering angle sensor 34 from the traveling information of the plurality of vehicles 20. do.
  • the road surface roughness evaluation unit 112 estimates the roll angle and centrifugal force of the vehicle 20 using the acquired vehicle speed and steering angle information.
  • the road surface roughness evaluation unit 112 applies a filter (variable filter) according to the estimated roll angle and centrifugal force of the vehicle 20 to the synthetic travel information, and is caused by the roll motion or centrifugal force of the vehicle 20 from the synthetic travel information. Remove the lateral acceleration component.
  • FIG. 7A is a diagram showing an example of synthetic running information before applying a variable filter.
  • the lateral acceleration of the curved road includes a large amount of the lateral acceleration caused by the roll motion or the centrifugal force of the vehicle 20, and therefore the value is larger than the lateral acceleration of the straight road.
  • FIG. 7B is a diagram showing an example of the combined traveling information of FIG. 7A after applying the variable filter.
  • the road surface roughness evaluation unit 112 is based on the synthetic running information from which the component of the lateral acceleration caused by the roll motion or the centrifugal force is removed and the correlation between the road surface roughness value and the lateral acceleration. Derive the value.
  • the evaluation result output unit 113 outputs the road surface roughness information evaluated by the road surface roughness evaluation unit 112, that is, the road surface roughness value, in association with the road information acquired by the information acquisition unit 111.
  • the information output at this time is called road surface profile information.
  • FIG. 8 is a diagram showing an example of road surface profile information.
  • the characteristic P0 in the figure represents a road surface roughness value derived based on the synthetic traveling information shown in FIG.
  • the horizontal axis is the position (latitude) in the traveling direction along the traveling lane of the vehicle 20, and the vertical axis is the road surface roughness value.
  • the evaluation result output unit 113 When the evaluation result output unit 113 receives the output instruction of the road surface profile from the terminal of the road management company or the like via the communication network 2, the evaluation result output unit 113 outputs the road surface profile information to the terminal of the transmission source of the output instruction or the terminal of the predetermined output destination. Output.
  • the output instruction of the road surface profile may be input to the road surface evaluation device 10 via an operation unit (not shown) included in the road surface evaluation device 10.
  • the road surface profile information is information that can be displayed on a display device such as a display, and the user (for example, a road management company) can confirm the road surface profile by displaying the road surface profile information on the display of the user's terminal. can.
  • the evaluation result output unit 113 further outputs the degree of accumulation of the traveling information acquired by the information acquisition unit 111 in a predetermined period in association with the road information acquired by the information acquisition unit 111.
  • the information output at this time is called data accumulation degree information.
  • a road (section) in which the degree of accumulation of travel information in a predetermined period (for example, one month) is a predetermined value (for example, 1000 Hz) or more is filled with a predetermined color.
  • the map information is output as data accumulation degree information.
  • the data accumulation degree information is information that can be displayed on a display device such as a display, like the road surface profile information.
  • FIG. 9 is a diagram showing an example of data accumulation degree information. Roads painted in black in the figure represent roads whose road surface roughness is sufficiently evaluated.
  • the evaluation result output unit 113 receives an output instruction of the data accumulation degree from a terminal such as a road management company via the communication network 2, the data accumulation degree is sent to the terminal of the source of the output instruction or the terminal of the predetermined output destination. Output information.
  • the data integration degree output instruction may be input to the road surface evaluation device 10 via an operation unit (not shown) included in the road surface evaluation device 10.
  • the display mode of the data accumulation degree information is not limited to the display mode shown in FIG. 9, and may be output in other display modes as long as it is possible to identify a road whose road surface roughness is not sufficiently evaluated.
  • the communication control unit 114 controls a communication unit (not shown) to transmit / receive data to / from an external device or the like. More specifically, the communication control unit 114 transmits / receives data to / from the in-vehicle terminal 30 of the vehicle 20 or a terminal such as a road management company via the communication network 2. Further, the communication control unit 114 receives the output instruction of the road surface profile and the output instruction of the data accumulation degree transmitted from the terminal of the road management company or the like via the communication network 2. Further, the communication control unit 114 acquires map information and the like from various servers connected to the communication network 2 periodically or at an arbitrary timing. Further, the communication control unit 114 stores the information acquired from various servers in the storage unit 120.
  • FIG. 10 is a flowchart showing an example of processing executed by the calculation unit 110 (CPU) of the road surface evaluation device 10 according to a predetermined program. The process shown in this flowchart is repeated at a predetermined cycle while the road surface evaluation device 10 is activated.
  • step S11 it is determined whether or not the traveling information is received from the vehicle-mounted terminal 30 of the vehicle 20. If denied in step S11, the process proceeds to step S13.
  • step S11 traveling information may be received from the in-vehicle terminals 30 of the plurality of vehicles 20.
  • step S11 If affirmed in step S11, the travel information received in step S11 is stored in the storage unit 120 together with the vehicle ID associated with the travel information in step S12. In step S13, it is determined whether or not the output instruction of the road surface profile has been input (received).
  • the output instruction of the road surface profile includes section information that can specify the section of the road to be output.
  • the section information is information indicating the name and section of the road to be output, such as "road: national highway X, section: latitude Y to Z". If the road has multiple lanes on each side, such as two lanes on each side, the section information includes information on the lane to be output, such as "road: national highway X, lane: right end, section: latitude Y to Z". May be included.
  • information other than latitude may be used to specify the section to be output. For example, longitude may be used instead of latitude, or longitude may be used in addition to latitude. Further, the distance from the start point of the section may be used.
  • step S13 the process proceeds to step S19. If affirmed in step S13, the map information is read from the storage unit 120 in step S14, and the road information included in the map information is acquired.
  • step S15 the time-series traveling information of the vehicle 20 is acquired from the storage unit 120. More specifically, based on the section information included in the output instruction of the road surface profile and the road information acquired in step S14, the time-series traveling information of the section targeted for output stored in the storage unit 120 is stored. get. At this time, if there are a plurality of vehicles 20 traveling in the section targeted for output, the time-series traveling information corresponding to each of the plurality of vehicles 20 is acquired.
  • step S16 the time-series travel information corresponding to each of the plurality of vehicles 20 acquired in step S15 is synthesized, and the combined travel information is generated.
  • step S17 the roughness of the road surface is evaluated based on the synthetic traveling information generated in step S16.
  • step S18 the information in which the road surface roughness information (roughness value) evaluated in step S17 is associated with the road information acquired in step S14, that is, the road surface profile information is output.
  • the road surface profile information can be displayed on a display device such as a display, and the road surface profile information can be confirmed on the user side.
  • step S19 it is determined whether or not the output instruction of the data accumulation degree has been input (received). If denied in step S19, the process ends. If affirmed in step S19, the map information is read from the storage unit 120 in step S20, and the road information included in the map information is acquired. At this time, if the road information has already been acquired in step S14, the process of step S20 may be skipped. In step S21, the time-series traveling information of each vehicle 20 stored in the storage unit 120 is acquired. At this time, if the time-series travel information of each vehicle 20 has already been acquired in step S15, the process of step S21 may be skipped.
  • step S22 the degree of accumulation of travel information in a predetermined period (for example, one month) is calculated based on the acquired time-series travel information.
  • step S23 the evaluation result output unit 113 displays the map information in which the road (section) in which the accumulation degree of the traveling information in the predetermined period is a predetermined value (for example, 1000 Hz) or more is filled with a predetermined color. Output as data integration degree information. Further, even if the affirmation is made in step S13, if the time-series running information of the vehicle 20 stored in the storage unit 120 that is not output is less than a predetermined amount, the process proceeds to step S19. You may.
  • step S19 even if the affirmation is made in step S19, if the time-series travel information of the vehicle 20 stored in the storage unit 120 that is not output is less than a predetermined amount, the process is terminated. You may. In such a case, information for notifying that the time-series traveling information that has not been output is less than a predetermined amount may be output to the terminal or the like of the transmission source of the output instruction of the road surface profile.
  • the output instruction of the data accumulation degree may include section information that can specify the section of the road to be output, as in the output instruction of the road surface profile.
  • a predetermined period is determined based on the time-series travel information of the section targeted for output based on the section information included in the output instruction of the data accumulation degree and the road information acquired in step S20. Calculate the degree of accumulation of driving information in.
  • step S23 the data integration degree information corresponding to the section targeted for output is output.
  • the road surface evaluation device 10 acquires the traveling information of each of the plurality of vehicles 20 including the position information of the plurality of vehicles 20 in motion and the acceleration information indicating the acceleration of the plurality of vehicles 20, and the road information.
  • the information acquisition unit 111 that acquires map information including the above, the road surface roughness evaluation unit 112 that evaluates the roughness of the road surface based on the acceleration information of a plurality of vehicles acquired by the information acquisition unit 111, and the road surface roughness. It includes an evaluation result output unit 113 that outputs the road surface roughness information evaluated by the evaluation unit 112 in association with the road information acquired by the information acquisition unit 111.
  • the information acquisition unit 111 acquires the traveling information acquired in the first cycle by the in-vehicle terminals 30 mounted on the plurality of vehicles 20, and the road surface roughness evaluation unit 112 is acquired by the information acquisition unit 111.
  • the traveling information from each of the in-vehicle terminals 30 of the plurality of vehicles 20 is combined to generate the combined traveling information of the second cycle shorter than the first cycle, and the roughness of the road surface is evaluated based on the combined traveling information. This makes it possible to accurately evaluate the road surface roughness without increasing the sampling period of the traveling information (lateral acceleration) in each vehicle 20.
