WO2024067232A1 - 基于光纤传感的板式支座、监测系统及安装、监测方法 - Google Patents

基于光纤传感的板式支座、监测系统及安装、监测方法 Download PDF

Info

Publication number
WO2024067232A1
WO2024067232A1 PCT/CN2023/119603 CN2023119603W WO2024067232A1 WO 2024067232 A1 WO2024067232 A1 WO 2024067232A1 CN 2023119603 W CN2023119603 W CN 2023119603W WO 2024067232 A1 WO2024067232 A1 WO 2024067232A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
strain
plate
monitoring
sensing
Prior art date
Application number
PCT/CN2023/119603
Other languages
English (en)
French (fr)
Inventor
富志鹏
朱宏平
胡博
赵力国
李震
袁涌
Original Assignee
中交第一公路勘察设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交第一公路勘察设计研究院有限公司 filed Critical 中交第一公路勘察设计研究院有限公司
Publication of WO2024067232A1 publication Critical patent/WO2024067232A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/042Mechanical bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means

Definitions

  • the present invention relates to the technical field of bridge bearing mechanical response monitoring, and in particular to a plate bearing based on optical fiber sensing, a monitoring system, and an installation and monitoring method.
  • the bearing is an important component located between the superstructure and the substructure of the bridge, which has the functions of transferring loads and adapting to deformation. It has to bear and transfer static loads and live loads from the superstructure, so it must have sufficient strength and stiffness in the vertical direction; for movable bearings, it is also necessary to adapt to the relative horizontal displacement and rotation of the superstructure under the action of temperature, traffic load and wind load, so as to minimize the structural additional force generated as much as possible, so that the force of the structure is consistent with the theoretical calculation diagram. Therefore, the working performance and stress condition of the bearing play a particularly important role in the good operation and maintenance of the bridge as a whole.
  • Plate rubber bearings are one of the most widely used bearing types in my country's small and medium span bridges.
  • the main forms of its defects include bearing detachment, bearing displacement, rubber cracking, uneven rubber bulging, shear cracking and deformation, and steel plate corrosion.
  • the plate rubber bearings caused by these defects have degraded working performance and abnormal stress conditions, which seriously endanger the safe use of bridges. Therefore, the bearings must be inspected in time, and the bearings with degraded performance need to be replaced in time.
  • the main beams and other related components need to be reinforced and maintained in time to keep the bridge in a safe and healthy working state.
  • the inspection of plate rubber bearings is mainly carried out by visual inspection, telescope observation, photographic observation and instrument observation.
  • the space between the main beam and the pier for placing the bearing is narrow, and the above methods are either difficult to operate or lack of inspection accuracy; in addition, my country has built a huge number of small and medium-span bridges using plate rubber bearings. Relying on such manual regular inspections obviously requires a lot of manpower and material resources, which is very costly, and the inspection frequency is limited, so it is impossible to fully and timely discover the defects of bridge components such as bearings.
  • the purpose of the present invention is to overcome the above-mentioned deficiencies of manual inspection in the prior art, and to provide a plate bearing, a monitoring system and an installation and monitoring method based on optical fiber sensing, which changes the conventional practice of regular manual on-site inspections of the working conditions of the bearings, and solves the problems of relying on regular manual inspections of plate bearings, high manpower and material costs, limited inspection frequency, and inability to fully and timely detect defects in bearings and other bridge components, and has good engineering application value.
  • a plate-type support based on optical fiber sensing is characterized in that it includes a plate-type support and a distributed strain sensing optical fiber, wherein a distributed strain sensing optical fiber is arranged around the side surface of the plate-type support, and the head and tail ends of the distributed strain sensing optical fiber are used for external connection, and the distributed strain sensing optical fiber includes a unit segment, and multiple unit segments are periodically and continuously arranged on each side surface of the plate-type support; the unit segment includes a vertical segment and an oblique segment, and on the side surface of the plate-type support, the angle between the vertical segment and the oblique segment is an acute angle, and the two ends of the oblique segment are respectively connected to the vertical segment of the adjacent unit segment to form an "N" shape.
  • the existing bridge bearing inspection is carried out by regular on-site inspections.
  • the inspection frequency is limited, the manpower and material costs are high, the efficiency is low, and the abnormalities of the bridge bearings cannot be discovered in time.
  • This solution is based on measuring the right-angle strain of the plane stress-strain state. Since the positive stress in the horizontal direction is zero, the side of the plate bearing is set as a multi-section periodic structure, which can be spread all around the plate bearing.
  • the angle between the vertical segment and the oblique segment is 45°; by setting the angle, it is convenient to measure and analyze the shear strain, and the strain data at two angles of 45° and 90° are directly obtained during measurement, which facilitates calculation, simplifies the calculation process, and reduces the difficulty of monitoring and analysis.
  • each bend formed by the above-mentioned distributed strain sensing optical fiber layout adopts arc chamfering for smooth transition; through the setting of chamfering, the distributed strain sensing optical fiber can have a smooth transition at each bend, avoiding the distributed strain sensing optical fiber from breaking.
  • the monitoring system based on optical fiber sensing adopts the above-mentioned plate-type support.
  • the monitoring system includes a plurality of plate-type supports, signal transmission optical fibers and an optical fiber signal analysis device.
  • the plate-type supports are connected in series through signal transmission optical fibers, and the optical fiber signal analysis device is connected to the signal transmission optical fibers.
  • multiple different plate supports can be connected together, and the distributed strain sensing optical fibers of each plate support can be connected in series using a signal transmission optical fiber to form a networked monitoring system. It can monitor the strain response of multiple plate bearings online in real time, has high monitoring efficiency, can measure simultaneously, has low monitoring cost for a single plate bearing, can be spread over all bearings of the bridge, and has complete strain data.
  • the above-mentioned monitoring system also includes strain monitoring points, which are located in the middle of the vertical section and the end of the diagonal section; the strain monitoring points at the end of the diagonal section can simultaneously measure the strain in the vertical direction and the strain in the diagonal direction, so that multiple strain monitoring points are provided on each side of the plate support, and there are more measuring points, which increases the monitoring data, takes the average for calculation, discards unreasonable values, reduces measurement errors, and can extract strain data at different positions according to different research problems; the strain monitoring point in the middle of the vertical section is also far away from the boundary of the plate support, is less affected by local forces, and the data is more reasonable.
  • the strain monitoring point located at the end of the above-mentioned oblique section is used to measure the strain in the vertical and oblique directions; the strain monitoring point located in the middle of the vertical section is used to measure the strain in the vertical direction; by acquiring the data of each strain monitoring point, the stress state of the strain monitoring point can be calculated, and then analyzed to facilitate calculation.
  • the installation method of the monitoring system based on optical fiber sensing adopts the above-mentioned plate-type support based on optical fiber sensing, the plate-type support is used for bridge construction, and the monitoring system is installed after the bridge is completed.
  • the installation method includes the following steps:
  • A1. Use signal transmission optical fiber to connect the distributed strain sensing optical fibers of each plate support in series;
  • the optical fiber signal analysis device is connected to the signal transmission optical fiber, and then the signal transmission optical fiber is connected to the distributed strain sensing optical fiber of the plate support, thus forming a series loop; after the installation is completed, the bridge can be
  • the beam supports are monitored to monitor the health of the bridge in real time and facilitate network monitoring.
  • the monitoring method of the monitoring system based on optical fiber sensing adopts the above-mentioned monitoring system based on optical fiber sensing, and the monitoring method comprises the following steps:
  • ⁇ 0° is the strain value in the positive semi-axis direction of x at the monitoring point, which is 0, ⁇ 45° is the strain value in the oblique direction of 45° at the monitoring point, and ⁇ 90° is the strain value in the vertical direction at the monitoring point;
  • the stress-strain values of each strain monitoring point are obtained through the optical fiber signal analysis device, and the strain response of each support can be monitored online in real time.
  • the monitoring efficiency is high, and the strain data of supports in different positions can be extracted according to different research problems.
  • the distribution of normal stress, shear stress, and shear strain in the horizontal section of the support is calculated through the strain-stress state.
