WO2022057864A1 - 检测方法、检测装置及存储介质 - Google Patents

检测方法、检测装置及存储介质 Download PDF

Info

Publication number
WO2022057864A1
WO2022057864A1 PCT/CN2021/118834 CN2021118834W WO2022057864A1 WO 2022057864 A1 WO2022057864 A1 WO 2022057864A1 CN 2021118834 W CN2021118834 W CN 2021118834W WO 2022057864 A1 WO2022057864 A1 WO 2022057864A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
measured
strain
optical fiber
state model
Prior art date
Application number
PCT/CN2021/118834
Other languages
English (en)
French (fr)
Inventor
赵猛
鲍忠超
曹永杰
牛盛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022057864A1 publication Critical patent/WO2022057864A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, and in particular, to a detection method, a detection device and a storage medium.
  • the object to be measured is detected to obtain the health state of the object to be measured, so that the object to be measured can be maintained according to the health state of the object to be measured.
  • the structural performance may be deteriorated due to the internal damage caused by the chemical reaction and the impact of the external force.
  • internal damage causes concrete to expand, resulting in durable failure of the structure, while external force impacts, such as impact, typhoon, etc. This will affect the reinforced concrete structure in a short time and may pose a serious threat to the safety of people's life and property.
  • the present disclosure provides a detection method, a detection device and a storage medium, aiming at detecting the health state of a target to be measured.
  • an embodiment of the present disclosure provides a detection method.
  • the method includes: constructing an initial state model of the target to be measured, the target to be measured is arranged with optical fibers of a preset shape pattern, the initial state model is used to evaluate the strain distribution of the initial state of the target to be measured; constructing the monitoring state of the target to be measured The monitoring state model is used to evaluate the strain distribution of the current state of the object to be measured; the object to be measured is detected according to the monitoring state model and the initial state model and corresponding detection results are generated.
  • an embodiment of the present disclosure further provides a detection apparatus.
  • the detection device includes a processor, a memory, a computer program stored on the memory and executable by the processor, and a data bus for implementing connection communication between the processor and the memory.
  • the computer program is executed by the processor, the steps of any one of the detection methods provided by the embodiments of the present disclosure are implemented.
  • an embodiment of the present disclosure further provides a storage medium for computer-readable storage.
  • the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the steps of any one of the detection methods provided by the embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of an application scenario of a detection method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a detection method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an optical fiber layout method in a target to be detected according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another optical fiber layout method in a target to be detected according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another detection method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the coordinate projection of the x and y axes of the strain point in the optical fiber segment under the coordinate system provided by the embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a z-axis coordinate projection of a strain point in an optical fiber segment under a coordinate system according to an embodiment of the present disclosure
  • FIG. 8 is a schematic block diagram of the structure of a detection apparatus provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an application scenario of a detection method provided by an embodiment of the present disclosure.
  • the detection system 100 is used to detect stress changes in the optical fiber 104 .
  • the detection system 100 includes a laser generator 101 and a detection device 102 .
  • the laser generator 101 communicates with the optical fiber 104 through the directional coupler 103 to form a first optical path; the detection device 102 communicates with the optical fiber 104 through the directional coupler 103 to form a second optical path.
  • a plurality of sampling points are set on the optical fiber 104, and the detection system 100 sends laser light to the optical fiber 104 through the laser generator 101 to the first optical path, and uses the detection device 102 to receive the laser light through the second optical path when the optical fiber is not compressed by external force.
  • the sampling data corresponding to each preset sampling point that is, the initial Brillouin scattering frequency shift of each preset sampling point, can be obtained by receiving the reflected signal.
  • the fiber stress at that position will change, that is, the refractive index and sound velocity of the fiber core will change accordingly, resulting in a change in the Brillouin dispersion frequency shift.
  • the change of stress that is, the amount of strain
  • the value corresponding to the strain variable is the strain value
  • the strain distribution model of the optical fiber can be obtained by obtaining the strain values of multiple sampling points.
  • the optical fiber 104 By arranging the optical fiber 104 in the object to be measured according to a preset shape pattern, it can be fed back whether the object to be measured is affected by external force or the internal damage of the object to be measured by detecting whether the optical fiber is deformed inside the object to be measured, so as to realize the treatment of the object to be measured. target detection.
  • At least one of the damage location and the damage degree of the target to be measured can be analyzed by the force of the optical fiber.
  • FIG. 2 is a schematic flowchart of a detection method according to an embodiment of the present disclosure.
  • the detection method can be applied to a detection device that can detect the Brillouin scattering frequency shift of light.
  • the method includes steps S101 to S103.
  • Step S101 constructing an initial state model of the target to be measured, the target to be measured is provided with an optical fiber with a predetermined shape pattern, and the initial state model is used to evaluate the strain distribution of the initial state of the target to be measured.
  • sampling data of a plurality of preset sampling points is acquired, so as to establish an initial state model for evaluating the initial state strain distribution of the target to be measured according to the sampling data.
  • the sampling data includes the Brillouin scattering frequency shift of the corresponding sampling point.
  • the target to be measured is in the initial state, and the strain value of each preset sampling point in the middle fiber of the target to be measured conforms to the preset strain value, that is, the target to be measured. The time that corresponds to being in a healthy state.
  • the preset shape pattern includes a first shape pattern, and the first shape pattern is that the optical fiber 104 is continuously surrounded by rings with a spacing h and a diameter d for n circles, then the optical fibers of the preset shape pattern correspond to n circles.