  • the acceleration of the vehicle 20 indicated by the acceleration information is the acceleration in the left-right direction of the vehicle 20, and the traveling information further includes information indicating the roll angle and the centrifugal force of the vehicle 20.
  • the road surface roughness evaluation unit 112 corrects the acceleration of the vehicle 20 indicated by the acceleration information to remove the influence of the roll angle or the centrifugal force of the vehicle 20, and based on the corrected acceleration information of the plurality of vehicles 20. Evaluate the roughness of the road surface. As a result, even when evaluating the road surface roughness of a road in which straight roads and curved roads coexist, it is possible to accurately evaluate the road surface profile of the road on which the vehicle 20 travels.
  • the information acquisition unit 111 further acquires correlation data showing the correlation between the acceleration of the vehicle 20 and the road surface roughness.
  • the road surface roughness evaluation unit 112 derives roughness information based on the correlation data acquired by the information acquisition unit 111. Thereby, the road surface roughness value can be derived more accurately.
  • the information acquisition unit 111 further acquires unique information capable of specifying the type or state of a predetermined component constituting the vehicle 20.
  • the road surface roughness evaluation unit 112 corrects the acceleration indicated by the acceleration information of the plurality of vehicles 20 acquired by the information acquisition unit 111 based on the unique information acquired by the information acquisition unit 111, and corrects a plurality of corrected accelerations.
  • the roughness of the road surface is evaluated based on the acceleration information of the vehicle 20. As a result, even when the plurality of vehicles 20 include vehicles having different vehicle types and grades, the road surface roughness value can be accurately derived.
  • the evaluation result output unit 113 outputs the road surface profile information in which the roughness information derived by the roughness evaluation unit 112 and the road information acquired by the information acquisition unit 111 are associated with each other so as to be displayable. As a result, the user can visually recognize the road surface profile of the road, and it becomes easier to guess the road that needs repair.
  • the evaluation result output unit 113 further corresponds to the degree of accumulation of travel information acquired from each of the plurality of vehicles 20 by the information acquisition unit 111 in a predetermined period and the road information acquired by the information acquisition unit 111.
  • the attached data accumulation degree information is output so that it can be displayed. This makes it possible to detect a road (section) in which the degree of accumulation of travel information is less than a predetermined value, that is, a road (section) in which the road surface roughness is not sufficiently evaluated.
  • the road surface evaluation device of the present embodiment can also be used as a road surface evaluation method.
  • the step (S18) of outputting in association with the road information is included to be executed by a computer (FIG. 10). This makes it possible to evaluate the road surface roughness based on the traveling information (acceleration information) transmitted from each vehicle 20 which is a general vehicle, and the vehicle 20 travels efficiently without using a dedicated vehicle.
  • the road surface profile can be evaluated.
  • the road surface roughness value derived by the road surface roughness evaluation unit 112 may differ.
  • the roughness evaluation unit 112 corrects the lateral acceleration included in the traveling information (acceleration information) of each vehicle 20 according to the vehicle type and grade of each vehicle 20. Generate synthetic driving information.
  • the impact absorption performance of suspensions and tires is usually higher as the grade is higher between the same vehicle models, and is higher as the ride quality is emphasized between different vehicle models. As a result, even when each vehicle 20 travels on the same road, the lateral acceleration detected in each vehicle 20 varies. Therefore, the road surface roughness value cannot be sufficiently evaluated.
  • the information acquisition unit 111 specifies the vehicle type and grade of the vehicle 20 based on the vehicle ID (for example, chassis number) of the vehicle 20 accompanying the traveling information, and the correction coefficient corresponding to the specified vehicle type and grade will be described later. Obtained from the correction coefficient table.
  • the correction coefficient table is stored in the storage unit 120 in advance.
  • the roughness evaluation unit 112 corrects the lateral acceleration indicated by the traveling information (acceleration information) of each vehicle 20 by using the correction coefficient acquired by the information acquisition unit 111.
  • FIG. 11 is a diagram showing an example of a correction coefficient table.
  • the correction coefficient table contains unique information including information that can specify the type of a predetermined component constituting the vehicle and a correction coefficient corresponding to the type in association with the vehicle type and grade of the vehicle. Is remembered.
  • the predetermined parts constituting the vehicle 20 are parts that affect the movement of the vehicle 20 during traveling, and are, for example, suspensions and tires.
  • the type of parts is, for example, a type of suspension distinguished by spring rate or the like, and is a type of tire distinguished by flatness, width, hardness of rubber, or the like.
  • the correction coefficient is based on the ratio of accelerations detected by the acceleration sensor 33 of each vehicle 20 while the vehicles 20 having different vehicle types and grades are driven on a predetermined road (for example, the road RD of FIG. 4A) in advance. Will be decided.
  • the correction coefficients of the suspension are ⁇ 11, ⁇ 12, ⁇ 13, and ⁇ 21.
  • the correction coefficients of the tire are ⁇ 11, ⁇ 12, ⁇ 13, ⁇ 21.
  • the information acquisition unit 111 reads ⁇ 13 as the suspension correction coefficient from the correction coefficient table and sets ⁇ 13 as the tire correction coefficient. read out.
  • the roughness evaluation unit 112 multiplies these correction coefficients by the lateral acceleration indicated by the traveling information (acceleration information) of each vehicle 20.
  • the roughness evaluation unit 112 corrects the acceleration included in the traveling information (acceleration information) of each vehicle 20 in this way, and then generates the combined traveling information.
  • the position information acquired by the positioning sensor 32 is transmitted to the road surface evaluation device 10, but the position information acquired by inertial navigation is used as the position information in the road surface evaluation device 10. May be sent to.
  • the in-vehicle terminal 30 may have a gyro sensor for detecting an angular velocity and a mileage sensor for detecting a mileage, in addition to the sensors 32 to 35 described above.
  • the calculation unit 310 may estimate the position of the vehicle 20 by inertial navigation using the value detected by the gyro sensor or the mileage sensor. That is, the arithmetic unit 310 may obtain the vehicle position by a hybrid method with inertial navigation. As a result, the position of each vehicle 20 can be accurately recognized, so that the road surface roughness can be evaluated more accurately.
  • the in-vehicle terminal 30 (calculation unit 310) may estimate the position of the vehicle 20 based on the mileage detected by the mileage sensor.
  • the road surface roughness evaluation unit 112 estimates the roll angle and the centrifugal force of the vehicle 20 based on the vehicle speed detected by the vehicle speed sensor 35 and the steering angle detected by the steering angle sensor 34.
  • the vehicle-mounted terminal 30 has a sensor for detecting the roll angle of the vehicle 20 and a sensor for detecting the centrifugal force
  • the communication control unit 312 has information on the roll angle and the centrifugal force detected by those sensors. May be included in the travel information and transmitted to the road surface evaluation device 10.
  • the road surface roughness value is represented by IRI
  • the road surface roughness value may be represented by another index.
  • the road surface roughness evaluation unit 112 may derive the road surface roughness value represented by the index.
  • the traveling information of the first cycle (1Hz) transmitted from the n vehicles 20 is synthesized to generate the combined traveling information of the second cycle (1 ⁇ nHz).
  • the method of generating synthetic driving information is not limited to this.
  • a vehicle 20 having the same vehicle speed such as a vehicle 20 having an average speed difference of 10 km / h or less
  • Driving information may be generated.
  • the traveling information of each vehicle 20 may be corrected according to the vehicle speed of each vehicle 20 and then the combined traveling information may be generated.
  • the information acquisition unit 111 acquires the lateral acceleration of the vehicle 20 detected by the acceleration sensor 33 as the travel information acquisition unit as information indicating the motion of the vehicle 20, but the motion of the vehicle 20.
  • the information indicating the above is not limited to the lateral acceleration of the vehicle 20 detected by the acceleration sensor 33. That is, as long as the information indicating the motion of the vehicle 20 is acquired, the configuration of the information acquisition unit 111 may be anything such as detecting the acceleration in the front-rear direction.
  • the information acquisition unit 111 acquires the map information including the information of the road on which the vehicle 20 travels from the storage unit 120 as the map information acquisition unit, but the map information can be obtained from an external server or an external server. It may be stored in an external storage device. That is, any configuration of the information acquisition unit 111 may be used as long as it acquires map information including information on the road on which the vehicle 20 travels.
  • the information acquisition unit 111 acquires the unique information including the correction coefficient from the correction coefficient table stored in the storage unit 120 as the unique information acquisition unit, but the correction coefficient table is external. It may be stored in the server or an external storage device. Then, the information acquisition unit 111 may acquire the correction coefficient table from an external server or the like via the communication control unit 14.
  • the road surface roughness evaluation unit 112 performs machine learning using the previously measured road surface roughness value and lateral acceleration as teacher data as the correlation data acquisition unit, and obtains the road surface roughness value and lateral acceleration. Correlation data of is acquired. However, even if the correlation between the road surface roughness value and the lateral acceleration is derived in advance from the teacher data of the road surface roughness value and the lateral acceleration, and the derived information (correlation data) is stored in the storage unit 120, an external server, or the like. good. Then, the information acquisition unit 111 may acquire the correlation data stored in the storage unit 120 or the like as the correlation data acquisition unit.
  • the evaluation result output unit 113 outputs the road surface profile information and the data accumulation degree as the output unit, but the evaluation result output unit 113 may output other information. ..
  • the evaluation result output unit 113 detects a road (section or point) in which the accumulation degree of travel information is less than a predetermined value based on the accumulation degree and the road information, and detects the road for the vehicle 20.
  • the travel request information that requires the vehicle to travel may be output via the communication control unit 114.
  • the evaluation result output unit 113 is not all vehicles 20 based on the position information of the vehicle 20 acquired by the information acquisition unit 111, but the road (section or point) where the accumulation degree of the traveling information is less than a predetermined value.
  • the road surface roughness evaluation unit 112 uses the correlation data to derive the road surface roughness value corresponding to the vehicle position on the road from the lateral acceleration, but the road surface roughness value is derived by any other method.
  • the roughness value may be derived.
  • a parameter for calculating the road surface roughness value may be derived from the previously measured road surface roughness value and the lateral acceleration, and the derived parameter may be stored in the storage unit 120.
  • the road surface roughness evaluation unit 112 calculates the road surface roughness value corresponding to the vehicle position on the road from the lateral acceleration by using the above parameters stored in the storage unit 120.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Road Repair (AREA)
  • Traffic Control Systems (AREA)

