WO2022057330A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2022057330A1
WO2022057330A1 PCT/CN2021/099095 CN2021099095W WO2022057330A1 WO 2022057330 A1 WO2022057330 A1 WO 2022057330A1 CN 2021099095 W CN2021099095 W CN 2021099095W WO 2022057330 A1 WO2022057330 A1 WO 2022057330A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
display area
pixels
display panel
Prior art date
Application number
PCT/CN2021/099095
Other languages
English (en)
French (fr)
Inventor
辛征航
刘如胜
曲德舜
单奇
张萌
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2022057330A1 publication Critical patent/WO2022057330A1/zh
Priority to US17/986,335 priority Critical patent/US20230075241A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device.
  • the display panel can be divided into a main screen area and a sub-screen area, and the sub-screen area can not only place the photosensitive element under the screen, but also satisfy the display function.
  • the sub-screen area still retains the film structure such as light-emitting devices and traces, the under-screen photosensitive element will cause diffraction problems when shooting through the sub-screen area, resulting in a decrease in image quality.
  • Embodiments of the present application provide a display panel and a display device, which can reduce the diffraction problem of under-screen shooting and improve imaging quality.
  • an embodiment of the present application provides a display panel, which has a first display area, the first display area is a light-transmitting display area, the first display area includes a first sub-display area and a second sub-display area, and the display panel includes : array substrate; light-emitting functional layer, located on one side of the array substrate, the light-emitting functional layer includes a first sub-pixel and a second sub-pixel, a plurality of first sub-pixels are located in the first sub-display area, and a plurality of second sub-pixels are located in the first sub-pixel Two sub-display areas; wherein, the orthographic shapes of the second sub-pixels on the array substrate are the same, at least part of the first sub-pixels are target sub-pixels, and the orthographic shapes of the target sub-pixels and the second sub-pixels on the array substrate are the same , and both have a first center line and a second center line perpendicular to each other, and the first center line
  • an embodiment of the present application provides a display device, including a photosensitive component and the display panel according to any embodiment of the first aspect, wherein the first sub-display area and the second sub-display area each correspond to a photosensitive member components.
  • the first sub-pixels in the first sub-display area are target sub-pixels, and the shape formed by the orthographic projection of each second sub-pixel in the second sub-display area on the array substrate.
  • the orthographic shapes of the target sub-pixel and the second sub-pixel on the array substrate are the same, and both have a first center line and a second center line that are perpendicular to each other, and the first center line of the orthographic shape of the target sub-pixel is the same as the first center line and the second center line.
  • the first centerlines of the orthographic shapes of the two subpixels intersect.
  • the slit formed between the target sub-pixels intersects with the slit formed between the second sub-pixels, so that the first diffraction spot generated by the light passing through the first sub-display area and the light passing through the second sub-display area
  • the resulting second diffracted spots intersect. Therefore, the initial images can be acquired through the first sub-display area and the second sub-display area respectively.
  • the positions of the diffraction light spots in the two initial images are different, so that it is possible to further
  • the two initial images are compared and synthesized, and the image information of the position of the diffraction spot in one initial image is replaced with the image information of the non-diffraction spot or the weaker diffraction spot at the corresponding position in the other initial image.
  • the intersection of the light spots can reduce or disappear the diffracted light spots in the synthesized image. Therefore, the present application can reduce the diffraction problem of under-screen shooting and improve the imaging quality.
  • FIG. 1 shows a schematic structural diagram of a display panel according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a display panel according to another embodiment of the present application
  • FIG. 3 shows a schematic top view of the Q1 region in FIG. 2 in an example
  • FIG. 4 shows a schematic top view of the Q1 region in FIG. 2 of another example
  • FIG. 5 shows a schematic top view of the Q1 region in FIG. 2 in yet another example
  • FIG. 6 shows a schematic top view of the Q1 region in FIG. 2 in yet another example
  • FIG. 7 shows a schematic top view of the Q1 region in FIG. 2 in yet another example
  • FIG. 8 shows a schematic top view of the Q2 region in FIG. 2 in yet another example
  • FIG. 9 shows a schematic top view of the W region in an example of FIG. 1;
  • FIG. 10 shows a schematic cross-sectional view along the A-A direction in FIG. 9 of an example
  • FIG. 11 shows a schematic top view of a display device according to an embodiment of the present application.
  • FIG. 12 shows a schematic cross-sectional view taken along the line B-B in FIG. 11 .
  • Embodiments of the present application provide a display panel and a display device, and each embodiment of the display panel and the display device will be described below with reference to the accompanying drawings.
  • an embodiment of the present application provides a display panel, which may be an organic light emitting diode (Organic Light Emitting Diode, OLED) display panel.
  • OLED Organic Light Emitting Diode
  • the display panel 100 has a first display area AA1.
  • the first display area AA1 is a light-transmitting display area.
  • the display areas of the display panel 100 may all be the first display area AA1, that is, the display panel 100 may be a light-transmitting display panel.
  • the light transmittance of the first display area AA1 is greater than or equal to 15%.
  • the light transmittance of the functional film layer of the display panel 100 in the embodiment of the present application may be greater than 50%, Even at least part of the functional film layer may have a light transmittance greater than 90%.
  • the first display area AA1 is a light-transmitting display area, so that the display panel 100 can integrate a photosensitive component on the back of the first display area AA1, so as to realize under-screen integration of a photosensitive component such as a camera, and at the same time
  • the first display area AA1 is capable of displaying images, increasing the display area of the display panel 100 and realizing a full-screen design of the display device.
  • the first display area AA1 includes a first sub-display area AA11 and a second sub-display area AA12.
  • the light transmittances of the first sub-display area AA11 and the second sub-display area AA12 may be the same.
  • the first sub-display area AA11 and the second sub-display area AA12 may be distributed along the first direction X.
  • the first sub-display area AA11 and the second sub-display area AA12 may also be distributed along the second direction Y.
  • the first direction X and the second direction Y intersect.
  • the first direction X and the second direction Y are perpendicular.
  • the first direction X may be the row direction of the display panel
  • the second direction Y may be the column direction of the display panel, wherein the row direction and the column direction may be interchanged.
  • the display panel 100 includes an array substrate 01 and a light-emitting functional layer 02 on one side of the array substrate 01 .
  • the array substrate 01 includes a first signal line 10 and a second signal line 20 .
  • the light-emitting functional layer 02 includes a first sub-pixel 110 and a second sub-pixel 210 .
  • the plurality of first sub-pixels 110 are located in the first sub-display area AA11, and the plurality of second sub-pixels 210 are located in the second sub-display area AA12.
  • the first sub-display area AA11 includes first sub-pixels 110 of at least three colors
  • the second sub-display area AA12 includes second sub-pixels 210 of at least three colors.
  • sub-pixels of the same color are represented by the same filling pattern, and it is shown that the first sub-display area AA11 includes red first sub-pixels 110R, green first sub-pixels 110G and blue first sub-pixels 110B
  • the second sub-display area AA12 includes a red second sub-pixel 210R, a green second sub-pixel 210G and a blue second sub-pixel 210B.
  • the color types of the sub-pixels included in the first sub-display area AA11 and the second sub-display area AA12 can be adjusted according to the design requirements of the display panel 100, and thus are not limited to the examples of the above embodiments.
  • the arrangement of the sub-pixels in the first sub-display area AA11 and the second sub-display area AA12 is not limited to the examples in the drawings of the present application.
  • At least a part of the plurality of first sub-pixels 110 in the first sub-display area AA11 is the target sub-pixel 110T.
  • the shape formed by the orthographic projection of each second sub-pixel 210 on the array substrate 01 is the same.
  • the shape formed by the orthographic projection of the target sub-pixel 110T and the second sub-pixel 210 on the array substrate 01 is the same.
  • the orthographic shapes of the target sub-pixel 110T and the second sub-pixel 210 on the array substrate 01 are all rectangles, ellipses, triangles, irregular polygons, and the like.
  • the shape of the orthographic projection of the other first sub-pixels 110 except the target sub-pixel 110T on the array substrate 01 in the first sub-display area AA11 may be the same as the shape of the orthographic projection of the second sub-pixel 210 on the array substrate 01, It may also be different, which is not limited in this application.
  • the orthographic shape of the target sub-pixel 110T on the array substrate 01 has a center point O1 , and has a first center line S11 and a second center line S12 perpendicular to each other passing through the center point O1 .