  • the vertical load, eccentric distance, shear force, shear deformation angle, etc. can also be obtained through numerical calculation. It can monitor and analyze complex stress states, help understand the health status of bridge supports, and facilitate the evaluation of abnormal conditions of supports. estimate.
  • the above monitoring method further comprises the steps of:
  • the stress and strain of the bearing can be analyzed intuitively, making it easy to determine whether there are conditions such as voids, eccentric pressure, excessive shear deformation, etc., which is conducive to understanding the health status of the bridge bearing in real time and making quick judgments.
  • the present invention has the following beneficial effects:
  • the plate bearing Through the plate bearing, it can be spread all around the plate bearing, which is convenient for real-time online monitoring of the plate bearing, so as to analyze the stress-strain distribution, shear deformation and external load of the plate bearing, and timely discover the disease of the bearing, so as to facilitate targeted assessment and early warning of the health status of the bearing, so as to carry out on-site inspection and maintenance.
  • multiple different plate supports can be connected together to form a network monitoring system, which can monitor the strain response of multiple plate supports online in real time.
  • the monitoring efficiency is high and it can measure simultaneously.
  • the monitoring cost of a single plate support is low and it can be spread over all supports of the bridge.
  • the strain data is complete.
  • the use of optical fiber and the material of the optical fiber itself make it more durable and stable for a long time.
  • the internal signal transmission accuracy is high, which can provide high-precision, high-durability, long-distance and long-term continuous monitoring.
  • the optical fiber signal analysis device, the signal transmission optical fiber plate support, the support and its distributed strain sensing optical fiber can be connected in series.
  • the installation process is convenient and quick.
  • the bridge support can be monitored, and the health status of the bridge can be monitored in real time, which is convenient for network monitoring.
  • the strain response of each bearing can be monitored online in real time.
  • the monitoring efficiency is high.
  • the strain data of bearings in different positions can be extracted.
  • the vertical load, eccentric distance, shear force, shear deformation angle, etc. can be calculated.
  • the complex stress state can be monitored and analyzed, which is helpful to understand the health status of the bridge bearings and facilitate the evaluation of abnormal conditions of the bearings.
  • Through the distribution map it is possible to intuitively and quickly determine whether there are conditions such as air gaps, bias pressure, and excessive shear deformation.
  • FIG1 is a schematic diagram of a plate-type support based on optical fiber sensing according to Example 1 of the present invention.
  • FIG2 is a layout diagram of distributed strain sensing optical fibers on the side of a plate-type support according to Example 1 of the present invention.
  • FIG3 is a diagram showing the arrangement positions of distributed strain sensing optical fibers in the vertical section of the plate-type support according to Example 1 of the present invention.
  • FIG4 is a schematic diagram of a monitoring system based on optical fiber sensing according to Embodiment 2 of the present invention.
  • FIG. 5 is a step diagram of a method for installing a monitoring system based on optical fiber sensing according to Embodiment 3 of the present invention
  • FIG. 6 is a step diagram of a monitoring method of a monitoring system based on optical fiber sensing according to Embodiment 4 of the present invention.
  • FIG7 is a load analysis diagram of the plate bearing of the present invention along the bridge direction
  • FIG8 is a load analysis diagram of the plate bearing across the bridge direction of the present invention.
  • FIG9 is a schematic diagram of the stress state of a point in the plate support of the present invention in a horizontal cross section along the bridge direction;
  • FIG. 10 is a schematic diagram showing the stress state of a point in the plate support of the present invention in a horizontal cross section across the bridge.
  • the plate-type support 1 is an improvement on the existing bridge support.
  • the plate-type support 1 is made of rubber material, and includes a plate-type support 1 and a distributed strain sensing optical fiber 2.
  • the distributed strain sensing optical fiber 2 is arranged on the plate-type support 1.
  • a distributed strain sensing optical fiber 2 is arranged around the side of the plate-type support 1.
  • One distributed strain sensing optical fiber 2 corresponds to one plate-type support 1. After the above arrangement, the distributed strain sensing optical fiber 2 has a head end and a tail end reserved on the plate-type support 1.
  • the head and tail ends of the distributed strain sensing optical fiber 2 are respectively used for external
  • the distributed strain sensing optical fiber 2 is a unit with unit segments being repeatedly arranged, and is periodically and continuously arranged on each side of the plate support 1; based on the right-angle strain of measuring the plane stress-strain state, since the positive stress in the horizontal direction is zero, the side of the plate support 1 is set as a multi-segment periodically arranged structure, which can be spread all around the plate support 1.
  • the distributed strain sensing optical fiber 2 it is convenient to monitor the plate support 1 online in real time, so as to analyze the stress-strain distribution, shear deformation and external load action of the plate support 1, timely discover the damage caused by the support, and facilitate the assessment and early warning of the health status of the support.
  • the plate bearing 1 adopts a rectangular plate bearing. Since bridge bearings generally provide two types of circular plate bearings and rectangular plate bearings, a circular plate bearing may also be used.
  • a circular plate bearing When a circular plate bearing is used, the measurement of vertical strain is the same as that of the rectangular plate bearing 1. However, when indirectly measuring shear strain, the circular plate bearing will produce a certain error. Compared with a circular plate bearing, a rectangular plate bearing has a better effect. The following will be explained using the rectangular plate bearing 1 as an example.
  • the distributed strain sensing optical fiber 2 is disposed identically on four sides of the rectangular plate support 1 , and one of the sides is described below.
  • the distributed strain sensing optical fiber 2 is arranged on the side of the rectangular plate support 1 to form a unit segment.
  • each side of the rectangular plate support 1 is provided with 5 unit segments, and the unit segments include a vertical segment 21 and an oblique segment 22. At both ends of the 5 unit segments, in order to facilitate the connection with the unit segments on the adjacent side, another vertical segment 21 can be connected.
  • two adjacent vertical segments 21 are connected by an oblique segment 22, wherein one end of the oblique segment 22 is connected to the top of one of the vertical segments 21, and the other end of the oblique segment 22 is connected to the bottom of the other vertical segment 21, so that the oblique segment 22 is inclined between the adjacent vertical segments 21.
  • the angle between the vertical segment 21 and the oblique segment 22 is an acute angle, and the two ends of the oblique segment 22 are respectively connected to the vertical segment 21 of the adjacent unit segment to form an "N" shape. In this way, in the structure formed by the periodic arrangement of the unit segments, there are multiple An "N"-shaped structure.
  • the angle between the vertical section 21 and the oblique section 22 is 45°, and the vertical section 21 and the oblique section 22 are set to 45°, which is convenient for measuring and analyzing the shear strain.
  • the strain data at two angles of 45° and 90° are directly obtained, which is convenient for calculation, simplifies the calculation process, and reduces the difficulty of monitoring and analysis;
  • the connecting part between the interconnected vertical section 21 and the oblique section 22 forms a bend, and the bend adopts a circular arc chamfer to smoothly transition;
  • the layout of the distributed strain sensing optical fiber 2 will also generate a bend at the intersection of two adjacent side surfaces of the plate support 1, that is, the bend generated when the vertical section 21 or the oblique section 22 located at both ends of the multi-section unit section extends toward the side edge of the plate support 1; through the setting of the chamfer, the distributed strain sensing optical fiber 2 can smoothly transition at each bend to avoid the distributed strain sensing optical fiber 2 from breaking.
  • Multiple unit segments are periodically and continuously arranged on each side of the rectangular plate support 1, extending from one end of the side to the other end of the side, so that on each side of the rectangular plate support 1, multiple unit segments are periodically and continuously arranged to form a row, and at the intersection of the sides of adjacent rectangular plate supports 1, the adjacent ends of a row of distributed strain sensing optical fibers 2 on the adjacent sides are connected by a section of distributed strain sensing optical fibers 2.
  • the above section of distributed strain sensing optical fibers 2 is called a connecting section 23.
  • One end of one side of the rectangular plate support 1 is a periodically arranged unit segment.
  • the vertical section 21 or the oblique section 22 of the adjacent rectangular plate support 1 is a vertical section 21 or an oblique section 22 of a periodically arranged unit section, and the ends of the vertical section 21 or the periodically arranged unit section on the side of the rectangular plate support 1 may also be an oblique section 22.
  • it is an oblique section 22, it is connected by a connecting section 23.