Abstract

路面評価装置(10)は、走行中の複数の車両の位置情報と複数の車両の加速度を示す加速度情報とを含む複数の車両のそれぞれの走行情報を取得するとともに、道路の情報を含む地図情報を取得する情報取得部(111)と、情報取得部(111)により取得された複数の車両の加速度情報に基づいて道路の路面の粗さを評価する粗さ評価部(112)と、粗さ評価部(112)により評価された路面の粗さ情報を、情報取得部(111)により取得された道路の情報に対応付けて出力する出力部(113)と、を備える。

Description

路面評価装置および路面評価方法
 本発明は、路面の凹凸形状を表す路面プロファイルを評価する路面評価装置および路面評価方法に関する。
 この種の装置として、従来、車両に設けられた加速度センサにより測定された加速度に基づいて、車両が走行した道路の路面の凹凸形状を表す路面プロファイルを検出するようにした装置が知られている(例えば特許文献1参照)。
特開2002-12138号公報
 しかしながら、上記特許文献1記載の装置で道路の路面プロファイルを評価する方法では、路面プロファイルの検出をするために、装置を搭載した専用車両を道路で走行させる必要があり、路面プロファイルの評価を容易に行うことができない。
 本発明の一態様である路面評価装置は、走行中の複数の車両の位置情報と複数の車両の加速度を示す加速度情報とを含む複数の車両のそれぞれの走行情報を取得する走行情報取得部と、道路の情報を含む地図情報を取得する地図情報取得部と、走行情報取得部により取得された複数の車両の加速度情報に基づいて道路の路面の粗さを評価する粗さ評価部と、粗さ評価部により評価された路面の粗さ情報を、地図情報取得部により取得された道路の情報に対応付けて出力する出力部と、を備える。
 本発明の他の態様である路面評価方法は、走行中の複数の車両の位置情報と複数の車両の加速度を示す加速度情報とを含む複数の車両のそれぞれの走行情報を取得するステップと、道路の情報を含む地図情報を取得するステップと、取得された複数の車両の加速度情報に基づいて道路の路面の粗さを評価するステップと、評価された路面の粗さ情報を道路の情報に対応付けて出力するステップとを、コンピュータにより実行することを含む。
 本発明によれば、道路の路面プロファイルを効率的に評価することができる。
本発明の実施形態に係る路面評価装置を備える路面評価システムの構成の一例を示す図。 車載端末の要部構成を示すブロック図。 本発明の実施形態に係る路面評価装置の要部構成を示すブロック図。 車両が走行する道路の地図の一例を示す図。 図4Aの道路を走行中の車両から路面評価装置が取得した、走行情報の一例を示す図。 合成走行情報の一例を示す図。 路面粗さ値の教師データを説明するための図。 横加速度の教師データを説明するための図。 可変フィルタを掛ける前の合成走行情報の一例を示す図。 可変フィルタを掛けた後の合成走行情報の一例を示す図。 路面プロファイル情報の一例を示す図。 データ集積度情報の一例を示す図。 図3の演算部で実行される処理の一例を示すフローチャート。 補正係数テーブルの一例を示す図。
 以下、図1~図11を参照して本発明の実施形態について説明する。本発明の実施形態に係る路面評価装置は、車両が走行する道路の路面プロファイルを評価するための装置である。図1は、本実施形態に係る路面評価装置を備える路面評価システムの構成の一例を示す図である。図1に示すように、路面評価システム1は、路面評価装置10と、車載端末30とを備える。路面評価装置10は、例えばサーバ装置により構成される。車載端末30は、通信網2を介して路面評価装置10と通信可能に構成される。
 通信網2には、インターネット網や携帯電話網等に代表される公衆無線通信網だけでなく、所定の管理地域ごとに設けられた閉鎖的な通信網、例えば無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)等も含まれる。
 車載端末30は、車両20に搭載される。車両20には、複数の車両20-1,20-2,・・・,20-nが含まれる。なお、車両20は、手動運転車両であってもよいし、自動運転車両であってもよい。また、車両20には、車種やグレードが異なる車両が含まれていてもよい。
 図2は、本実施形態に係る車載端末30の要部構成を示すブロック図である。車載端末30は、電子制御ユニット(ECU)31と、測位センサ32と、加速度センサ33と、舵角センサ34と、車速センサ35と、TCU(Telematic Control Unit)36とを有する。
 測位センサ32は、例えばGPSセンサであり、GPS衛星から送信された測位信号を受信し、車両20の絶対位置(緯度、経度など)を検出する。なお、測位センサ32には、GPSセンサだけでなく準天頂軌道衛星をはじめとしたGNSS衛星と呼ばれる各国の衛星から送信される電波を利用して測位するセンサも含まれる。
 加速度センサ33は、車両20の左右方向の加速度、すなわち横加速度を検出する。なお、加速度センサ33は、車両20の横加速度とともに前後方向の加速度や上下方向の加速度を検出するように構成されてもよい。舵角センサ34は、車両20のステアリングホイール(不図示)の操舵角を検出する。車速センサ35は、車両20の車速を検出する。
 図2に示すように、ECU31は、CPU(プロセッサ)等の演算部310と、ROM、RAM等の記憶部320と、I/Oインターフェース等の図示しないその他の周辺回路とを有するコンピュータを含んで構成される。演算部310は、予め記憶部320に記憶されたプログラムを実行することで、センサ値取得部311および通信制御部312として機能する。
 センサ値取得部311は、各センサ33~35の検出値と測位センサ32により検出された車両20の絶対位置とを所定周期で、例えば1Hzで(1sごとに)取得する。通信制御部312は、センサ値取得部311により取得された情報(以下、走行情報と呼ぶ。)を、車両20を識別可能な車両IDとともにTCU36を介して所定周期で路面評価装置10に送信する。
 路面評価装置10は、車両20(車載端末30)が有する加速度センサ33の検出値に基づいて路面の凹凸形状、すなわち路面の粗さ(以下、路面プロファイルともいう。)を検出する。この検出された路面プロファイルの情報は、道路管理会社等が有する端末に出力され、道路管理会社等により補修の要否等を検討する際の参照データとして用いられる。すなわち、加速度センサ33の検出値が、路面プロファイルを評価するために用いられる。
 図3は、本実施形態に係る路面評価装置10の要部構成を示すブロック図である。路面評価装置10は、CPU等の演算部110と、ROM、RAM等の記憶部120と、I/Oインターフェース等の図示しないその他の周辺回路とを有するコンピュータを含んで構成される。記憶部120は、道路の地図を含む地図情報や演算部110により処理される各種情報を記憶する。
 演算部110は、記憶部120に記憶されたプログラムを実行することで、情報取得部111、路面粗さ評価部112、評価結果出力部113、および通信制御部114として機能する。
 情報取得部111は、通信制御部114を介して、道路を走行中の複数の車両20それぞれの車載端末30から走行情報を受信する。なお、情報取得部111は、走行情報に付随する車両IDにより走行情報の送信元の車両20を特定可能である。
 情報取得部111は、複数の車両20(車載端末30)から受信した走行情報を記憶部120に時系列に記憶する。以下、記憶部120に時系列に記憶された走行情報を、時系列走行情報と呼ぶ。また、情報取得部111は、車両20が走行する道路の情報を含む地図情報を記憶部120から取得する。
 路面粗さ評価部112は、情報取得部111により取得された複数の車両20の走行情報に基づいて、路面の凹凸の量(深さまたは高さ)、つまり路面粗さを評価する。より詳しくは、路面粗さ評価部112は、複数の車両20の横加速度に基づいて、路面の粗さの程度を示す路面粗さ値を導出する。路面粗さ値は、例えば、国際的な指標であるIRI(国際ラフネス指標)で表される値である。以下、路面粗さ値を単に粗さ値と表現する場合がある。
 図4Aは、車両20が走行する道路の地図の一例を示す図である。図4Aには、路面の粗さの評価対象となる所定範囲(国道X号の緯度Y~Zの区間)が示される。図4Aにおいて上方向が北方向に対応し、右方向が東方向に対応する。路面粗さの評価対象となる範囲は、後述するようにユーザにより指定可能である。路面粗さの評価対象となる道路が片側複数車線である場合には、路面粗さの評価対象となる車線をユーザにより指定可能であってもよい。
 車載端末30において所定のサンプリング周期(例えば1Hz)で取得された走行情報は、通信制御部312を介して路面評価装置10に送信される。走行情報には、サンプリング時点において加速度センサ33により検出された車両20の横加速度の情報(以下、加速度情報と呼ぶ。)と、サンプリング時点において測位センサ32により検出された車両20の絶対位置の情報(以下、位置情報と呼ぶ。)とが少なくとも含まれる。図4Bには、図4Aの所定範囲(国道X号の緯度Y~Zの区間)を走行中の複数の車両20の車載端末30から路面評価装置10が取得した、時系列走行情報の一例を示す図である。図中の横軸は、車両20の走行車線に沿った進行方向の位置(緯度)であり、縦軸は、車両20の横加速度である。特性D1,D2,・・・,Dnはそれぞれ、車両20-1,20-2,・・・,20-nの時系列走行情報を表す。