  • the initial strain parameters of the optical fiber in the target to be measured are obtained, and the initial strain parameters are used to evaluate the initial strain distribution of the target to be measured;
  • the initial state model of the test target is obtained, and the initial strain parameters are used to evaluate the initial strain distribution of the target to be measured.
  • the first sampling data and the second sampling data of the optical fiber at a plurality of preset sampling points are acquired, and the first sampling data is the optical fiber sensing data obtained by straightening the optical fiber.
  • the second sampling data is the optical fiber sensing data obtained by the loose fiber segment; the initial strain parameter is determined according to the first sampling data and the second sampling data.
  • the initial strain parameter includes the Brillouin scattering frequency shift obtained at each preset sampling point.
  • the Brillouin scattering frequency shift of the preset sampling point is obtained, so as to determine each Brillouin scattering frequency shift according to the Brillouin scattering frequency shift.
  • the strain value corresponding to the sampling point is obtained, so as to determine each Brillouin scattering frequency shift according to the Brillouin scattering frequency shift.
  • the relationship between Brillouin scattering frequency shift and temperature and strain value can be regarded as a binary linear equation.
  • the Brillouin scattering frequency shift at the preset sampling point is affected by the strain value and temperature.
  • the Brillouin scattering frequency shift at the preset sampling point is affected by temperature.
  • the optical fiber is laid out on the target to be measured, and the optical fiber sensing data obtained by the straightened fiber at multiple preset sampling points is used as the first sampling data, and the loose fiber fiber at multiple preset sampling points is used as the first sampling data.
  • the acquired optical fiber sensing data is second sampling data.
  • the Brillouin scattering frequency shift of each preset sampling point obtained using the first sampling data is affected by the strain value and temperature, and the Brillouin scattering frequency shift of each preset sampling point obtained using the second sampling data is affected by the temperature Impact. Therefore, according to the difference between the first sampling data and the second sampling data obtained at the corresponding preset sampling points, the influence of temperature on the Brillouin scattering frequency shift of the preset sampling points can be eliminated.
  • the obtained Brillouin scattering frequency shift is more accurate, which makes the initial state model of the target to be measured established based on the initial strain parameters more accurate.
  • the relationship between the strain value ⁇ of the preset sampling point of the target to be measured and the Brillouin scattering frequency shift can be expressed as:
  • C ⁇ and C T are constants, C ⁇ represents the strain coefficient of Brillouin frequency shift, and C T is the temperature coefficient of Brillouin frequency shift;
  • C ⁇ represents the strain coefficient of Brillouin frequency shift
  • C T is the temperature coefficient of Brillouin frequency shift;
  • N is the number of preset sampling points
  • is the strain value of the preset sampling points.
  • Step S102 constructing a monitoring state model of the target to be measured, where the monitoring state model is used to evaluate the strain distribution of the current state of the target to be measured.
  • Time T2 that is, the time corresponding to the preset time period past the time T1
  • the health state of the target to be measured is unknown. If it is necessary to know the health state of the target to be measured, the current strain state of the target to be measured can be analyzed to know whether the current strain state of the target to be measured conforms to the preset strain state index, thereby judging whether the target to be measured is in a healthy state.
  • the monitoring strain parameter of the optical fiber in the target to be measured is obtained, and the monitoring strain parameter is used to evaluate the current strain distribution of the target to be measured;
  • the initial state model constructs the monitoring state model of the target to be tested.
  • the third sampling data of the optical fiber at a plurality of preset sampling points is obtained, and the third sampling data is the optical fiber obtained after the optical fiber is laid on the target to be measured for a preset period of time Sensing data; obtaining monitoring strain parameters according to the third sampling data and the second sampling data.
  • the stress of the optical fiber in the target to be measured is greater than the preset value, and the health state of the target to be measured is unpredictable, that is, the current strain state of the target to be measured is unknown.
  • the optical fiber in the target to be measured transmits a detection signal, and the third sampling data corresponding to each preset sampling point is acquired at each corresponding preset sampling point.
  • the Brillouin scattering frequency shift of each preset sampling point obtained using the third sampling data is affected by the strain value and temperature, and the Brillouin scattering frequency shift corresponding to each preset sampling point obtained using the second sampling data is affected by influence of temperature. Therefore, according to the difference between the second sampling data and the third sampling data obtained at the corresponding preset sampling point, the monitoring strain parameter can be obtained, and the obtained monitoring strain parameter can eliminate the Brillouin dispersion of temperature on the preset sampling point.
  • the influence of the radio frequency shift makes the Brillouin scattering radio frequency shift obtained at each preset sampling point more accurate, thereby making the monitoring state model of the target to be measured established based on the monitoring strain parameters more accurate.
  • the monitoring strain parameters obtained at the preset sampling points are replaced with the corresponding initial strain parameters of the initial state model S of the target to be measured in the initial state, thereby obtaining the corresponding monitoring state model.
  • Step S103 Detect the target to be tested according to the monitoring state model and the initial state model and generate a corresponding detection result.
  • the Brillouin scattering frequency shift variation of the optical fiber at each preset sampling point is calculated, so as to know the stress variation corresponding to each sampling point.
  • the stress variation exceeds the threshold, it indicates that the If the current strain state does not conform to the preset strain state index, information that the current strain state does not conform to the preset strain state index is generated or a corresponding prompt message is issued.
  • FIG. 5 is a schematic flowchart of another detection method provided by an embodiment of the present disclosure.
  • the method includes steps S201 to S204.
  • Step S201 constructing an initial state model of the target to be measured, wherein the target to be measured is provided with optical fibers of a predetermined shape and pattern, and the initial state model is used to evaluate the strain distribution of the initial state of the target to be measured.
  • Step S201 is the same as step S101 in FIG. 2 , and details are not described here.
  • Step S202 constructing a monitoring state model of the target to be measured, where the monitoring state model is used to evaluate the strain distribution of the current state of the target to be measured.
