WO2022057711A1 - 多模态信号采集装置及方法、激光影像系统 - Google Patents

多模态信号采集装置及方法、激光影像系统 Download PDF

Info

Publication number
WO2022057711A1
WO2022057711A1 PCT/CN2021/117247 CN2021117247W WO2022057711A1 WO 2022057711 A1 WO2022057711 A1 WO 2022057711A1 CN 2021117247 W CN2021117247 W CN 2021117247W WO 2022057711 A1 WO2022057711 A1 WO 2022057711A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
spectral
fad
channel
multimodal
Prior art date
Application number
PCT/CN2021/117247
Other languages
English (en)
French (fr)
Inventor
朱欣
徐炳蔚
钟华
Original Assignee
飞秒激光研究中心(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞秒激光研究中心(广州)有限公司 filed Critical 飞秒激光研究中心(广州)有限公司
Priority to JP2022570364A priority Critical patent/JP2023540157A/ja
Priority to EP21868536.0A priority patent/EP4198493A4/en
Priority to US18/026,135 priority patent/US20230288334A1/en
Publication of WO2022057711A1 publication Critical patent/WO2022057711A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the present application relates to the field of laser technology, in particular to a multimodal signal acquisition device and method, and a laser imaging system.
  • the inventor realized that in the laser nonlinear microscopy technique, a laser light source with a special spectrum is used.
  • the laser light source is a femtosecond laser pulse, and the femtosecond laser pulse is irradiated on the sample through an optical component. After the laser signal interacts with the sample, a multimodal signal is formed, and then the multimodal signal is collected by a signal acquisition device to obtain a variety of nonlinear molecular image modes.
  • multi-modal signals contain spectra of multiple bands, including harmonics of laser pulses and fluorescence signals.
  • the acquisition device collects these spectral signals, the spectral information of different bands overlaps and is difficult to separate.
  • calibration deviation is often introduced, which affects the imaging effect.
  • the purpose of this application is to solve one of the above-mentioned technical defects, especially the defects of imaging calibration deviation and affecting imaging effect, and to provide a multi-modal signal acquisition device and method, and a laser imaging system.
  • a multi-modal signal acquisition device is used for acquiring multi-modal signals generated by laser pulse irradiation on a sample, comprising: an independent channel acquisition module and a spectral signal processing device connected to each other;
  • the independent channel acquisition module is provided with a plurality of independent spectral signal acquisition channels, and each spectral signal acquisition channel corresponds to a spectral signal of a specific band in the multimodal signal;
  • each of the spectral signal acquisition channels After irradiating a laser pulse of a specific wavelength band on the sample to generate a multimodal signal, each of the spectral signal acquisition channels respectively collects the multimodal signal, and filters out the corresponding specific wavelength band from the multimodal signal. spectral signal, and send the spectral signal to the spectral signal processing device;
  • the spectral signal processing device respectively receives the spectral signals collected by each spectral signal collection channel, and images and superimposes the spectral signals respectively for output.
  • the independent channel acquisition module includes multiple sets of optical devices arranged in parallel, each optical device corresponds to an independent spectral signal acquisition channel; wherein, the optical device includes a beam splitter or a filter.
  • the multimodal signals include: harmonic signals of laser pulses, fluorescence spectral signals generated by FAD molecules and NADH molecules; the spectral signal collection channels are respectively a harmonic signal collection channel and a FAD signal collection channel. channel and NADH signal acquisition channel.
  • the spectral signal processing device is further configured to perform deconvolution separation processing on the spectral signals collected by the FAD molecular fluorescence collection channel, to separate the spectral signal intensities of the FAD fluorescence signal and the NADH fluorescence signal, and to remove the spectral signal intensities in the FAD fluorescence signal.
  • the NADH fluorescent signal interferes with the pure FAD fluorescent signal.
  • the deconvolution and separation processing of the spectral signal processing device includes the following formula:
  • T FAD H FAD - a ⁇ H NADH
  • T FAD is the pure FAD fluorescence signal in the FAD signal acquisition channel
  • H FAD is the total signal of the FAD signal acquisition channel
  • a is the setting coefficient
  • H NADH is the total signal of the NADH signal acquisition channel.
  • a multimodal signal acquisition method for acquiring multimodal signals generated by laser pulse irradiation on a sample comprising:
  • each spectral signal collection channel corresponds to a spectral signal of a specific waveband in the multimodal signal
  • each spectral signal collection channel The spectral signals collected by each spectral signal collection channel are acquired respectively, and each spectral signal is imaged and superimposed for output.
  • the sample is irradiated with laser pulses containing a variety of different wavelength bands, so that the laser pulses generate multimodal signals with non-overlapping wavelength bands after interacting with the sample.
  • the multimodal signal acquisition method further includes:
  • the laser pulse is spectrally adjusted to adjust the wavelength range of the spectral signal of the laser pulse, so that the harmonic signal generated by the laser pulse after interacting with the sample does not overlap the spectral range of the fluorescent molecules of the sample.
  • a laser imaging system comprising: a laser light source, a spectrum adjustment module, and the above-mentioned multimodal signal acquisition device;
  • the laser light source is used to generate laser pulses
  • the spectral adjustment module is used for adjusting the spectral range of the laser pulse to obtain a laser pulse containing multiple wavelength bands, and irradiating the laser pulse on the sample to generate a multimodal signal with non-overlapping wavelength bands;
  • the multi-modal signal acquisition device is used to separately acquire the multi-modal signals through a plurality of independent spectral signal acquisition channels, and filter out the spectral signals of a specific wavelength band for imaging processing;
  • the multi-modal signal acquisition device is also used to acquire multi-modal signals generated by the laser pulse irradiated on the sample, including: an independent channel acquisition module and a spectral signal processing device connected to each other;
  • the independent channel acquisition module is provided with a plurality of independent spectral signal acquisition channels, and each spectral signal acquisition channel corresponds to a spectral signal of a specific band in the multimodal signal;
  • each of the spectral signal acquisition channels After irradiating a laser pulse of a specific wavelength band on the sample to generate a multimodal signal, each of the spectral signal acquisition channels respectively collects the multimodal signal, and filters out the corresponding specific wavelength band from the multimodal signal. spectral signal, and send the spectral signal to the spectral signal processing device;
  • the spectral signal processing device respectively receives the spectral signals collected by each spectral signal collection channel, and images and superimposes the spectral signals respectively for output.
  • the spectral adjustment module is further configured to separate spectral signals of various wavebands from the laser pulses, and perform spectral adjustment on the wavebands of the spectral signals, so that the laser pulses are in contact with the sample. After the interaction, a multimodal signal with non-overlapping bands is generated.