 なお、上記サンプリング周期を高くすることで、路面粗さ評価部112により導出される路面粗さ値の精度を向上させることができ、路面プロファイルを十分に評価することが可能である。しかし、走行情報のサンプリング周期を高く(例えば、100Hz)すると、車載端末30の処理負荷を増大させる。さらに、路面評価装置10へ送信される走行情報のデータ量を増大させるため通信網2の帯域を圧迫するおそれがある。そこで、この点を考慮して本実施形態では、n台の車両20から送信された、第1周期(例えば1Hz)の走行情報を合成して、第2周期(1×nHz)の合成走行情報を生成し、合成走行情報に基づいて路面粗さ値を導出する。ここで、図5を参照して、合成走行情報の生成について説明する。
 図5は、図4Aの道路を走行中の複数の車両20の車載端末30から取得された走行情報に基づいて生成された合成走行情報の一例を示す図である。合成走行情報は、各車両20の加速度情報を各車両20の位置情報に基づいて合成した情報である。図4Bに示す各車両20の縦軸(横加速度)の値を、横軸(緯度)を基準にして重ね合わせることで、図5に示す合成走行情報が得られる。各車両20の車速や各車両20がサンプリングを開始する地点はそれぞれ異なるため、各車両20における走行情報のサンプリング周期が同じであったとしても、走行情報がサンプリングされるタイミングは車両20ごとに異なるものと考えられる。したがって、上記のようにn台の車両20においてサンプリングされた1Hzの走行情報を合成することで、1×nHz相当の走行情報が得られる。路面粗さ評価部112は、このようにして得られた合成走行情報に基づいて、各車両20が走行する道路の路面の粗さを評価する。
 一般に、路面の凹凸の量が大きいほど車両20の横加速度は大きく、路面粗さ値と横加速度とは所定の相関関係を有する。路面粗さ評価部112は、この相関関係を示す情報(以下、相関データと呼ぶ。)を用いて、横加速度から道路上の車両位置に対応する路面粗さ値を導出する。
 まず、路面粗さ評価部112は、予め測定された路面粗さ値と横加速度とを教師データとして機械学習を行い、路面粗さ値と横加速度との相関関係を導出する。図6Aおよび図6Bはそれぞれ、路面粗さ値および横加速度の教師データを説明するための図である。図6Aに示す車両V1は、路面粗さを測定する測定機器MAを搭載する専用車両である。測定機器MAは、所定の道路(測定用コース等)RDを車両V1が走行しているときに、道路RDの路面粗さ値を測定する。図6Aの特性P1は、このとき測定される路面粗さ値を示す。
 図6Bには、図1の車両20が図6Aと同一の道路RDを走行する様子が示される。図6Bの特性P2は、車両20が所定の道路RDを走行中に、車両20に設けられた加速度センサ33により検出された横加速度を示す。図6Aの特性P1および図6Bに示す特性P2はそれぞれ、路面粗さ評価部112が路面粗さ値と横加速度との相関関係を導出する際に教師データとして用いられる。
 特性P1および特性P2のデータ、すなわち路面粗さ値および横加速度の教師データは、路面評価装置10の記憶部120に記憶されていてもよいし、外部の記憶装置に記憶されていてもよい。路面粗さ評価部112は、記憶部120または外部の記憶装置から読み出した路面粗さ値および横加速度の教師データを用いて機械学習を行い、路面粗さ値と横加速度との相関関係を導出する。なお、路面粗さ評価部112は、教師データとして走行速度、前後方向加速度、ステアリング角度(操舵角)を加えて機械学習を行うようにしてもよい。
 路面粗さ評価部112は、導出した路面粗さ値と横加速度との相関関係と、合成走行情報とに基づいて、複数の車両20が走行した道路の路面粗さ値を導出する。
 ところで、加速度センサ33は、車両20がカーブ路を走行している時などに、路面の凹凸により発生する横加速度だけでなく、車両20の速度や操舵角に応じて発生する遠心力による横加速度やロール運動による横加速度を検出する場合がある。つまり、車載端末30の加速度センサ33により検出される横加速度は、路面の凹凸に起因して生じる横加速度と、車両20のロール運動または遠心力に起因して生じる横加速度とが混合されたものとなる。
 そこで、本実施形態では、路面粗さ評価部112は、路面粗さ値をより正確に導出するために、加速度情報により示される車両20の横加速度から、車両20のロール運動または遠心力に起因する横加速度を除去して、路面の凹凸に起因する横加速度を抽出する。
 具体的には、まず、路面粗さ評価部112は、複数の車両20の走行情報から、車速センサ35により検出された車速の情報と舵角センサ34により検出された操舵角の情報とを取得する。路面粗さ評価部112は、取得した車速と操舵角の情報を用いて車両20のロール角と遠心力とを推定する。路面粗さ評価部112は、推定した車両20のロール角と遠心力とに応じたフィルタ(可変フィルタ)を合成走行情報に掛けて、合成走行情報から車両20のロール運動または遠心力に起因する横加速度の成分を除去する。
 図7Aは、可変フィルタを掛ける前の合成走行情報の一例を示す図である。図7Aに示すように、カーブ路の横加速度は、車両20のロール運動または遠心力に起因する横加速度が多く含まれるため、直線路の横加速度よりも値が大きくなっている。図7Bは、可変フィルタを掛けた後の図7Aの合成走行情報の一例を示す図である。可変フィルタを用いて合成走行情報からロール運動または遠心力に起因する横加速度の成分を除去することで、図7Bに示すような合成走行情報が得られる。そして、路面粗さ評価部112は、ロール運動または遠心力に起因する横加速度の成分が除去された合成走行情報と、路面粗さ値と横加速度との相関関係とに基づいて、路面粗さ値を導出する。
 評価結果出力部113は、路面粗さ評価部112により評価された路面の粗さ情報、すなわち路面粗さ値を、情報取得部111により取得された道路の情報に対応付けて出力する。このとき出力される情報を路面プロファイル情報と呼ぶ。図8は、路面プロファイル情報の一例を示す図である。図中の特性P0は、図5に示す合成走行情報に基づいて導出された路面粗さ値を表す。横軸は、車両20の走行車線に沿った進行方向の位置(緯度)であり、縦軸は、路面粗さ値である。評価結果出力部113は、通信網2を介して道路管理会社等の端末から路面プロファイルの出力指示を受信すると、出力指示の送信元の端末や予め定められた出力先の端末に路面プロファイル情報を出力する。路面プロファイルの出力指示は、路面評価装置10が有する操作部(不図示)を介して路面評価装置10に入力可能であってもよい。路面プロファイル情報はディスプレイ等の表示装置に表示可能な情報であり、ユーザ(例えば、道路管理会社)は、ユーザの端末が有するディスプレイに路面プロファイル情報を表示させることで、路面プロファイルを確認することができる。
 評価結果出力部113はさらに、情報取得部111により取得された走行情報の所定期間における集積度を、情報取得部111により取得された道路の情報に対応付けて出力する。このとき出力される情報をデータ集積度情報と呼ぶ。具体的には、評価結果出力部113は、所定期間(例えば、1か月間)における走行情報の集積度が所定値(例えば、1000Hz分)以上である道路(区間)が所定の色で塗りつぶされた地図情報を、データ集積度情報として出力する。データ集積度情報は、路面プロファイル情報と同様にディスプレイ等の表示装置に表示可能な情報である。データ集積度情報を表示装置に表示させることで、ユーザは、走行情報の集積度が所定値未満である道路(区間)、すなわち路面粗さが十分に評価されていない道路(区間)を特定することができる。図9は、データ集積度情報の一例を示す図である。図において黒色で塗りつぶされた道路は、路面粗さが十分
に評価されている道路を表す。評価結果出力部113は、通信網2を介して道路管理会社等の端末からデータ集積度の出力指示を受信すると、出力指示の送信元の端末や予め定められた出力先の端末にデータ集積度情報を出力する。なお、データ集積度の出力指示は、路面評価装置10が有する操作部(不図示)を介して路面評価装置10に入力可能であってもよい。また、データ集積度情報の表示態様は図9に示す表示態様に限られず、路面粗さが十分に評価されていない道路を特定可能であれば、その他の表示態様で出力されてもよい。
 通信制御部114は、不図示の通信部を制御して、外部の装置等とデータの送受信を行う。より詳細には、通信制御部114は、通信網2を介して、車両20の車載端末30や道路管理会社等の端末と、データの送受信を行う。また、通信制御部114は、通信網2を介して、道路管理会社等の端末から送信される路面プロファイルの出力指示やデータ集積度の出力指示を受信する。また、通信制御部114は、通信網2に接続された各種サーバから、地図情報などを定期的に、あるいは任意のタイミングで取得する。さらに、通信制御部114は、各種サーバから取得した情報を記憶部120に記憶する。
 図10は、予め定められたプログラムに従い路面評価装置10の演算部110(CPU)で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、路面評価装置10が起動している間、所定周期で繰り返される。まず、ステップS11で、車両20の車載端末30から走行情報を受信したか否かを判定する。ステップS11で否定されると、ステップS13に進む。なお、ステップS11では、複数の車両20の車載端末30から走行情報が受信される場合がある。