  • Step S202 is the same as step S102 in FIG. 2 , and details are not described here.
  • Step S203 Detect the target to be tested according to the monitoring state model and the initial state model and generate a corresponding detection result.
  • Step S203 is the same as step S103 in FIG. 2 , and details are not described here.
  • Step S204 Perform corresponding operations according to the detection results.
  • the detection results include that the current strain state of the target to be measured does not conform to the preset strain state index and the current strain state of the target to be measured conforms to the preset strain state index.
  • the strain mass point of the target to be measured is determined according to the monitoring state model location information.
  • the preset pattern is taken as an example of the first shape pattern, but it is not limited that the preset pattern of the optical fiber can only be the first shape pattern.
  • the fiber is continuously surrounded by a circle with an interval of h and a diameter of d.
  • the sampling points of each circular fiber segment are evenly distributed, the number of points is denoted as k, and there are n circular fiber segments in total.
  • Average strain of circular fiber segment Among the n circular fiber segments, the maximum average strain is set as segment s, namely: ⁇ ' ⁇ s Max( ⁇ ' ⁇ 1 , ⁇ ' ⁇ 2 , ⁇ ' ⁇ 3 ,..., ⁇ ' ⁇ n ) .
  • the projection of the fiber segment at s on the x and y coordinate axes is established, and the quadrant points of P1, P2, P3, and P4 are taken on the projection boundary, and the maximum strain of the P1-P3 segment can be obtained.
  • the relative position y' of point M that is, At the position of the maximum strain in the P2-P4 segment, the relative position x' of the M point can be obtained, that is,
  • the length of the circular fiber at the vertical position of point M is hn
  • the preset number of sampling points of this fiber is set to m
  • the relative position of the strain mass point M can be determined, that is, M(x', y', z').
  • the strain mass point of the target to be measured is determined according to the monitoring state model location information
  • the magnitude information of the external force corresponding to the strain particle can be obtained according to the force model set by the optical fiber of the preset shape pattern and the position information of the strain particle.
  • the stress on an object in a certain direction is equal to the product of the strain value corresponding to the strain in that direction and the elastic modulus of the object.
  • the arc surface is equivalent to a rectangular row, and the force on the fiber segment is
  • N is the number of preset sampling points of the fiber laid in the target to be measured
  • n is the number of circular or linear fiber segments
  • k is the number of sampling points of a single circular or linear fiber segment
  • ⁇ ij is the strain of a single preset sampling point.
  • the force of the strain mass point equivalent to the overall fiber distribution range from the integral angle should be the sum of the stresses of all the preset sampling points, that is, the force of the circular fiber segment and the vertical interval segment Sum,
  • FIG. 8 is a schematic block diagram of the structure of a detection apparatus 300 according to an embodiment of the present disclosure.
  • the detection device 300 includes a processor 301 and a memory 302, and the processor 301 and the memory 302 are connected through a bus 303, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 303 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 301 is used to provide computing and control capabilities to support the operation of the entire detection device.
  • the processor 301 can be a central processing unit (Central Processing Unit, CPU), and the processor 301 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • ROM Read-Only Memory
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a removable hard disk, or the like.
  • the processor 301 is configured to run a computer program stored in the memory 302 and implement the following steps when executing the computer program.
  • An initial state model of the target to be measured is constructed, the target to be measured is arranged with optical fibers of a preset shape and pattern, and the initial state model is used to evaluate the strain distribution of the initial state of the target to be measured.
  • a monitoring state model of the target to be measured is constructed, and the monitoring state model is used to evaluate the strain distribution of the current state of the target to be measured.
  • the target to be tested is detected according to the monitoring state model and the initial state model, and corresponding detection results are generated.
  • the initial strain parameter of the optical fiber in the target to be measured is obtained, and the initial strain parameter is used to evaluate the initial strain distribution of the target to be measured;
  • the initial state model of the test target is obtained, and the initial strain parameter is used to evaluate the initial strain distribution of the target to be measured.
  • the first sampling data and the second sampling data of the optical fiber at a plurality of preset sampling points are obtained, and the first sampling data is obtained by straightening the optical fiber. and the second sampling data is the optical fiber sensing data obtained by the loose section of optical fiber; the initial strain parameter is determined according to the first sampling data and the second sampling data.
  • the monitoring strain parameter of the optical fiber in the target to be measured is obtained, and the monitoring strain parameter is used to evaluate the current strain distribution of the target to be measured;
  • the state model constructs the monitoring state model of the object to be tested.
  • the third sampling data of the optical fiber at a plurality of preset sampling points is obtained, and the third sampling data is that the optical fiber is laid in the predetermined time period of the target to be measured.
  • the processor 301 is further configured to perform corresponding operations according to the detection result.
  • the strain mass point of the target to be measured is determined according to the monitoring state model location information.
  • the processor 301 is further configured to determine the force information of the strained particle according to the position information and the preset force model.
  • Embodiments of the present disclosure further provide a storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the present disclosure The steps of any detection method provided in the embodiment.
  • the storage medium may be an internal storage unit of the detection device described in the foregoing embodiments, such as a hard disk or a memory of the detection device.
  • the storage medium can also be an external storage device of the detection device, such as a plug-in hard disk equipped on the detection device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card), etc.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
  • the health state of the target to be measured can be measured relatively accurately, so as to make timely early warning or take processing measures according to the health state of the target to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种检测方法、检测装置及存储介质。该方法包括:构建待测目标的初始状态模型,待测目标内布设有预设形状图案的光纤,初始状态模型用于评估待测目标初始状态的应变分布(S101);构建待测目标的监测状态模型,监测状态模型用于评估待测目标当前状态的应变分布(S102);根据监测状态模型和初始状态模型检测待测目标并生成对应的检测结果(S103)。通过该方法能够实现对待测目标的健康状态进行检测。

Description

检测方法、检测装置及存储介质
相关申请的交叉引用
本申请要求享有2020年09月16日提交的名称为“检测方法、检测装置及存储介质”的中国专利申请CN202010975256.X的优先权,其全部内容通过引用并入本申请中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种检测方法、检测装置及存储介质。
背景技术
对待测目标进行检测,以获取该待测目标的健康状态,从而可以根据待测目标的健康状态对待测目标进行维护。
然而,当待测目标为钢筋混泥土结构、土木胶合板机构等建筑结构时,由于建筑结构可能会受化学反应引起的内部损伤以及外部受力冲击的影响致使结构性能劣化。例如,内部损伤使得混凝土膨胀,导致结构耐久破坏,而外部受力冲击,如撞击、台风等。这会在短时间内对钢筋混凝土结构造成影响,可能对人们生命和财产安全构成严重威胁。
因此,如何对待测目标的健康状态进行检测,以尽早发现待测目标可能存在的隐患以及时采取预防措施是本领域技术人员正在研究的热门课题。
发明内容
本公开提供了一种检测方法、检测装置及存储介质,旨在实现对待测目标的健康状态进行检测。
第一方面,本公开实施例提供一种检测方法。该方法包括:构建待测目标的初始状态模型,该待测目标内布设有预设形状图案的光纤,该初始状态模型用于评估待测目标初始状态的应变分布;构建待测目标的监测状态模型,该监测状态模型用于评估待测目标当前状态的应变分布;根据监测状态模型和初始状态模型检测待测目标并生成对应的检测结果。
第二方面,本公开实施例还提供一种检测装置。该检测装置包括处理器、存储器、存储在存储器上并可被处理器执行的计算机程序以及用于实现处理器和存储器之间的连接通信的数据总线。计算机程序被处理器执行时,实现如本公开实施例提供的任一项检测方法 的步骤。
第三方面,本公开实施例还提供一种存储介质,用于计算机可读存储。该存储介质存储有一个或多个程序,该一个或多个程序可被一个或多个处理器执行,以实现如本公开实施例提供的任一项检测方法的步骤。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种检测方法的应用场景示意图;
图2为本公开实施例提供的一种检测方法的流程示意图;
图3为本公开实施例提供的待检测目标中的一种光纤布设方式的结构示意图;
图4为本公开实施例提供的待检测目标中的另一种光纤布设方式的结构示意图;
图5为本公开实施例提供的另一种检测方法的流程示意图;
图6为本公开实施例提供的光纤段内应变质点在坐标系下的x、y轴坐标投影意图;
图7为本公开实施例提供的光纤段内应变质点在坐标系下的z轴坐标投影意图;
图8为本公开实施例提供的一种检测装置的结构示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清 楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
请参阅图1,图1是本公开实施例提供的一种检测方法的应用场景示意图。
如图1所示,检测系统100用于检测光纤104的应力变化。检测系统100包括激光发生器101及检测装置102。激光发生器101通过定向耦合器103与光纤104连通形成第一光通路;检测装置102通过定向耦合器103与光纤104连通形成第二光通路。
在光纤104上设置多个采样点,检测系统100在光纤处于未受外力压迫状态下,通过激光发生器101向第一光通路向光纤104发送激光,并利用检测装置102通过第二光通路接收激光反射信号,通过接收反射信号从而获知对应的各个预设采样点的采样数据,也即各个预设采样点的初始布里渊散射频移量。
光纤104上任意位置收到外部压力时,在该位置的光纤应力会发生变化,即,光纤纤芯的折射率和声速会发生相应的变化,从而导致布里渊散射频移的改变。通过测量布里渊散射频移的变化量就可以测算出应力的变化量,即应变量。该应变量对应的值即是应变值,通过获取多个采样点的应变值即可获取光纤的应变分布模型。当光纤104在某个位置处的应力变化量超过预设变化量时,即可认为光纤104在该位置受力发生形变。
通过将光纤104按预设形状图案布设在待测目标内时,可以通过检测光纤在待测目标内部是否发生形变来反馈出待测目标是否受到外力作用或者待测目标的内部损坏,从而实现对待测目标的检测。
在部分实施例中,可以通过光纤的受力分析出待测目标的损伤位置和损伤程度中至少一者。
请参照图2,图2为本公开实施例提供的一种检测方法的流程示意图。
如图2所示,该检测方法可以应用于检测装置,该检测装置可以检测光的布里渊散射频移。所述方法包括步骤S101至步骤S103。
步骤S101:构建待测目标的初始状态模型,该待测目标内布设有预设形状图案的光纤,该初始状态模型用于评估待测目标初始状态的应变分布。
在T1时刻,获取多个预设采样点的采样数据,以根据采样数据建立用于评估待测目标初始状态应变分布的初始状态模型。采样数据包括对应采样点的布里渊散射频移量,T1时刻为待测目标处于初始状态,待测目标的中光纤中各个预设采样点的应变值符合预设应变值,即待测目标处于健康状态所对应的时刻。
如图3所示,预设形状图案包括第一形状图案,该第一形状图案为光纤104以间距为h,直径为d的圆环连续环绕n圈,则该预设形状图案的光纤对应的总长度可表示为L=n(h+πd)。
如图4所示,预设形状图案包括第二形状图案,该第二形状图案的光纤104以间距为h,长度为d的方波形状,则,该预设形状图案的光纤对应的总长度可表示为L=n(h+d)。
在部分实施例中,在上述构建待测目标的初始状态模型的步骤中,获取待测目标内光纤的初始应变参数,初始应变参数用于评估待测目标初始应变分布;根据初始应变参数构建待测目标的初始状态模型。
在上述获取待测目标的初始应变参数的步骤中,获取光纤在多个预设采样点的第一采样数据和第二采样数据,第一采样数据是拉直段光纤所获取的光纤传感数据,第二采样数据是松散段光纤所获取的光纤传感数据;根据第一采样数据和第二采样数据确定初始应变参数。
示例性地,初始应变参数包括各个预设采样点所获取的布里渊散射频移量。
T1时刻通过获取各个预设采样点对应的光纤传感数据并对光纤传感数据进行解析,从而获取预设采样点的布里渊散射频移量,以根据布里渊散射频移量确定各个采样点对应的应变值。
通常状态下,布里渊散射频移量与温度、应变值的关系可看作一个二元一次线性方程。光纤在拉直状态下,预设采样点的布里渊散射频移量受到应变值和温度的影响,光纤在松散状态下,预设采样点的布里渊散射频移量受到温度的影响。
始状态下将光纤布设于待测目标,且把拉直段光纤在多个预设采样点所获取的光纤传感数据作为第一采样数据,并把松散段光纤在多个预设采样点所获取的光纤传感数据第二采样数据。
利用第一采样数据获取的各个预设采样点的布里渊散射频移量受到应变值和温度的影响,利用第二采样数据获取的各个预设采样点的布里渊散射频移量受到温度的影响。因此,根据在对应预设采样点获取的第一采样数据和第二采样数据做差可以消除温度对预设采样点的布里渊散射频移量的影响,从而使得在各个预设采样点所获取的布里渊散射频移量更为精准,进而使得根据初始应变参数所建立的待测目标的初始状态模型更为精准。
以预设图案为第一形状图案为例说明,在初始状态下待测目标的预设采样点的应变值Δε和布里渊散射频移量之间的关系可以表示为:
Figure PCTCN2021118834-appb-000001
其中,
Figure PCTCN2021118834-appb-000002
C ε、C T为常量,C ε表示布里渊频移的应变系数,C T布里渊频移的温度系数;
Figure PCTCN2021118834-appb-000003
为拉直状态下的光纤,监测过程中预设采样点的布里渊散射频移量;
Figure PCTCN2021118834-appb-000004
为拉直状态下的光纤,在初始状态下监测过程中受温度影响预设采样点的布里渊散射频移量;
Figure PCTCN2021118834-appb-000005
为松散状 态下的光纤,监测过程中受温度影响预设采样点的布里渊散射频移量。
则,各个预设采样点的应变值Δε和布里渊散射频移量之间的关系可以表示为:
Figure PCTCN2021118834-appb-000006
则,对应的在初始状态下待测目标的初始状态模型S可以表示为:
Figure PCTCN2021118834-appb-000007
其中,N为预设采样点数量,Δε为预设采样点的应变值。
步骤S102:构建待测目标的监测状态模型,该监测状态模型用于评估待测目标当前状态的应变分布。
T2时刻,即在T1时刻过去预设时间段对应的时刻,在获取到待测目标的初始状态模型后,此时,待测目标的健康状态未可知。若需要获知待测目标的健康状态时,可以对待测目标当前的应变状态进行分析以获知待测目标的当前应变状态是否符合预设应变状态指标,从而判断待测目标是否处于健康状态。
在部分实施例中,在上述构建待测目标的监测状态模型的步骤中,获取待测目标内光纤的监测应变参数,该监测应变参数用于评估待测目标当前应变分布;根据监测应变参数和初始状态模型构建待测目标的监测状态模型。
在上述获取待测目标的监测应变参数的步骤中,获取光纤在多个预设采样点的第三采样数据,该第三采样数据是光纤布设于待测目标预设时间段后所获取的光纤传感数据;根据第三采样数据和第二采样数据获取监测应变参数。
示例性地,待测目标放置预设时间段后,待测目标内的光纤的应力大于预设值,且待测目标的健康状态不可预测,也即待测目标的当前应变状态为未知。
当前状态下对待测目标内的光纤发射检测信号,并在对应的各个预设采样点获取对应各个预设采样点的第三采样数据。
利用第三采样数据获取的各个预设采样点的布里渊散射频移量受到应变值和温度的影响,利用第二采样数据获取的对应各个预设采样点的布里渊散射频移量受到温度的影响。因此,根据在对应预设采样点获取的第二采样数据和第三采样数据做差,从而可以获取到监测应变参数,所获取的监测应变参数可以消除温度对预设采样点的布里渊散射频移量的影响,从而使得在当前获取的各个预设采样点的布里渊散射频移量更为精准,进而使得根据监测应变参数所建立的待测目标的监测状态模型更为精准。
将在预设采样点所获取的监测应变参数,替换在初始状态下待测目标的初始状态模型 S的对应的初始应变参数,从而获取到对应的监测状态模型。
步骤S103:根据监测状态模型和初始状态模型检测待测目标并生成对应的检测结果。
根据监测状态模型和初始状态模型计算光纤在各个预设采样点的布里渊散射频移变化量,从而获知各个采样点对应的应力变化量,当应力变化量超过阈值时,表明待测目标的当前应变状态不符合预设应变状态指标,则,生成当前应变状态不符合预设应变状态指标的信息或发出相应的提示信息。
请参阅图5,图5为本公开实施例提供的另一种检测方法的流程示意图。
如图5所示,所述方法包括步骤S201至步骤S204。
步骤S201:构建待测目标的初始状态模型,该待测目标内布设有预设形状图案的光纤,该初始状态模型用于评估待测目标初始状态的应变分布。
步骤S201与图2中步骤S101相同,在此不做赘述。