  • the connecting section 23 turns from the side of the rectangular plate support 1 to the other side, a bend is formed, and the bend adopts a circular arc chamfer for a smooth transition.
  • the monitoring system is based on the plate support 1 in Example 1.
  • the monitoring system includes a plate support 1, a signal transmission optical fiber 3 and an optical fiber signal analysis device 4.
  • the number of plate supports 1 is determined according to the needs of bridge construction.
  • the plate support 1 is the rectangular plate support 1 in Example 1.
  • the plate supports 1 are connected in series through signal transmission optical fibers 3, and the optical fiber signal analysis device 4 is connected to the signal transmission optical fibers 3.
  • Through the signal transmission optical fibers 3, multiple different plate supports 1 can be connected together, and the distributed strain sensing optical fibers 2 of each plate support 1 are connected in series using a signal transmission optical fiber 3 to form a networked monitoring system.
  • the system can monitor the strain responses of multiple plate supports 1 online in real time, has high monitoring efficiency, can measure simultaneously, has low monitoring cost for a single plate support 1, can be distributed over all supports of the bridge, and has complete strain data.
  • the signal transmission optical fiber 3 is the middle part connecting each distributed strain sensing optical fiber 2.
  • the signal transmission optical fiber 3 uses a 0.9mm single-mode optical fiber, which can improve the test accuracy.
  • the head end or tail end of the distributed strain sensing optical fiber 2 of the two rectangular plate supports 1 is connected through the signal transmission optical fiber 3, and the other two ends of the distributed strain sensing optical fiber 2 of the two rectangular plate supports 1 are connected to the optical fiber signal analysis device 4 through the signal transmission optical fiber 3.
  • the two rectangular plate supports 1 and the optical fiber signal analysis device 4 are connected in series as a loop through the signal transmission optical fiber 3.
  • the optical fiber signal analysis device 4 can monitor the data of the distributed strain sensing optical fiber 2 in real time.
  • the optical fiber signal analysis device 4 of this embodiment uses the RP 1002 high spatial resolution distributed Brillouin optical fiber temperature and strain analyzer, which can obtain accurate stress and strain data.
  • the distributed Brillouin optical fiber temperature and strain analyzer adopts differential pulse to Brillouin optical time domain analysis technology, and its measurement spatial resolution is 2cm, the sampling resolution is 1cm, the strain measurement range is -1.5% to 1.5%, and the strain measurement accuracy is 4 ⁇ .
  • the distributed Brillouin optical fiber strain analyzer is connected to the transmission optical fiber of the plate support 1 through an FC/APC interface.
  • the monitoring system also includes a strain monitoring point 5, which is located at the middle of the vertical segment 21 and the end of the oblique segment 22.
  • the setting of the strain monitoring point 5 is the same on each side of the rectangular plate support 1. Taking one side as an example, the end of each oblique segment 22 of each unit segment on the side is used as a strain monitoring point 5, that is, the strain monitoring point 5 is located at the top and bottom of the oblique segment 22.
  • the strain monitoring point 5 is used to measure the strain in both the vertical and oblique directions.
  • the midpoint position of each vertical segment 21 of each unit segment is also used as a strain monitoring point 5, that is, the strain monitoring point 5 is located in the middle of the vertical segment 21.
  • the strain monitoring point 5 is used to measure the strain in the vertical direction; the strain monitoring point 5 at the end of the oblique section 22 can simultaneously measure the strain in the vertical direction and the strain in the oblique direction. In this way, multiple strain monitoring points 5 are provided on each side of the rectangular plate support 1. There are many measuring points, which increases the monitoring data, takes the average for calculation, discards unreasonable values, reduces measurement errors, and can extract strain data at different positions according to different research problems; the strain monitoring point 5 in the middle of the vertical section 21 is also far away from the boundary of the plate support 1, is less affected by local forces, and the data is more reasonable; By acquiring the data of each strain monitoring point 5, the stress state of the strain monitoring point 5 can be calculated, and then analyzed to facilitate calculation.
  • This embodiment provides an installation method of a monitoring system based on optical fiber sensing.
  • This embodiment is based on Example 2.
  • This embodiment is an installation method of the monitoring system of Example 2.
  • the plate support 1 of Example 1 is used.
  • the plate support 1 is used for bridge construction. During the bridge construction, each plate support 1 is pre-set.
  • the monitoring system of Example 2 is installed after the bridge is built.
  • the installation method includes the following steps:
  • A1 Use signal transmission optical fiber 3 to connect the distributed strain sensing optical fibers 2 of each plate support 1 in series; the series connection process is based on the connection relationship in Example 2, and the distributed strain sensing optical fibers 2 of two rectangular supports are connected through the signal transmission optical fiber 3.
  • the bridge supports can be monitored, and the health status of the bridge can be monitored in real time, which is convenient for network monitoring.
  • this embodiment provides a monitoring method for a monitoring system based on optical fiber sensing. This embodiment is based on Embodiment 2 and Embodiment 3. After the monitoring system of Embodiment 2 is installed, monitoring is performed through the following steps:
  • the strain monitoring points 5 are measured through the optical fiber signal analysis device 4 (4) to obtain the real-time stress and strain values of each strain monitoring point 5.
  • the stress-strain distribution, shear deformation and external load of the plate support 1 are obtained by mechanical analysis.
  • the strain state, stress state and stress distribution of different cross sections of the strain monitoring point are obtained. The details are as follows:
  • the strain monitoring points 5 on the vertical section 21 and the oblique section 22 of the unit section are taken as points on the same measuring line.
  • the strain data of the three measuring points a, b and c are taken as the strain data on the vertical section 21.
  • 6 measuring lines are divided, and each measuring line includes a1 , b1 and c1 , a2 , b2 and c2 , ..., a6 , b6 and c6 , respectively.
  • the three points on each measuring line are used to measure the vertical strain ⁇ 90 ° ; the strain data of the two measuring points a1 and b2 are taken as the strain data on the oblique section 22.
  • each measuring line includes: a2 and b3 , a3 and b4 , a4 and b5 , a5 and b6 , respectively.
  • the two points on each measuring line are used to measure the oblique strain ⁇ 45 °.
  • the average value is taken as the vertical strain or oblique strain of the measuring line, wherein the positive x-axis is defined as the angle starting point 0 degrees, and the clockwise rotation direction from the positive x-axis is defined as the positive angle.
  • ⁇ 0° is the strain value in the positive semi-axis direction of x at the monitoring point, which is 0, ⁇ 45° is the strain value in the oblique direction of 45° at the monitoring point, ⁇ 90° is the strain value in the vertical direction at the monitoring point, and G is the equivalent shear modulus of the plate support 1.
  • E is the equivalent Young's modulus of the plate support 1
  • is the equivalent Poisson's ratio of the plate support 1.
  • Fy is the vertical load and Fx is the shear load along the bridge.
  • Mz is the additional bending moment in the z-axis direction caused by the eccentricity of the vertical load
  • Mx is the additional bending moment in the x-axis direction caused by the eccentricity of the vertical load
  • each strain monitoring point 5 By obtaining the stress-strain values of each strain monitoring point 5 through the optical fiber signal analysis device 4, the strain response of each support can be monitored online in real time. The monitoring efficiency is high, and the strain data of supports in different positions can be extracted according to different research problems.
  • the distribution of normal stress, shear stress and shear strain in the horizontal section of the support is calculated through the strain-stress state.
  • the vertical load, eccentric distance, shear force, shear deformation angle, etc. can also be obtained through numerical calculation. It can monitor and analyze complex stress states, help understand the health status of bridge supports, and facilitate the evaluation of abnormal conditions of supports.
  • the above is the hardware part of the monitoring system.
  • the monitoring system of this embodiment also includes a software part.
  • the software part includes a stress-strain state based on the basic assumptions of material mechanics and an external load analysis program.
  • the program includes the calculation process of formula (1) to formula (8), taking into account the load combination method, and also includes a drawing module for drawing distribution diagrams.
  • the program is a commonly used programming program that can draw normal stress and shear stress diagrams on horizontal sections, and can calculate the eccentric position of external loads and vertical loads.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于光纤传感的板式支座,应用于桥梁支座力学响应监测技术领域,包括板式支座(1)和分布式应变传感光纤(2),分布式应变传感光纤(2)围绕板式支座(1)侧面一周布设,这方便实时在线对板式支座(1)进行监测,及时发现板式支座(1)的异常,实时了解板式支座(1)健康状况。还提供一种基于光纤传感的监测系统,其包括板式支座(1)、信号传输光纤(3)和光纤信号分析装置(4),各板式支座(1)的分布式应变传感光纤(2)通过信号传输光纤(3)串接起来,形成组网的系统。还提供了一种基于光纤传感的监测系统的安装方法,其能够将监测系统和桥梁施工结合起来,将多板式支座(1)串接到一起组网。以及还提供了一种基于光纤传感的监测系统的监测方法,其能够提取不同位置板式支座(1)的应变数据,能够对复杂受力状态进行监测和分析,有助于了解桥梁板式支座(1)的健康状况,便于对板式支座(1)的异常状况进行评估。