 ステップS11で肯定されると、ステップS12で、ステップS11で受信した走行情報を、走行情報に付随する車両IDとともに記憶部120に記憶する。ステップS13で、路面プロファイルの出力指示を入力(受信)したか否かを判定する。
 路面プロファイルの出力指示には、出力対象とする道路の区間を特定可能な区間情報が含まれる。区間情報は、例えば、「道路:国道X号線、区間:緯度Y~Z」といったように、出力対象とする道路の名称と区間とを示す情報である。なお、道路が片側2車線など片側複数車線である場合には、「道路:国道X号線、車線:右端、区間:緯度Y~Z」といったように、区間情報に出力対象とする車線の情報が含まれてもよい。また、出力対象とする区間の指定には、緯度以外の情報が用いられてもよい。例えば、緯度の代わりに経度が用いられてもよいし、緯度に加えて経度が用いられてもよい。また、区間の始点からの距離が用いられてもよい。
 ステップS13で否定されるとステップS19に進む。ステップS13で肯定されると、ステップS14で、記憶部120から地図情報を読み出し、地図情報に含まれる道路の情報を取得する。ステップS15で、記憶部120から車両20の時系列走行情報を取得する。より詳しくは、路面プロファイルの出力指示に含まれる区間情報とステップS14で取得された道路の情報とに基づいて、記憶部120に記憶されている、出力対象とされた区間の時系列走行情報を取得する。このとき、出力対象とされた区間を走行した車両20が複数存在する場合には、複数の車両20それぞれに対応する時系列走行情報が取得される。
 ステップS16で、ステップS15で取得された複数の車両20のそれぞれに対応する時系列走行情報を合成して、合成走行情報を生成する。このとき、上述したように、ロール運動または遠心力に起因する横加速度の成分が除去された合成走行情報を生成する。次いで、ステップS17で、ステップS16で生成した合成走行情報に基づいて路面の粗さを評価する。
 次いで、ステップS18で、ステップS17で評価された路面の粗さ情報(粗さ値)を、ステップS14で取得した道路の情報に対応付けた情報、すなわち路面プロファイル情報を出力する。これにより、ディスプレイ等の表示装置に路面プロファイル情報を表示させることができ、ユーザ側において路面プロファイル情報を確認することができる。
 次いで、ステップS19で、データ集積度の出力指示を入力(受信)したか否かを判定する。ステップS19で否定されると、処理を終了する。ステップS19で肯定されると、ステップS20で、記憶部120から地図情報を読み出し、地図情報に含まれる道路の情報を取得する。このとき、道路情報がステップS14にて既に取得されている場合には、ステップS20の処理をスキップしてもよい。ステップS21で、記憶部120に記憶されている各車両20の時系列走行情報を取得する。このとき、各車両20の時系列走行情報がステップS15にて既に取得されている場合には、ステップS21の処理をスキップしてもよい。ステップS22で、取得された時系列走行情報に基づいて、所定期間(例えば、1か月間)における走行情報の集積度を算出する。最後に、ステップS23で、評価結果出力部113は、所定期間における走行情報の集積度が所定値(例えば、1000Hz分)以上である道路(区間)が所定の色で塗りつぶされた地図情報を、データ集積度情報として出力する。また、ステップS13で肯定された場合でも、記憶部120に記憶された車両20の時系列走行情報のうち出力されていない時系列走行情報が所定量未満である場合には、ステップS19に移行してもよい。同様に、ステップS19で肯定された場合でも、記憶部120に記憶された車両20の時系列走行情報のうち出力されていない時系列走行情報が所定量未満である場合には、処理を終了してもよい。このような場合、出力されていない時系列走行情報が所定量未満であることを通知するための情報を、路面プロファイルの出力指示の送信元の端末等に出力してもよい。
 なお、データ集積度の出力指示には、路面プロファイルの出力指示と同様に、出力対象とする道路の区間を特定可能な区間情報が含まれていてもよい。その場合、ステップS22では、データ集積度の出力指示に含まれる区間情報とステップS20で取得された道路の情報とに基づいて、出力対象とされた区間の時系列走行情報に基づいて、所定期間における走行情報の集積度を算出する。そして、ステップS23では、出力対象とされた区間に対応するデータ集積度情報を出力する。
 本発明の実施形態によれば以下のような作用効果を奏することができる。
(1)路面評価装置10は、走行中の複数の車両20の位置情報と複数の車両20の加速度を示す加速度情報とを含む複数の車両20のそれぞれの走行情報を取得するとともに、道路の情報を含む地図情報を取得する情報取得部111と、情報取得部111により取得された複数の車両の加速度情報に基づいて道路の路面の粗さを評価する路面粗さ評価部112と、路面粗さ評価部112により評価された路面の粗さ情報を、情報取得部111により取得された道路の情報に対応付けて出力する評価結果出力部113と、を備える。
 この構成により、一般の車両である各車両20から送信された走行情報(加速度情報)に基づいて路面粗さを評価することが可能となり、路面粗さの評価対象とする道路で専用車両(図6Aの測定機器MAを搭載する車両V1)を走行させる必要がなくなる。よって、車両20が走行した道路の路面プロファイルを効率的に評価することができる。
(2)情報取得部111は、複数の車両20に搭載された車載端末30により第1周期で取得された走行情報を取得し、路面粗さ評価部112は、情報取得部111により取得された複数の車両20のそれぞれの車載端末30からの走行情報を合成して第1周期より短い第2周期の合成走行情報を生成し、その合成走行情報に基づいて路面の粗さを評価する。これにより、各車両20における走行情報(横加速度)のサンプリング周期を高くすることなく、路面粗さを精度よく評価することができる。
(3)加速度情報により示される車両20の加速度が、車両20の左右方向の加速度であり、走行情報には、さらに車両20のロール角と遠心力とを示す情報が含まれる。路面粗さ評価部112は、加速度情報により示される車両20の加速度に対して車両20のロール角または遠心力の影響を除去する補正を行い、補正後の複数の車両20の加速度情報に
基づいて道路の路面の粗さを評価する。これにより、直線路やカーブ路が混在する道路の路面粗さを評価する場合でも、車両20が走行した道路の路面プロファイルを精度よく評価することができる。
(4)情報取得部111はさらに、車両20の加速度と路面粗さとの相関関係を示す相関データを取得する。路面粗さ評価部112は、情報取得部111により取得された相関データに基づいて粗さ情報を導出する。これにより、路面粗さ値をより正確に導出することができる。
(5)情報取得部111はさらに、車両20を構成する所定の部品の種別または状態を特定可能な固有情報を取得する。路面粗さ評価部112は、情報取得部111により取得された固有情報に基づいて、情報取得部111により取得された複数の車両20の加速度情報により示される加速度を補正し、補正後の複数の車両20の加速度情報に基づいて道路の路面の粗さを評価する。これにより、複数の車両20に車種やグレードが異なる車両が含まれる場合でも、路面粗さ値を正確に導出することができる。
(6)評価結果出力部113は、粗さ評価部112により導出された粗さ情報と情報取得部111により取得された道路の情報とを対応付けた路面プロファイル情報を表示可能に出力する。これにより、ユーザは、視覚的に道路の路面プロファイルを認識することが可能となり、補修が必要な道路をより推測しやすくなる。
(7)評価結果出力部113はさらに、情報取得部111により複数の車両20のそれぞれから取得された走行情報の所定期間における集積度と、情報取得部111により取得された道路の情報とを対応付けたデータ集積度情報を表示可能に出力する。これにより、走行情報の集積度が所定値未満である道路(区間)、すなわち路面粗さが十分に評価されていない道路(区間)を検出することが可能となる。
(8)本実施形態の路面評価装置は、路面評価方法として用いることもできる。路面評価方法においては、走行中の複数の車両20の位置情報と複数の車両20の加速度を示す加速度情報とを含む複数の車両20のそれぞれの走行情報を取得するステップ(S11)と、道路の情報を含む地図情報を取得するステップ(S14)と、取得された複数の車両の加速度情報に基づいて道路の路面の粗さを評価するステップ(S17)と、評価された路面の粗さ情報を道路の情報に対応付けて出力するステップ(S18)とを、コンピュータにより実行することを含む(図10)。これにより、一般の車両である各車両20から送信された走行情報(加速度情報)に基づいて路面粗さを評価することが可能となり、専用車両を用いることなく効率的に、車両20が走行した道路の路面プロファイルを評価することができる。
 上記実施形態は種々の形態に変形することができる。以下、変形例について説明する。