  • the above-mentioned multi-modal signal acquisition device and method, and the technical solution of the laser imaging system by controlling the laser light source to irradiate a laser pulse of a specific wavelength band on the sample to generate multi-modal signals including a variety of different wavelength bands, and set up corresponding independent spectral channels Collecting these multimodal signals enables the spectral signals in different modes to be collected simultaneously, effectively separates the collected spectral signals in each mode, avoids calibration deviation in imaging, and makes the spectral signals corresponding to each mode.
  • Molecular or structural information is orthogonal on the image, which improves the imaging effect of subsequent imaging systems.
  • the laser pulse output by the laser light source is spectrally adjusted to generate a variety of spectral signals in different wavelength bands to ensure that the wavelength range of the laser pulse is such that the laser pulse generates harmonics after interacting with the sample.
  • the spectral range of the signal and the fluorescent molecules of the sample does not overlap; the spectral signal of the excitation laser pulse is balanced, and the effective separation of the spectral signals in various modes is ensured on the basis of realizing the effective and efficient integration of the fluorescent molecules to generate the fluorescent signal.
  • FAD and NADH use the FAD signal collection channel and the NADH signal collection channel to collect the FAD fluorescence signal and the NADH fluorescence signal, and perform deconvolution and separation processing on the spectral signal collected by the FAD molecular fluorescence collection channel.
  • the NADH fluorescence signal interference in the FAD fluorescence signal is removed to obtain a pure FAD fluorescence signal; the processing speed of the acquisition signal is improved, and the imaging efficiency is improved.
  • FIG. 1 is a schematic structural diagram of a multi-modal signal acquisition device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an independent channel acquisition module provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a multimodal signal acquisition method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a laser imaging system provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a multi-modal signal acquisition device of the present application; the multi-modal signal acquisition device is used to collect multi-modal signals generated by laser pulses irradiated on the sample, such as using femtosecond laser pulses.
  • the sample detection scenario it mainly includes: an independent channel acquisition module and a spectral signal processing device connected to each other.
  • a femtosecond laser pulse is generated by a laser light source, and the femtosecond laser pulse is derived through the corresponding optical device and irradiated on the sample on the sample platform.
  • the femtosecond laser pulse and the molecules of the sample interact with each other.
  • multimodal signals can generate multimodal signals with non-overlapping or partially overlapping bands; in general, multimodal signals include harmonics and fluorescence signals of specific molecules, and harmonics can be divided into second harmonics, third harmonics and even fourth harmonics.
  • harmonic wavebands of each channel do not overlap, and the fluorescence signals of specific molecules may partially overlap due to molecular characteristics.
  • multi-modal signals are collected through the independent channel acquisition module.
  • the independent channel acquisition module there are multiple independent spectral signal acquisition channels, such as channels 1-N in Figure 1, N ⁇ 2, each spectral signal acquisition channel The channels respectively correspond to the spectral signals of a specific band in the multimodal signal.
  • the laser light source irradiates the sample with laser pulses containing a variety of specific wavelength bands, and the laser pulse interacts with the sample to generate multimodal signals containing a variety of different wavelength bands.
  • the spectral signal of the corresponding specific band is filtered out from the multimodal signal, and the spectral signal is sent to the spectral signal processing device; the spectral signal processing device respectively receives the spectral signals collected by each spectral signal collection channel, and respectively Each spectral signal is imaged and superimposed for output.
  • the laser light source is controlled to irradiate a laser pulse of a specific wavelength band on the sample to generate multi-modal signals containing a variety of different wavelength bands, and corresponding independent spectral channels are set to collect these multi-modal signals, so that different modalities are obtained.
  • the spectral signals in the modal can be collected at the same time, and the spectral signals collected in each mode are effectively separated, so that the molecular or structural information corresponding to each modal spectral signal is orthogonal on the image, and the imaging effect of the subsequent imaging system is improved.
  • FIG. 2 is a schematic structural diagram of an independent channel acquisition module, the independent channel acquisition module includes multiple groups of optical devices arranged in parallel, and each optical device corresponds to an independent spectral signal acquisition channel;
  • the optical devices include beam splitters or filters.
  • each independent channel is set with an optical device for spectral signals, such as a beam splitter, a filter, etc.
  • Each optical device filters out spectral signals in a specific band and filters out spectral signals in other bands; as shown in Figure 2, set Five groups of spectroscopes 1-5 in parallel, corresponding to 5 acquisition channels, can independently collect spectral signals of 5 non-overlapping bands.
  • the present application also designs a collection scheme for FAD (Flavin adenine dinucleotide, flavin adenine dinucleotide) signal and NADH (Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide) signal.
  • the wavelength band of the nonlinear spectral signal due to the wavelength band of the nonlinear spectral signal, part of it is related to the characteristics of the tissue molecule itself.
  • the fluorescence wavelength band emitted by the autofluorescent molecule is related to the molecular formula and structure of the fluorescent molecule itself, while the other part is related to the wavelength band of the excited laser light source.
  • the harmonic signal of the laser pulse has a multiple relationship with the wavelength of the laser pulse.
  • the multimodal signal of the present application may include:
  • the multimodal signal may include harmonic signals of laser pulses, fluorescence spectral signals generated by FAD molecules and NADH molecules, and the like.
  • the spectral signal acquisition channels are respectively corresponding to the harmonic signal (second harmonic, third harmonic or even above the fourth harmonic) acquisition channel, FAD signal acquisition channel and NADH signal acquisition channel.
  • the non-overlapping harmonic signals were acquired by separate channels, and the partially overlapping FAD and NADH fluorescence signals were processed in other ways.
  • the coenzyme molecules directly related to cellular energy metabolism may have great clinical significance.
  • the independent acquisition channel can avoid the mutual influence between the spectral signals of each channel, and due to the influence of the characteristics of the molecule itself , the fluorescence spectra of FAD molecules and NADH molecules have partial overlap, but the specific wavelength bands of FAD signals and NADH signals are known, so there is a functional relationship between the optical signals of the two in the known wavelength bands.
  • the spectral signals of the acquisition channels corresponding to NADH molecules are separated and processed to avoid mutual influence.
  • the spectral signal processing device deconvolutes and separates the spectral signals collected by the FAD molecular fluorescence collection channel through corresponding algorithms, separates the spectral signal intensity of the FAD fluorescence signal and the NADH fluorescence signal, and removes the NADH fluorescence signal in the FAD fluorescence signal. interference to obtain a pure FAD fluorescence signal.
  • the deconvolution and separation processing of the spectral signal processing device may include the following formula:
  • T FAD H FAD - a ⁇ H NADH
  • T FAD is the pure FAD fluorescence signal in the FAD signal acquisition channel
  • H FAD is the total signal of the FAD signal acquisition channel
  • a is the setting coefficient
  • H NADH is the total signal of the NADH signal acquisition channel.
  • the mutual influence between the spectral signals of each acquisition channel can basically be avoided, but since the fluorescence spectrum is determined by the characteristics of the molecule itself, after detecting the two kinds of FAD and NADH The fluorescence spectra of the molecules still partially overlap.
  • the spectral signal intensities of FAD and NADH are algorithmically separated by deconvolution and separation of the collected spectral signals in the FAD collection channel.
  • the solution of the present application utilizes the proportional relationship between the NADH signal in the NADH acquisition channel and the FAD acquisition channel in the actual measurement.
  • the FAD signal and the NADH signal are in the same condition as the FAD signal and the NADH signal collected in the FAD collection channel are proportional to the n (n ⁇ 2) power of the laser peak power.
  • the meaning of the addition is that the mixed signal of FAD and NADH in the FAD channel can be deconvolved by the above calculation formula, and the pure FAD signal can be separated.
  • Embodiments of the multimodal signal acquisition method of the present application are described below.
  • FIG. 3 is a flow chart of the multimodal signal acquisition method of the present application, which is used to acquire multimodal signals generated by laser pulse irradiation on the sample, which mainly includes the following steps:
  • each spectral signal collection channel corresponds to a spectral signal of a specific waveband in the multimodal signal
  • each spectral signal collection channel In S103, the spectral signals collected by each spectral signal collection channel are acquired respectively, and each spectral signal is imaged and superimposed for output.
  • the scheme of the above-mentioned embodiment by controlling the laser light source to irradiate the laser pulse of a specific wavelength band on the sample to generate multi-modal signals containing a variety of different wavelength bands with non-overlapping or partially overlapping wavelength bands, and setting up corresponding independent spectral channels to collect these multi-modal signals.
  • the spectral signals in different modes can be collected at the same time, effectively separating the collected spectral signals in each mode, avoiding the calibration deviation in imaging, and making the molecular or structural information corresponding to the spectral signals of each mode. Orthogonal on the image, improving the imaging effect of the subsequent imaging system.
  • a multi-modal signal when the laser pulse is irradiated, a multi-modal signal can be generated by irradiating the laser pulse including a plurality of different wavelength bands on the sample. Further, in the laser pulse generation process, before the laser pulse is irradiated on the sample, the laser pulse output by the laser light source can be spectrally adjusted to generate spectral signals containing a variety of different wavelength bands; the wavelength range of the laser pulse is adjusted so that The harmonic signals generated by the laser pulse after interaction with the sample do not overlap the spectral range of the fluorescent molecules of the sample.
  • the multimodal signal acquisition method can also perform deconvolution and separation processing on the spectral signals collected by the FAD molecular fluorescence acquisition channel through corresponding algorithms, separate the spectral signal intensities of the FAD fluorescence signal and the NADH fluorescence signal, and remove the FAD fluorescence signal.
  • the NADH fluorescent signal interferes with the pure FAD fluorescent signal.
  • the deconvolution and separation processing of the spectral signal processing device may include the following formula:
  • T FAD H FAD - a ⁇ H NADH
  • T FAD is the pure FAD fluorescence signal in the FAD signal acquisition channel
  • H FAD is the total signal of the FAD signal acquisition channel
  • a is the setting coefficient
  • H NADH is the total signal of the NADH signal acquisition channel.
  • the collection scheme of the FAD fluorescence signal and the NADH fluorescence signal is consistent with the embodiment scheme of the multimodal signal collection apparatus described above, and will not be repeated here.
  • Embodiments of the laser imaging system of the present application are described below.
  • FIG. 4 is a schematic structural diagram of the laser imaging system of the present application.
  • the laser imaging system of the present application includes: a laser light source, a spectrum adjustment module, and the multi-modal signal acquisition device of any of the above-mentioned embodiments, wherein the multi-modal
  • the state signal acquisition device mainly includes an independent channel acquisition module and a spectral signal processing device.
  • the laser light source is used to generate laser pulses; the spectral adjustment module is used to adjust the spectral range of the laser pulses to obtain laser pulses containing multiple specific wavelength bands, and irradiate the laser pulses on the sample to generate multi-mode with non-overlapping wavelength bands.
  • the signal acquisition device is used to collect the multimodal signals through a plurality of independent spectral signal acquisition channels, and filter out the spectral signals of a specific band for imaging processing; wherein, the independent channel acquisition module collects the multimodal signals and The spectral signal of the corresponding specific wavelength band is filtered out; the spectral signal processing device images and superimposes each spectral signal for output.
  • the spectral adjustment module can also be used to separate spectral signals of various wavelength bands from the laser pulse, and perform spectral adjustment on the wavelength bands of the spectral signals, so that the wavelength bands generated by the laser pulse do not overlap after interacting with the sample.
  • multimodal signal Specifically, a pulse shaper including a liquid crystal spatial light modulator can be used to perform spectral adjustment, and the selection of the wavelength band can be achieved by controlling the spectral intensity or/and the spectral phase of the laser pulse.
  • the spectrum adjustment module when using laser pulses to generate multi-modal signals, is first used to adjust the spectrum of the laser pulses generated by the laser light source, so as to generate laser pulses including one or more specific wavelength bands.
  • the laser pulse of a specific wavelength band is focused on the sample, and the laser pulse generates a multi-modal signal after interacting with the sample. signal, so that the spectral signals in different modes can be collected at the same time, and the collected spectral signals in each mode are effectively separated, so that the molecular or structural information corresponding to the spectral signals of each mode is orthogonal on the image, with good imaging effect.
  • the spectral signals collected by the FAD molecular fluorescence acquisition channel can also be deconvolved and separated through a simple calculation process to separate the FAD fluorescence signal and the NADH fluorescence signal. Spectral signal intensity, remove the interference of NADH fluorescence signal in FAD fluorescence signal, and obtain pure FAD fluorescence signal.
  • the multi-modal signal includes a second harmonic signal with a spectral range of 570 nanometers to 630 nanometers, a third harmonic signal with a spectral range of 343 nanometers to 405 nanometers, and a spectral range of 510 nanometers to 565 nanometers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种多模态信号采集装置及方法、激光影像系统,用于采集激光脉冲照射在样品上产生的多模态信号,装置包括独立通道采集模块和光谱信号处理装置;独立通道采集模块内设有多个独立的光谱信号采集通道,每个光谱信号采集通道分别对应多模态信号中的特定波段的光谱信号;各个光谱信号采集通道分别采集多模态信号,并从多模态信号中滤出对应的特定波段的光谱信号,并将光谱信号发送至光谱信号处理装置;光谱信号处理装置分别接收各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。多模态信号采集装置及方法、激光影像系统对各个模态下采集光谱信号进行了有效分离,提升后续成像系统的成像效果。