步骤S202:构建待测目标的监测状态模型,该监测状态模型用于评估待测目标当前状态的应变分布。
步骤S202与图2中步骤S102相同,在此不做赘述。
步骤S203:根据监测状态模型和初始状态模型检测待测目标并生成对应的检测结果。
步骤S203与图2中步骤S103相同,在此不做赘述。
步骤S204:根据检测结果执行相应的操作。
检测结果包括待测目标的当前应变状态不符合预设应变状态指标及待测目标的当前应变状态符合预设应变状态指标。
当待测目标的当前应变状态不符合预设应变状态指标时,表明待测目标可能损伤,则生成对应的警报信息,或在待测目标中确定损伤位置,甚至确定损伤位置的损伤程度,以根据损伤程度确定待测目标的损伤位置的受力情况。
在部分实施例中,在上述根据检测结果执行相应的操作的步骤中,当检测结果为待测目标的当前应变状态不符合预设应变状态指标时,根据监测状态模型确定待侧目标的应变质点的位置信息。
示例性地,以预设图案为第一形状图案为例说明,但不局限于光纤的预设图案仅可以为第一形状图案。
由胡克定律可知,光纤上不同点因距离质点位置不同,所产生形变亦不同,当待测目标受到内力或外力作用损坏时,应变状态发生改变。根据监测状态模型计算对应的应变质点M的相对位置,即M(x',y',z')。
以应变质点M为应变量改变最大的点,由布纤方式可知,光纤以间隔为h直径为d的 圆形连续环绕。每个圆形光纤段的采样点均匀分布,点数记为k,共有n个圆形光纤段。圆形光纤段的平均应变
Figure PCTCN2021118834-appb-000008
在n个圆形光纤段中平均应变最大的设为s段,即:Δ'ε s=Max(Δ'ε 1,Δ'ε 2,Δ'ε 3,...,Δ'ε n)。
如图6所示,建立s处光纤段在x、y坐标轴上投影,取在投影边界上取P1、P2、P3、P4四等分点,P1-P3段应变最大位置处,可求得M点相对位置y',即有
Figure PCTCN2021118834-appb-000009
P2-P4段应变最大位置处,可求得M点相对位置x',即有
Figure PCTCN2021118834-appb-000010
如图7所示,由布纤方式可知,M点竖直方向位置圆布纤长度为hn,该段光纤预设采样点数设为m,求取应变值最大处即可得z',即有Δε z'=Max(Δε 1,Δε 2,...,Δε m)
综上,可确定应变质点M的相对位置,即M(x',y',z')。
在部分实施例中,在上述根据检测结果执行相应的操作的步骤中,当检测结果为待测目标的当前应变状态不符合预设应变状态指标时,根据监测状态模型确定待侧目标的应变质点的位置信息;
根据位置信息和预设受力模型确定应变质点的受力信息。
示例性地,在确定应变质点的位置信息后,根据预设形状图案的光纤所设定的受力模型和应变质点的位置信息即可获取对应该应变质点所受到的外力大小信息。
例如,由于物体某方向所受应力大小等于该方向应变量所对应的应变值与物体弹性模量的积。
则,在第一形状图案布纤方式下求物体所受外力,应变质点在空间直角坐标系下受力可表示为F=E∫Δε(x,y,z)ds,其中E为弹性模量,Δε(x,y,z)为待测目标的某点应变。
则,光纤段每个预设采样点所受外力小范围内,弧形面等效为长方行,该光纤段受力大小为
Figure PCTCN2021118834-appb-000011
在竖直方向间隔段是以直线布纤,该段受应力大小为
Figure PCTCN2021118834-appb-000012
其中,N为待测目标中所铺设光纤的预设采样点数,n为圆形或者直线光纤段个数,k单个圆形或者直线光纤段采样点数,Δε ij为单个预设采样点的应变。
则,在应变质点施加外力,从积分角度等效为整体布纤范围内应变质点的受力应该为所有预设采样点所受应力的和,即圆形光纤段和竖直方向间隔段受力之和,
Figure PCTCN2021118834-appb-000013
在第二形状图案布纤方式下,在平面直角坐标系下可表示为F=E∫Δε(x,y)ds,上述积分可近似等于光纤预设采样点应变和。
所受外力公式可为
Figure PCTCN2021118834-appb-000014
请参阅图8,图8为本公开实施例提供的一种检测装置300的结构示意性框图。
如图8所示,检测装置300包括处理器301和存储器302,处理器301和存储器302通过总线303连接,该总线比如为I2C(Inter-integrated Circuit)总线。
示例性地,处理器301用于提供计算和控制能力,支撑整个检测装置的运行。处理器301可以是中央处理单元(Central Processing Unit,CPU),该处理器301还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
示例性地,存储器302可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
处理器301配置为运行存储在存储器302中的计算机程序,并在执行该计算机程序时实现如下步骤。
构建待测目标的初始状态模型,该待测目标内布设有预设形状图案的光纤,初始状态模型用于评估待测目标初始状态的应变分布。
构建待测目标的监测状态模型,该监测状态模型用于评估待测目标当前状态的应变分布。
根据监测状态模型和初始状态模型检测待测目标并生成对应的检测结果。
部分实施例中,在上述构建待测目标的初始状态模型的步骤中,获取待测目标内光纤的初始应变参数,该初始应变参数用于评估待测目标初始应变分布;根据初始应变参数构建待测目标的初始状态模型。