 通常、複数の車両20が同じ道路を走行した場合でも、各車両20の車種やグレードが異なると、路面粗さ評価部112により導出される路面粗さ値が異なる可能性がある。その理由は、各車両20に装着されているサスペンションやタイヤなど、車両の運動に影響を与える部品が車種やグレードごとに異なるためである。この点を考慮して、本変形例では、粗さ評価部112は、各車両20の車種やグレードに応じて、各車両20の走行情報(加速度情報)に含まれる横加速度を補正してから合成走行情報を生成する。
 一般に、サスペンションやタイヤの衝撃吸収性能(垂直方向の衝撃吸収性能)が低くなるほど、路面の凹凸による衝撃や振動が車両に伝わりやすくなり、車両20の加速度センサ33により検出される横加速度が大きくなる。また、通常、サスペンションやタイヤの
衝撃吸収性能は、同じ車種間においてはグレードが高くなるほど高くなり、異なる車種間においては乗り心地が重視された車種ほど高くなる。これにより、各車両20が同一の道路を走行した場合でも、各車両20において検出される横加速度にばらつきが発生する。そのため、路面粗さ値を十分に評価できなくなる。
 そこで、情報取得部111は、走行情報に付随する車両20の車両ID(例えば、車台番号)に基づいて、車両20の車種やグレードを特定し、特定した車種およびグレードに対応する補正係数を後述する補正係数テーブルから取得する。補正係数テーブルは、予め記憶部120に記憶されていてる。粗さ評価部112は、情報取得部111により取得された補正係数を用いて、各車両20の走行情報(加速度情報)により示される横加速度を補正する。
 図11は、補正係数テーブルの一例を示す図である。図11に示すように、補正係数テーブルには、車両の車種およびグレードに対応付けて、車両を構成する所定の部品の種別を特定可能な情報とその種別に対応する補正係数とを含む固有情報が記憶されている。車両20を構成する所定の部品とは、走行中の車両20の運動に影響を与える部品であって、例えばサスペンションやタイヤである。また、部品の種別とは、例えば、バネレート等で区別されるサスペンションの種別であり、扁平率や幅、ゴムの硬さ等で区別されるタイヤの種別である。
 補正係数は、予め、車種やグレードがそれぞれ異なる車両20を所定の道路(例えば、図4Aの道路RD)で走行させ、走行中に各車両20の加速度センサ33により検出される加速度の比に基づいて決定される。なお、図11に示す例において、サスペンションの補正係数はα11,α12,α13,α21である。同様に、タイヤの補正係数はβ11,β12,β13,β21である。
 例えば、車両20の車種が「ABC」でありグレードが「低」である場合には、情報取得部111は、補正係数テーブルから、サスペンションの補正係数としてα13を読み出し、タイヤの補正係数としてβ13を読み出す。粗さ評価部112は、それらの補正係数を、各車両20の走行情報(加速度情報)により示される横加速度に乗算する。粗さ評価部112は、このように各車両20の走行情報(加速度情報)に含まれる加速度を補正してから合成走行情報を生成する。このような構成により、道路を走行する車両20の種別に依らずに、十分に評価可能な路面プロファイルを導出することができる。
 また、上記実施形態では、測位センサ32(GPSセンサ)により取得された位置情報を路面評価装置10に送信するようにしたが、位置情報として、慣性航法により取得された位置情報を路面評価装置10に送信してもよい。具体的には、車載端末30は、上記各センサ32~35に加えて、角速度を検出するジャイロセンサや走行距離を検出する走行距離センサを有していてもよい。そして、演算部310は、ジャイロセンサや走行距離センサにより検出された値を用いて慣性航法により車両20の位置を推定してもよい。つまり、演算部310は、慣性航法とのハイブリッド手法によって車両位置を求めるようにしてもよい。これにより、各車両20の位置を正確に認識することができるので、路面粗さをより精度よく評価することができる。なお、車載端末30(演算部310)は、走行距離センサにより検出された走行距離に基づいて車両20の位置を推定してもよい。
 また、上記実施形態では、路面粗さ評価部112が、車速センサ35により検出された車速と舵角センサ34により検出された操舵角とに基づいて、車両20のロール角と遠心力とを推定した。しかし、車載端末30が、車両20のロール角を検出するセンサと遠心力を検出するセンサとを有していて、通信制御部312が、それらのセンサにより検出されたロール角と遠心力の情報を走行情報に含ませて路面評価装置10に送信してもよい。
 また、上記実施形態では、路面粗さ値がIRIで表される例を示したが、路面粗さ値は、他の指標で表されてもよい。教師データとして取得される路面粗さ値がIRI以外の指標で表される場合には、路面粗さ評価部112は、その指標で表された路面粗さ値を導出するようにしてもよい。
 また、上記実施形態では、n台の車両20から送信された第1周期(1Hz)の走行情報を合成して、第2周期(1×nHz)の合成走行情報を生成した。しかし、合成走行情報の生成方法はこれに限定されない。例えば、n台の車両20から車速が同程度である車両20(互いの平均速度の差が10km/h以内の車両20など)を抽出して、抽出した車両20の走行情報を合成して合成走行情報を生成してもよい。このように、車速が極端に異なる車両20の走行情報を除いて合成走行情報を生成することで、より正確な路面粗さ値を導出することができ、路面粗さをより精度よく評価することができる。また例えば、各車両20の走行情報を各車両20の車速に応じて補正してから、合成走行情報を生成するようにしてもよい。
 また、上記実施形態では、情報取得部111が、走行情報取得部として加速度センサ33により検出された車両20の横加速度を車両20の運動を示す情報として取得するようにしたが、車両20の運動を示す情報は、加速度センサ33により検出された車両20の横加速度に限らない。すなわち、車両20の運動を示す情報を取得するのであれば、情報取得部111の構成は前後方向加速度を検出する等いかなるものでもよい。
 また、上記実施形態では、情報取得部111が、地図情報取得部として車両20が走行する道路の情報を含む地図情報を記憶部120から取得するようにしたが、地図情報は、外部のサーバや外部の記憶装置に記憶されてもよい。すなわち、車両20が走行する道路の情報を含む地図情報を取得するのであれば、情報取得部111の構成はいかなるものでもよい。
 また、上記実施形態では、情報取得部111が、固有情報取得部として、記憶部120に記憶された補正係数テーブルから補正係数を含む固有情報を取得するようにしたが、補正係数テーブルは、外部のサーバや外部の記憶装置に記憶されてもよい。そして、情報取得部111が、通信制御部14を介して外部のサーバ等から補正係数テーブルを取得してもよい。
 また、上記実施形態では、路面粗さ評価部112が、相関データ取得部として、予め測定された路面粗さ値と横加速度とを教師データとして機械学習を行い、路面粗さ値と横加速度との相関データを取得するようにした。しかし、路面粗さ値および横加速度の教師データから路面粗さ値と横加速度との相関関係を予め導出し、導出した情報(相関データ)を記憶部120や外部のサーバ等に記憶させてもよい。そして、情報取得部111が、相関データ取得部として、記憶部120等に記憶された相関データを取得してもよい。
 さらに、上記実施形態では、評価結果出力部113が、出力部として、路面プロファイル情報とデータ集積度とを出力するようにしたが、評価結果出力部113はそれ以外の情報を出力してもよい。例えば、評価結果出力部113は、集積度と道路の情報とに基づいて、走行情報の集積度が所定値未満である道路(区間や地点)を検出し、車両20に対して、検出した道路を走行することを要求するような走行要求情報を、通信制御部114を介して出力するようにしてもよい。その際、評価結果出力部113は、情報取得部111により取得された車両20の位置情報に基づいて、すべての車両20ではなく、走行情報の集積度が所定値未満である道路(区間や地点)から所定距離内(例えば、1km以内)にいる車両20に対して、走行要求情報を出力するようにしてもよい。また、走行要求情報に応じて指定された道路を走行した車両20のユーザに対して、所定のサービスで利用可能な割引クーポン(電子クーポン)などのインセンティブを与えるようしてもよい。これにより、路面粗さをさらに精度よく評価できることが期待される。
 また、上記実施形態では、路面粗さ評価部112が、相関データを用いて、横加速度から道路上の車両位置に対応する路面粗さ値を導出するようにしたが、それ以外の方法で路面粗さ値を導出してもよい。例えば、予め測定された路面粗さ値と横加速度とから路面粗さ値を算出するためのパラメータを導出し、導出したパラメータを記憶部120に記憶させておいてもよい。その場合、路面粗さ評価部112は、記憶部120に記憶された上記パラメータを用いて、横加速度から道路上の車両位置に対応する路面粗さ値を算出する。
 以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の一つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
10 路面評価装置、20,20-1~20-n 車両、30 車載端末、110 演算部、111 情報取得部、112 路面粗さ評価部、113 評価結果出力部(出力部)、120 記憶部