Description

多模态信号采集装置及方法、激光影像系统 技术领域
本申请涉及激光技术领域,尤其是一种多模态信号采集装置及方法、激光影像系统。
背景技术
发明人意识到在激光非线性显微技术中,使用特殊光谱的激光光源,如在中国专利申请201710916860.3中,使用激光光源为飞秒激光脉冲,通过光学组件将飞秒激光脉冲照射到样品上,激光信号与样品作用后形成多模态信号,然后通过信号采集装置采集多模态信号,得到多种非线性分子影像模态。
然而在常用技术方案中,多模态信号包含了多种波段的光谱,包括激光脉冲的谐波和荧光信号,当采集装置对这些光谱信号进行采集时,不同波段的光谱信息存在重叠,难以分离;而如果采用每种模态顺序采集的技术方案,则常常会引入校准偏差,影响了成像效果。
发明内容
本申请的目的旨在解决上述的技术缺陷之一,特别是成像校准偏差和影响成像效果的缺陷,提供一种多模态信号采集装置及方法、激光影像系统。
一种多模态信号采集装置,用于采集激光脉冲照射在样品上产生的多模态信号,包括:相互连接的独立通道采集模块和光谱信号处理装置;
所述独立通道采集模块内设有多个独立的光谱信号采集通道,每个光谱信号采集通道分别对应多模态信号中的特定波段的光谱信号;
在将特定波段的激光脉冲照射在样品上产生多模态信号后,各个所述光谱信号采集通道分别采集所述多模态信号,并从所述多模态信号中滤出对应的特定波段的光谱信号,并将该光谱信号发送至所述光谱信号处理装置;
所述光谱信号处理装置分别接收各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。
在一个实施例中,所述独立通道采集模块包括多组并列设置的光学器件,每个光学器件对应一个独立的光谱信号采集通道;其中,所述光学器件包括分光镜或滤镜。
在一个实施例中,所述多模态信号包括:激光脉冲的谐波信号、FAD分子和NADH分子产生的荧光光谱信号;所述光谱信号采集通道分别对应为谐波信号采集通道、FAD信号采集通道和NADH信号采集通道。
在一个实施例中,所述光谱信号处理装置还用于对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,分离FAD荧光信号和NADH荧光信号的光谱信号强度,去除FAD荧光信号中的NADH荧光信号干扰,得到纯净的FAD荧光信号。
在一个实施例中,所述光谱信号处理装置去卷积分离处理包括如下公式:
T FAD=H FAD-a×H NADH
式中,T FAD为FAD信号采集通道中纯净的FAD荧光信号,H FAD为FAD信号采集通道的总信号,a为设定系数,H NADH为NADH信号采集通道的总信号。
一种多模态信号采集方法,用于采集激光脉冲照射在样品上产生的多模态信号,包括:
利用多个独立的光谱信号采集通道分别采集所述多模态信号;
从所述多模态信号中滤出对应的特定波段的光谱信号;其中,每个光谱信号采集通道分别对应多模态信号中的一种特定波段的光谱信号;
分别获取各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。
在一个实施例中,在激光脉冲照射在样品上之前,还包括:
将包含多种不同波段的激光脉冲照射在样品上,使得所述激光脉冲在与所述样品相互作用后产生波段不重叠的多模态信号。
在一个实施例中,所述的多模态信号采集方法还包括:
对激光脉冲进行光谱调节,调节激光脉冲的光谱信号的波段范围,使得激光脉冲在与所述样品相互作用后产生的谐波信号与样品的荧光分子的光谱范围不重叠。
一种激光影像系统,包括:激光光源、光谱调节模块以及上述的多模态信号采集装置;
所述激光光源用于产生激光脉冲;
所述光谱调节模块用于调节所述激光脉冲的光谱范围得到包含多个波段的激光脉冲,并将激光脉冲照射在样品上产生波段不重叠的多模态信号;
所述多模态信号采集装置用于通过独立的多个光谱信号采集通道分别采集所述多模态信号,并滤出特定波段的光谱信号进行成像处理;
其中,所述多模态信号采集装置,还用于采集激光脉冲照射在样品上产生的多模态信号,包括:相互连接的独立通道采集模块和光谱信号处理装置;
所述独立通道采集模块内设有多个独立的光谱信号采集通道,每个光谱信号采集通道分别对应多模态信号中的特定波段的光谱信号;
在将特定波段的激光脉冲照射在样品上产生多模态信号后,各个所述光谱信号采集通道分别采集所述多模态信号,并从所述多模态信号中滤出对应的特定波段的光谱信号,并将该光谱信号发送至所述光谱信号处理装置;
所述光谱信号处理装置分别接收各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。
在一个实施例中,所述光谱调节模块还用于从所述激光脉冲中分离出各种波段的光谱信号,对所述光谱信号的波段进行光谱调节,使得所述激光脉冲在与所述样品相互作用后产生波段不重叠的多模态信号。
上述多模态信号采集装置及方法、激光影像系统的技术方案,通过控制激光光源将特定波段的激光脉冲照射在样品上产生包含多种不同波段的多模态信号,设置了对应的独立光谱通道采集这些多模态信号,使得不同模态下的光谱信号能够被同时采集,对各个模态下采集光谱信号进行了有效分离,避免了成像中的校准偏差,使得各个模态光谱信号所对应的分子或结构信息在图像上处于正交,提升后续成像系统的成像效果。
另外,在使用激光脉冲之前,通过对激光光源输出的激光脉冲进行光谱调节,生成多种不同波段的光谱信号,确保激光脉冲的波段范围使得激光脉冲在与所述样品相互作用后产生的谐波信号与样品的荧光分子的光谱范围不重叠;平衡了激发激光脉冲的光谱信号,在实现了有效和高效积分荧光分子 产生荧光信号基础上,保证了各种模态下光谱信号的有效分离。