Description

基于光纤传感的板式支座、监测系统及安装、监测方法
本申请要求了2022年9月26日提交的中国发明专利申请202211170374.9的优先权。
技术领域
本发明涉及桥梁支座力学响应监测技术领域,特别涉及基于光纤传感的板式支座、监测系统及安装、监测方法。
背景技术
支座是桥梁中位于上部结构和下部结构之间的起传递荷载、适应变形等功能的重要部件。其要承载和传递来自上部结构的静荷载和活荷载,因此必须要在竖直方向上具有足够的强度和刚度;对于活动支座,还需要适应上部结构在温度、交通荷载和风荷载作用下的相对水平位移和转动,以尽可能减小因此而产生的结构附加力,使结构的受力与理论计算图式相符。因此,支座的工作性能和受力状况对于桥梁整体的良好运维起到尤为重要的影响。
板式橡胶支座是我国中小跨径桥梁使用最为广泛的一种支座类型之一。其病害主要形式有支座脱空、支座偏位、橡胶开裂、橡胶不均匀鼓凸、剪切开裂变形、钢垫板锈蚀等,由这些而导致的板式橡胶支座工作性能退化和受力状况异常,严重危害桥梁的安全使用,因此必须及时对支座进行检查,对于性能退化的支座需要及时更换,对于上部结构病害而导致的支座受力状况异常需要及时对主梁等相关构件进行加固和养护,使桥梁始终处在安全、健康的工作状态。
目前,对于板式橡胶支座的检查主要是目测、望远镜观测,摄影观测和仪 器测量等现场定期巡检。然而主梁和桥墩之间安置支座的位置狭小,上述这些方法或作业难度较大,或检查精度不够;另外,我国已建的使用板式橡胶支座的中小跨径桥梁数量巨大,依靠这种人工定期巡检,显然需要投入大量的人力物力,成本很高,而且检查频率有限,不能完全及时发现支座等桥梁构件的病害。
因此,有必要研发一种实时在线的多个支座组网的力学响应监测系统及方法,用于支座健康状况的评定和预警。
发明内容
本发明的目的在于克服现有技术中所存在的上述人工巡检的不足,提供基于光纤传感的板式支座、监测系统及安装、监测方法,改变了人工现场定期普查支座工作状况的常规做法,解决了板式支座依靠人工定期检查,人力物力成本高、检查频率有限、不能完全及时发现支座等桥梁构件的病害等问题,具有较好的工程应用价值。
为了实现上述发明目的,本发明提供了以下技术方案:
基于光纤传感的板式支座,其特征在于,包括板式支座和分布式应变传感光纤,一根分布式应变传感光纤围绕板式支座侧面一周布设,且分布式应变传感光纤的首尾两端用于对外连接,分布式应变传感光纤包括单元段,多段单元段在板式支座的各侧面上周期性连续布设;单元段包括竖向段和斜向段,在板式支座的侧面上,竖向段和斜向段之间的夹角为锐角,斜向段的两端分别与相邻单元段的竖向段连接形成“N”字形。
现有的桥梁支座检查,是通过人工到现场定期普查的方式进行,这种方式 检查频率有限、人力物力成本高、效率低,且不能及时发现桥梁支座的异常;而本方案基于测量平面应力应变状态的直角应变,由于水平方向的正应力为零,将板式支座侧面设为多段周期布设的结构,能够遍布板式支座的四周各处位置,通过分布式应变传感光纤,方便实时在线对板式支座进行监测,以便对板式支座的应力应变分布、剪切变形和外荷载作用情况进行分析,及时发现支座产生的病害,便于有针对性地对支座健康状况进行评定和预警,从而进行现场检查和维护。
在本发明较佳的实施方案中,上述竖向段和斜向段之间的夹角为45°;通过夹角的设置,方便对剪切应变进行测量和分析,在测量时直接得到45°和90°两种角度下的应变数据,方便进行计算,简化了计算过程,降低了监测分析的难度。
在本发明较佳的实施方案中,上述分布式应变传感光纤布设形成的各弯曲处采用圆弧倒角平缓过度;通过倒角的设置,能够使分布式应变传感光纤在各弯曲处平缓过度,避免分布式应变传感光纤发生折断。
在本发明较佳的实施方案中,在上述板式支座的侧面上,单元段与板式支座的侧面各边缘之间具有间隔;通过间隔设置,避免板式支座局部变形产生的影响,根据圣维南原理,过渡一段距离后,局部受力的影响可忽略。
基于光纤传感的监测系统,其采用上述的板式支座,监测系统包括若干个板式支座、信号传输光纤和光纤信号分析装置,各板式支座之间通过信号传输光纤串接,光纤信号分析装置与信号传输光纤连接。
通过信号传输光纤,能够将多个不同的板式支座连在一起,采用一根信号传输光纤将各板式支座的分布式应变传感光纤串接起来,形成组网的监测系统, 能够在线实时监测多个板式支座的应变响应,监测效率高,能够同时测量,单个板式支座监测成本低,能够遍布桥梁的所有支座,应变数据完整。
在本发明较佳的实施方案中,上述监测系统还包括应变监测点,应变监测点位于竖向段的中部和斜向段的端部;通过斜向段的端部的应变监测点能够同时测量竖直方向的应变和斜向方向的应变,这样在板式支座的各侧面均设有多个应变监测点,测量点位多,增加了监测数据,取均值进行计算,舍去不合理数值,减小测量误差,能够根据研究问题的不同,提取不同位置的应变数据;采用竖向段中部的应变监测点,也远离板式支座的边界,受局部受力影响小,数据更为合理。
在本发明较佳的实施方案中,位于上述斜向段的端部的应变监测点,用于测量竖向和斜向两个方向的应变;位于竖向段的中部的应变监测点,用于测量竖向方向的应变;通过获取各应变监测点的数据,能够计算得到其应变监测点的应力状态,进而进行分析,方便运算。
基于光纤传感的监测系统的安装方法,其采用上述的基于光纤传感的板式支座,板式支座用于桥梁施工,监测系统在成桥后安装,安装方法包括以下步骤:
A1、采用信号传输光纤将各板式支座的分布式应变传感光纤串接起来;
A2、将光纤信号分析装置接入信号传输光纤,各板式支座的分布式应变传感光纤、信号传输光纤和光纤信号分析装置形成回路。
通过光纤信号分析装置与信号传输光纤连接,再将信号传输光纤连接至板式支座的分布式应变传感光纤,这样形成串联回路;安装施工完成后即可对桥 梁的支座进行监测,能够实时监测桥梁健康状况,方便组网监测。
基于光纤传感的监测系统的监测方法,其采用上述的基于光纤传感的监测系统,监测方法包括以下步骤:
B1、通过光纤信号分析装置对应变监测点进行测量,得到各应变监测点的应力应变数值;
B2、根据材料力学基本理论建立公式,并计算正应力σy、剪切应变γxy和剪切应力τxy,建立的公式为:
σy=Eε90°
γxy=ε90°-2ε45°
τxy=Gγxy
其中,ε为监测点处x正半轴方向的应变值,为0,ε45°为监测点处斜向45°的应变值,ε90°为监测点处竖直方向的应变值;
B3、统计所有监测点处的正应力σy、剪切应变γxy和剪切应力τxy,按照平截面假定,拟合得到正应力σy和剪切应变γxy在水平截面x-z内的分布函数σy(x,z)、γxy(x,z)和τxy(x,z)。