Claims (12)

  1.  走行中の複数の車両の位置情報と前記複数の車両の加速度を示す加速度情報とを含む前記複数の車両のそれぞれの走行情報を取得する走行情報取得部と、
     道路の情報を含む地図情報を取得する地図情報取得部と、
     前記走行情報取得部により取得された前記複数の車両の加速度情報に基づいて前記道路の路面の粗さを評価する粗さ評価部と、
     前記粗さ評価部により評価された前記路面の粗さ情報を、前記地図情報取得部により取得された前記道路の情報に対応付けて出力する出力部と、を備えることを特徴とする路面評価装置。
  2.  請求項1に記載の路面評価装置において、
     前記走行情報取得部は、前記複数の車両に搭載された車載端末により第1周期で取得された前記走行情報を取得し、
     前記粗さ評価部は、前記走行情報取得部により取得された前記複数の車両のそれぞれの前記車載端末からの前記走行情報を合成して前記第1周期より短い第2周期の合成走行情報を生成し、前記合成走行情報に基づいて前記路面の粗さを評価することを特徴とする路面評価装置。
  3.  請求項2に記載の路面評価装置において、
     前記粗さ評価部は、前記走行情報取得部により取得された前記複数の車両のそれぞれの前記車載端末からの前記走行情報のうち、互いの平均速度の差が所定値以内である車両の前記走行情報を合成して前記合成走行情報を生成することを特徴とする路面評価装置。
  4.  請求項1~3のうちのいずれか1に記載の路面評価装置において、
     前記位置情報には、車両に搭載された測位センサにより取得された位置情報と、慣性航法により取得された位置情報とのうちの少なくとも一方が含まれることを特徴とする路面評価装置。
  5.  請求項1~4のうちのいずれか1項に記載の路面評価装置において、
     前記加速度情報により示される車両の加速度は、車両の左右方向の加速度であり、
     前記走行情報には、さらに車両のロール角と遠心力とを示す情報が含まれ、
     前記粗さ評価部は、前記加速度情報により示される車両の加速度に対して車両のロール角または遠心力の影響を除去する補正を行い、補正後の前記複数の車両の加速度情報に基づいて前記路面の粗さを評価することを特徴とする路面評価装置。
  6.  請求項1~5のうちのいずれか1項に記載の路面評価装置において、
     車両の加速度と路面の粗さとの相関関係を示す相関データを取得する相関データ取得部をさらに備え、
     前記粗さ評価部は、前記相関データ取得部により取得された相関データに基づいて、前記粗さ情報を導出することを特徴とする路面評価装置。
  7.  請求項1~6のうちのいずれか1項に記載の路面評価装置において、
     車両を構成する所定の部品の種別を特定可能な固有情報を取得する固有情報取得部をさらに備え、
     前記粗さ評価部は、前記固有情報取得部により取得された前記固有情報に基づいて、前記走行情報取得部により取得された前記複数の車両の加速度情報により示される加速度を補正し、補正後の前記複数の車両の加速度情報に基づいて前記路面の粗さを評価することを特徴とする路面評価装置。
  8.  請求項1~7のうちのいずれか1項に記載の路面評価装置において、
     前記出力部は、前記粗さ評価部により導出された粗さ情報と前記地図情報取得部により取得された道路の情報とを対応付けた情報を表示可能に出力することを特徴とする路面評価装置。
  9.  請求項1~8のうちのいずれか1項に記載の路面評価装置において、
     前記出力部は、前記走行情報取得部により取得された走行情報の所定期間における集積度と、前記地図情報取得部により取得された道路の情報とを対応付けた情報を表示可能に出力することを特徴とする路面評価装置。
  10.  請求項9に記載の路面評価装置において、
     前記出力部は、前記地図情報取得部により取得された道路の情報に基づき、前記走行情報取得部により取得された走行情報の前記所定期間における集積度が所定値未満である道路を検出し、検出した道路を走行することを要求する走行要求情報を出力することを特徴とする路面評価装置。
  11.  請求項10に記載の路面評価装置において、
     前記出力部は、前記走行情報取得部により取得された前記複数の車両の位置情報に基づいて、前記集積度が所定値未満である道路から所定距離内に存在する車両に対して前記走行要求情報を出力することを特徴とする路面評価装置。
  12.  走行中の複数の車両の位置情報と前記複数の車両の加速度を示す加速度情報とを含む前記複数の車両のそれぞれの走行情報を取得するステップと、
     道路の情報を含む地図情報を取得するステップと、
     取得された前記複数の車両の加速度情報に基づいて前記道路の路面の粗さを評価するステップと、
     評価された前記路面の粗さ情報を前記道路の情報に対応付けて出力するステップとを、コンピュータにより実行することを含むことを特徴とする路面評価方法。
PCT/JP2021/033492 2020-09-17 2021-09-13 路面評価装置および路面評価方法 WO2022059636A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/026,182 US20230358559A1 (en) 2020-09-17 2021-09-13 Road surface evaluation apparatus and road surface evaluation method
JP2022550543A JP7430272B2 (ja) 2020-09-17 2021-09-13 路面評価装置および路面評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020155981 2020-09-17
JP2020-155981 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022059636A1 true WO2022059636A1 (ja) 2022-03-24