再者,对于FAD和NADH,利用FAD信号采集通道和NADH信号采集通道采集FAD荧光信号和NADH荧光信号,对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,通过简单运算方式即可去除FAD荧光信号中的NADH荧光信号干扰得到纯净的FAD荧光信号;提高了采集信号处理速度,提升了成像效率。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一实施例所提供的多模态信号采集装置结构示意图;
图2是本申请一实施例所提供的独立通道采集模块结构示意图;
图3是本申请一实施例所提供的多模态信号采集方法流程图;
图4是本申请一实施例所提供的激光影像系统结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作。
参考图1,图1是本申请的多模态信号采集装置结构示意图;该多模态信号采集装置,用于采集激光脉冲照射在样品上产生的多模态信号,如利用飞秒激光脉冲来对样品检测场景中,主要包括:相互连接的独立通道采集模 块和光谱信号处理装置。如图1中,在该采集场景中,由激光光源产生飞秒激光脉冲,飞秒激光脉冲通过相应的光学器件导出,照射在样品平台上的样品上,该飞秒激光脉冲与样品的分子相互作用,产生波段不重叠或者部分重叠多模态信号;一般情况下,多模态信号包括谐波和特定分子的荧光信号,谐波可以分为二次谐波、三次谐波甚至四次谐波以上,各个通道的谐波波段不重叠,对于特定分子的荧光信号,由于分子特性可能存在部分重叠。
通过独立通道采集模块来采集这些多模态信号,对于独立通道采集模块,其内设有多个独立的光谱信号采集通道,如图1中通道1-N,N≥2,每个光谱信号采集通道分别对应多模态信号中的特定波段的光谱信号。
在工作过程中,激光光源将包含多种特定波段的激光脉冲照射在样品上,激光脉冲与样品相互作用,产生包含多种不同波段的多模态信号,各个光谱信号采集通道分别采集多模态信号,并从多模态信号中滤出对应的特定波段的光谱信号,并将该光谱信号发送至光谱信号处理装置;光谱信号处理装置分别接收各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。
上述实施例的方案,通过控制激光光源将特定波段的激光脉冲照射在样品上产生包含多种不同波段的多模态信号,设置了对应的独立光谱通道采集这些多模态信号,使得不同模态下的光谱信号能够被同时采集,对各个模态下采集光谱信号进行了有效分离,使得各个模态光谱信号所对应的分子或结构信息在图像上处于正交,提升后续成像系统的成像效果。
下面结合附图阐述本申请技术方案更多实施例。
在一个实施例中,参考图2,图2是独立通道采集模块结构示意图,该独立通道采集模块包括多组并列设置的光学器件,每个光学器件对应一个独立的光谱信号采集通道;其中,所述光学器件包括分光镜或滤镜。
具体的,每个独立通道设置一个光学器件进行光谱信号,如分光镜、滤镜等,每个光学器件都是滤出特定波段的光谱信号,滤除其他波段光谱信号;如图2中,设置了5组并列的分光镜1-5,对应为5个采集通道,可以独立采集5个不重叠波段的光谱信号。
在一个实施例中,本申请还设计了针对于FAD(Flavin adenine dinucleotide,黄素腺嘌呤二核苷酸)信号和NADH(Nicotinamide adenine dinucleotide,尼克酰胺腺嘌呤二核苷酸)信号的采集方案。常用观察FAD和NADH分子都是采用不同光学过程,如分别采用双光子和三光子荧光物理过程激发后采集信号,本申请采用相同的物理过程,避免中间过程的偏差和变量,因此可以在此基础上,提供一种根据信号比例关系对采集的光谱信号进行去卷积分离,从算法上分离FAD和NADH的光谱信号强度。
具体的,由于非线性光谱信号的波段,一部分与组织分子自身特性相关,比如自体荧光分子发出的荧光波段与荧光分子自身的分子式和结构相关,而另一部分是与激发的激光光源的波段相关,比如与激光脉冲的谐波信号,其波段与激光脉冲波段成倍数关系。
如上所述,本申请的多模态信号可以包括:
本实施例中,多模态信号可以包括激光脉冲的谐波信号、FAD分子和NADH分子产生的荧光光谱信号等。对应的,光谱信号采集通道分别对应为谐波信号(二次谐波、三次谐波甚至四次谐波以上)采集通道、FAD信号采集通道和NADH信号采集通道。对于不重叠的谐波信号通过独立的通道采集,对于存在部分重叠的FAD和NADH荧光信号,通过其他方式进行处理。
具体的,和细胞能量代谢直接相关的辅酶分子,可能具有重大的临床意义,实际采集方案中,通过独立的采集通道能够避免了各个通道的光谱信号之间的相互影响,而由于分子自身特性影响,FAD分子和NADH分子的荧光光谱具有部分重合,但FAD信号和NADH信号具体采集的波段是已知的,因此在已知波段中两者的光学信号存在函数关系,据此,通过对FAD分子和NADH分子对应的采集通道的光谱信号进行分离处理,以避免相互之间影响。
基于对FAD荧光信号和NADH荧光信号的研究,在NADH采集通道内不存在FAD荧光信号;而在FAD采集通道内则存在NADH荧光信号,因此需要对FAD采集通道内的光谱信号进行分离,以从FAD信号中排除NADH荧光信号的干扰。
基于此,光谱信号处理装置通过相应算法,对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,分离FAD荧光信号和NADH荧光信号 的光谱信号强度,去除FAD荧光信号中的NADH荧光信号干扰,得到纯净的FAD荧光信号。
具体的,光谱信号处理装置去卷积分离处理可以包括如下公式:
T FAD=H FAD-a×H NADH
式中,T FAD为FAD信号采集通道中纯净的FAD荧光信号,H FAD为FAD信号采集通道的总信号,a为设定系数,H NADH为NADH信号采集通道的总信号。