通过光纤信号分析装置获取各应变监测点的应力应变数值,能够在线实时监测各支座的应变响应,监测效率高,能够根据研究问题不同,提取不同位置支座的应变数据,进行分析时,基于材料力学的基本假定,通过应变应力状态,计算支座水平截面内的正应力、剪切应力、剪切应变的分布,还可以通过数值计算得到竖向荷载、偏心距离、剪力、剪切变形角等,能够对复杂受力状态进行监测和分析,有助于了解桥梁支座的健康状况,便于支座的异常状况进行评 估。
在本发明较佳的实施方案中,上述监测方法还包括步骤:
B4、根据分布函数,绘制正应力σy、剪切应变γxy和剪切应力τxy在板式支座上的分布图;
B5、根据分布图评估板式支座是否存在异常状况。
通过绘制分布图并利用分布图评估异常状况,能够直观地对支座应力和应变情况进行分析,方便判断是否存在脱空、偏压、剪切变形过大等状况,有利于实时了解桥梁支座的健康状况,快速作出判断。
与现有技术相比,本发明的有益效果:
1、通过板式支座,能够遍布板式支座的四周各处位置,方便实时在线对板式支座进行监测,以便对板式支座的应力应变分布、剪切变形和外荷载作用情况进行分析,及时发现支座产生的病害,便于有针对性地对支座健康状况进行评定和预警,从而进行现场检查和维护。
2、通过监测系统,能够将多个不同的板式支座连在一起,形成组网监测,能够在线实时监测多个板式支座的应变响应,监测效率高,能够同时测量,单个板式支座监测成本低,能够遍布桥梁的所有支座,应变数据完整,同时,利用光纤,基于光纤本身的材质,使得其耐久性较好,长时间保持稳定,其内部信号传输精度高,能够提供高精度、高耐久、长距离、长时间地连续监测。
3、通过安装方法,能够将光纤信号分析装置、信号传输光纤板式支座及支座及其分布式应变传感光纤串接,安装过程方便快捷,安装施工完成后即可对桥梁的支座进行监测,能够实时监测桥梁健康状况,方便组网监测。
4、通过监测方法,能够在线实时监测各支座的应变响应,监测效率高,能够根据研究问题不同,提取不同位置支座的应变数据,进行分析时,能够计算得到竖向荷载、偏心距离、剪力、剪切变形角等,能够对复杂受力状态进行监测和分析,有助于了解桥梁支座的健康状况,便于支座的异常状况进行评估;通过分布图,能够直观地并快速地判断是否存在脱空、偏压、剪切变形过大等状况。
附图说明
图1为本发明实施例1的基于光纤传感的板式支座的示意图;
图2为本发明实施例1的板式支座的侧面上分布式应变传感光纤的布置图;
图3为本发明实施例1的板式支座竖向段的分布式应变传感光纤布置位置图;
图4为本发明的实施例2的基于光纤传感的监测系统的示意图;
图5为本发明实施例3的基于光纤传感的监测系统的安装方法的步骤图;
图6为本发明实施例4的基于光纤传感的监测系统的监测方法的步骤图;
图7为本发明的板式支座顺桥向的荷载分析图;
图8为本发明的板式支座跨桥向的荷载分析图;
图9为本发明的板式支座内一点的顺桥向水平截面内的应力状态示意图;
图10为本发明的板式支座内一点的跨桥向水平截面内的应力状态示意图。
图中标记:1-板式支座;2-分布式应变传感光纤;21-竖向段;22-斜向段;23-连接段;3-信号传输光纤;4-光纤信号分析装置;5-应变监测点。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
请参照图1,本实施例提供基于光纤传感的板式支座,该板式支座1是在现有的桥梁支座基础上进行的改进,板式支座1采用橡胶材质制成,其包括板式支座1和分布式应变传感光纤2,分布式应变传感光纤2布设在板式支座1上,采用一根分布式应变传感光纤2围绕板式支座1侧面一周布设,一根分布式应变传感光纤2对应一个板式支座1,按上述设置后,分布式应变传感光纤2在板式支座1预留了首端和尾端,分布式应变传感光纤2的首尾两端分别用于对外连接,分布式应变传感光纤2以单元段为重复设置的单元,在板式支座1的各侧面上呈周期性连续设置;基于测量平面应力应变状态的直角应变,由于水平方向的正应力为零,将板式支座1侧面设为多段周期布设的结构,能够遍布板式支座1的四周各处位置,通过分布式应变传感光纤2,方便实时在线对板式支座1进行监测,以便对板式支座1的应力应变分布、剪切变形和外荷载作用情况进行分析,及时发现支座产生的病害,便于对支座健康状况进行评定和预警。
本实施例中,板式支座1采用矩形板式支座,由于桥梁支座一般提供圆形板式支座和矩形板式支座两种,也可以采用圆形板式支座,采用圆形板式支座时,测量竖向应变和矩形板式支座1相同,而间接测量剪切应变时,圆形板式支座会产生一定的误差,相较于圆形板式支座,采用矩形板式支座的效果更好,以下将以矩形板式支座1为例进行说明。
请参照图2和图3,分布式应变传感光纤2在矩形板式支座1的四个侧面上设置相同,以下对其中一侧面进行说明。分布式应变传感光纤2布设在矩形板式支座1侧面形成单元段,本实施例中,矩形板式支座1的各侧面均设有5个单元段,单元段包括竖向段21和斜向段22,而在5个单元段的两端,为方便与相邻侧面的单元段连接,可再连接一段竖向段21,如图1,相邻两个竖向段21通过斜向段22连接,其中,斜向段22的一端连接至其中一个竖向段21的顶端,斜向段22的另一端连接至另一竖向段21的底端,这样斜向段22在相邻竖向段21之间倾斜设置,在矩形板式支座1的侧面上,竖向段21和斜向段22之间的夹角为锐角,斜向段22的两端分别与相邻单元段的竖向段21连接形成“N”字形,这样在单元段周期性设置形成的结构中,具有多个“N”字形结构,本实施例中,竖向段21和斜向段22之间的夹角为45°,竖向段21和斜向段22设为45°,方便对剪切应变进行测量和分析,在测量时直接得到45°和90°两种角度下的应变数据,方便进行计算,简化了计算过程,降低了监测分析的难度;而相互连接的竖向段21和斜向段22之间的连接部分形成弯曲,该弯曲处采用圆弧倒角平缓过度;布设分布式应变传感光纤2还会在板式支座1的相邻两个侧面相交处产生弯曲,即位于多段单元段两端的竖向段21或斜向段22向板式支座1的侧面棱边延伸时产生的弯曲处;通过倒角的设置,能够使分布式应变传感光纤2在各弯曲处平缓过度,避免分布式应变传感光纤2发生折断。
本实施例中,在矩形板式支座1的侧面上,单元段与矩形板式支座1的侧面各边缘之间具有间隔,即单元段布设时,竖向段21和斜向段22的顶端或底端都和矩形板式支座1的上下两边缘之间间隔,而在同一侧面上的多段单元段的端部,竖向段21或斜向段22均与矩形板式支座1的侧面棱边之间间隔;通过间隔设置,避免板式支座1局部变形产生的影响,根据圣维南原理,过渡一 段距离后,局部受力的影响可忽略。多段单元段周期性连续地布设在矩形板式支座1的每个侧面上,从侧面的一端向侧面的另一端延伸,这样每个矩形板式支座1侧面上,多段单元段均周期性连续布设形成一排,而相邻矩形板式支座1的侧面的相交处,通过分布式应变传感光纤2的一段将相邻侧面上的一排分布式应变传感光纤2的相邻端部进行连接,上述一段分布式应变传感光纤2称为连接段23,在矩形板式支座1的其中一侧面的一端为周期性布设的单元段中的竖向段21或斜向段22,而相邻的矩形板式支座1的另一侧面的对应相邻端为周期性布设的单元段的竖向段21或斜向段22,该端部的竖向段21或的末端通过上述的连接段23进行连接,而在矩形板式支座1的侧面上,周期性布设的单元段的端部也可为斜向段22,当为斜向段22时,均通过连接段23进行连接,而连接段23从矩形板式支座1的侧面转至另一侧面时,形成弯曲处,该弯曲处采用圆弧倒角平缓过度。
实施例2
请参照图4,本实施例提供一种基于光纤传感的监测系统,该监测系统是基于实施例1中的板式支座1,监测系统包括板式支座1、信号传输光纤3和光纤信号分析装置4,板式支座1设有若干个,板式支座1的数量根据桥梁施工的需要确定,板式支座1为实施例1中的矩形板式支座1,各板式支座1之间通过信号传输光纤3串接,光纤信号分析装置4与信号传输光纤3连接;通过信号传输光纤3,能够将多个不同的板式支座1连在一起,采用一根信号传输光纤3将各板式支座1的分布式应变传感光纤2串接起来,形成组网的监测系统,能够在线实时监测多个板式支座1的应变响应,监测效率高,能够同时测量,单个板式支座1监测成本低,能够遍布桥梁的所有支座,应变数据完整。
本实施例中,矩形板式支座1为2个,信号传输光纤3为连接各分布式应变传感光纤2的中间部分,信号传输光纤3采用0.9mm的单模光纤,能够提高测试精度,2个矩形板式支座1的分布式应变传感光纤2的首端或尾端通过信号传输光纤3连接,而2个矩形板式支座1的分布式应变传感光纤2另外两个端部通过信号传输光纤3接入光纤信号分析装置4,这样,2个矩形板式支座1和光纤信号分析装置4通过信号传输光纤3串接为回路,通过光纤信号分析装置4能够实时地对分布式应变传感光纤2的数据进行监测,本实施例的光纤信号分析装置4采用RP 1002高空间分辨率分布式布里渊光纤温度和应变分析仪,能够获取精确的应力应变数据。该分布式布里渊光纤温度和应变分析仪,采用差分脉冲对布里渊光时域分析技术,其测量空间分辨率为2cm,采样分辨率为1cm,应变测量范围为-1.5%~1.5%,应变测量精度为4με。分布式布里渊光纤应变分析仪与板式支座1的徐不该传输光纤通过FC/APC接口相连接。
监测系统还包括应变监测点5,应变监测点5位于竖向段21的中部和斜向段22的端部,应变监测点5的设置在矩形板式支座1的各侧面上均相同,以其中一侧面为例,该侧面上各单元段的每个斜向段22的端部均作为应变监测点5,即应变监测点5位于斜向段22的顶端和底端,该应变监测点5用于测量竖向和斜向两个方向的应变,各单元段的每个竖向段21的中点位置也作为应变监测点5,即应变监测点5位于竖向段21的中部,该应变监测点5用于测量竖向方向的应变;通过斜向段22的端部的应变监测点5能够同时测量竖直方向的应变和斜向方向的应变,这样在矩形板式支座1的各侧面均设有多个应变监测点5,测量点位多,增加了监测数据,取均值进行计算,舍去不合理数值,减小测量误差,能够根据研究问题的不同,提取不同位置的应变数据;采用竖向段21中部的应变监测点5,也远离板式支座1的边界,受局部受力影响小,数据更为合理; 通过获取各应变监测点5的数据,能够计算得到其应变监测点5的应力状态,进而进行分析,方便运算。
实施例3
请参照图5,本实施例提供一种基于光纤传感的监测系统的安装方法,本实施例基于实施例2,本实施例为实施例2监测系统的安装方法,采用了实施例1的板式支座1,板式支座1用于桥梁施工,在桥梁施工中预先设置好各板式支座1,将实施例2的监测系统在成桥后进行安装,安装方法包括以下步骤:
A1、采用信号传输光纤3将各板式支座1的分布式应变传感光纤2串接起来;串接过程依据实施例2中的连接关系,将2个矩形支座的分布式应变传感光纤2通过信号传输光纤3连接。
A2、将光纤信号分析装置4接入信号传输光纤3,各板式支座1的分布式应变传感光纤2、信号传输光纤3和光纤信号分析装置4形成回路;光纤信号分析装置4的信号端口与信号传输光纤3连接,再将信号传输光纤3连接至2个矩形支座的分布式应变传感光纤2,形成回路。安装施工完成后即可对桥梁的支座进行监测,能够实时监测桥梁健康状况,方便组网监测。
实施例4
请参照图6,本实施例提供一种基于光纤传感的监测系统的监测方法,本实施例基于实施例2和实施例3,在实施例2的监测系统安装完成后,通过以下步骤进行监测:
B1、基于已经搭建好的监测系统,通过光纤信号分析装置4(4)对应变监测点5进行测量,得到各应变监测点5的实时应力应变数值。
B2、根据上述步骤的应力应变数值,通过力学分析的方法得到板式支座1的应力应变分布、剪切变形及外荷载作用情况等,在“线弹性、小变形、材料特性均匀且各向同性及平截面变形”假定之下,得到应变监测测点的应变状态、应力状态及不同截面的应力分布情况。具体如下:
先将单元段的竖向段21和斜向段22上的应变监测点5作为同一测线上的点,具体地,将a、b、c三个测点的应变数据作为竖向段21上的应变数据,本实施例中,分为6条测线,各测线上分别包括a1、b1和c1、a2、b2和c2、…、a6、b6和c6,各测线上的三点用于测得竖向应变ε90°;将a1和b2两个测点的应变数据作为斜向段22上的应变数据,本实施例中还包括4条测线,各测线上分别包括:a2和b3、a3和b4、a4和b5、a5和b6,各测线上的两点用于测得斜向应变为ε45°,在选择各应变监测点5的数据时,剔除不合理的数值后,取均值作为该测线的竖向应变或斜向应变,其中,规定x正半轴为角度起点0度,由x正半轴顺时针转动方向为角度正向。
请参照图7、图8、图9和图10,根据材料力学基本理论建立公式1、公式2和公式3,并计算正应力σy、剪切应变γxy和剪切应力τxy,公式1、公式2和公式3为:
σy=Eε90°  (1)
γxy=ε90°-2ε45°  (2)
τxy=Gγxy  (3)
其中,ε为监测点处x正半轴方向的应变值,为0,ε45°为监测点处斜向45°的应变值,ε90°为监测点处竖直方向的应变值,G为板式支座1的等效剪切模量。
根据材料力学基本理论,建立下列公式:
εy=ε90°  (4)
εx=-μσy/E=ε  (5)
其中,E为板式支座1的等效杨氏模量,μ为板式支座1的等效泊松比。
B3、根据上述公式计算并统计所有监测点处的正应力σy、剪切应变γxy和剪切应力τxy,按照平截面假定,各监测点的位置如图3所示,拟合得到正应力σy和剪切应变γxy在水平截面x-z内的分布函数σy(x,z)、γxy(x,z)和τxy(x,z),具体包括以下步骤。
将水平截面内的应力进行积分可得:
Fy=fσydxdz  (6)
Fx=fτxydxdz  (7)
式中,Fy为竖向荷载,Fx为顺桥向剪力荷载。
求解板式支座1产生的弯矩:
Mz=fσyxdxdz  (8)
Mx=fσyzdxdz  (9)
式中,Mz为竖向荷载偏心引起的z轴方向的附加弯矩,Mx为竖向荷载偏心引起的x轴方向的附加弯矩。
根据积分结果求解相应的竖向荷载偏心距:
ex=Mz/Fy  (10)
ez=Mx/Fy  (11)
式中,ex为竖向荷载在x轴方向的偏心距,ez为竖向荷载在x轴方向的偏心距。
根据以上分析,可得:板式支座1水平截面内正应力σy、剪应力τxy的分布,以及作用于板式支座1的竖向荷载Fy、偏心距ex、剪力Fx和剪切变形角γxy
通过光纤信号分析装置4获取各应变监测点5的应力应变数值,能够在线实时监测各支座的应变响应,监测效率高,能够根据研究问题不同,提取不同位置支座的应变数据,进行分析时,基于材料力学的基本假定,通过应变应力状态,计算支座水平截面内的正应力、剪切应力、剪切应变的分布,还可以通过数值计算得到竖向荷载、偏心距离、剪力、剪切变形角等,能够对复杂受力状态进行监测和分析,有助于了解桥梁支座的健康状况,便于支座的异常状况进行评估。
B4、根据分布函数,绘制正应力σy、剪切应变γxy和剪切应力τxy在板式支座1上的分布图;
B5、根据分布图评估板式支座1是否存在异常状况。
根据计算得到的支座水平截面内的竖向正应力分布图,可以评估支座是否存在脱空、偏压的状况,根据计算得到的支座水平截面内的剪力及剪切变形角,可以评估支座是否存在剪切变形过大或者变形能力不足等情况,实际中,只要发现监测结果分析有异常,就需要去现场检查,因此,并不需要根据监测数据对支座工作状况作出准确的判断,最重要的是判断工作正常与否,如何区分异常情况,直接到现场查看就清楚了。
上述为监测系统的硬件部分,本实施例的监测系统还包括软件部分,软件部分包括基于材料力学基本假定的应力应变状态、外荷载分析程序,该程序包括了公式(1)至公式(8)的计算过程,考虑荷载组合方式,还包括了绘制分布图的绘图模块,该程序为常用的编程程序,能够在水平截面上对正应力、剪应力图进行绘制,能够对外荷载、竖向荷载偏心位置进行计算,最终通过绘制分布图并利用分布图评估异常状况,能够直观地对支座应力和应变情况进行分析,方便判断是否存在脱空、偏压、剪切变形过大等状况,有利于实时了解桥梁支座的健康状况,快速作出判断。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 基于光纤传感的板式支座,其特征在于,包括板式支座(1)和分布式应变传感光纤(2),一根所述分布式应变传感光纤(2)围绕所述板式支座(1)侧面一周布设,且所述分布式应变传感光纤(2)的首尾两端用于对外连接,所述分布式应变传感光纤(2)包括单元段,多段所述单元段在所述板式支座(1)的各侧面上周期性连续布设;所述单元段包括竖向段和斜向段,在所述板式支座(1)的侧面上,所述竖向段和所述斜向段之间的夹角为锐角,所述斜向段的两端分别与相邻单元段的竖向段连接形成“N”字形。
  2. 根据权利要求1所述的基于光纤传感的板式支座,其特征在于,所述竖向段和所述斜向段之间的夹角为45°。
  3. 根据权利要求1所述的基于光纤传感的板式支座,其特征在于,所述分布式应变传感光纤(2)布设形成的各弯曲处采用圆弧倒角平缓过度。
  4. 根据权利要求1所述的基于光纤传感的板式支座,其特征在于,在所述板式支座(1)的侧面上,所述单元段与所述板式支座(1)的侧面各边缘之间具有间隔。
  5. 基于光纤传感的监测系统,其特征在于,采用权利要求1所述的板式支座,监测系统包括若干个所述板式支座、信号传输光纤(3)和光纤信号分析装置(4),各所述板式支座之间通过信号传输光纤(3)串接,所述光纤信号分析装置(4)与所述信号传输光纤(3)连接。
  6. 根据权利要求5所述的基于光纤传感的监测系统,其特征在于,还包括应变监测点,所述应变监测点位于所述竖向段的中部和所述斜向段的端部。
  7. 根据权利要求6所述的基于光纤传感的监测系统,其特征在于,位于所 述斜向段的端部的应变监测点,用于测量竖向和斜向两个方向的应变;位于所述竖向段的中部的应变监测点,用于测量竖向方向的应变。
  8. 基于光纤传感的监测系统的安装方法,其特征在于,采用权利要求1所述的基于光纤传感的板式支座,所述板式支座用于桥梁施工,监测系统在成桥后安装,安装方法包括以下步骤:
    A1、采用信号传输光纤(3)将各板式支座的分布式应变传感光纤(2)串接起来;
    A2、将光纤信号分析装置(4)接入信号传输光纤(3),各板式支座的分布式应变传感光纤(2)、信号传输光纤(3)和光纤信号分析装置(4)形成回路。
  9. 基于光纤传感的监测系统的监测方法,其特征在于,采用权利要求6所述的基于光纤传感的监测系统,监测方法包括以下步骤:
    B1、通过光纤信号分析装置(4)对应变监测点进行测量,得到各应变监测点的应力应变数值;
    B2、根据材料力学基本理论建立公式,并计算正应力σy、剪切应变γxy和剪切应力τxy,建立的公式为:
    σy=Eε90°
    γxy=ε90°-2ε45°
    τxy=Gγxy
    其中,ε为监测点处x正半轴方向的应变值,为0,ε45°为监测点处斜向45°的应变值,ε90°为监测点处竖直方向的应变值;
    B3、统计所有监测点处的正应力σy、剪切应变γxy和剪切应力τxy,按照平截面假定,拟合得到正应力σy和剪切应变γxy在水平截面x-z内的分布函数σy(x,z)、γxy(x,z)和τxy(x,z)。
  10. 根据权利要求9所述的基于光纤传感的监测系统的监测方法,其特征在于,还包括步骤:
    B4、根据分布函数,绘制正应力σy、剪切应变γxy和剪切应力τxy在板式支座上的分布图;
    B5、根据分布图评估板式支座是否存在异常状况。
PCT/CN2023/119603 2022-09-26 2023-09-19 基于光纤传感的板式支座、监测系统及安装、监测方法 WO2024067232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211170374.9A CN115266076B (zh) 2022-09-26 2022-09-26 基于光纤传感的板式支座、监测系统及安装、监测方法
CN202211170374.9 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024067232A1 true WO2024067232A1 (zh) 2024-04-04

Family

ID=83757473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119603 WO2024067232A1 (zh) 2022-09-26 2023-09-19 基于光纤传感的板式支座、监测系统及安装、监测方法

Country Status (2)

Country Link
CN (1) CN115266076B (zh)
WO (1) WO2024067232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115266076B (zh) * 2022-09-26 2023-01-20 中交第一公路勘察设计研究院有限公司 基于光纤传感的板式支座、监测系统及安装、监测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020020224A1 (en) * 2000-08-18 2002-02-21 Sho-Bond Corporation Sheet-like strain sensor for confirming progress of damage of concrete structure and method for confirming progress of damage of concrete structure
CN102564660A (zh) * 2012-01-17 2012-07-11 福州大学 桥梁健康的监测方法及其智能测力支座
CN102735271A (zh) * 2012-07-06 2012-10-17 大连理工大学 一种提高光纤布里渊空间分辨率的几何重构方法
KR101344722B1 (ko) * 2012-10-22 2013-12-26 (주)카이센 광섬유 변형률계를 이용한 교량 처짐 측정 시스템
CN103591930A (zh) * 2013-11-26 2014-02-19 丁勇 分布式光纤监测隧道沉降的装置和方法
CN106400682A (zh) * 2016-11-07 2017-02-15 上海市政工程设计研究总院(集团)有限公司 基于光纤变形传感器的测力型板式橡胶支座
CN108122367A (zh) * 2017-12-04 2018-06-05 中铁第四勘察设计院集团有限公司 一种防护门脱落报警系统
CN110186630A (zh) * 2019-05-10 2019-08-30 哈尔滨工业大学 一种基于分布式光纤监测和主梁全长应变分布的桥梁状态检测与评估方法
WO2022057864A1 (zh) * 2020-09-16 2022-03-24 中兴通讯股份有限公司 检测方法、检测装置及存储介质
CN217111064U (zh) * 2022-03-21 2022-08-02 中铁第四勘察设计院集团有限公司 一种用于桥墩的监测装置
CN115266076A (zh) * 2022-09-26 2022-11-01 中交第一公路勘察设计研究院有限公司 基于光纤传感的板式支座、监测系统及安装、监测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202141547U (zh) * 2011-06-14 2012-02-08 西安金和光学科技有限公司 波形槽柱体光纤传感装置
JP6774162B2 (ja) * 2014-10-07 2020-10-21 株式会社横河Nsエンジニアリング 橋梁用伸縮継手システム
EP3258219A1 (en) * 2016-06-15 2017-12-20 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA In-situ and real time quality control in additive manufacturing process
CN206353358U (zh) * 2016-12-16 2017-07-25 广州神科光电科技有限公司 一种基于分布式光纤感温油罐火灾探测系统
CN208350030U (zh) * 2018-07-10 2019-01-08 深圳市简测科技有限公司 一种即插即拔型光纤光栅应变传感器安装装置
CN110617929B (zh) * 2019-11-01 2024-09-03 深圳市市政设计研究院有限公司 一种带测力支杆的新型智能支座以及支座监测系统
CN111537160B (zh) * 2020-05-09 2022-04-22 深圳市行健自动化股份有限公司 基于分布式光纤的高能管道泄漏监测方法
CN212585883U (zh) * 2020-08-20 2021-02-23 安徽尚德科技有限公司 一种光纤测力监测系统
CN111855045A (zh) * 2020-08-20 2020-10-30 安徽尚德科技有限公司 一种桥梁健康监测支座及监测系统
CN114166332B (zh) * 2021-12-09 2024-07-12 珠海任驰光电科技有限公司 基于空间正交结构的光纤三分量振动传感器及制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020020224A1 (en) * 2000-08-18 2002-02-21 Sho-Bond Corporation Sheet-like strain sensor for confirming progress of damage of concrete structure and method for confirming progress of damage of concrete structure
CN102564660A (zh) * 2012-01-17 2012-07-11 福州大学 桥梁健康的监测方法及其智能测力支座
CN102735271A (zh) * 2012-07-06 2012-10-17 大连理工大学 一种提高光纤布里渊空间分辨率的几何重构方法
KR101344722B1 (ko) * 2012-10-22 2013-12-26 (주)카이센 광섬유 변형률계를 이용한 교량 처짐 측정 시스템
CN103591930A (zh) * 2013-11-26 2014-02-19 丁勇 分布式光纤监测隧道沉降的装置和方法
CN106400682A (zh) * 2016-11-07 2017-02-15 上海市政工程设计研究总院(集团)有限公司 基于光纤变形传感器的测力型板式橡胶支座
CN108122367A (zh) * 2017-12-04 2018-06-05 中铁第四勘察设计院集团有限公司 一种防护门脱落报警系统
CN110186630A (zh) * 2019-05-10 2019-08-30 哈尔滨工业大学 一种基于分布式光纤监测和主梁全长应变分布的桥梁状态检测与评估方法
WO2022057864A1 (zh) * 2020-09-16 2022-03-24 中兴通讯股份有限公司 检测方法、检测装置及存储介质
CN217111064U (zh) * 2022-03-21 2022-08-02 中铁第四勘察设计院集团有限公司 一种用于桥墩的监测装置
CN115266076A (zh) * 2022-09-26 2022-11-01 中交第一公路勘察设计研究院有限公司 基于光纤传感的板式支座、监测系统及安装、监测方法

Also Published As

Publication number Publication date
CN115266076B (zh) 2023-01-20
CN115266076A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024067232A1 (zh) 基于光纤传感的板式支座、监测系统及安装、监测方法
Sousa et al. Bridge deflection evaluation using strain and rotation measurements
CN108709856B (zh) 一种混凝土结构裂缝监测预警系统及预警方法
CN109211299B (zh) 桥梁监测传感器的在线校准方法及系统
CN103134701B (zh) 一种焊接钢桁架结构疲劳失效过程的同步监测方法
CN106400682B (zh) 基于光纤变形传感器的测力型板式橡胶支座
CN103759868A (zh) 一种基于应力比重的桥梁横向联接实时评估方法
CN112945489A (zh) 一种基于毫米波雷达的测试桥梁挠度的方法
CN112945969B (zh) 基于机器视觉测量的空心板梁桥铰缝损伤识别方法及系统
CN213714202U (zh) 一种预制板梁间大铰缝损伤的检测装置
CN110725699B (zh) 盾构隧道管片圆端形凹凸榫剪力测量方法
CN110489916B (zh) 基于损伤状态倾角影响线曲率的等截面梁损伤识别方法
CN111428303A (zh) 一种空心板梁桥铰缝协同工作系数计算方法
CN112883608B (zh) 一种桁架桥的健康指数评估方法与系统
CN205367505U (zh) 一种起重机械主梁结构损伤识别装置
CN211478028U (zh) 摩擦型高强度螺栓连接性能检测试验装置以及检测试件
CN113654915A (zh) 预制剪力墙水平接缝传力性能梁式试验方法
Gong et al. A theoretical analysis method of transverse modal shapes of hollow slab bridge with hinge joint damage
CN207133133U (zh) 一种检测快捷的混凝土弹性模量测定仪
CN218937604U (zh) 一种钢混梁温度场及温度效应测量系统
Lei et al. Comprehensive real-time bridge health monitoring system of tongtai bridge
CN113533502A (zh) 一种轨道交通组合结构桥梁中栓钉疲劳损伤的长期监测方法
CN117592820B (zh) 一种基于计算机数据分析的桥梁损伤病害智能识别系统
CN219573320U (zh) 一种测试焊接残余应力的拼接板装置
CN218973527U (zh) 一种隧道服役安全智能监测预警系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870464

Country of ref document: EP

Kind code of ref document: A1