  • the orthographic shape of the second sub-pixel 210 on the array substrate 01 has a center point O2, and has a first center line S21 and a second center line S22 that are perpendicular to each other through the center point O2.
  • first center line S11 and the second center line S12 pass through the center point O1 of the orthographic shape of the target sub-pixel 110T on the array substrate 01 and are perpendicular to each other, and the orthographic shape of the target sub-pixel 110T can be related to
  • the first centerline S11 or the second centerline S12 may be symmetrical or asymmetrical, which is not limited in this application.
  • the positions of the first center line S11 of the orthographic shape of the target sub-pixel 110T and the first center line S21 of the orthographic shape of the second sub-pixel 210 are the same on the orthographic shape.
  • the positions of the second center line S12 of the orthographic shape of the target sub-pixel 110T and the second center line S22 of the orthographic shape of the second sub-pixel 210 on the orthographic shape are also the same.
  • the first center lines S11 and S21 may be perpendicular to the two short sides of the rectangle and pass through the center of the rectangle
  • the second center line S12 and S22 may be a line perpendicular to the two long sides of the rectangle and passing through the center point of the rectangle.
  • the first center lines S11 and S21 may be the elliptical shape
  • the long axis, the second center line S12, S22 may be the short axis of the ellipse.
  • the first center line S11 of the orthographic shape of the target sub-pixel 110T intersects the first center line S21 of the orthographic shape of the second sub-pixel 210 . It can be understood that the second center line S12 of the orthographic shape of the target sub-pixel 110T also intersects with the second center line S22 of the orthographic shape of the second sub-pixel 210 .
  • the first center line S21 of the orthographic shape of the second sub-pixel 210 extends along the second direction Y
  • the second center line S22 of the orthographic shape of the second sub-pixel 210 is along the first The direction X extends
  • the first direction X is perpendicular to the second direction Y.
  • the first center line S11 of the orthographic shape of the target sub-pixel 110T intersects the first direction X and the second direction Y
  • the second center line S12 of the orthographic shape of the target sub-pixel 110T also intersects the first direction X and the second direction Y.
  • the directions Y all intersect.
  • the placement angles of the orthographic shapes of the target sub-pixel 110T and the second sub-pixel 210 on the array substrate 01 are different. That is, the target sub-pixel 110T is rotated relative to the second sub-pixel 210 by a certain angle.
  • the first center line S11 of the orthographic shape of the target sub-pixel 110T is set to intersect with the first center line S21 of the orthographic shape of the second sub-pixel 210 , that is, the structure formed between the target sub-pixels 110T
  • the slit intersects with the slit formed between the second sub-pixels 210 , so that the first diffraction spot generated by the light passing through the slit between the target sub-pixels 110T and the light passing through the slit between the second sub-pixels 210
  • the generated second diffracted light spots intersect, that is, the first diffracted light spots generated by the light passing through the first sub-display area intersect with the second diffracted light spots generated by the light passing through the second sub-display area.
  • the first sub-display area AA11 and the second sub-display area AA12 produce two different diffraction situations, that is to say, there is a difference between the diffraction spots produced by the first sub-display area AA11 and the second sub-display area AA12.
  • the initial images can be obtained through the first sub-display area AA11 and the second sub-display area AA12 respectively.
  • the positions of the diffraction light spots in the two initial images are different, so that it is possible to further
  • the two initial images are compared and synthesized, and the image information of the position of the diffraction spot in one initial image is replaced with the image information of the non-diffraction spot or the weaker diffraction spot at the corresponding position in the other initial image.
  • the intersection can reduce or disappear the diffracted light spots in the combined image. Therefore, the present application can reduce the diffraction problem of under-screen shooting and improve the imaging quality.
  • the first center line S11 of the orthographic shape of the target sub-pixel 110T intersects with the first center line S21 of the orthographic shape of the second sub-pixel 210
  • the angle should be within the preset angle range.
  • the preset angle range may be 30 degrees to 150 degrees.
  • the angle formed by the intersection of the first center line S11 of the orthographic shape of the target sub-pixel 110T and the first center line S21 of the orthographic shape of the second sub-pixel 210 is 30 degrees, 45 degrees, 100 degrees, 150 degrees, etc. .
  • the angle formed by the intersection of the first center line S11 of the orthographic shape of the target sub-pixel 110T and the first center line S21 of the orthographic shape of the second sub-pixel 210 is within the preset angle range, so that light can pass through the first
  • the difference between the first diffraction spot generated by the sub-display area and the second diffraction spot generated by light passing through the second sub-display area is large enough to make the diffraction spot in the synthesized image lower than the preset value in the subsequent algorithm compensation. value.
  • the angle formed by the intersection of the first center line S11 of the orthographic shape of the target sub-pixel 110T and the first center line S21 of the orthographic shape of the second sub-pixel 210 is 90 degrees, that is, the positive angle of the target sub-pixel 110T.
  • the first center line S11 of the projected shape is perpendicular to the first center line S21 of the orthographic shape of the second sub-pixel 210.
  • the second center line and the first center line are perpendicular to each other, the second center line S12 of the orthographic shape of the target sub-pixel 110T and the second center line S22 of the orthographic shape of the second sub-pixel 210
  • the angle formed by the intersection is also within an angle range of 30 degrees to 150 degrees.
  • the display panel 100 includes a plurality of first repeating units 10 , and the first repeating units 10 include at least two columns of first sub-pixels 110 .
  • FIG. 4 shows that the first repeating unit 10 includes two columns of first sub-pixels 110, and each column includes first sub-pixels 110 of three colors, and the color arrangement order of the first sub-pixels 110 in adjacent columns is different.
  • the display panel 100 may further include a plurality of second repeating units 20 , and the second repeating units 20 include at least two columns of second sub-pixels 210 .
  • the second repeating unit 20 includes two columns of second sub-pixels 210 , and each column includes second sub-pixels 210 of three colors, and the second sub-pixels 210 of adjacent columns have different color arrangements.
  • the first sub-pixel 110 and the second sub-pixel 210 can be multiplexed twice, so that without increasing the number of the first sub-pixel 110 and the second sub-pixel 210 in the unit area, The display quality of the first display area AA1 is improved.
  • the arrangement structure of the first sub-pixels 110 in the first repeating unit 10 and the arrangement structure of the second sub-pixels 210 in the second repeating unit 20 may be the same, that is, the first repeating unit 10
  • the number and color arrangement order of the sub-pixels 110 may be the same as the number and color arrangement order of the second sub-pixels 210 in the second repeating unit 20 .
  • first subpixels 110 in the first repeating unit 10 are target subpixels 110T, and the first center lines S11 of the orthographic shape of each target subpixel 110T in the same first repeating unit 10 are parallel. That is to say, the placement angles of the orthographic shapes of the target sub-pixels 110T belonging to the same first repeating unit 10 on the array substrate 01 are the same, that is, the target sub-pixels 110T belonging to the same first repeating unit 10 are arranged at the same angle.
  • the angle of rotation relative to the second sub-pixel 210 is the same.
  • paralleling the first center lines S11 of the orthographic shapes of the target sub-pixels 110T belonging to the same first repeating unit 10 can prevent the diffraction spot of the first sub-display area AA11 from being disordered, thereby preventing the first
  • the process complexity can be reduced.
  • the first center lines S11 of the orthographic shapes of the target sub-pixels 110T belonging to different first repeating units 10 intersect. That is to say, the placement angles of the orthographic shapes of the target sub-pixels 110T belonging to different first repeating units 10 on the array substrate 01 are different, that is, the target sub-pixels 110T belonging to different first repeating units 10 are relatively The rotation angles of the two sub-pixels 210 are different.
  • the angle formed by the intersection of the first center line S11 of the orthographic shape of the target sub-pixel 110T in some of the first repeating units 10 and the first center line S21 of the orthographic shape of the second sub-pixel 210 may be 30 degree
  • the angle formed by the intersection of the first center line S11 of the orthographic shape of the target sub-pixel 110T in the partial first repeating unit 10 and the first center line S21 of the orthographic shape of the second sub-pixel 210 may be 60 degrees
  • the angle formed by the intersection of the first center line S11 of the orthographic shape of the target sub-pixel 110T in the partial first repeating unit 10 and the first center line S21 of the orthographic shape of the second sub-pixel 210 may be 90 degrees or the like.
  • the first center lines S11 of the orthographic shapes of the target sub-pixels 110T belonging to different first repeating units 10 are set to intersect, so as to avoid all the first sub-pixels 110 in the first sub-display area AA11 being placed according to a rule, Therefore, the diffraction phenomenon of the first sub-display area AA11 itself can be weakened while making the difference between the diffraction light spots generated by the first sub-display area AA11 and the second sub-display area AA12.
  • the size of the orthographic shape of the target sub-pixel 110T on the array substrate 01 is the same as the size of the orthographic shape of the second sub-pixel 210 on the array substrate 01 .
  • the diffraction influencing factors of the first sub-display area AA11 and the second sub-display area AA12 can be concentrated on the difference in the placement angle, so as to avoid the diffraction spot between the first sub-display area AA11 and the second sub-display area AA12. No significant difference.
  • the first sub-pixel 110 may have at least three colors.
  • the first sub-pixel 110 includes a red first sub-pixel 110R, a green first sub-pixel 110G and a blue first sub-pixel 110B.
  • the first sub-pixel 110 of at least one color is the target sub-pixel 110T.
  • the red first sub-pixel 110R may be selected as the target sub-pixel 110T.
  • the green first sub-pixel 110G or the blue first sub-pixel 110B can be selected as the target sub-pixel 110T, or the first sub-pixels of two colors can be selected as the target sub-pixel 110T, which is not limited in this application.
  • the orthographic projection shape of the first sub-pixels 110 of other colors on the array substrate 01 is a circle or a square.
  • the red first sub-pixel 110R is the target sub-pixel 110T
  • the orthographic shapes of the green first sub-pixel 110G and the blue first sub-pixel 110B on the array substrate 01 can be set as a circle or square.
  • the inventors of the present application found that when the orthographic shape of the sub-pixels on the array substrate 01 is set to be circular or square, the diffraction phenomenon is not obvious. Therefore, according to the embodiments of the present application, the diffraction phenomenon of the first sub-display area AA11 itself can be weakened while the diffractive light spots generated by the first sub-display area AA11 and the second sub-display area AA12 are different.
  • the array substrate 01 includes a first pixel circuit 30 and a second pixel circuit 40 , the first pixel circuit 30 is electrically connected to the first sub-pixel 110 , and the second pixel circuit 40 It is electrically connected to the second sub-pixel 210 .
  • the first pixel circuit 30 is located in the first sub-display area AA11, and the second pixel circuit 40 is located in the second sub-display area AA12.
  • the circuit structures of the first pixel circuit 30 and the second pixel circuit 40 may be the same.
  • the circuit structure is any of a 2T1C circuit, a 7T1C circuit, a 7T2C circuit, or a 9T1C circuit.
  • 2T1C circuit refers to the pixel circuit including two thin film transistors (T) and one capacitor (C) in the pixel circuit, and other "7T1C circuits", “7T2C circuits", “9T1C circuits” and so on.
  • the orthographic shapes of the first pixel circuit 30 and the second pixel circuit 40 on the array substrate 01 may be the same.
  • the orthographic shapes of the first pixel circuit 30 and the second pixel circuit 40 on the array substrate 01 are all rectangles, ovals, triangles, circles, squares, irregular polygons, and the like.
  • the orthographic shape of the first pixel circuit 30 on the array substrate 01 has a center point O3, and has a third center line S31 and a fourth center line S32 that are perpendicular to each other through the center point O3.
  • the orthographic shape of the second pixel circuit 40 on the array substrate 01 has a center point O4, and has a third center line S41 and a fourth center line S42 that are perpendicular to each other through the center point O4.
  • the third center line and the fourth center line pass through the center point of the orthographic shape of the pixel circuit and are perpendicular to each other.
  • the orthographic shape of the pixel circuit can be symmetrical with respect to the third center line or the fourth center line, or not. Symmetric, which is not limited in this application.
  • the third center line S31 of the orthographic shape of the first pixel circuit 30 is parallel to the first center line S11 of the orthographic shape of the target sub-pixel 110T. It can be understood that the fourth centerline S32 of the orthographic shape of the first pixel circuit 30 is also parallel to the second centerline S12 of the orthographic shape of the target sub-pixel 110T. That is to say, the placement angles of the orthographic shapes of the first pixel circuit 30 and the target sub-pixel 110T on the array substrate 01 are the same.
  • the third center line S41 of the orthographic shape of the second pixel circuit 40 is parallel to the first center line S21 of the orthographic shape of the second sub-pixel 210 . It can be understood that the fourth center line S42 of the orthographic shape of the second pixel circuit 40 is also parallel to the second center line S22 of the orthographic shape of the second sub-pixel 210 . That is to say, the placement angles of the orthographic shapes of the second pixel circuit 40 and the second sub-pixel 210 on the array substrate 01 are the same.
  • the transmittance of the components in the pixel circuit to light is relatively low, therefore, the pixel circuit has a relatively strong influence on diffraction. Set to the same, it can avoid the diffractive light spots of the first sub-display area AA11 and the second sub-display area AA12 from existing in multiple directions, so as to avoid the inability to make the diffractive light spots generated between the first sub-display area AA11 and the second sub-display area AA12. There are clear differences.
  • the display panel 100 further includes a second display area AA2, and a transition display area TA located between the first display area AA1 and the second display area AA2,
  • the light transmittance of the first display area AA1 is greater than the light transmittance of the second display area AA2.
  • the first pixel circuit 30 and the second pixel circuit 40 are located in the transition display area TA, and the first pixel circuit 30 is electrically connected to the first sub-pixel 110 through the first transparent connecting line 51 , and the second pixel circuit 40 is connected to the second transparent connecting line. 52 is electrically connected to the second sub-pixel 210 .
  • the transmittance of the elements in the pixel circuit to light is relatively low, and the pixel circuit has a relatively strong influence on diffraction.
  • the first pixel circuit 30 and the second pixel circuit 40 are arranged in the transition display area TA, a On the one hand, it can completely avoid the pixel circuit affecting the diffraction of the first sub-display area and the second sub-display area; on the other hand, it can improve the light transmittance of the first sub-display area and the second sub-display area, and further improve the imaging quality.
  • the light-emitting functional layer 02 further includes a third sub-pixel 310 .
  • a plurality of third sub-pixels 310 are located in the second display area AA2.
  • the orthographic shapes of the first sub-pixel 110 , the second sub-pixel 210 and the third sub-pixel 310 on the array substrate 01 may all be the same. In this way, sub-pixels in different display areas can be formed by using the same mask, and the process cost can be reduced while generating two kinds of different diffractive light spots.
  • the pixel density (Pixels Per Inch, PPI) of the first display area AA1 may be smaller than the pixel density of the second display area AA2.
  • the pixel density of the first sub-display area AA11 and the pixel density of the second sub-display area AA12 may be the same.
  • the size of the first sub-pixel 110 and the second sub-pixel 210 in the first display area AA1 may be larger than the size of the third sub-pixel 310 .
  • the light-emitting functional layer 02 further includes a pixel definition structure 03
  • the pixel definition structure 03 includes a first pixel opening K1 located in the first sub-display area AA11 and located in the second sub-display area AA11 .
  • the first sub-pixel 110 includes a first electrode 112 , a first light-emitting layer 111 and a second electrode 113 that are stacked.
  • the first light-emitting layer 111 is located in the first pixel opening K1
  • the first light-emitting layer 111 is located between the first electrode 112 and the second electrode 113
  • the first electrode 112 is located between the second electrode 113 and the array substrate 01 .
  • One of the first electrode 112 and the second electrode 113 is an anode and the other is a cathode.
  • the second sub-pixel 210 is stacked with a third electrode 212 , a second light-emitting layer 211 and a fourth electrode 213 .
  • the second light emitting layer 211 is located in the second pixel opening K2
  • the second light emitting layer 211 is located between the third electrode 212 and the fourth electrode 213
  • the third electrode 212 is located between the fourth electrode 213 and the array substrate 01 .
  • One of the third electrode 212 and the fourth electrode 213 is an anode and the other is a cathode.
  • the third sub-pixel 310 includes a fifth electrode 312 , a third light-emitting layer 311 and a sixth electrode 313 that are stacked and arranged.
  • the third light emitting layer 311 is located in the third pixel opening K3
  • the third light emitting layer 311 is located between the fifth electrode 312 and the sixth electrode 313
  • the fifth electrode 312 is located between the sixth electrode 313 and the array substrate 01 .
  • One of the fifth electrode 312 and the sixth electrode 313 is an anode and the other is a cathode.
  • the first electrode 112 , the third electrode 212 , and the fifth electrode 312 are anodes
  • the second electrode 113 , the fourth electrode 213 , and the sixth electrode 313 are cathodes as an example.
  • the second electrode 113, the fourth electrode 213, and the sixth electrode 313 may be interconnected as a common electrode.
  • the first light-emitting layer 111 , the second light-emitting layer 211 , the third light-emitting layer 311 , the second electrode 113 , the fourth electrode 213 , and the sixth electrode 313 have relatively high transmittance to light, and therefore, these film layers are not effective for diffracting light. less impact.
  • the transmittance of the first electrode 112 , the third electrode 212 , and the fifth electrode 312 to light is relatively low, so these layers have a strong influence on diffraction.
  • the orthographic shape of the first sub-pixel 110 on the array substrate 01 includes the orthographic shape of the first electrode 112 on the array substrate 01
  • the orthographic shape of the second sub-pixel 210 on the array substrate 01 includes the third electrode
  • the orthographic projection shape of the third sub-pixel 310 on the array substrate 01 includes the orthographic projection shape of the fifth electrode 312 on the array substrate 01 .
  • the display panel 100 may further include an encapsulation layer, a polarizer and a cover plate located above the encapsulation layer, or a cover plate may be directly disposed over the encapsulation layer without a polarizer, or at least in the first display area AA1.
  • a cover plate is directly arranged above the encapsulation layer, and no polarizer is required to prevent the polarizer from affecting the light collection amount of the photosensitive element arranged under the corresponding first display area AA1.
  • a polarizer can also be arranged above the encapsulation layer of the first display area AA1.
  • the embodiment of the present application further provides a display device, and the display device may include a photosensitive component and the display panel 100 of any of the foregoing embodiments.
  • the display device may include a photosensitive component and the display panel 100 of any of the foregoing embodiments.
  • the following will take a display device of an embodiment as an example for description.
  • the display device includes the display panel 100 of the above-mentioned embodiment.
  • FIG. 11 is a schematic top view of a display device according to an embodiment of the present application
  • FIG. 12 is a cross-sectional view taken along the line B-B in FIG. 11
  • the display panel 100 may be the display panel 100 of one of the above-mentioned embodiments.
  • the display panel 100 has a first display area AA1 and a second display area AA2, and the light transmittance of the first display area AA1 is greater than The transmittance of the second display area AA2.
  • the display panel 100 includes a first surface S1 and a second surface S2 opposite to each other, wherein the first surface S1 is a display surface.
  • the display device further includes a photosensitive member 200 , and the photosensitive member 200 is located on the side of the second surface S2 of the display panel 100 .
  • the number of photosensitive assemblies 200 may be two, wherein one photosensitive assembly 200 corresponds to the position of the first sub-display area AA11 , and the other photosensitive assembly 200 corresponds to the position of the second sub-display area AA12 .
  • the two photosensitive assemblies 200 can respectively identify the first diffracted light spot generated by the first sub-display area AA11 and the second diffracted light spot generated by the second sub-display area AA12, so that in the two initial images obtained by the two photosensitive assemblies 200 respectively, One contains the information of the first diffracted spot, and the other contains the information of the second diffracted spot.
  • the photosensitive component 200 may be an image acquisition device for acquiring external image information.
  • the photosensitive component 200 is a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) image acquisition device.
  • CMOS Complementary Metal Oxide Semiconductor
  • the photosensitive component 200 may also be a charge-coupled device (Charge-coupled Device, CCD) Image acquisition devices and other forms of image acquisition devices.
  • CCD Charge-coupled Device
  • the display device 1000 provided in this embodiment of the present application may be a dual-camera display device.
  • the display device 1000 may further include an image processing module 300 , and the image processing module 300 is electrically connected to the two photosensitive assemblies 200 .
  • the two cameras can work at the same time to obtain an initial image respectively.
  • the initial image captured by the camera corresponding to the first sub-display area captures the first diffraction spot
  • the initial image captured by the camera corresponding to the second sub-display area captures the second diffraction spot
  • the two diffraction spots intersect, that is, the first diffraction spot is captured.
  • the image processing module 300 can identify the difference through the off-screen shooting algorithm, compare and synthesize the shooting information of the two initial images, and use the image information of the position of the diffracted light spot in one initial image with the non-diffraction of the corresponding position in the other initial image.
  • the image information of the light spot or the weak diffracted light spot is replaced. Since the two diffracted light spots intersect, the diffracted light spot in the synthesized image can be weakened or disappeared.
  • the modulation transfer function MTF Modulation Transfer Function
  • the spatial frequency response SFR Spatial Frequency Response
  • MTF Modulation Transfer Function
  • SFR Spatial Frequency Response

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开了一种显示面板及显示装置。显示面板的第一显示区为透光显示区,第一显示区包括第一子显示区和第二子显示区,显示面板包括阵列基板和发光功能层,发光功能层包括第一子像素及第二子像素;其中,各第二子像素在阵列基板上的正投影形状相同,至少部分第一子像素为目标子像素,目标子像素和第二子像素在阵列基板上的正投影形状相同,且均具有相互垂直的第一中心线和第二中心线,目标子像素的正投影形状的第一中心线与第二子像素的正投影形状的第一中心线相交。根据本申请实施例,能够减弱屏下拍摄的衍射问题,提高成像质量。

Description

显示面板及显示装置
相关申请的交叉引用
本申请要求享有于2020年09月17日提交的名称为“显示面板及显示装置”的中国专利申请第202010978768.1号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及显示装置。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。
相关技术中,可将显示面板分为主屏区和副屏区,且使副屏区既可放置屏下感光元件,又可满足显示功能。但是由于副屏区仍保留发光器件、走线等膜层结构,使得屏下感光元件透过副屏区拍摄时带来了屏下拍摄的衍射问题,导致成像质量下降。
发明内容
本申请实施例提供一种显示面板及显示装置,能够减弱屏下拍摄的衍射问题,提高成像质量。
第一方面,本申请实施例提供一种显示面板,具有第一显示区,第一显示区为透光显示区,第一显示区包括第一子显示区和第二子显示区,显示面板包括:阵列基板;发光功能层,位于阵列基板的一侧,发光功能层包括第一子像素及第二子像素,多个第一子像素位于第一子显示区,多个第二子像素位于第二子显示区;其中,各第二子像素在阵列基板上的正投影形状相同,至少部分第一子像素为目标子像素,目标子像素和第二子像 素在阵列基板上的正投影形状相同,且均具有相互垂直的第一中心线和第二中心线,目标子像素的正投影形状的第一中心线与第二子像素的正投影形状的第一中心线相交。
第二方面,本申请实施例提供一种显示装置,包括感光组件和如第一方面任一项实施例所述的显示面板,其中,第一子显示区和第二子显示区各自对应一个感光组件。
根据本申请实施例的显示面板及显示装置,第一子显示区的至少部分第一子像素为目标子像素,第二子显示区的各第二子像素在阵列基板上的正投影形成的形状相同,且目标子像素和第二子像素在阵列基板上的正投影形状相同,均具有相互垂直的第一中心线和第二中心线,目标子像素的正投影形状的第一中心线与第二子像素的正投影形状的第一中心线相交。也就是说,目标子像素之间构成的狭缝与第二子像素之间构成的狭缝相交,使得光线透过第一子显示区产生的第一衍射光斑与光线透过第二子显示区产生的第二衍射光斑相交。因此,后续可以分别透过第一子显示区和第二子显示区获取初始图像,由于两个子显示区产生的衍射光斑相交,使得两张初始图像中衍射光斑所在的位置不同,从而进一步的可以将这两张初始图像进行对比合成,将一张初始图像中衍射光斑所在位置的图像信息用另一张初始图像中对应位置的无衍射光斑或较弱衍射光斑的图像信息替换,由于两个衍射光斑相交,能够使合成之后的图像中衍射光斑减弱或消失。因此,本申请能够减弱屏下拍摄的衍射问题,提高成像质量。
附图说明
图1示出根据本申请一种实施例的显示面板的结构示意图;
图2示出根据本申请另一种实施例的显示面板的结构示意图;
图3示出一种示例的图2中Q1区域的俯视示意图;
图4示出另一种示例的图2中Q1区域的俯视示意图;
图5示出又一种示例的图2中Q1区域的俯视示意图;
图6示出又一种示例的图2中Q1区域的俯视示意图;
图7示出又一种示例的图2中Q1区域的俯视示意图;
图8示出又一种示例的图2中Q2区域的俯视示意图;
图9示出一种示例的图1中W区域的俯视示意图;
图10示出一种示例的图9中A-A向的剖面示意图;
图11示出根据本申请一种实施例的显示装置的俯视示意图;
图12示出图11中B-B向的剖面示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。
本申请实施例提供一种显示面板及显示装置,以下将结合附图对显示面板及显示装置的各实施例进行说明。
请参阅图1至图8,本申请实施例提供一种显示面板,该显示面板可以是有机发光二极管(Organic Light Emitting Diode,OLED)显示面板。
显示面板100具有第一显示区AA1。第一显示区AA1为透光显示区。示例性的,显示面板100的显示区可以均为第一显示区AA1,也就是说显示面板100可以为透光显示面板。
本申请实施例中,优选第一显示区AA1的透光率大于或等于15%。为确保第一显示区AA1的透光率大于15%,甚至大于40%,甚至具有更高的透光率,本申请实施例中显示面板100的功能膜层的透光率可以大于50%,甚至至少部分功能膜层的透光率可以大于90%。
根据本申请实施例的显示面板100,第一显示区AA1为透光显示区,使得显示面板100在第一显示区AA1的背面可以集成感光组件,实现例如摄像头的感光组件的屏下集成,同时第一显示区AA1能够显示画面,提高显示面板100的显示面积,实现显示装置的全面屏设计。
第一显示区AA1包括第一子显示区AA11和第二子显示区AA12。第一子显示区AA11和第二子显示区AA12的透光率可以相同。如图1所示,第一子显示区AA11和第二子显示区AA12可以沿第一方向X分布。如图 2所示,第一子显示区AA11和第二子显示区AA12也可以沿第二方向Y分布。第一方向X和第二方向Y相交。示例性的,第一方向X和第二方向Y垂直。第一方向X可以是显示面板的行方向,第二方向Y可以是显示面板的列方向,其中,行方向和列方向可以互换。
显示面板100包括阵列基板01和位于阵列基板01一侧的发光功能层02。阵列基板01包括第一信号线10和第二信号线20。发光功能层02包括第一子像素110及第二子像素210。多个第一子像素110位于第一子显示区AA11,多个第二子像素210位于第二子显示区AA12。
示例性的,第一子显示区AA11包括至少三种颜色的第一子像素110,第二子显示区AA12包括至少三种颜色的第二子像素210。本申请附图中,以相同的填充图案表示相同颜色的子像素,且示出了第一子显示区AA11包括红色第一子像素110R、绿色第一子像素110G以及蓝色第一子像素110B,第二子显示区AA12包括红色第二子像素210R、绿色第二子像素210G以及蓝色第二子像素210B。
第一子显示区AA11和第二子显示区AA12包括的子像素的颜色种类可以根据显示面板100的设计需要调整,从而不限于上述实施例的示例。此外,第一子显示区AA11和第二子显示区AA12中子像素的排布方式也不限于本申请附图中的示例。
第一子显示区AA11中的多个第一子像素110中的至少部分为目标子像素110T。各第二子像素210在阵列基板01上的正投影形成的形状相同。目标子像素110T和第二子像素210在阵列基板01上的正投影形成的形状相同。例如,目标子像素110T和第二子像素210在阵列基板01上的正投影形状均为长方形、椭圆形、三角形、不规则多边形等。第一子显示区AA11中除目标子像素110T之外的其它第一子像素110在阵列基板01上的正投影形状可以与第二子像素210在阵列基板01上的正投影形成的形状相同,也可以不同,本申请对此不作限定。
如图3所示,目标子像素110T在阵列基板01上的正投影形状具有中心点O1,且具有过其中心点O1的相互垂直的第一中心线S11和第二中心线S12。第二子像素210在阵列基板01上的正投影形状具有中心点O2,且 具有过其中心点O2的相互垂直的第一中心线S21和第二中心线S22。
应当理解的是,第一中心线S11和第二中心线S12过目标子像素110T在阵列基板01上的正投影形状的中心点O1且相互垂直即可,目标子像素110T的正投影形状可以关于第一中心线S11或第二中心线S12对称,也可以不对称,本申请对此不作限定。第二子像素210的正投影形状的第一中心线S21和第二中心线S22同理。
还应当理解的是,目标子像素110T的正投影形状的第一中心线S11和第二子像素210的正投影形状的第一中心线S21在正投影形状上的位置是相同的,同理,目标子像素110T的正投影形状的第二中心线S12和第二子像素210的正投影形状的第二中心线S22在正投影形状上的位置也是相同的。例如,以目标子像素110T和第二子像素210在阵列基板01上的正投影形状均为矩形为例,第一中心线S11、S21可以是垂直于该矩形两条短边且过该矩形中心点的一条线,第二中心线S12、S22可以是垂直于该矩形两条长边且过该矩形中心点的一条线。又例如,以目标子像素110T和第二子像素210在阵列基板01上的正投影形状均为椭圆形为例(图中未示出),第一中心线S11、S21可以是该椭圆形的长轴线,第二中心线S12、S22可以是该椭圆形的短轴线。
目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交。可以理解的是,目标子像素110T的正投影形状的第二中心线S12与第二子像素210的正投影形状的第二中心线S22也是相交的。
示例性的,如图3所示,第二子像素210的正投影形状的第一中心线S21沿第二方向Y延伸,第二子像素210的正投影形状的第二中心线S22沿第一方向X延伸,第一方向X与第二方向Y垂直。目标子像素110T的正投影形状的第一中心线S11与第一方向X、第二方向Y均相交,目标子像素110T的正投影形状的第二中心线S12也与第一方向X、第二方向Y均相交。
也就是说,目标子像素110T和第二子像素210在阵列基板01上的正投影形状的摆放角度是不同的。即目标子像素110T相对第二子像素210旋 转了一定角度。
本申请实施例中,将目标子像素110T的正投影形状的第一中心线S11设置为与第二子像素210的正投影形状的第一中心线S21相交,即目标子像素110T之间构成的狭缝与第二子像素210之间构成的狭缝相交,从而使得光线透过目标子像素110T之间的狭缝产生的第一衍射光斑与光线透过第二子像素210之间的狭缝产生的第二衍射光斑相交,也就是使得光线透过第一子显示区产生的第一衍射光斑与光线透过第二子显示区产生的第二衍射光斑相交。即第一子显示区AA11和第二子显示区AA12产生两种不同的衍射情况,也就是说第一子显示区AA11和第二子显示区AA12产生的衍射光斑之间存在差异,因此,后续可以分别透过第一子显示区AA11和第二子显示区AA12获取初始图像,由于两个子显示区产生的衍射光斑相交,使得两张初始图像中衍射光斑所在的位置不同,从而进一步的可以将这两张初始图像进行对比合成,将一张初始图像中衍射光斑所在位置的图像信息用另一张初始图像中对应位置的无衍射光斑或较弱衍射光斑的图像信息替换,由于两个衍射光斑相交,能够使合成之后的图像中衍射光斑减弱或消失。因此,本申请能够减弱屏下拍摄的衍射问题,提高成像质量。
在一些可选的实施例中,为了产生相交的两种衍射光斑,目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度应该在预设角度范围内。示例性的,预设角度范围可以是30度~150度。例如,目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度为30度、45度、100度、150度等。目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度在该预设角度范围内,能够使光线透过第一子显示区产生的第一衍射光斑与光线透过第二子显示区产生的第二衍射光斑之间差异足够大,从而在后续的算法补偿中能使合成之后的图像中衍射光斑低于预设值。
可选的,目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度为90度,即目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状 的第一中心线S21垂直,此时,能够使光线透过第一子显示区产生的第一衍射光斑与光线透过第二子显示区产生的第二衍射光斑之间差异最大化。
可以理解的是,由于第二中心线与第一中心线相互垂直,因此,目标子像素110T的正投影形状的第二中心线S12与第二子像素210的正投影形状的第二中心线S22相交所成的角度也在30度~150度的角度范围内。
在一些可选的实施例中,如图4所示,显示面板100包括多个第一重复单元10,第一重复单元10包括至少两列第一子像素110。图4示出第一重复单元10包括两列第一子像素110,且每列包括三种颜色的第一子像素110,相邻列的第一子像素110的颜色排布顺序不同。显示面板100还可以包括多个第二重复单元20,第二重复单元20包括至少两列第二子像素210。图4示出第二重复单元20包括两列第二子像素210,且每列包括三种颜色的第二子像素210,相邻列的第二子像素210的颜色排布顺序不同。如此,在实际显示时,第一子像素110及第二子像素210可以被复用两次,从而可以在不提高单位面积内的第一子像素110及第二子像素210数量的前提下,提高第一显示区AA1的显示质量。
示例性的,第一重复单元10中的第一子像素110的排布结构与第二重复单元20中的第二子像素210的排布结构可以相同,即第一重复单元10中的第一子像素110的数量及颜色排布顺序与第二重复单元20中的第二子像素210的数量及颜色排布顺序可以相同。
进一步的,第一重复单元10中的至少部分第一子像素110为目标子像素110T,且属于同一第一重复单元10中的各目标子像素110T的正投影形状的第一中心线S11平行。也就是说,属于同一第一重复单元10中的各目标子像素110T在阵列基板01上的正投影形状的摆放角度是相同的,即属于同一第一重复单元10中的各目标子像素110T相对第二子像素210旋转的角度是相同的。一方面,将属于同一第一重复单元10中的各目标子像素110T的正投影形状的第一中心线S11平行,可以避免第一子显示区AA11的衍射光斑无序,从而避免无法使第一子显示区AA11和第二子显示区AA12产生的衍射光斑之间存在明显差异;另一方面,可以降低工艺复杂度。
在一些可选的实施例中,如图5所示,属于不同第一重复单元10中的目标子像素110T的正投影形状的第一中心线S11相交。也就是说,属于不同第一重复单元10中的目标子像素110T在阵列基板01上的正投影形状的摆放角度是不同的,即属于不同第一重复单元10中的目标子像素110T相对第二子像素210旋转的角度是不同的。示例性的,部分第一重复单元10中的目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度可以是30度,部分第一重复单元10中的目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度可以是60度,部分第一重复单元10中的目标子像素110T的正投影形状的第一中心线S11与第二子像素210的正投影形状的第一中心线S21相交所成的角度可以是90度等。
将属于不同第一重复单元10中的目标子像素110T的正投影形状的第一中心线S11设置为相交,能够避免第一子显示区AA11中的第一子像素110全部按照一个规律摆放,因此能够在使第一子显示区AA11和第二子显示区AA12产生的衍射光斑之间存在差异的同时,减弱第一子显示区AA11自身的衍射现象。
在一些可选的实施例中,目标子像素110T在阵列基板01上的正投影形状的尺寸与第二子像素210在阵列基板01上的正投影形状的尺寸相同。如此,可以将第一子显示区AA11及第二子显示区AA12的衍射影响因素集中在摆放角度的差异上,避免第一子显示区AA11和第二子显示区AA12产生的衍射光斑之间无明显差异。
在一些可选的实施例中,如上文所述,第一子像素110可以具有至少三种颜色。本申请附图中,示出了第一子像素110包括红色第一子像素110R、绿色第一子像素110G以及蓝色第一子像素110B。至少一种颜色的第一子像素110为目标子像素110T。例如,如图6所示,可以选择红色第一子像素110R为目标子像素110T。当然,可以选择绿色第一子像素110G或蓝色第一子像素110B为目标子像素110T,也可以选择两种颜色的第一子像素为目标子像素110T,本申请对此不作限定。
其它颜色的第一子像素110在阵列基板01上的正投影形状为圆形或正方形。例如,如图6所示,红色第一子像素110R为目标子像素110T,可以将绿色第一子像素110G以及蓝色第一子像素110B在阵列基板01上的正投影形状设置为圆形或正方形。
本申请的发明人发现,子像素在阵列基板01上的正投影形状设置为圆形或正方形时,衍射现象则不明显。因此根据本申请实施例,能够在使第一子显示区AA11和第二子显示区AA12产生的衍射光斑之间存在差异的同时,减弱第一子显示区AA11自身的衍射现象。
在一些可选的实施例中,如图7所示,阵列基板01包括第一像素电路30及第二像素电路40,第一像素电路30与第一子像素110电连接,第二像素电路40与第二子像素210电连接。第一像素电路30位于第一子显示区AA11,第二像素电路40位于第二子显示区AA12。
在一些实施例中,第一像素电路30和第二像素电路40的电路结构可以相同。电路结构是2T1C电路、7T1C电路、7T2C电路、或9T1C电路中的任一种。本文中,“2T1C电路”指像素电路中包括2个薄膜晶体管(T)和1个电容(C)的像素电路,其它“7T1C电路”、“7T2C电路”、“9T1C电路”等依次类推。
第一像素电路30及第二像素电路40在阵列基板01上的正投影形状可以相同。例如,第一像素电路30及第二像素电路40在阵列基板01上的正投影形状均为长方形、椭圆形、三角形、圆形、正方形、不规则多边形等。
第一像素电路30在阵列基板01上的正投影形状具有中心点O3,且具有过其中心点O3的相互垂直的第三中心线S31和第四中心线S32。第二像素电路40在阵列基板01上的正投影形状具有中心点O4,且具有过其中心点O4的相互垂直的第三中心线S41和第四中心线S42。
同理,第三中心线和第四中心线过像素电路的正投影形状的中心点且相互垂直即可,像素电路的正投影形状关于第三中心线或第四中心线可以对称,也可以不对称,本申请对此不作限定。
第一像素电路30的正投影形状的第三中心线S31与目标子像素110T的正投影形状的第一中心线S11平行。可以理解的是,第一像素电路30的 正投影形状的第四中心线S32与目标子像素110T的正投影形状的第二中心线S12也是平行的。也就是说,第一像素电路30和目标子像素110T在阵列基板01上的正投影形状的摆放角度相同。
第二像素电路40的正投影形状的第三中心线S41与第二子像素210的正投影形状的第一中心线S21平行。可以理解的是,第二像素电路40的正投影形状的第四中心线S42与第二子像素210的正投影形状的第二中心线S22也是平行的。也就是说,第二像素电路40和第二子像素210在阵列基板01上的正投影形状的摆放角度相同。
像素电路中的元件对光线的透过率相对较低,因此,像素电路对衍射的影响相对较强,将同一子显示区内的像素电路和子像素在阵列基板上的正投影形状的摆放角度设置为相同,可以避免第一子显示区AA11和第二子显示区AA12的衍射光斑存在多个方向,从而避免无法使第一子显示区AA11和第二子显示区AA12产生的衍射光斑之间存在明显差异。
在另一些可选的实施例中,请参考图2和图8,显示面板100还包括第二显示区AA2,和位于第一显示区AA1与第二显示区AA2之间的过渡显示区TA,第一显示区AA1的透光率大于第二显示区AA2的透光率。第一像素电路30及第二像素电路40位于过渡显示区TA,且第一像素电路30通过第一透明连接线51与第一子像素110电连接,第二像素电路40通过第二透明连接线52与第二子像素210电连接。
如上文所述,像素电路中的元件对光线的透过率相对较低,像素电路对衍射的影响相对较强,将第一像素电路30及第二像素电路40设置在过渡显示区TA,一方面,可以完全避免像素电路影响第一子显示区和第二子显示区的衍射情况;另一方面,可以提高第一子显示区和第二子显示区的透光率,进一步提高成像质量。
在一些可选的实施例中,如图9所示,发光功能层02还包括第三子像素310。多个第三子像素310位于第二显示区AA2。第一子像素110、第二子像素210及第三子像素310在阵列基板01上的正投影形状可以均相同。如此,可以利用同一张掩膜版形成不同显示区的子像素,能够在产生差异化的两种衍射光斑的同时,降低工艺成本。
示例性的,请继续参考图9,第一显示区AA1的像素密度(Pixels Per Inch,PPI)可以小于第二显示区AA2的像素密度。第一子显示区AA11的像素密度和第二子显示区AA12的像素密度可以相同。另外,为了降低第一显示区AA1和第二显示区AA2之间的显示差异,第一显示区AA1内的第一子像素110、第二子像素210的尺寸可以大于第三子像素310的尺寸。
在一些可选的实施例中,如图10所示,发光功能层02还包括像素定义结构03,像素定义结构03包括位于第一子显示区AA11的第一像素开口K1、位于第二子显示区AA12的第二像素开口K2以及位于第二显示区AA2的第三像素开口K3。
第一子像素110包括层叠设置的第一电极112、第一发光层111以及第二电极113。第一发光层111位于第一像素开口K1内,且第一发光层111位于第一电极112和第二电极113之间,第一电极112位于第二电极113和阵列基板01之间。第一电极112、第二电极113中的一个为阳极、另一个为阴极。
第二子像素210层叠设置的第三电极212、第二发光层211和第四电极213。第二发光层211位于第二像素开口K2内,且第二发光层211位于第三电极212和第四电极213之间,第三电极212位于第四电极213和阵列基板01之间。第三电极212、第四电极213中的一个为阳极、另一个为阴极。
第三子像素310包括层叠设置的第五电极312、第三发光层311和第六电极313。第三发光层311位于第三像素开口K3内,且第三发光层311位于第五电极312和第六电极313之间,第五电极312位于第六电极313和阵列基板01之间。第五电极312、第六电极313中的一个为阳极、另一个为阴极。
本实施例中,以第一电极112、第三电极212、第五电极312是阳极、第二电极113、第四电极213、第六电极313是阴极为例进行说明。在一些实施例中,第二电极113、第四电极213、第六电极313可以互连为公共电极。
通常,第一发光层111、第二发光层211、第三发光层311以及第二电 极113、第四电极213、第六电极313对光线的透过率较高,因此,这些膜层对衍射影响较弱。而第一电极112、第三电极212、第五电极312对光线的透过率相对较低,因此,这些膜层对衍射影响较强。基于此,第一子像素110在阵列基板01上的正投影形状包括第一电极112在阵列基板01上的正投影形状,第二子像素210在阵列基板01上的正投影形状包括第三电极212在阵列基板01上的正投影形状,第三子像素310在阵列基板01上的正投影形状包括第五电极312在阵列基板01上的正投影形状。
示例性地,显示面板100还可以包括封装层和位于封装层上方的偏光片和盖板,也可以直接在封装层上方直接设置盖板,无需设置偏光片,或者至少在第一显示区AA1的封装层上方直接设置盖板,无需设置偏光片,避免偏光片影响对应第一显示区AA1下方设置的感光元件的光线采集量,当然,第一显示区AA1的封装层上方也可以设置偏光片。
本申请实施例还提供一种显示装置,该显示装置可以包括感光组件和上述任一实施方式的显示面板100。以下将以一种实施例的显示装置为例进行说明,该实施例中,显示装置包括上述实施例的显示面板100。
图11示出根据本申请一种实施例的显示装置的俯视示意图,图12示出图11中B-B向的剖面图。本实施例的显示装置1000中,显示面板100可以是上述其中一个实施例的显示面板100,显示面板100具有第一显示区AA1以及第二显示区AA2,第一显示区AA1的透光率大于第二显示区AA2的透光率。
显示面板100包括相对的第一表面S1和第二表面S2,其中第一表面S1为显示面。显示装置还包括感光组件200,该感光组件200位于显示面板100的第二表面S2侧。感光组件200的数量可以为两个,其中一个感光组件200与第一子显示区AA11位置对应,另一个感光组件200与第二子显示区AA12位置对应。
两个感光组件200能够分别识别第一子显示区AA11产生的第一衍射光斑和第二子显示区AA12产生的第二衍射光斑,使得两个感光组件200分别获取到的两个初始图像中,一个包含第一衍射光斑的信息,另一个包含第二衍射光斑的信息。
感光组件200可以是图像采集装置,用于采集外部图像信息。本实施例中,感光组件200为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像采集装置,在其它一些实施例中,感光组件200也可以是电荷耦合器件(Charge-coupled Device,CCD)图像采集装置等其它形式的图像采集装置。
可以理解的是,本申请实施例提供的显示装置1000可以是双摄像头显示装置。在一些实施例中,显示装置1000还可以包括图像处理模块300,图像处理模块300与两个感光组件200均电连接。具体的,显示装置进行拍摄时,两个摄像头可以同时工作,分别获取到一张初始图像。对应于第一子显示区的摄像头拍摄的初始图像捕捉到第一衍射光斑,对应于第二子显示区的摄像头拍摄的初始图像捕捉到第二衍射光斑,且两种衍射光斑相交,即第一子显示区和第二子显示区的衍射光斑之间存在差异。图像处理模块300能够通过屏下拍摄算法识别该差异,将两张初始图像的拍摄信息对比合成,将一张初始图像中衍射光斑所在位置的图像信息用另一张初始图像中对应位置的无衍射光斑或较弱衍射光斑的图像信息替换,由于两个衍射光斑相交,能够使合成之后的图像中衍射光斑减弱或消失。
具体地,可利用图像的调制传递函数MTF(Modulation Transfer Function)或者图像的空间频率响应SFR(Spatial Frequency Response)来评价图像中衍射光斑的影响,衍射光斑的影响越小,图像的调制传递函数MTF或者空间频率响应SFR越高,图像的解析力越高,即图像越清晰。
本说明书具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请的范围仅由所附权利要求书限定。

Claims (18)

  1. 一种显示面板,具有第一显示区,所述第一显示区为透光显示区,所述第一显示区包括第一子显示区和第二子显示区,所述显示面板包括:
    阵列基板;
    发光功能层,位于所述阵列基板的一侧,所述发光功能层包括第一子像素及第二子像素,多个所述第一子像素位于所述第一子显示区,多个所述第二子像素位于所述第二子显示区;
    其中,各所述第二子像素在所述阵列基板上的正投影形状相同,至少部分所述第一子像素为目标子像素,所述目标子像素和所述第二子像素在所述阵列基板上的正投影形状相同,且均具有相互垂直的第一中心线和第二中心线,所述目标子像素的正投影形状的所述第一中心线与所述第二子像素的正投影形状的所述第一中心线相交。
  2. 根据权利要求1所述的显示面板,其中,所述目标子像素的正投影形状的所述第一中心线与所述第二子像素的正投影形状的所述第一中心线相交所成的角度为30度~150度。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板包括多个第一重复单元,所述第一重复单元包括至少两列所述第一子像素,所述第一重复单元中的至少部分所述第一子像素为所述目标子像素。
  4. 根据权利要求3所述的显示面板,其中,属于同一所述第一重复单元中的各所述目标子像素的正投影形状的所述第一中心线平行。
  5. 根据权利要求3所述的显示面板,其中,属于不同所述第一重复单元中的所述目标子像素的正投影形状的所述第一中心线相交。
  6. 根据权利要求3所述的显示面板,其中,所述第一重复单元的每列所述第一子像素包括至少三种颜色的所述第一子像素,相邻列的所述第一子像素的颜色排布顺序不同。
  7. 根据权利要求1所述的显示面板,其中,所述显示面板包括多个第二重复单元,所述第二重复单元包括至少两列所述第二子像素,所述第二重复单元的每列所述第二子像素包括至少三种颜色的所述第二子像素,相邻列的所述第二子像素的颜色排布顺序不同。
  8. 根据权利要求1所述的显示面板,其中,所述目标子像素在所述阵列基板上的正投影形状的尺寸与所述第二子像素在所述阵列基板上的正投影形状的尺寸相同。
  9. 根据权利要求1所述的显示面板,其中,所述第一子像素具有至少三种颜色,其中,至少一种颜色的所述第一子像素为所述目标子像素。
  10. 根据权利要求9所述的显示面板,其中,其它颜色的所述第一子像素在所述阵列基板上的正投影形状为圆形或正方形。
  11. 根据权利要求1所述的显示面板,其中,所述阵列基板包括第一像素电路及第二像素电路,所述第一像素电路与所述第一子像素电连接,所述第二像素电路与所述第二子像素电连接;所述第一像素电路位于所述第一子显示区,所述第二像素电路位于所述第二子显示区。
  12. 根据权利要求11所述的显示面板,其中,所述第一像素电路及所述第二像素电路在所述阵列基板上的正投影形状均具有相互垂直的第三中心线和第四中心线,所述第一像素电路的正投影形状的所述第三中心线与所述目标子像素的正投影形状的所述第一中心线平行,所述第二像素电路的正投影形状的所述第三中心线与所述第二子像素的正投影形状的所述第一中心线平行。
  13. 根据权利要求1所述的显示面板,其中,所述阵列基板包括第一像素电路及第二像素电路,所述第一像素电路与所述第一子像素电连接,所述第二像素电路与所述第二子像素电连接;所述显示面板还包括第二显示区和位于所述第一显示区与所述第二显示区之间的过渡显示区,所述第一显示区的透光率大于所述第二显示区的透光率,所述第一像素电路及所述第二像素电路位于所述过渡显示区。
  14. 根据权利要求13所述的显示面板,其中,所述第一像素电路通过第一透明连接线与所述第一子像素电连接,所述第二像素电路通过第二透明连接线与所述第二子像素电连接。
  15. 根据权利要求1所述的显示面板,其中,所述显示面板还包括第二显示区,所述第一显示区的透光率大于所述第二显示区的透光率;
    所述发光功能层还包括多个第三子像素,多个所述第三子像素位于所 述第二显示区,所述第一子像素、所述第二子像素及所述第三子像素在所述阵列基板上的正投影形状均相同。
  16. 根据权利要求15所述的显示面板,其中,所述第一子像素包括层叠设置的第一电极、第一发光层和第二电极,所述第一发光层位于所述第一电极和所述第二电极之间;
    所述第二子像素包括层叠设置的第三电极、第二发光层和第四电极,所述第二发光层位于所述第三电极和所述第四电极之间;
    所述第三子像素包括层叠设置的第五电极、第三发光层和第六电极,所述第三发光层位于所述第五电极和所述第六电极之间;
    其中,所述第一子像素在所述阵列基板上的正投影形状包括所述第一电极在所述阵列基板上的正投影形状,所述第二子像素在所述阵列基板上的正投影形状包括所述第三电极在所述阵列基板上的正投影形状,所述第三子像素在所述阵列基板上的正投影形状包括所述第五电极在所述阵列基板上的正投影形状。
  17. 根据权利要求1所述的显示面板,其中,所述显示面板还包括第二显示区,所述发光功能层还包括多个第三子像素,所述多个第三子像素位于所述第二显示区,所述第一显示区内的所述第一子像素、所述第二子像素的尺寸大于所述第三子像素的尺寸。
  18. 一种显示装置,其中,包括感光元件和如权利要求1至17任一项所述的显示面板,其中,所述第一子显示区和所述第二子显示区各自对应一个所述感光元件。
PCT/CN2021/099095 2020-09-17 2021-06-09 显示面板及显示装置 WO2022057330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/986,335 US20230075241A1 (en) 2020-09-17 2022-11-14 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010978768.1 2020-09-17
CN202010978768.1A CN112002749B (zh) 2020-09-17 2020-09-17 显示面板及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/986,335 Continuation US20230075241A1 (en) 2020-09-17 2022-11-14 Display panel and display device

Publications (1)

Publication Number Publication Date
WO2022057330A1 true WO2022057330A1 (zh) 2022-03-24

Family

ID=73474582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099095 WO2022057330A1 (zh) 2020-09-17 2021-06-09 显示面板及显示装置

Country Status (3)

Country Link
US (1) US20230075241A1 (zh)
CN (1) CN112002749B (zh)
WO (1) WO2022057330A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292617B (zh) 2020-02-27 2021-06-29 昆山国显光电有限公司 一种显示面板及显示装置
CN111968516A (zh) * 2020-08-28 2020-11-20 云谷(固安)科技有限公司 一种显示面板及显示装置
CN112002749B (zh) * 2020-09-17 2022-09-23 云谷(固安)科技有限公司 显示面板及显示装置
KR20230116914A (ko) 2020-12-07 2023-08-04 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 및 하부 금속 코팅을 사용한 전도성 증착 층의 패턴화
CN113488600B (zh) * 2021-07-13 2024-04-12 合肥维信诺科技有限公司 显示模组及显示装置
CN113451534B (zh) * 2021-07-20 2023-06-09 合肥维信诺科技有限公司 显示面板、显示装置及显示装置图像处理方法
CN115390307B (zh) * 2022-08-31 2023-09-19 厦门天马微电子有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019199139A1 (ko) * 2018-04-13 2019-10-17 삼성전자 주식회사 표시 영역에 의해 둘러싸인 홀 영역을 우회하는 복수의 배선들을 포함하는 디스플레이 및 이를 포함하는 전자 장치
CN110783384A (zh) * 2019-10-12 2020-02-11 昆山国显光电有限公司 显示面板及显示装置
CN110890026A (zh) * 2019-12-05 2020-03-17 昆山国显光电有限公司 显示面板及显示装置
CN111192902A (zh) * 2019-12-16 2020-05-22 昆山国显光电有限公司 显示面板及其驱动方法、显示装置
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置
CN111402743A (zh) * 2020-03-24 2020-07-10 昆山国显光电有限公司 显示面板及显示装置
CN112002749A (zh) * 2020-09-17 2020-11-27 云谷(固安)科技有限公司 显示面板及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209056269U (zh) * 2018-10-31 2019-07-02 北京小米移动软件有限公司 终端屏幕、屏幕结构及终端
CN208607570U (zh) * 2018-12-25 2019-03-15 北京小米移动软件有限公司 终端屏幕及终端
CN110767085B (zh) * 2019-03-29 2021-11-30 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN210120138U (zh) * 2019-08-30 2020-02-28 昆山国显光电有限公司 显示面板及显示装置
CN110783386B (zh) * 2019-10-29 2020-12-25 昆山国显光电有限公司 显示面板及显示装置
CN110783390B (zh) * 2019-10-31 2023-02-24 武汉天马微电子有限公司 一种显示面板及显示装置
CN111261684B (zh) * 2020-01-22 2023-06-09 Oppo广东移动通信有限公司 显示屏及电子设备
CN111192978B (zh) * 2020-02-26 2022-08-09 武汉天马微电子有限公司 显示面板和显示装置
CN111613659B (zh) * 2020-06-03 2022-09-20 昆山国显光电有限公司 像素排布结构以及显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019199139A1 (ko) * 2018-04-13 2019-10-17 삼성전자 주식회사 표시 영역에 의해 둘러싸인 홀 영역을 우회하는 복수의 배선들을 포함하는 디스플레이 및 이를 포함하는 전자 장치
CN110783384A (zh) * 2019-10-12 2020-02-11 昆山国显光电有限公司 显示面板及显示装置
CN110890026A (zh) * 2019-12-05 2020-03-17 昆山国显光电有限公司 显示面板及显示装置
CN111192902A (zh) * 2019-12-16 2020-05-22 昆山国显光电有限公司 显示面板及其驱动方法、显示装置
CN111341936A (zh) * 2020-03-10 2020-06-26 昆山国显光电有限公司 一种显示面板及显示装置
CN111402743A (zh) * 2020-03-24 2020-07-10 昆山国显光电有限公司 显示面板及显示装置
CN112002749A (zh) * 2020-09-17 2020-11-27 云谷(固安)科技有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN112002749A (zh) 2020-11-27
US20230075241A1 (en) 2023-03-09
CN112002749B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2022057330A1 (zh) 显示面板及显示装置
US11943986B2 (en) Display substrate, display panel and display device
WO2021179807A1 (zh) 显示面板及显示装置
CN111725288B (zh) 像素结构及显示面板
CN112071886B (zh) 显示面板及显示装置
US11645966B2 (en) Display panel and display device
EP4123633A2 (en) Display panel, preparation method and display device
US20220310705A1 (en) Display panel and display device
EP4084080A1 (en) Display screen and electronic apparatus
US11882743B2 (en) Display panel and display apparatus
CN110838505B (zh) 显示结构和显示装置
US11695017B2 (en) Array substrate, display panel, and display device
US20220102438A1 (en) Display panel and display device
US11387281B2 (en) Array substrate, display panel and display device, enabling full screen display with transparent and non-transparent display areas
CN114994973A (zh) 显示基板和显示装置
WO2021082369A1 (zh) 显示面板及显示装置
WO2020087859A1 (zh) 显示屏以及显示终端
US11374078B2 (en) Array substrate, display panel, and display device with pixel arrangement
US11980055B2 (en) Display device and display method thereof
CN111710708B (zh) 显示面板以及显示装置
CN112271263B (zh) 显示面板和显示装置
US20220115455A1 (en) Display panel and terminal device
CN114694557A (zh) 显示装置及其补偿方法
US20240179991A1 (en) Array substrate and display device
WO2022067464A9 (zh) 显示面板及其制造方法、掩膜组件、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868164

Country of ref document: EP

Kind code of ref document: A1