在前述通过对激光脉冲的不同波段的光谱信号进行调节,基本上可以避免各个采集通道的光谱信号之间相互影响,但由于荧光光谱是由分子本身特性决定的,经过检测FAD和NADH这两种分子的荧光光谱仍然存在部分重合。
而且在选择的NADH的采集通道光谱范围内,没有FAD的荧光信号,但在FAD采集通道的光谱范围内,存在NADH的荧光信号的干扰。本申请的技术方案,通过对FAD采集通道里的采集的光谱信号进行去卷积分离,从算法上分离FAD和NADH的光谱信号强度。
本申请的方案,利用了实测中NADH采集通道和FAD采集通道中的NADH信号存在的比例关系。通过前述对光谱信号的波段调节,在保证FAD采集通道中采集的FAD信号和NADH信号都和激光峰值功率的n(n≥2)次方成正比的情况下,可以确保FAD信号和NADH信号有加和意义,即可通过上述计算公式将FAD通道中的FAD和NADH混合信号去卷积,分离出纯净的FAD信号。
下面阐述本申请的多模态信号采集方法的实施例。
参考图3所示,图3是本申请的多模态信号采集方法流程图,用于采集激光脉冲照射在样品上产生的多模态信号,主要包括如下步骤:
S101,利用多个独立的光谱信号采集通道分别采集所述多模态信号;
S102,从所述多模态信号中滤出对应的特定波段的光谱信号;其中,每个光谱信号采集通道分别对应多模态信号中的一种特定波段的光谱信号;
S103,分别获取各个光谱信号采集通道采集的光谱信号,并分别将各个 光谱信号进行成像及叠加输出。
上述实施例的方案,通过控制激光光源将特定波段的激光脉冲照射在样品上产生包含多种不同波段且波段不重叠或者部分重叠的多模态信号,设置了对应的独立光谱通道采集这些多模态信号,使得不同模态下的光谱信号能够被同时采集,对各个模态下采集光谱信号进行了有效分离,避免了成像中的校准偏差,使得各个模态光谱信号所对应的分子或结构信息在图像上处于正交,提升后续成像系统的成像效果。
在一个实施例中,在激光脉冲照射时,可以将包含多种不同波段的激光脉冲照射在样品上产生多模态信号。进一步的,对于激光脉冲产生过程中,在激光脉冲照射在样品上之前,可以对激光光源输出的激光脉冲进行光谱调节,以产生包含多种不同波段的光谱信号;调节激光脉冲的波段范围,使得激光脉冲在与所述样品相互作用后产生的谐波信号与样品的荧光分子的光谱范围不重叠。
进一步的,多模态信号采集方法还可以通过相应算法,对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,分离FAD荧光信号和NADH荧光信号的光谱信号强度,去除FAD荧光信号中的NADH荧光信号干扰,得到纯净的FAD荧光信号。
具体的,光谱信号处理装置去卷积分离处理可以包括如下公式:
T FAD=H FAD-a×H NADH
式中,T FAD为FAD信号采集通道中纯净的FAD荧光信号,H FAD为FAD信号采集通道的总信号,a为设定系数,H NADH为NADH信号采集通道的总信号。
对于FAD荧光信号和NADH荧光信号的采集方案,与前述的多模态信号采集装置实施例方案一致,在此不再赘述。
下面阐述本申请激光影像系统的实施例。
参考图4,图4是本申请的激光影像系统结构示意图,本申请的激光影像系统,包括:激光光源、光谱调节模块以及上述任意实施例的多模态信号采集装置,其中,所述多模态信号采集装置主要包括独立通道采集模块和光 谱信号处理装置。
系统工作中,激光光源用于产生激光脉冲;光谱调节模块用于调节所述激光脉冲的光谱范围得到包含多个特定波段的激光脉冲,并将激光脉冲照射在样品上产生波段不重叠的多模态信号;信号采集装置用于通过独立的多个光谱信号采集通道分别采集所述多模态信号,并滤出特定波段的光谱信号进行成像处理;其中,独立通道采集模块采集多模态信号并从中滤出对应的特定波段的光谱信号;光谱信号处理装置将各个光谱信号进行成像及叠加输出。
对于光谱调节模块,还可以用于从激光脉冲中分离出各种波段的光谱信号,对所述光谱信号的波段进行光谱调节,使得所述激光脉冲在与所述样品相互作用后产生波段不重叠的多模态信号。具体的,可以利用包含液晶空间光调制器的脉冲整形器来进行光谱调节,通过控制激光脉冲的光谱强度或/和光谱相位,来实现对波段的选择。
本实施例的技术方案,在应用激光脉冲来产生多模态信号时,首先利用光谱调节模块对激光光源产生的激光脉冲进行光谱调节,生成包含1个或多个特定波段的激光脉冲,将这些特定波段的激光脉冲聚焦在样品上,激光脉冲在与所述样品相互作用后产生多模态信号,然后在采集多模态信号时,利用独立的多个光谱信号采集通道来采集相应波段的光谱信号,使得不同模态下的光谱信号能够被同时采集,对各个模态下采集光谱信号进行了有效分离,使得各个模态光谱信号所对应的分子或结构信息在图像上处于正交,具有良好的成像效果。
另外,通过利用本申请前述实施例提供的多模态信号采集装置,还可以通过简单计算过程对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,分离FAD荧光信号和NADH荧光信号的光谱信号强度,去除FAD荧光信号中的NADH荧光信号干扰,得到纯净的FAD荧光信号。
本申请提供的激光影像系统,多模态信号包括光谱范围为570纳米至630纳米的二次谐波信号、光谱范围为343纳米至405纳米的三次谐波信号、光谱范围为510纳米至565纳米的荧光光谱信号、光谱范围为410纳米至490纳米的荧光光谱信号以及光谱范围为640纳米至723纳米的非线性拉曼信号。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语 (包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (14)