部分实施例中,在上述获取待测目标的初始应变参数的步骤中,获取光纤在多个预设采样点的第一采样数据和第二采样数据,第一采样数据是拉直段光纤所获取的光纤传感数 据,第二采样数据是松散段光纤所获取的光纤传感数据;根据第一采样数据和第二采样数据确定初始应变参数。
部分实施例中,在上述构建待测目标的监测状态模型的步骤中,获取待测目标内光纤的监测应变参数,该监测应变参数用于评估待测目标当前应变分布;根据监测应变参数和初始状态模型构建待测目标的监测状态模型。
部分实施例中,在上述获取待测目标的监测应变参数的步骤中,获取光纤在多个预设采样点的第三采样数据,该第三采样数据是光纤布设于待测目标预设时间段后所获取的光纤传感数据;根据第三采样数据和第二采样数据获取监测应变参数。
部分实施例中,处理器301还配置为根据检测结果执行相应的操作。
在部分实施例中,在上述根据检测结果执行相应的操作的步骤中,当检测结果为待测目标的当前应变状态不符合预设应变状态指标时,根据监测状态模型确定待侧目标的应变质点的位置信息。
部分实施例中,处理器301还配置为根据位置信息和预设受力模型确定应变质点的受力信息。
本公开实施例还提供一种存储介质,用于计算机可读存储,该存储介质存储有一个或多个程序,该一个或多个程序可被一个或多个处理器执行,以实现如本公开实施例提供的任一项检测方法的步骤。
存储介质可以是前述实施例所述的检测装置的内部存储单元,例如检测装置的硬盘或内存。存储介质也可以是所述检测装置的外部存储设备,例如检测装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限 于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
利用本公开实施例提供的检测方法、检测装置及存储介质,能够较为准确测量出待测目标的健康状态,以根据待测目标的健康状态做出及时的预警或采取处理措施。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种检测方法,包括:
    构建待测目标的初始状态模型,其中,所述待测目标内布设有预设形状图案的光纤,所述初始状态模型用于评估所述待测目标初始状态的应变分布;
    构建所述待测目标的监测状态模型,所述监测状态模型用于评估所述待测目标当前状态的应变分布;
    根据所述监测状态模型和所述初始状态模型检测所述待测目标并生成对应的检测结果。
  2. 根据权利要求1所述的检测方法,其中,所述构建待测目标的初始状态模型,包括:
    获取待测目标内所述光纤的初始应变参数,所述初始应变参数用于评估所述待测目标初始应变分布;
    根据所述初始应变参数构建所述待测目标的初始状态模型。
  3. 根据权利要求2所述的检测方法,其中,所述获取待测目标的初始应变参数,包括:
    获取所述光纤在多个预设采样点的第一采样数据和第二采样数据,其中,所述第一采样数据是拉直段光纤所获取的光纤传感数据,所述第二采样数据是松散段光纤所获取的光纤传感数据;
    根据所述第一采样数据和所述第二采样数据确定所述初始应变参数。
  4. 根据权利要求3所述的检测方法,其中,所述初始应变参数包括各个预设采样点所获取的布里渊散射频移量。
  5. 根据权利要求3所述的检测方法,其中,所述构建所述待测目标的监测状态模型,包括:
    获取待测目标内所述光纤的监测应变参数,所述监测应变参数用于评估所述待测目标当前应变分布;
    根据所述监测应变参数和所述初始状态模型构建所述待测目标的监测状态模型。
  6. 根据权利要求5所述的检测方法,其中,所述获取待测目标的监测应变参数,包括:
    获取所述光纤在多个预设采样点的第三采样数据,所述第三采样数据是所述光纤布设于所述待测目标预设时间段后所获取的光纤传感数据;
    根据所述第三采样数据和第二采样数据获取所述监测应变参数。
  7. 根据权利要求1所述的检测方法,其中,所述方法还包括:
    根据所述检测结果执行相应的操作。
  8. 根据权利要求7所述的检测方法,其中,所述检测结果包括所述待测目标的当前应变状态不符合预设应变状态指标以及所述待测目标的当前应变状态符合预设应变状态指标。
  9. 根据权利要求7所述的检测方法,其中,所述根据所述检测结果执行相应的操作,包括:
    当所述检测结果为所述待测目标的当前应变状态不符合预设应变状态指标时,根据所述监测状态模型确定所述待侧目标的应变质点的位置信息。
  10. 根据权利要求9所述的检测方法,其中,所述方法还包括:
    根据所述位置信息和预设受力模型确定所述应变质点的受力信息。
  11. 一种检测装置,包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中所述计算机程序被所述处理器执行时,实现如权利要求1至10中任一项所述的检测方法的步骤。
  12. 一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至10中任一项所述的检测方法的步骤。
PCT/CN2021/118834 2020-09-16 2021-09-16 检测方法、检测装置及存储介质 WO2022057864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010975256.XA CN114264245A (zh) 2020-09-16 2020-09-16 检测方法、检测装置及存储介质
CN202010975256.X 2020-09-16

Publications (1)

Publication Number Publication Date
WO2022057864A1 true WO2022057864A1 (zh) 2022-03-24

Family

ID=80776494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118834 WO2022057864A1 (zh) 2020-09-16 2021-09-16 检测方法、检测装置及存储介质

Country Status (2)

Country Link
CN (1) CN114264245A (zh)
WO (1) WO2022057864A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116538948A (zh) * 2023-06-28 2023-08-04 深圳市鼎邦工程有限公司 一种基于光纤传感技术的建筑结构变形监测系统
WO2024067232A1 (zh) * 2022-09-26 2024-04-04 中交第一公路勘察设计研究院有限公司 基于光纤传感的板式支座、监测系统及安装、监测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116248176B (zh) * 2022-10-31 2023-08-04 广东电网有限责任公司中山供电局 一种光纤状态监测预警方法、系统、设备和介质
CN117490738A (zh) * 2023-10-31 2024-02-02 中国南方电网有限责任公司超高压输电公司广州局 光纤传感方法、装置、计算机设备、介质和计算机产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997861A (zh) * 2012-11-28 2013-03-27 上海交通大学无锡研究院 一种基于分布式光纤应变传感的高铁边坡滑坡状况实时监测系统
CN203981124U (zh) * 2013-11-14 2014-12-03 南京大学 船闸结构应变和应力分布式光纤监测装置
US20150168253A1 (en) * 2012-06-13 2015-06-18 Omnisens Sa Sensing system and methods for distributed brillouin sensing
CN104976983A (zh) * 2015-07-10 2015-10-14 镇江绿材谷新材料科技有限公司 一种滑坡的分布监测装置及其监测方法
CN204924195U (zh) * 2015-09-15 2015-12-30 山西省交通科学研究院 一种土质边坡坡表变形监测系统
CN205825908U (zh) * 2016-05-25 2016-12-21 中石化石油工程设计有限公司 一种管道分布式光纤传感器初始应变控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168253A1 (en) * 2012-06-13 2015-06-18 Omnisens Sa Sensing system and methods for distributed brillouin sensing
CN102997861A (zh) * 2012-11-28 2013-03-27 上海交通大学无锡研究院 一种基于分布式光纤应变传感的高铁边坡滑坡状况实时监测系统
CN203981124U (zh) * 2013-11-14 2014-12-03 南京大学 船闸结构应变和应力分布式光纤监测装置
CN104976983A (zh) * 2015-07-10 2015-10-14 镇江绿材谷新材料科技有限公司 一种滑坡的分布监测装置及其监测方法
CN204924195U (zh) * 2015-09-15 2015-12-30 山西省交通科学研究院 一种土质边坡坡表变形监测系统
CN205825908U (zh) * 2016-05-25 2016-12-21 中石化石油工程设计有限公司 一种管道分布式光纤传感器初始应变控制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067232A1 (zh) * 2022-09-26 2024-04-04 中交第一公路勘察设计研究院有限公司 基于光纤传感的板式支座、监测系统及安装、监测方法
CN116538948A (zh) * 2023-06-28 2023-08-04 深圳市鼎邦工程有限公司 一种基于光纤传感技术的建筑结构变形监测系统
CN116538948B (zh) * 2023-06-28 2023-09-08 深圳市鼎邦工程有限公司 一种基于光纤传感技术的建筑结构变形监测系统

Also Published As

Publication number Publication date
CN114264245A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2022057864A1 (zh) 检测方法、检测装置及存储介质
JP4495672B2 (ja) 構造体監視システム
US20140037217A1 (en) Method and system for direct strain imaging
US10114078B2 (en) Method and apparatus to estimate state of battery based on battery charging voltage data
US20120053858A1 (en) Fatigue Life Estimation Method and System
KR101978569B1 (ko) 플랜트 데이터 예측 장치 및 방법
US10451416B1 (en) Optimizing sensor placement for structural health monitoring based on information entropy or total modal energy
CN113588488B (zh) 电缆的缺陷检测方法、装置、终端设备及存储介质
JP2019057276A5 (zh)
EP3594653B1 (en) Diagnosis cost output device, diagnosis cost output method, and diagnosis cost output
JP6618846B2 (ja) 管理装置および制御方法
CN109582988B (zh) 航空发动机叶片的振动应力监测用应变片位置的确定方法
CN114002332A (zh) 一种结构损伤监测预警方法及结构完整性数字孪生系统
CN110223489A (zh) 一种工程对象的监测方法及装置
CN116973769B (zh) 检测储能电池状态的方法、装置、电子设备和介质
CN116026263B (zh) 测厚校准方法、装置、设备和存储介质
JP2019015572A (ja) 機器システムの機能損傷と関連が高い地震動強さ指標の検出方法
Christian et al. Real-time quantification of damage in structural materials during mechanical testing
CN115269389A (zh) 一种项目质量确定方法、装置、电子设备及存储介质
JP7347303B2 (ja) 監視装置、監視システム、監視方法及び監視プログラム
JP6459345B2 (ja) 変動データ管理システム及びその特異性検出方法
JP6636891B2 (ja) 破壊評価解析装置、破壊評価システム、および破壊評価方法
KR20170070902A (ko) 철강공정 설비 모니터링 장치 및 방법
KR101598535B1 (ko) 전력설비 분석 장치 및 방법
JP2017156237A (ja) 破壊評価解析装置、破壊評価システム、および破壊評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21868686

Country of ref document: EP

Kind code of ref document: A1