Family

ID=80776672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033492 WO2022059636A1 (ja) 2020-09-17 2021-09-13 路面評価装置および路面評価方法

Country Status (3)

Country Link
US (1) US20230358559A1 (ja)
JP (1) JP7430272B2 (ja)
WO (1) WO2022059636A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230184563A1 (en) * 2021-12-14 2023-06-15 GM Global Technology Operations LLC Connected vehicle-based road surface quality determination
KR20230117819A (ko) * 2022-02-03 2023-08-10 한화에어로스페이스 주식회사 주행 장치 및 주행 제어 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239341A (ja) * 1994-02-28 1995-09-12 Nissan Motor Co Ltd 横加速度検出装置
JP2012168796A (ja) * 2011-02-15 2012-09-06 Denso Corp プローブ情報管理システム、車載端末、およびプローブ情報管理装置
JP2012171430A (ja) * 2011-02-18 2012-09-10 Advics Co Ltd 片荷判定装置
WO2018025341A1 (ja) * 2016-08-03 2018-02-08 三菱電機株式会社 道路状態診断システム、診断用情報生成装置及び診断用情報生成方法
JP2018120409A (ja) * 2017-01-25 2018-08-02 株式会社ユピテル データ収集装置、道路状態評価支援装置、及びプログラム
JP2018180895A (ja) * 2017-04-12 2018-11-15 トヨタ自動車株式会社 プローブ情報収集システム
CN109931856A (zh) * 2017-12-15 2019-06-25 同济大学 道路平整度的采集方法/系统,评价系统,介质及服务端
JP2020013537A (ja) * 2018-04-25 2020-01-23 トヨタ自動車株式会社 路面状態推定装置及び路面状態推定方法
EP3705627A1 (en) * 2019-03-08 2020-09-09 Trakm8 Ltd Pothole monitoring

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239341A (ja) * 1994-02-28 1995-09-12 Nissan Motor Co Ltd 横加速度検出装置
JP2012168796A (ja) * 2011-02-15 2012-09-06 Denso Corp プローブ情報管理システム、車載端末、およびプローブ情報管理装置
JP2012171430A (ja) * 2011-02-18 2012-09-10 Advics Co Ltd 片荷判定装置
WO2018025341A1 (ja) * 2016-08-03 2018-02-08 三菱電機株式会社 道路状態診断システム、診断用情報生成装置及び診断用情報生成方法
JP2018120409A (ja) * 2017-01-25 2018-08-02 株式会社ユピテル データ収集装置、道路状態評価支援装置、及びプログラム
JP2018180895A (ja) * 2017-04-12 2018-11-15 トヨタ自動車株式会社 プローブ情報収集システム
CN109931856A (zh) * 2017-12-15 2019-06-25 同济大学 道路平整度的采集方法/系统,评价系统,介质及服务端
JP2020013537A (ja) * 2018-04-25 2020-01-23 トヨタ自動車株式会社 路面状態推定装置及び路面状態推定方法
EP3705627A1 (en) * 2019-03-08 2020-09-09 Trakm8 Ltd Pothole monitoring

Also Published As

Publication number Publication date
JPWO2022059636A1 (ja) 2022-03-24
US20230358559A1 (en) 2023-11-09
JP7430272B2 (ja) 2024-02-09

Similar Documents

Publication Publication Date Title
CN105473983B (zh) 路面上的短期不平度的检测
WO2022059636A1 (ja) 路面評価装置および路面評価方法
JP5269024B2 (ja) 路面状況推定装置および路面状況推定方法
CA3030826C (en) Mileage and speed estimation
WO2021241350A1 (ja) 路面評価装置および路面評価方法
WO2022014357A1 (ja) 路面評価装置および路面評価方法
US11530932B2 (en) Method of characterizing the condition of a road
JP7335317B2 (ja) 路面評価装置
JP7273943B1 (ja) 路面評価装置
US11276255B2 (en) Mileage and speed estimation
CN112489395A (zh) 一种道路颠簸的预警方法、装置及存储介质
JP2018205972A (ja) 路面情報収集システム
WO2023153433A1 (ja) 路面評価装置
CN110211384B (zh) 基于车车通讯的路况实现方法
US20240310168A1 (en) Road surface evaluation apparatus
US20240308527A1 (en) Road surface evaluation apparatus
WO2023153434A1 (ja) 路面評価装置
US20240308528A1 (en) Road surface evaluation apparatus
JPH08338733A (ja) 車両走行方位算出装置
JP2021043532A (ja) 運転支援制御装置、運転支援制御方法、および運転支援制御プログラム
JP2007263831A (ja) カーナビゲーション装置、自立航法用誤差補正係数算出方法および誤差補正係数算出プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550543

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347026755

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869323

Country of ref document: EP

Kind code of ref document: A1