  1. 一种多模态信号采集装置,用于采集激光脉冲照射在样品上产生的多模态信号,包括:相互连接的独立通道采集模块和光谱信号处理装置;
    所述独立通道采集模块内设有多个独立的光谱信号采集通道,每个光谱信号采集通道分别对应多模态信号中的特定波段的光谱信号;
    在将特定波段的激光脉冲照射在样品上产生多模态信号后,各个所述光谱信号采集通道分别采集所述多模态信号,并从所述多模态信号中滤出对应的特定波段的光谱信号,并将该光谱信号发送至所述光谱信号处理装置;
    所述光谱信号处理装置分别接收各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。
  2. 根据权利要求1所述的多模态信号采集装置,所述独立通道采集模块包括多组并列设置的光学器件,每个光学器件对应一个独立的光谱信号采集通道;其中,所述光学器件包括分光镜或滤镜。
  3. 根据权利要求1所述的多模态信号采集装置,所述多模态信号包括:激光脉冲的谐波信号、FAD分子和NADH分子产生的荧光光谱信号;所述光谱信号采集通道分别对应为谐波信号采集通道、FAD信号采集通道和NADH信号采集通道。
  4. 根据权利要求3所述的多模态信号采集装置,所述光谱信号处理装置还用于对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,分离FAD荧光信号和NADH荧光信号的光谱信号强度,去除FAD荧光信号中的NADH荧光信号干扰,得到纯净的FAD荧光信号。
  5. 根据权利要求4所述的多模态信号采集装置,所述光谱信号处理装置去卷积分离处理包括如下公式:
    T FAD=H FAD-a×H NADH
    式中,T FAD为FAD信号采集通道中纯净的FAD荧光信号,H FAD为FAD信号采集通道的总信号,a为设定系数,H NADH为NADH信号采集通道的总信号。
  6. 一种多模态信号采集方法,用于采集激光脉冲照射在样品上产生的多 模态信号,包括:
    利用多个独立的光谱信号采集通道分别采集所述多模态信号;
    从所述多模态信号中滤出对应的特定波段的光谱信号;其中,每个光谱信号采集通道分别对应多模态信号中的一种特定波段的光谱信号;
    分别获取各个光谱信号采集通道采集的光谱信号,并分别将各个光谱信号进行成像及叠加输出。
  7. 根据权利要求6所述的多模态信号采集方法,在激光脉冲照射在样品上之前,还包括:
    将包含多种不同波段的激光脉冲照射在样品上,使得所述激光脉冲在与所述样品相互作用后产生波段不重叠的多模态信号。
  8. 根据权利要求7所述的多模态信号采集方法,还包括:
    对激光脉冲进行光谱调节,调节激光脉冲的光谱信号的波段范围,使得激光脉冲在与所述样品相互作用后产生的谐波信号与样品的荧光分子的光谱范围不重叠。
  9. 一种激光影像系统,包括:激光光源、光谱调节模块以及多模态信号采集装置;
    所述激光光源用于产生激光脉冲;
    所述光谱调节模块用于调节所述激光脉冲的光谱范围得到包含多个波段的激光脉冲,并将激光脉冲照射在样品上产生波段不重叠的多模态信号;
    所述多模态信号采集装置用于通过独立的多个光谱信号采集通道分别采集所述多模态信号,并滤出特定波段的光谱信号进行成像处理;
    其中,所述多模态信号采集装置,还用于采集激光脉冲照射在样品上产生的多模态信号,包括:相互连接的独立通道采集模块和光谱信号处理装置;
    所述独立通道采集模块内设有多个独立的光谱信号采集通道,每个光谱信号采集通道分别对应多模态信号中的特定波段的光谱信号;
    在将特定波段的激光脉冲照射在样品上产生多模态信号后,各个所述光谱信号采集通道分别采集所述多模态信号,并从所述多模态信号中滤出对应的特定波段的光谱信号,并将该光谱信号发送至所述光谱信号处理装置;
    所述光谱信号处理装置分别接收各个光谱信号采集通道采集的光谱信 号,并分别将各个光谱信号进行成像及叠加输出。
  10. 根据权利要求9所述的激光影像系统,所述独立通道采集模块包括多组并列设置的光学器件,每个光学器件对应一个独立的光谱信号采集通道;其中,所述光学器件包括分光镜或滤镜。
  11. 根据权利要求9所述的激光影像系统,所述多模态信号包括:激光脉冲的谐波信号、FAD分子和NADH分子产生的荧光光谱信号;所述光谱信号采集通道分别对应为谐波信号采集通道、FAD信号采集通道和NADH信号采集通道。
  12. 根据权利要求11所述的激光影像系统,所述光谱信号处理装置还用于对FAD分子荧光采集通道采集的光谱信号进行去卷积分离处理,分离FAD荧光信号和NADH荧光信号的光谱信号强度,去除FAD荧光信号中的NADH荧光信号干扰,得到纯净的FAD荧光信号。
  13. 根据权利要求12所述的激光影像系统,所述光谱信号处理装置去卷积分离处理包括如下公式:
    T FAD=H FAD-a×H NADH
    式中,T FAD为FAD信号采集通道中纯净的FAD荧光信号,H FAD为FAD信号采集通道的总信号,a为设定系数,H NADH为NADH信号采集通道的总信号。
  14. 根据权利要求9-13任一项所述的激光影像系统,所述光谱调节模块还用于从所述激光脉冲中分离出各种波段的光谱信号,对所述光谱信号的波段进行光谱调节,使得所述激光脉冲在与所述样品相互作用后产生波段不重叠的多模态信号。
PCT/CN2021/117247 2020-09-16 2021-09-08 多模态信号采集装置及方法、激光影像系统 WO2022057711A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022570364A JP2023540157A (ja) 2020-09-16 2021-09-08 マルチモード信号収集装置及び方法、レーザー画像システム
EP21868536.0A EP4198493A4 (en) 2020-09-16 2021-09-08 DEVICE AND METHOD FOR DETECTING MULTIMODAL SIGNALS AND LASER IMAGE SYSTEM
US18/026,135 US20230288334A1 (en) 2020-09-16 2021-09-08 Multimodal signal acquisition device and method, and laser image system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010977384.8 2020-09-16
CN202010977384.8A CN112129702B (zh) 2020-09-16 2020-09-16 多模态信号采集装置及方法、激光影像系统

Publications (1)

Publication Number Publication Date
WO2022057711A1 true WO2022057711A1 (zh) 2022-03-24

Family

ID=73845974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117247 WO2022057711A1 (zh) 2020-09-16 2021-09-08 多模态信号采集装置及方法、激光影像系统

Country Status (5)

Country Link
US (1) US20230288334A1 (zh)
EP (1) EP4198493A4 (zh)
JP (1) JP2023540157A (zh)
CN (1) CN112129702B (zh)
WO (1) WO2022057711A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112129702B (zh) * 2020-09-16 2022-08-26 飞秒激光研究中心(广州)有限公司 多模态信号采集装置及方法、激光影像系统
CN114330488A (zh) * 2021-11-19 2022-04-12 浪潮(北京)电子信息产业有限公司 一种多模态数据处理方法、装置、设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254091A (zh) * 2007-02-28 2008-09-03 深圳大学 用二次谐波和双光子激发荧光实现高空间分辨视网膜成像的方法
CN101504370A (zh) * 2009-03-17 2009-08-12 福建师范大学 对细胞和细胞外间质成分进行同时无损探测的装置
CN101650299A (zh) * 2009-09-19 2010-02-17 福建师范大学 高对比度、高分辨率非线性光谱成像探测装置
US20110284639A1 (en) * 2007-04-02 2011-11-24 Fio Corporation System and method of deconvolving multiplexed fluorescence spectral signals generated by quantum dot optical coding technology
CN102621121A (zh) * 2012-04-24 2012-08-01 福建师范大学 生物组织内源性成分的多模式多光子显微成像装置
CN104614353A (zh) * 2015-01-28 2015-05-13 中国科学院半导体研究所 基于双通道的多光谱荧光成像显微系统和方法
CN105877711A (zh) * 2016-04-26 2016-08-24 中国科学院苏州生物医学工程技术研究所 一种皮肤疾病多模态成像检测系统
US20190167116A1 (en) * 2017-11-15 2019-06-06 Yu Chen Optical redox imaging systems and methods
CN112129702A (zh) * 2020-09-16 2020-12-25 飞秒激光研究中心(广州)有限公司 多模态信号采集装置及方法、激光影像系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946093A (en) * 1998-08-19 1999-08-31 Met One, Inc. Particle detection system and method employing an upconversion laser
US10222335B2 (en) * 2010-10-27 2019-03-05 The Regents Of The University Of California Phasor method to fluorescence lifetime microscopy to discriminate metabolic state of cells in living tissue
WO2015161045A1 (en) * 2014-04-16 2015-10-22 President And Fellows Of Harvard College Non-linear imaging systems and methods for assisted reproductive technologies
WO2016118557A1 (en) * 2015-01-20 2016-07-28 President And Fellows Of Harvard College Assessing metabolic condition of sperm
JP7266519B2 (ja) * 2016-04-01 2023-04-28 ブラック ライト サージカル, インコーポレイテッド 時間分解蛍光分光法のためのシステム、デバイス、および方法
CN107462336B (zh) * 2017-09-30 2019-01-22 飞秒激光研究中心(广州)有限公司 一种飞秒激光多模态分子影像系统
CN210055952U (zh) * 2019-01-31 2020-02-14 北京超维景生物科技有限公司 可变焦腔体内窥镜探测装置及激光扫描腔体内窥镜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254091A (zh) * 2007-02-28 2008-09-03 深圳大学 用二次谐波和双光子激发荧光实现高空间分辨视网膜成像的方法
US20110284639A1 (en) * 2007-04-02 2011-11-24 Fio Corporation System and method of deconvolving multiplexed fluorescence spectral signals generated by quantum dot optical coding technology
CN101504370A (zh) * 2009-03-17 2009-08-12 福建师范大学 对细胞和细胞外间质成分进行同时无损探测的装置
CN101650299A (zh) * 2009-09-19 2010-02-17 福建师范大学 高对比度、高分辨率非线性光谱成像探测装置
CN102621121A (zh) * 2012-04-24 2012-08-01 福建师范大学 生物组织内源性成分的多模式多光子显微成像装置
CN104614353A (zh) * 2015-01-28 2015-05-13 中国科学院半导体研究所 基于双通道的多光谱荧光成像显微系统和方法
CN105877711A (zh) * 2016-04-26 2016-08-24 中国科学院苏州生物医学工程技术研究所 一种皮肤疾病多模态成像检测系统
US20190167116A1 (en) * 2017-11-15 2019-06-06 Yu Chen Optical redox imaging systems and methods
CN112129702A (zh) * 2020-09-16 2020-12-25 飞秒激光研究中心(广州)有限公司 多模态信号采集装置及方法、激光影像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU, WENYAN: "Label-free Nonlinear Optical Microscopic Imaging of Fresh Pancreatic Tissues", MEDICINE & PUBLIC HEALTH, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 December 2014 (2014-12-15), pages 1 - 112, XP055912265 *

Also Published As

Publication number Publication date
CN112129702A (zh) 2020-12-25
JP2023540157A (ja) 2023-09-22
US20230288334A1 (en) 2023-09-14
EP4198493A4 (en) 2023-08-23
EP4198493A1 (en) 2023-06-21
CN112129702B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2022057711A1 (zh) 多模态信号采集装置及方法、激光影像系统
JP7117794B2 (ja) フェムト秒レーザーマルチモーダル分子イメージングシステム
US6650357B1 (en) Color translating UV microscope
EP0978008B1 (en) Color translating uv microscope
US8994932B2 (en) Multimodal platform for nonlinear optical microscopy and microspectroscopy
EP1766348A2 (en) Method and apparatus for dark field chemical imaging
JP6075963B2 (ja) 蛍光観察方法及び蛍光観察装置
WO2010095263A1 (ja) レーザ顕微鏡
Zhou et al. Multispectral fluorescence lifetime imaging device with a silicon avalanche photodetector
CN215866392U (zh) 一种超分辨荧光高光谱显微成像系统
DE102011055639B4 (de) Verfahren und Vorrichtung zur simultanen Multikanal- und Multimethoden-Akquisition von synchronisierten Parametern in systemübergreifenden Fluoreszenzlebensdaueranwendungen
CN212514263U (zh) 高光谱成像显微镜
CN117705773A (zh) 模块化多模态显微光学分析系统
US11307094B2 (en) System and method for hyperspectral imaging in highly scattering media by the spectral phasor approach using two filters
EP1403675B1 (en) Colour translating UV microscope
JP2014170105A (ja) 顕微鏡装置
CN114354552A (zh) 一种同步的环形光束三维结构和分子成像系统及方法
JP2016525673A (ja) 高速のイメージングモダリティによって分光法でトラッキングするための装置
CN106950686A (zh) 一种近红外荧光倒置显微镜系统及其应用
CN112393801A (zh) 一种单光束近简并四波混频显微镜装置及方法
WO2023276219A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
WO2011068479A1 (en) Fluorescence excitation-emission matrices (eem) spectroscopy system and method
Kano et al. Coherent raman imaging of human living cells using a supercontinuum light source
CN118169089A (zh) 一种超分辨成像系统及方法
KR101867711B1 (ko) 생체조직 영상화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570364

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021868536

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE