WO2022057314A1 - 随机接入方法、装置、基站、终端和存储介质 - Google Patents

随机接入方法、装置、基站、终端和存储介质 Download PDF

Info

Publication number
WO2022057314A1
WO2022057314A1 PCT/CN2021/097451 CN2021097451W WO2022057314A1 WO 2022057314 A1 WO2022057314 A1 WO 2022057314A1 CN 2021097451 W CN2021097451 W CN 2021097451W WO 2022057314 A1 WO2022057314 A1 WO 2022057314A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
terminal
random access
rrc connection
indication information
Prior art date
Application number
PCT/CN2021/097451
Other languages
English (en)
French (fr)
Inventor
王俊伟
刘天心
郑方政
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022057314A1 publication Critical patent/WO2022057314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a random access method, apparatus, base station, terminal, and storage medium.
  • Random access is the basic function of wireless communication.
  • the terminal can be scheduled by the system for uplink transmission only after it synchronizes with the system's uplink through the random access process.
  • the random access procedure has two forms, allowing contention-based access (meaning inherent collision risk) or contention-free access.
  • the base station configures the beam associated with the current random access process.
  • the beam width of the beamforming operation needs to be narrower.
  • the narrow-width beam concentrates the energy of data and control transmission and improves the data reception quality of the system.
  • the coverage is narrow, and during the movement of the terminal, more frequent synchronization is required to maintain communication. Therefore, in the contention-based random access process, beam transmission management is important to improve the success rate of the random access process.
  • the present application provides a random access method, device, base station, terminal and storage medium for improving the success rate of a random access procedure.
  • a random access method is provided, and the method is used for a base station, including:
  • the random access response carries measurement indication information, where the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB;
  • the terminal receiving a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal detecting beam quality according to the measurement indication information;
  • the first RRC connection response carries beam indication information
  • the beam indication information is used to instruct the terminal to determine, according to the quality detection information, for sending and/or receiving The target SSB of the data.
  • the method before the random access request sent by the receiving terminal, the method further includes:
  • the candidate SSB includes a first SSB used by the terminal to send the random access request, and a second SSB associated with the first SSB.
  • the receiving a radio resource control RRC connection request sent by the terminal includes:
  • the beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to receive the RRC connection request.
  • the quality detection information is further used to instruct the terminal to monitor the SSB corresponding to the beam that fails to avoid when sending the RRC connection request, and the sending the first RRC connection response to the terminal includes:
  • the quality detection information from the first SSB and the second SSB, exclude the SSB corresponding to the beam that fails to monitor and avoid and/or the detected SSB whose beam quality is lower than the set quality threshold, and obtain the reserved SSB ;
  • the reserved SSB monitor the beam corresponding to the reserved SSB to determine the beam that monitors and avoids successfully;
  • a first RRC connection response is sent.
  • the method further includes:
  • a second RRC connection response is sent, and the second RRC connection response does not carry the beam indication information.
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB;
  • the association relationship includes: an association strategy; the association strategy includes a number threshold, and the number threshold is used to determine the relationship between the first SSB and the first SSB in the available SSB sequence of the base station.
  • the second SSB with an associated relationship, wherein the number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold; the number threshold includes Threshold for the number of positive and/or negative sequences along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with the multiple SSBs; the measurement indication information is also used for Instructing to perform quality detection on the CSI-RS associated with the candidate SSB;
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the CSI-RS associated with the target SSB, the target CSI-RS A combination of one or more of the index value and the index value of the target SSB.
  • the SIB message also carries reference signal configuration information, which is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information is also used to indicate that the CSI-RS associated with the candidate SSB is performed. Quality Inspection;
  • the beam indication information includes: determination policy indication information of the target SSB, determination policy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS A combination of one or more of the value and the index value of the target SSB.
  • the index value of the CSI-RS associated with the SSB whose index value is M is greater than or equal to (N ⁇ M), and less than or equal to (N ⁇ M+N-1); wherein, N is the value associated with a single SSB.
  • the total number of CSI-RS, N and M are natural numbers.
  • the quality detection information includes: the index value of the SSB with the best quality, the reference signal received power value RSRP of each candidate SSB, the RSRP of the associated CSI-RS of each candidate SSB, and each candidate SSB One or more combinations of the quality ranking of the candidate SSB-associated CSI-RSs.
  • the method further includes:
  • the target SSB is used for the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the measurement indication information is carried in reserved bits in the downlink control information DCI.
  • the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • a random access method is provided, and the method is used for a terminal, including:
  • the RRC connection request carries quality detection information, wherein the quality detection information is that the terminal detects the beam quality of the synchronous broadcast block SSB according to the measurement indication information owned;
  • the base station receiving an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine the target SSB according to the quality detection information;
  • Data is sent and/or received using the target SSB.
  • the method before the sending the random access request to the base station, the method further includes:
  • SIB message broadcast by the base station, wherein the SIB message carries the association relationship between multiple SSBs;
  • the candidate SSB is determined from multiple SSBs; wherein the candidate SSB includes a first SSB used by the terminal to send the random access request, and is associated with the first SSB The second SSB of the relationship.
  • the sending a radio resource control RRC connection request to the base station includes:
  • the RRC connection request is sent by using the beam that successfully monitors and avoids.
  • the number of beams that successfully monitor and avoid is multiple; and the use of the beams that successfully monitor and avoid to send the RRC connection request includes:
  • the RRC connection request is sent using the reserved beam.
  • the method further includes:
  • the index value of the SSB corresponding to the beam that fails to monitor and avoid is deleted.
  • the receiving an RRC connection response sent by the base station includes:
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB.
  • the association relationship includes: an association strategy
  • the association strategy includes a number threshold, and the number threshold is used to determine the first SSB and the second SSB associated with the first SSB in the available SSB sequence of the base station, wherein, The number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold.
  • the number threshold includes a positive and/or reverse number threshold along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, which is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information is also used to indicate that the candidate SSB is associated with CSI-RS for quality detection;
  • the beam indication information includes: determination policy indication information of the target SSB, determination policy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS value and one or more combinations of the target SSB index value
  • the quality detection information includes: the index value of the SSB with the best quality, the reference signal received power value RSRP of each candidate SSB, the RSRP of the associated CSI-RS of each candidate SSB, and each candidate SSB One or more combinations of the quality ranking of the candidate SSB-associated CSI-RSs.
  • the receiving the measurement indication information sent by the base station includes:
  • the base station receiving the retransmission indication of the RRC connection request sent by the base station, wherein the retransmission indication carries the measurement indication information;
  • the measurement indication information is carried in a reserved bit in the downlink control information DCI; the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • a base station including a memory, a transceiver and a processor;
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the random access response carries measurement indication information, where the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB;
  • the terminal receiving a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal detecting beam quality according to the measurement indication information;
  • the first RRC connection response carries beam indication information
  • the beam indication information is used to instruct the terminal to determine, according to the quality detection information, for sending and/or receiving The target SSB of the data.
  • the method before the random access request sent by the receiving terminal, the method further includes:
  • the candidate SSB includes a first SSB used by the terminal to send the random access request, and a second SSB that is associated with the first SSB.
  • the receiving a radio resource control RRC connection request sent by the terminal includes:
  • the beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to receive the RRC connection request.
  • the quality detection information is further used to instruct the terminal to monitor the SSB corresponding to the beam that fails to avoid when sending the RRC connection request, and the sending the first RRC connection response to the terminal includes:
  • the quality detection information from the first SSB and the second SSB, exclude the SSB corresponding to the beam that fails to monitor and avoid and/or the detected SSB whose beam quality is lower than the set quality threshold, and obtain the reserved SSB ;
  • the reserved SSB monitor the beam corresponding to the reserved SSB to determine the beam that monitors and avoids successfully;
  • a first RRC connection response is sent.
  • the method further includes:
  • a second RRC connection response is sent, and the unreserved SSB in the second RRC connection response carries the beam indication information.
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB;
  • the association relationship includes: an association strategy; the association strategy includes a number threshold, and the number threshold is used to determine the relationship between the first SSB and the first SSB in the available SSB sequence of the base station.
  • the second SSB with an associated relationship, wherein the number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold; the number threshold includes Threshold for the number of positive and/or negative sequences along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with the multiple SSBs; the measurement indication information is also used for Instructing to perform quality detection on the CSI-RS associated with the candidate SSB;
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the CSI-RS associated with the target SSB, the target CSI-RS A combination of one or more of the index value and the index value of the target SSB.
  • the SIB message also carries reference signal configuration information, which is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information is also used to indicate that the CSI-RS associated with the candidate SSB is performed. Quality Inspection;
  • the beam indication information includes: determination policy indication information of the target SSB, determination policy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS A combination of one or more of the value and the index value of the target SSB.
  • the index value of the CSI-RS associated with the SSB whose index value is M is greater than or equal to (N ⁇ M), and less than or equal to (N ⁇ M+N-1); wherein, N is the value associated with a single SSB.
  • the total number of CSI-RS, N and M are natural numbers.
  • the quality detection information includes: the index value of the SSB with the best quality, the reference signal received power value RSRP of each candidate SSB, the RSRP of the associated CSI-RS of each candidate SSB, and each candidate SSB One or more combinations of the quality ranking of the candidate SSB-associated CSI-RSs.
  • the method further includes:
  • the target SSB is used for the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the measurement indication information is carried in reserved bits in the downlink control information DCI.
  • the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • a terminal including a memory, a transceiver and a processor;
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the RRC connection request carries quality detection information, wherein the quality detection information is obtained by the terminal detecting the beam quality of the synchronous broadcast block SSB according to the measurement indication information ;
  • the base station receiving an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine the target SSB according to the quality detection information;
  • Data is sent and/or received using the target SSB.
  • the method before the sending the random access request to the base station, the method further includes:
  • SIB message broadcast by the base station, wherein the SIB message carries the association relationship between multiple SSBs;
  • the candidate SSB is determined from multiple SSBs; wherein the candidate SSB includes a first SSB used by the terminal to send the random access request, and is associated with the first SSB The second SSB of the relationship.
  • the sending a radio resource control RRC connection request to the base station includes:
  • the RRC connection request is sent by using the beam that successfully monitors and avoids.
  • the use of the beams that successfully monitor and avoid to send the RRC connection request includes:
  • the RRC connection request is sent using the reserved beam.
  • the method further includes:
  • the index value of the SSB corresponding to the beam that fails to monitor and avoid is deleted.
  • the receiving an RRC connection response sent by the base station includes:
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB.
  • the association relationship includes: an association strategy
  • the association strategy includes a number threshold, and the number threshold is used to determine the first SSB and the second SSB associated with the first SSB in the available SSB sequence of the base station, wherein, The number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold.
  • the number threshold includes a positive and/or reverse number threshold along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, which is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information is also used to indicate that the candidate SSB is associated with CSI-RS for quality detection;
  • the beam indication information includes: determination policy indication information of the target SSB, determination policy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS value and one or more combinations of the target SSB index value
  • the quality detection information includes: the index value of the SSB with the best quality, the reference signal received power value RSRP of each candidate SSB, the RSRP of the associated CSI-RS of each candidate SSB, and each candidate SSB One or more combinations of the quality ranking of the candidate SSB-associated CSI-RSs.
  • the receiving the measurement indication information sent by the base station includes:
  • the base station receiving the retransmission indication of the RRC connection request sent by the base station, wherein the retransmission indication carries the measurement indication information;
  • the measurement indication information is carried in a reserved bit in the downlink control information DCI; the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • a random access device for a base station, including:
  • a first receiving module configured to receive a random access request sent by the terminal
  • a first sending module configured to send a random access response to the terminal, wherein the random access response carries measurement indication information, and the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB;
  • the second receiving module is configured to receive a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is the information that the terminal performs on the beam according to the measurement indication information. quality tested;
  • the second sending module is configured to send a first RRC connection response to the terminal, wherein the first RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine, according to the quality detection information, The target SSB for sending and/or receiving data.
  • the device further includes:
  • a broadcasting module configured to broadcast a system information block SIB message to the terminal, wherein the SIB message carries an association relationship between multiple SSBs, and the association relationship is used to determine the quality detection method from the multiple SSBs
  • the candidate SSBs include a first SSB used by the terminal to send the random access request, and a second SSB that is associated with the first SSB.
  • the second receiving module is specifically used for:
  • the beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to receive the RRC connection request.
  • the quality detection information is further used to instruct the terminal to monitor the SSB corresponding to the beam that fails to avoid when sending the RRC connection request, and the second sending module is specifically configured to:
  • the quality detection information from the first SSB and the second SSB, exclude the SSB corresponding to the beam that fails to monitor and avoid and/or the detected SSB whose beam quality is lower than the set quality threshold, and obtain the reserved SSB ;
  • the reserved SSB monitor the beam corresponding to the reserved SSB to determine the beam that monitors and avoids successfully;
  • a first RRC connection response is sent.
  • the second sending module is further used for:
  • a second RRC connection response is sent, and the second RRC connection response does not carry the beam indication information.
  • the association relationship includes: an association list; the association list includes an index of the first SSB and an index of the second SSB that has an association relationship with the first SSB;
  • the association relationship includes: an association strategy; the association strategy includes a number threshold, and the number threshold is used to determine the existence of the first SSB and the first SSB in the available SSB sequence of the base station The second SSB of the associated relationship, wherein the number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold; The threshold for the number of positive and/or reversed sequences of available SSB sequences.
  • the SIB message also carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with the multiple SSBs; the measurement indication information is also used for Instructing to perform quality detection on the CSI-RS associated with the candidate SSB;
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the CSI-RS associated with the target SSB, the target CSI-RS A combination of one or more of the index value and the index value of the target SSB.
  • the device further includes:
  • a third sending module configured to send a retransmission indication of the RRC connection request to the terminal, wherein the retransmission indication carries the measurement indication information.
  • the target SSB is used for the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the measurement indication information is carried in reserved bits in the downlink control information DCI.
  • the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • a random access device for a terminal, including:
  • a first sending module configured to send a random access request to the base station
  • a first receiving module configured to receive measurement indication information sent by the base station
  • the second sending module is configured to send a radio resource control RRC connection request to the base station, wherein the RRC connection request carries quality detection information, wherein the quality detection information is the data obtained by the terminal according to the measurement indication information. Obtained by detecting the beam quality of the synchronous broadcast block SSB;
  • the second receiving module is configured to receive an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine, according to the quality detection information, target SSB;
  • a transmission module configured to send and/or receive data by using the target SSB.
  • the device further includes:
  • the third receiving module is configured to receive the system information block SIB message broadcasted by the base station, wherein the SIB message carries the association relationship between multiple SSBs.
  • a determining module configured to determine the candidate SSB from the multiple SSBs according to the association relationship; wherein the candidate SSB includes the first SSB used by the terminal to send the random access request, and the The first SSB has an associated second SSB.
  • the second sending module includes:
  • a monitoring unit configured to monitor the beam corresponding to the first SSB and the beam corresponding to the second SSB to determine the beam that monitors and avoids successfully;
  • a sending unit configured to send the RRC connection request by using the beam that successfully monitors and avoids.
  • the sending unit is specifically used for:
  • the RRC connection request is sent using the reserved beam.
  • the second sending module further includes:
  • an update unit configured to delete the reference signal received power value RSRP for the SSB corresponding to the beam that fails to monitor and avoid in the quality detection information; or, in the quality detection information, update the SSB corresponding to the beam that fails to monitor and avoid Quality sorting; or, in the quality detection information, update the quality sorting of the SSBs corresponding to the beams that fail to monitor and avoid, and re-sort the quality of the SSBs that succeed in monitoring and avoidance; or, in the quality detection information, Delete the index value of the SSB corresponding to the beam that fails to monitor and avoid.
  • the second receiving module is specifically used for:
  • the association relationship includes: an association list; the association list includes an index of the first SSB and an index of the second SSB that has an association relationship with the first SSB;
  • the association relationship includes: an association strategy; the association strategy includes a number threshold, and the number threshold is used to determine the first SSB and the first SSB in the available SSB sequence of the base station The second SSB with an associated relationship, wherein the number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold; The threshold for the number of positive and/or reversed sequences of available SSB sequences.
  • the SIB message also carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with the multiple SSBSSBs; the measurement indication information is also used for Instructing to perform quality detection on the CSI-RS associated with the candidate SSB;
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the CSI-RS associated with the target SSB, the target CSI-RS A combination of one or more of the index value and the index value of the target SSB.
  • the first receiving module is specifically used for:
  • the base station receiving the retransmission indication of the RRC connection request sent by the base station, wherein the retransmission indication carries the measurement indication information;
  • a computer-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the randomization method of the first aspect. access method.
  • a computer-readable storage medium where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the random operation described in the second aspect. access method.
  • a computer program product includes computer program code, when the computer program code is run on a computer, to perform the random access described in the first aspect method.
  • a computer program product includes computer program code, when the computer program code is run on a computer, to perform the random access described in the second aspect method.
  • a communication device comprising a processing circuit and an interface circuit, the interface circuit is used for receiving computer codes or instructions and transmitting them to the processing circuit, and the processing circuit is used for running The computer code or instructions are used to execute the random access method described in the first aspect.
  • a communication device comprising a processing circuit and an interface circuit, the interface circuit is used for receiving computer codes or instructions and transmitting them to the processing circuit, and the processing circuit is used for running The computer code or instructions are used to execute the random access method described in the second aspect.
  • a computer program comprising computer program code, when the computer program code is run on a computer, to cause the computer to perform the random access described in the first aspect method.
  • a fourteenth aspect of the present application there is provided a computer program, the computer program comprising computer program code, when the computer program code is run on a computer, to cause the computer to perform the random access described in the second aspect method.
  • the base station receives the random access request sent by the terminal, and sends a random access response to the terminal.
  • the random access response carries measurement indication information, which is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB, and receive the radio resources sent by the terminal.
  • the RRC connection request carries quality detection information
  • the quality detection information is obtained by the terminal performing beam quality detection according to the measurement indication information
  • sends a first RRC connection response to the terminal wherein the first RRC connection response carries the beam indication information, which is used to instruct the terminal to determine the target SSB for sending and/or receiving data according to the quality detection information, which realizes the re-selection of the beam according to the beam quality of the detected SSB during the random access process, and improves the random access. success rate of the entry process.
  • FIG. 1 is a schematic flowchart of a random access method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another random access method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an SSB sequence available to a base station according to an embodiment of the present application
  • FIG. 4 is a schematic configuration diagram of an SSB associating an SSB according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an SSB subdivision provided by an embodiment of the present application.
  • FIG. 6 is a corresponding schematic diagram of the CSI-RS associated with the SSB provided by the present application.
  • FIG. 7 is a schematic flowchart of another random access method provided in this embodiment.
  • FIG. 8 is a schematic flowchart of another random access method provided in this embodiment.
  • FIG. 9 is a schematic flowchart of another random access method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another random access method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another random access method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another random access method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a random access interaction method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a random access apparatus provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a random access apparatus according to an embodiment of the present application.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiments of the present application provide a random access method, apparatus, base station, terminal, and storage medium, so as to improve the success rate and performance gain of the random access process.
  • FIG. 1 is a schematic flowchart of a random access method provided by an embodiment of the present application. The method is used in a base station. As shown in FIG. 1 , the method includes the following steps:
  • Step 101 Receive a random access request sent by a terminal.
  • the random access request is used to implement a random access process, for example, in the Fifth Generation (the Fifth Generation, 5G) New Radio (New Radio, NR) access system with beamforming (beamforming) Random Access (RandomAccess, RA) process.
  • the random access procedure is used to achieve radio access to the access network.
  • the execution body of this embodiment is a base station, and the base station may include a plurality of cells that provide services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the base station can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal equipment and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the base station may also coordinate attribute management of the air interface.
  • the base station involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in a Global System for Mobile Communications (GSM) or a Code Division Multiple Access (Code Division Multiple Access, CDMA).
  • BTS Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • it can also be a base station (NodeB) in the Wide-band Code Division Multiple Access (Wide-band Code Division Multiple Access, WCDMA), or it can be an evolved base station (evolutional NodeB) in the long term evolution (long term evolution, LTE) system B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), also can be Home evolved Node B (HeNB), relay node (relay node), home base station (femto), pico base station (pico), etc., are not limited in the embodiments of this application.
  • a base station may include a centralized unit (CU) node and a distributed unit (DU) no
  • Step 102 Send a random access response to the terminal, where the random access response carries measurement indication information, and the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB.
  • the base station sends a random access response to the terminal according to the random access request sent by the terminal.
  • the beam quality of the Synchronization Signal Block (SSB) is used to generate multiple SSB beam quality detection information, and at the same time, the terminal is instructed to send the quality detection information to the base station.
  • SSB Synchronization Signal Block
  • Step 103 Receive a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal detecting beam quality according to the measurement indication information.
  • the base station receives a radio resource control (Radio Resource Control, RRC) connection request sent by the terminal, and the connection request carries the quality detection information obtained by the terminal performing quality detection on the beams of multiple SSBs, and further, the base station according to The beam quality of each synchronous broadcast block SSB is indicated in the quality detection information, and the target SSB for the terminal to transmit and/or receive data is determined from the multiple SSBs, so that the beam quality of the multiple SSBs obtained from the terminal can be determined according to the situation of the beam quality obtained from the terminal.
  • RRC Radio Resource Control
  • Quality detection information re-determine the target SSB for the terminal to send and/or receive data, since each SSB has a corresponding beam, after re-determining the target SSB for the terminal to send and/or receive data, the corresponding beam has also changed, That is, the re-selection of the beam is realized, instead of using a fixed beam for data transmission in the whole random access process, the success rate of the random access process is improved.
  • Step 104 Send a first RRC connection response to the terminal, wherein the first RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine a target SSB for sending and/or receiving data according to the quality detection information.
  • the target SSB refers to an SSB with higher quality determined according to the quality detection information.
  • the target SSB is used by the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the information carried in the RRC sent by the base station to the terminal is different.
  • the RRC connection response that carries the beam indication information is called the first connection response
  • the RRC connection response that does not carry the beam indication information is called the first connection response.
  • the response is called a second connection response, wherein the second connection response will be described in detail in subsequent embodiments, and details are not repeated here.
  • the base station sends a first RRC connection response to the terminal, and the first RRC connection response carries beam indication information, which is used to indicate that the target SSB to send and/or receive data is determined according to the quality detection information, so that the terminal can Data transmission is performed according to the beam corresponding to the target SSB, which improves the success rate of the random access process.
  • a random access request sent by a terminal is received, and a random access response is sent to the terminal, where the random access response carries measurement indication information, which is used to instruct the terminal to detect the beam of the synchronous broadcast block SSB Quality
  • receive the radio resource control RRC connection request sent by the terminal wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal performing beam quality detection according to the measurement indication information, and sends a first RRC connection response to the terminal, wherein , the beam indication information is carried in the first RRC connection response, and the beam indication information is used to instruct the terminal to determine the target SSB for sending and/or receiving data according to the quality detection information, so that in the random access process, according to the detected SSB
  • the high beam quality realizes the re-selection of the beam and improves the success rate of the random access process.
  • step 101 includes the following steps before:
  • Step 201 broadcast a system information block SIB message to the terminal, wherein the SIB message carries the association relationship between multiple SSBs.
  • the System Information Block (SIB) message carries the association relationship between multiple SSBs, and the association relationship is used to determine the candidate SSB for quality detection, and the candidate SSB includes the first SSB used by the terminal to send the random access request.
  • SSB and a second SSB associated with the first SSB.
  • the base station broadcasts the system information block SIB message to the terminal, and the SIB message configured by the base station carries the association information between the various SSBs. Reselect SSB in between.
  • the first SSB used by the terminal to send a random access request and the second SSB that is associated with the first SSB are used as candidate SSBs , so that the terminal detects the beam quality of the first SSB and the second SSB associated with the first SSB according to the measurement indication information carried in the received random access response, which greatly reduces the amount of data that the terminal performs quality detection. Improved detection efficiency.
  • SSB is the synchronous broadcast speed used by the base station to broadcast data.
  • Each SSB has a corresponding beam, and the beam corresponding to each SSB at the base station has a corresponding relationship with the beam of the terminal, that is to say, it is determined
  • the SSB at the base station can determine the corresponding beam for transmitting and/or receiving data.
  • the SSBs that the base station configures for each SSB with an associated relationship may be determined by the following possible implementation manners:
  • the association relationship includes: an association list.
  • the association list includes the index of the first SSB and the index of the second SSB that has an association relationship.
  • the index of the SSB is used to identify the SSB.
  • the base station is configured with 64 actually sent SSBs, and each SSB is configured with 2 related SSBs.
  • Table 1-1 is a schematic diagram of the association list.
  • the indexes of the corresponding second SSB with the associated relationship are 0 and 2.
  • the number of associated SSBs configured for each SSB in Table 1 is the same.
  • the base station may also configure a different number of associated SSBs for each SSB, which is not limited in this embodiment. .
  • the association relationship includes: an association policy.
  • the association strategy including a number threshold
  • the number threshold is used to determine the first SSB and the second SSB with an associated relationship in the available SSB sequence of the base station, wherein the second SSB and the first SSB are continuous or non-consecutive.
  • the number of available SSBs is less than or equal to the number threshold.
  • the number threshold includes the number threshold in positive and/or reverse order along the available SSB sequence.
  • each SSB in the SSB sequence available to the base station, each SSB may be available, or there may be some SSBs that are unavailable, and specific descriptions are given below for different scenarios.
  • the SSBs included in the SSB sequence of the base station are all available.
  • the following three possible implementations for the association strategy determine the second SSB with an association relationship for each first SSB.
  • the number threshold is the number threshold along the positive sequence of available SSB sequences.
  • the SSB sequences available to the base station are ⁇ SSB0, SSB1, SSB2, ... SSBn ⁇
  • FIG. 3 is a schematic diagram of the SSB sequences available to the base station provided by an embodiment of the present application, as shown in FIG. 3 , for example, the SSBs available to the base station
  • the number is 64
  • the sequence is regarded as a clockwise cyclic sequence
  • the number threshold along the positive sequence of the available SSB sequence is configured, for example, 2.
  • the first SSB used by the current terminal to send the random access request is SSB1, then the same as SSB1
  • the associated second SSBs are SSB2 and SSB3.
  • the number threshold is the number threshold in reverse order along the available SSB sequence.
  • the SSB sequence available to the base station is ⁇ SSB0, SSB1, SSB2, ... SSBn ⁇ , as shown in Figure 3, for example, the number of SSBs available to the base station is 64, the sequence is regarded as a clockwise cyclic sequence, and the available SSBs are configured along the
  • the threshold for the number of positive sequences is, for example, 1, the first SSB used by the current terminal to send the random access request is SSB2, and the second SSB that is associated with SSB2 is SSB1.
  • the number threshold includes a number threshold in positive and reverse order along the available SSB sequence.
  • the SSB sequence available to the base station is ⁇ SSB0, SSB1, SSB2, ... SSBn ⁇ , as shown in Figure 3, for example, the number of SSBs available to the base station is 64, the sequence is regarded as a clockwise cyclic sequence, and the available SSBs are configured along the The threshold of the number of positive sequences, such as 1, and configure the threshold of the number of reverse sequences along the available SSB sequence, such as 2, the first SSB used by the current terminal to send the random access request is SSB1, then there is an association relationship with SSB1
  • the second SSBs are SSB0, SSB2 and SSB3.
  • not every SSB in the SSB sequence available to the base station is actually available, that is to say, not every SSB is an SSB that can be effectively used to send broadcast data.
  • the number and location of the SSBs actually sent by the cells broadcasted in the medium are based.
  • the second SSB that is associated with the first SSB can be determined by identifying the SSB group.
  • the number of SSBs available to the base station is 64, and the 64 SSBs are divided into 8 groups, each group has 8 SSBs, that is to say, the position of each SSB is indicated by the group.
  • an 8-bit string is used to indicate whether each group of SSBs is sent, and at the same time, for each group, an 8-bit string is used to indicate whether each SSB in the group is sent, wherein 0 in the string represents not Send, 1 means send.
  • the strings corresponding to 8 groups of SSBs are: 11111111, that is, all 8 groups of SSBs are sent; the strings corresponding to each group of SSBs are: 11101111, that is, in a group of SSBs, SSB3 is not sent, that is to say, after the determination and the first Among the second SSBs that have an associated relationship with one SSB, SSB3 does not serve as the second SSB that has an associated relationship with the first SSB.
  • group 1 is used as an example for description.
  • the indices of the 8 SSBs in group 1 are: [SSB0, SSB1, SSB2, SSB3, SSB4, SSB5, SSB6, SSB7], where SSB3 is an unavailable SSB.
  • the number threshold includes the number thresholds in positive and reverse order along the available SSB sequence, for example, the number threshold along the available SSB sequence is 1, and the number threshold along the available SSB sequence in reverse order The number threshold is 2. If the first SSB used by the terminal to send the random access request is SSB1, the determined second SSBs associated with SSB1 are SSB0, SSB2 and SSB4.
  • the number threshold includes the number threshold along the positive sequence of available SSB sequences, for example, the number threshold along the positive sequence of available SSB sequences is 2, if the terminal sends a random access request The adopted first SSB is SSB1, and the determined second SSBs associated with SSB1 are SSB2 and SSB4.
  • the number threshold includes the number threshold in reverse order along the available SSB sequence, for example, the number threshold in reverse order along the available SSB sequence is 2, if the terminal sends the random access request using The first SSB is SSB4, then the determined second SSBs associated with SSB4 are SSB1 and SSB2.
  • a system information block SIB message broadcasted by a base station is received, and the SIB message carries the association relationship between multiple SSBs, and a candidate SSB is determined according to the association relationship.
  • the candidate SSB can be checked for quality.
  • the candidate SSB includes the first SSB used by the terminal to send the random access request, and the second SSB that is associated with the first SSB. Perform quality checks, reducing the number of SSBs that are quality checked.
  • the spectrum used can be either licensed or unlicensed.
  • Licensed spectrum that is, shared spectrum, needs to use the Listen Before Talk (LBT) mechanism, that is, to confirm that the channel is idle.
  • LBT Listen Before Talk
  • FIG. 7 is a schematic flowchart of another random access method provided in this embodiment, which corresponds to a licensed spectrum scenario in a high frequency band, and does not require channel idle confirmation. As shown in Figure 7, the method includes the following steps:
  • Step 601 broadcast a system information block SIB message to the terminal, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • the association relationship between multiple SSBs is used to determine the candidate SSB for quality detection, and the candidate SSB includes the first SSB used by the terminal to send the random access request, and the first SSB has an association relationship with the first SSB. the second SSB.
  • the SIB message also carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs.
  • the SIB message carries the association relationship between multiple SSBs, and at the same time, the SIB message also carries reference signal configuration information, which is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs , among them, the purpose of CSI-RS (Channel-state information RS) is to evaluate the channel state to achieve beam refinement, that is, to associate beams with CSI-RS to achieve fine division of beams to improve randomness. The success rate of the access process.
  • the base station configures the associated channel state information reference information for multiple SSBs, which may be implemented in the following two possible implementation manners:
  • the base station configures reference signal configuration information for multiple SSBs, where the reference signal configuration information is, for example, a CSI-RS set, and the CSI set includes CSI-RS associated with the corresponding SSB, wherein , the number of CSI-RS associated with the corresponding SSB may be the same or different, which is not limited in this embodiment. As shown in Table 1-2 below.
  • the beam corresponding to the first SSB used by the terminal to send the random access request is beam 1
  • the index of the corresponding synchronous broadcast block SSB is SSB1
  • the CSI-RS associated with SSB1 is ⁇ CSI-RS3, CSI-RS4 ⁇ , that is, CSI-RS3 and CSI-RS4 are indicated by numbers 1 and 2 in FIG. 5 .
  • the base station configures one CSI-RS set, and each CSI-RS in the CSI-RS set has a corresponding index value.
  • the total number of CSI-RSs associated with a single SSB is configured to be N, and based on the index value, the index value of the CSI-RS associated with the corresponding SSB is determined.
  • the index value of the CSI-RS associated with the SSB with the index value M is greater than or equal to (N ⁇ M) and less than or equal to (N ⁇ M+N ⁇ 1), and N and M are natural numbers.
  • FIG. 6 is a corresponding schematic diagram of the CSI-RS associated with each SSB.
  • the beam corresponding to the first SSB used by the terminal to send the random access request is beam 1, and its corresponding synchronous broadcast block
  • the index is SSB1
  • the base station configures the channel state information reference signals associated with multiple SSBs. Since each SSB has a corresponding beam, the refined processing of the beam corresponding to the SSB is realized, so as to improve the random access the success rate of the entry method.
  • Step 602 Receive a random access request sent by the terminal.
  • step 602 reference may be made to step 101 in the embodiment of FIG. 1, and the principle is the same, and details are not repeated here.
  • Step 603 Send a random access response to the terminal, where the random access response carries measurement indication information, and the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB and the beam quality of the CSI-RS associated with the candidate SSB.
  • the measurement indication information carried in the random access response is carried in the reserved bits in the downlink control information (Downlink Control Information, DCI) to indicate the terminal to perform quality measurement of information.
  • DCI Downlink Control Information
  • the bits reserved in DCI 1_0 indicate that the terminal needs to measure and report the quality detection information.
  • Table 1-3 a kind of measurement indication information is shown, and the reserved 3 bits in the DCI are used to generate the measurement indication information, as shown in Table 1-3 below.
  • the DCI multiple bits in the reserved bits are used to instruct the terminal to measure and report different reference signals to the base station.
  • the plurality of bits may take the highest N bits or the lowest N bits among the reserved bits.
  • the highest 3 bits in the reserved bits are used to indicate the information that the terminal needs to measure through 8 combinations.
  • the value of the 3 reserved bits in the downlink control information DCI 1_0 is 110, and the base station instructs the terminal to report the current SSB and its associated SSB, as well as the quality ranking of the CSI-RS associated with the current SSB.
  • the measurement values in Table 1-3 refer to the quality values measured by the terminal, such as the reference signal received power value RSRP, or other measurement values that can be used to indicate the quality, which are not limited in this embodiment. .
  • the measurement indication information sent by the base station to the terminal may occupy more bits, so that the quality detection information indicating the measurement by the terminal may include multiple ones in Tables 1-3, for example, both
  • the measured values of the current SSB and its associated SSB and CSI-RS and the quality ranking of the current SSB and its associated SSB and CSI-RS are not limited in this embodiment.
  • the quality detection information reported by the terminal to the base station may be the quality detection information measured before the base station sends the measurement indication information to the terminal, or the quality detection information after the measurement indication information is sent to the terminal, or a combination of the two. , which is not limited in this embodiment.
  • Step 604 Receive a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal detecting the beam quality according to the measurement indication information.
  • the quality detection information includes: the index value of the SSB with the best quality, the reference signal received power value (Reference Signal Receiving Power, RSRP) of the multiple candidate SSBs, the RSRP of the associated CSI-RS of the multiple candidate SSBs, the multiple candidate SSBs One or more combinations of the quality ranking of the multiple candidate SSB-associated CSI-RSs.
  • RSRP Reference Signal Receiving Power
  • the quality detection information is obtained by performing quality detection according to the indication of the measurement indication information, and the measurement indication information may instruct the terminal to perform quality detection to obtain one or more of the above-mentioned quality detection information, which may be specifically determined according to the actual application scenario.
  • the requirements are set flexibly, which is not limited in this embodiment.
  • Step 605 Send a first RRC connection response to the terminal, where the first RRC connection response carries beam indication information for instructing the terminal to determine a target SSB for sending and/or receiving data according to the quality detection information.
  • the target SSB is used by the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for determining the target CSI-RS from the CSI-RS associated with the target SSB, the index value of the target CSI-RS and the index of the target SSB One or more combinations of values.
  • the beam indication information includes: the determination strategy indication information of the target SSB and the index value of the target SSB.
  • the target SSB and the index value of the target SSB are determined in the associated second SSB.
  • the beam indication information includes the determination strategy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS value.
  • the beam indication information is carried in the downlink allocation index field in the downlink control information DCI. Since the downlink allocation index field in the DCI belongs to the reserved field in the DCI, using the downlink allocation index field in the DCI to carry the beam indication information can avoid adding information bits in the DCI, maintain the original DCI size, and reduce the amount of data. .
  • 1 bit in the downlink allocation index field in the DCI can be used to indicate the beam indication information. For example, when the base station instructs the terminal to use the beam corresponding to the current SSB for transmission and reception, or the beam corresponding to the SSB with the best quality When there is no beam corresponding to the associated CSI-RS, 1 bit is used to indicate the beam indication information.
  • 2 bits in the downlink allocation index field in the DCI can be used to indicate beam indication information.
  • the used SSB has associated CSI-RS, indicating that the terminal is in The beam indication information is received on the beam corresponding to the associated CSI-RS.
  • the base station in the licensed spectrum of the high frequency band, on the basis of introducing beam switching and beam refinement in the random access process, the base station sends a random access response carrying measurement indication information to the terminal, The quality information of the beam of the corresponding SSB is reported, so that the terminal and the base station can timely adjust the target SSB for the terminal to send and/or receive data according to the result of the quality measurement. Improve the success probability of random access.
  • LBT is a channel access method.
  • the entry mechanism can effectively share the same spectrum resources between wireless local area networks. LBT requires to monitor the channel before transmitting data, perform idle channel evaluation, and then perform data transmission when the channel is guaranteed to be idle, so as to improve the success probability of data transmission.
  • the present application provides a schematic flowchart of another random access method, as shown in FIG. 8 , the method includes the following steps:
  • Step 701 broadcast a system information block SIB message to the terminal, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • Step 702 Receive a random access request sent by the terminal.
  • Step 703 Send a random access response to the terminal, where the random access response carries measurement indication information, and the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB and the beam quality of the CSI-RS associated with the candidate SSB.
  • steps 701 to 703 reference may be made to the explanations in the foregoing embodiments, and the principles are the same, which will not be repeated here.
  • Step 704 Monitor the beam corresponding to the first SSB and the beam corresponding to the second SSB to receive an RRC connection request.
  • the base station when the base station receives the RRC connection request sent by the terminal, since the terminal has performed monitoring and avoidance detection for the first SSB and the associated second SSB, and determines from the first SSB and the second SSB In order to monitor and avoid the SSB that is successful, that is, the SSB determined to be in an idle state, it is used to send an RRC connection request. Therefore, the base station needs to monitor the beam corresponding to the first SSB and the beam corresponding to the second SSB to receive the RRC. The connection request improves the success rate of RRC connection request reception.
  • Step 705 Exclude, from the first SSB and the second SSB, the SSB corresponding to the beam that fails to monitor and avoid and/or the detected SSB whose beam quality is lower than the set quality threshold, to obtain the reserved SSB.
  • the quality detection information is also used to instruct the terminal to monitor the SSB corresponding to the beam that fails to avoid and avoid when sending the RRC connection request, that is to say, the quality detection information includes the quality detection information of the beams corresponding to the first SSB and the second SSB, and the first SSB and the second SSB.
  • the base station excludes the SSB corresponding to the beam that fails to monitor and avoid from the first SSB and the second SSB according to the quality detection information obtained from the terminal, so as to obtain the reserved SSB in the terminal, so as to obtain the reserved SSB in the terminal. Improve the quality of the SSB reserved in the terminal.
  • the base station excludes SSBs whose beam quality is lower than the set quality threshold from the first SSB and the second SSB according to the quality detection information obtained from the terminal, so as to obtain the quality detection information in the terminal.
  • SSB is reserved to improve the quality of the SSB reserved in the terminal.
  • the base station excludes, from the first SSB and the second SSB, the SSB corresponding to the beam that fails to monitor and avoid and the detected beam quality is lower than the set quality according to the quality detection information obtained from the terminal Threshold SSB to obtain the reserved SSB in the terminal to improve the quality of the reserved SSB in the terminal.
  • Step 706 monitor the beam corresponding to the reserved SSB to determine the beam that is successfully monitored and avoided.
  • the base station monitors the beams corresponding to the reserved SSBs according to the reserved SSBs to determine the SSBs corresponding to the beams that the base station side monitors and avoids successfully, that is to say, it is determined that the base station side can be used for sending the RRC connection response.
  • SSB SSB
  • Step 707 If the SSB corresponding to the beam that successfully monitors and avoids is the same as the SSB corresponding to the beam used for receiving the random access request, a first RRC connection response is sent.
  • connection responses sent in this embodiment of the present application There are two types of connection responses sent in this embodiment of the present application, which are referred to as a first RRC connection response and a second RRC connection response for the convenience of distinction.
  • the first RRC connection response includes beam indication information
  • the second RRC connection response includes beam indication information. Does not contain beam indication information.
  • the SSB corresponding to the beam that monitors and avoids successfully is the same as the SSB corresponding to the beam used to receive the random access request sent by the terminal, that is to say, the base station is used for sending data.
  • the SSB corresponding to the beam does not change. If the SSB that successfully monitors and avoids has an associated CSI-RS, an RRC connection response carrying the beam indication information is sent, so that the terminal switches to the beam corresponding to the CSI-RS, realizing beam switching.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, such as SS1, and the SSB corresponding to the beam receiving the random access request sent by the terminal is also SSB1.
  • an RRC connection response carrying the beam indication information is sent to The terminal is made to switch to the CSI-RS whose corresponding quality meets the preset requirement.
  • Step 708 If the SSB corresponding to the beam successfully monitored and avoided is different from the SSB used to receive the random access request, a second RRC connection response is sent, and the second RRC connection response does not carry the beam indication information
  • the base station needs to switch the SSB to the SSB corresponding to the beam that currently monitors and avoids successfully, and does not need to instruct the terminal to perform switching of the SSB, thereby sending a second connection response without beam indication information.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, such as SS2, and the SSB corresponding to the beam receiving the random access request sent by the terminal, such as SSB1, that is, SSB2 and SSB1 are different, then the base station needs to switch beams, and the base station directly Switch to monitor the SSB2 corresponding to the successfully avoided beam, and send a second RRC connection response on the SSB2.
  • monitoring and avoidance are performed on multiple beams to determine the success of monitoring and avoidance.
  • the SSB corresponding to the beam if the SSB that successfully monitors and avoids changes, switches the SSB to the SSB that successfully monitors and avoids, which enhances the robustness and success rate of unlicensed spectrum channel transmission.
  • the base station after sending the random access response to the terminal, the base station does not receive the RRC connection request sent by the terminal within the preset time, and can send the retransmission instruction of the RRC connection request to the terminal, and the retransmission instruction With measurement indication information, the terminal can perform quality detection according to the measurement indication information carried in the retransmission indication to obtain the corresponding quality detection information and upload the value to the base station, thereby improving the success rate of the random access process.
  • FIG. 9 is a schematic flowchart of another random access method provided by an embodiment of the present application.
  • the method includes the following steps:
  • Step 901 sending a random access request to a base station.
  • the execution subject of this embodiment is a terminal, which may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the random access request is used to implement a random access process, for example, in the Fifth Generation (the Fifth Generation, 5G) New Radio (New Radio, NR) access system with beamforming (beamforming) Random Access (RandomAccess, RA) process.
  • the random access procedure is used to achieve radio access to the access network.
  • Step 902 Receive measurement indication information sent by the base station.
  • the terminal detects the beam quality of the synchronous broadcast block SSB according to the measurement indication information, and obtains the quality detection information.
  • the terminal receives a random access response sent by the base station, where the random access response carries measurement indication information, so that the terminal detects the corresponding synchronous broadcast block SSB according to the measurement indication information
  • the quality of the beam is obtained, and the quality detection information is obtained.
  • a retransmission indication of the RRC connection request sent by the base station is received, where the retransmission indication carries measurement indication information.
  • the base station sends the random access response to the terminal, if the base station does not receive the RRC connection request sent by the terminal within a preset time, it can send a retransmission indication of the RRC connection request to the terminal, and carry the measurement indication information in the retransmission indication , so that the terminal can obtain the measurement indication information carried in the retransmission indication, which prevents the terminal from not receiving the measurement indication information, and ensures that the terminal performs quality detection according to the measurement indication information to obtain the corresponding quality detection information, and uploads the value to the base station.
  • the success rate of the random access procedure is performed by the base station.
  • Step 903 Send a radio resource control RRC connection request to the base station, wherein the RRC connection request carries quality detection information, wherein the quality detection information is obtained by the terminal detecting the beam quality of the synchronous broadcast block SSB according to the measurement indication information.
  • the terminal sends a radio resource control RRC connection request to the base station, where the connection request carries quality detection information obtained by the terminal performing quality detection on beams of multiple SSBs, so that the base station can, according to the quality detection information, retrieve information from the terminal's
  • the target SSB used for data transmission by the terminal is determined among the multiple SSBs, and the SSB used by the terminal for data transmission is re-determined according to the quality detection information obtained from the terminal including the beam quality of the multiple SSBs.
  • the SSB corresponds to a beam direction.
  • the corresponding transmission beam also changes, that is, the beam re-selection is realized, instead of using a fixed and unchanged throughout the random access process. beams for data propagation.
  • Step 904 Receive an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine the target SSB according to the quality detection information.
  • the target SSB is an SSB with higher quality determined by the terminal according to the quality detection information.
  • the terminal receives an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, which is used to indicate the target SSB determined for the terminal to send and/or receive data according to the quality detection information,
  • the success rate of the random access process is improved.
  • Step 905 using the target SSB to send and/or receive data.
  • the target SSB is used by the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the terminal in the random access process, sends a random access request to the base station, and then the terminal receives the measurement indication information sent by the base station, and the terminal detects the beam quality of the synchronous broadcast block SSB according to the measurement indication information , and when the terminal sends an RRC connection request to the base station, it reports the beam quality detection information carrying the SSB to the base station, so that the base station determines the target SSB for the terminal to perform data transmission according to the quality detection information, and sends it through the beam indication information To the terminal, to indicate the determined target SSB, the SSB is re-determined in the random access process, so that the beam re-selection is realized based on the beam corresponding to the re-determined SSB, and the random access process is improved. Success rate.
  • step 901 includes the following steps before:
  • Step 1001 Receive a system information block SIB message broadcast by a base station, wherein the SIB message carries the association relationship between multiple SSBs.
  • the SIB message carries the association relationship between multiple SSBs, and the association relationship is used to determine the candidate SSB for quality detection.
  • the candidate SSB includes the first SSB used by the terminal to send the random access request, and is associated with the first SSB.
  • the second SSB of the relationship There may be one or more second SSBs that are associated with the first SSB, which is not limited in this embodiment.
  • the terminal receives the system information block SIB message broadcast by the base station, and the SIB message configured by the base station carries the association information of multiple SSBs.
  • the SSB is reselected in time, which improves the accuracy of SSB re-selection.
  • the first SSB used by the terminal to send a random access request and the second SSB that is associated with the first SSB are used as candidate SSBs , so that the terminal detects the beam quality of the first SSB and the second SSB associated with the first SSB according to the measurement indication information carried in the received random access response, which greatly reduces the amount of data that the terminal performs quality detection on. , improve the detection efficiency.
  • SSB is the synchronous broadcast speed used by the base station to broadcast data.
  • Each SSB has a corresponding beam, and the beam corresponding to each SSB at the base station has a corresponding relationship with the beam of the terminal, that is to say, it is determined
  • the SSB at the base station can determine the beam used for transmitting and/or receiving data in the terminal.
  • the base station configures the SSBs with the associated relationship for multiple SSBs is determined by the following possible implementation manners:
  • the association relationship includes: an association list.
  • the association list includes the index of the first SSB and the index of the second SSB that has an association relationship.
  • the index of the SSB is used to identify the SSB.
  • the base station is configured with 64 actually sent SSBs, and each SSB is configured with 2 related SSBs.
  • Table 2-1 is a schematic diagram of the association list.
  • the indexes of the corresponding second SSB with the associated relationship are 0 and 2.
  • the number of associated SSBs configured for each SSB in Table 2-1 is the same.
  • the base station may also configure different numbers of associated SSBs for each SSB. This embodiment does not be limited.
  • the association relationship includes: an association policy.
  • the association strategy including a number threshold
  • the number threshold is used to determine the first SSB and the second SSB with an associated relationship in the available SSB sequence of the base station, wherein the second SSB and the first SSB are continuous or non-consecutive.
  • the number of available SSBs is less than or equal to the number threshold.
  • the number threshold includes the number threshold in positive and/or reverse order along the available SSB sequence.
  • each SSB may be available, or there may be some SSBs that are unavailable, and specific descriptions are given below for different scenarios.
  • the SSBs included in the SSB sequence of the base station are all available.
  • the following three possible implementations for the association strategy determine the second SSB with an association relationship for each first SSB.
  • the number threshold is the number threshold along the positive sequence of available SSB sequences.
  • the SSB sequences available to the base station are ⁇ SSB0, SSB1, SSB2, ... SSBn ⁇
  • FIG. 3 is a schematic diagram of the SSB sequences available to the base station provided by an embodiment of the present application, as shown in FIG. 3 , for example, the SSBs available to the base station
  • the number is 64
  • the sequence is regarded as a clockwise cyclic sequence
  • the number threshold along the positive sequence of the available SSB sequence is configured, for example, 2.
  • the first SSB used by the current terminal to send the random access request is SSB1, then the same as SSB1
  • the associated second SSBs are SSB2 and SSB3.
  • the number threshold is the number threshold in reverse order along the available SSB sequence.
  • the SSB sequence available to the base station is ⁇ SSB0, SSB1, SSB2, ... SSBn ⁇ , as shown in Figure 3, for example, the number of SSBs available to the base station is 64, the sequence is regarded as a clockwise cyclic sequence, and the available SSBs are configured along the
  • the threshold for the number of positive sequences is, for example, 1, the first SSB used by the current terminal to send the random access request is SSB2, and the second SSB that is associated with SSB2 is SSB1.
  • the number threshold includes a number threshold in positive and reverse order along the available SSB sequence.
  • the SSB sequence available to the base station is ⁇ SSB0, SSB1, SSB2, ... SSBn ⁇ , as shown in Figure 3, for example, the number of SSBs available to the base station is 64, the sequence is regarded as a clockwise cyclic sequence, and the available SSBs are configured along the The threshold of the number of positive sequences, such as 1, and configure the threshold of the number of reverse sequences along the available SSB sequence, such as 2, the first SSB used by the current terminal to send the random access request is SSB1, then there is an association relationship with SSB1
  • the second SSBs are SSB0, SSB2 and SSB3.
  • not every SSB in the SSB sequence available to the base station is actually available, that is to say, not every SSB is an SSB that can be effectively used to send broadcast data.
  • the number and location of the SSBs actually sent by the cells broadcasted in the medium are based.
  • the second SSB that is associated with the first SSB can be determined by identifying the SSB group.
  • the number of SSBs available to the base station is 64, and the 64 SSBs are divided into 8 groups, each group has 8 SSBs, that is to say, the position of each SSB is indicated by the group.
  • an 8-bit string is used to indicate whether each group of SSBs is sent, and at the same time, for each group, an 8-bit string is used to indicate whether each SSB in the group is sent, wherein 0 in the string represents not Send, 1 means send.
  • the strings corresponding to 8 groups of SSBs are: 11111111, that is, all 8 groups of SSBs are sent; the strings corresponding to each group of SSBs are: 11101111, that is, in a group of SSBs, SSB3 is not sent, that is to say, after the determination and the first Among the second SSBs that have an associated relationship with one SSB, SSB3 does not serve as the second SSB that has an associated relationship with the first SSB.
  • group 1 is used as an example for description.
  • the indices of the 8 SSBs in group 1 are: [SSB0, SSB1, SSB2, SSB3, SSB4, SSB5, SSB6, SSB7], where SSB3 is an unavailable SSB.
  • a corresponding character string may also be set for each group, and the character string set for each group may also be different, so as to indicate the situation of SSB transmission in each group, thereby realizing personalized setting.
  • the number threshold includes the number thresholds in positive and reverse order along the available SSB sequence, for example, the number threshold along the available SSB sequence is 1, and the number threshold along the available SSB sequence in reverse order The number threshold is 2. If the first SSB used by the terminal to send the random access request is SSB1, the determined second SSBs associated with SSB1 are SSB0, SSB2 and SSB4.
  • the number threshold includes the number threshold along the positive sequence of available SSB sequences, for example, the number threshold along the positive sequence of available SSB sequences is 2, if the terminal sends a random access request
  • the adopted first SSB is SSB1
  • the determined second SSBs associated with SSB1 are SSB2 and SSB4.
  • the number threshold includes the number threshold in reverse order along the available SSB sequence, for example, the number threshold in reverse order along the available SSB sequence is 2, if the terminal sends the random access request using The first SSB is SSB4, then the determined second SSBs associated with SSB4 are SSB1 and SSB2.
  • a system information block SIB message broadcasted by a base station is received, and the SIB message carries the association relationship between multiple SSBs, and a candidate SSB is determined according to the association relationship.
  • the candidate SSB can be checked for quality.
  • the candidate SSB includes the first SSB used by the terminal to send the random access request, and the second SSB that is associated with the first SSB. Perform quality checks, reducing the number of SSBs that are quality checked.
  • the spectrum used can be either licensed or unlicensed.
  • the monitoring and avoidance mechanism LBT needs to be adopted, that is, the confirmation of channel idleness is performed. The following describes different scenarios.
  • this embodiment provides a schematic flowchart of another random access method, which corresponds to a licensed spectrum scenario in a high frequency band, and does not require channel idle confirmation. As shown in Figure 11, the method includes the following steps:
  • Step 1101 Receive a system information block SIB message broadcast by a base station, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • the association relationship between multiple SSBs is used to determine the candidate SSB for quality detection, and the candidate SSB includes the first SSB used by the terminal to send the random access request, and the first SSB has an association relationship with the first SSB. the second SSB.
  • the SIB message also carries reference signal configuration information, and the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs.
  • the SIB message carries the association relationship between multiple SSBs, and at the same time, the SIB message also carries reference signal configuration information, which is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs , among them, the purpose of CSI-RS (Channel-state information RS) is to evaluate the channel state to achieve beam refinement, that is, to associate beams with CSI-RS to achieve fine division of beams to improve randomness. The success rate of the access process.
  • the base station configures the associated channel state information reference information for multiple SSBs, which may be implemented in the following two possible implementation manners:
  • the base station configures reference signal configuration information for multiple SSBs, where the reference signal configuration information is, for example, a CSI-RS set, and the CSI set includes CSI-RS associated with the corresponding SSB, wherein , the number of CSI-RS associated with the corresponding SSB may be the same or different, which is not limited in this embodiment. As shown in Table 2-2 below.
  • the beam corresponding to the first SSB used by the terminal to send the random access request is beam 1
  • the index of the corresponding synchronous broadcast block SSB is SSB1
  • the CSI-RS associated with SSB1 is ⁇ CSI-RS3, CSI-RS4 ⁇ , that is, CSI-RS3 and CSI-RS4 are indicated by numbers 1 and 2 in FIG. 5 .
  • the base station configures one CSI-RS set, and each CSI-RS in the CSI-RS set has a corresponding index value.
  • the total number of CSI-RSs associated with a single SSB is configured to be N, and based on the index value, the index value of the CSI-RS associated with the corresponding SSB is determined.
  • the index value of the CSI-RS associated with the SSB with the index value M is greater than or equal to (N ⁇ M) and less than or equal to (N ⁇ M+N ⁇ 1), and N and M are natural numbers.
  • FIG. 6 is a corresponding schematic diagram of the CSI-RS associated with each SSB.
  • the beam corresponding to the first SSB used by the terminal to send the random access request is beam 1, and its corresponding synchronous broadcast block
  • the index is SSB1
  • the base station configures the channel state information reference signal associated with each SSB. Since each SSB has a corresponding beam, refined processing of the beam corresponding to the SSB is implemented to improve the success rate of the random access method.
  • Step 1102 Send a random access request to the base station.
  • step 901 in the embodiment corresponding to FIG. 9 , the principle is the same, and details are not repeated here.
  • Step 1103 Receive the measurement indication information sent by the base station.
  • the terminal receives the measurement indication information sent by the base station, where the measurement indication information is carried in the reserved bits in the downlink control information DCI to instruct the terminal to measure the quality information.
  • the bits reserved in DCI 1_0 indicate that the terminal needs to measure and report the quality information.
  • Table 2-3 a kind of measurement indication information is shown, and the reserved 3 bits in the DCI are used to generate the measurement indication information. For details, see Table 2-3 below.
  • the DCI multiple bits in the reserved bits are used to instruct the terminal to measure and report different reference signals to the base station. For example, a plurality of bits can be the highest N bits or the lowest N bits in the reserved bits, where N is a natural number.
  • the highest 3 bits in the reserved bits are used to indicate the information that the terminal needs to measure through 8 combinations.
  • the value of the 3 reserved bits in the downlink control information DCI 1_0 is 110, and the base station instructs the terminal to report the current SSB and its associated SSB, as well as the quality ranking of the CSI-RS associated with the current SSB.
  • the measurement values in Table 2-3 refer to the quality values measured by the terminal, such as the reference signal received power value RSRP, or other measurement values that can be used to indicate the quality, which are not limited in this embodiment. .
  • the measurement indication information sent by the base station to the terminal may occupy more bits, so that the quality detection information indicating the measurement by the terminal may include multiple ones in Table 2-3, for example, both
  • the measured values of the current SSB and its associated SSB and CSI-RS and the quality ranking of the current SSB and its associated SSB and CSI-RS are not limited in this embodiment.
  • Step 1104 Send a radio resource control RRC connection request to the base station, wherein the RRC connection request carries quality detection information, wherein the quality detection information is the beam quality of the synchronous broadcast block SSB detected by the terminal according to the measurement indication information, and the detection of the candidate SSB association.
  • the beam quality of CSI-RS is obtained.
  • the quality detection information includes: the index value of the SSB with the best quality, the reference signal received power value RSRP of each candidate SSB, the RSRP of the CSI-RS associated with each candidate SSB, the quality ranking of each candidate SSB, and the CSI-RS associated with each candidate SSB A combination of one or more of the quality rankings of RSs.
  • the quality detection information is obtained by performing quality detection according to the indication of the measurement indication information, and the measurement indication information may instruct the terminal to perform quality detection to obtain one or more of the above-mentioned quality detection information, which may be specifically determined according to the actual application scenario.
  • the requirements are set flexibly, which is not limited in this embodiment.
  • the quality detection information reported by the terminal to the base station may be the measurement result before the base station sends the measurement indication information to the terminal, or the quality detection information after sending the measurement indication information to the terminal, or a combination of the two. Not limited in the examples.
  • Step 1105 Receive an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information for instructing the terminal to determine the target SSB according to the quality detection information.
  • step 904 in the embodiment of FIG. 9 , the principle is the same, and details are not repeated here.
  • Step 1106 use the target SSB to send and/or receive data.
  • the target SSB is used by the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for determining the target CSI-RS from the CSI-RS associated with the target SSB, the index value of the target CSI-RS and the index of the target SSB One or more combinations of values.
  • the beam indication information includes: the determination strategy indication information of the target SSB and the index value of the target SSB.
  • the target SSB and the index value of the target SSB are determined in the associated second SSB.
  • the beam indication information includes the determination strategy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS value.
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination for determining the target CSI-RS from the associated CSI-RS of the target SSB Policy indication information, the index value of the target CSI-RS and the index value of the target SSB.
  • the beam indication information is carried in the downlink allocation index field in the downlink control information DCI. Since the downlink allocation index field in the DCI belongs to the reserved field in the DCI, using the downlink allocation index field in the DCI to carry the beam indication information can avoid adding information bits in the DCI, maintain the original DCI size, and reduce the amount of data. .
  • 1 bit can be used to indicate beam indication information. For example, when the base station only instructs the terminal to use the beam corresponding to the SSB for transmission and reception, or when the SSB with the best quality has no associated CSI-RS, The beam indication information is indicated using 1 bit.
  • 2 bits can be used to indicate the beam indication information. For example, when the terminal receives the first RRC connection response sent by the base station, the used SSB has an associated CSI-RS, indicating that the terminal is corresponding to the associated CSI-RS. The first RRC connection response is received on the beam.
  • the terminal in the licensed spectrum of the high frequency band, on the basis of introducing beam switching and beam refinement in the random access process, the terminal receives the random access response that carries the measurement indication information sent by the base station , in order to perform quality detection on the SSB to generate quality detection information, so that the terminal and the base station can timely adjust the target SSB for data transmission by the terminal according to the quality measurement result, so as to improve the success probability of random access when the channel is easily interfered.
  • LBT Listen Before Talk
  • LBT is a channel access mechanism that enables WLANs to effectively share the same spectrum resources. LBT requires to monitor the channel before transmitting data, perform idle channel evaluation, and then perform data transmission when the channel is guaranteed to be idle, so as to improve the success probability of data transmission.
  • FIG. 12 the method includes the following steps:
  • Step 1201 Receive a system information block SIB message broadcast by a base station, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • step 901 in the embodiment corresponding to FIG. 9 , the principle is the same, and details are not repeated here.
  • Step 1202 Send a random access request to the base station.
  • Step 1203 Receive measurement indication information sent by the base station.
  • steps 901 to 902 in the embodiment of FIG. 9 the principles are the same, and details are not repeated here.
  • Step 1204 Monitor the beam corresponding to the first SSB and the beam corresponding to the second SSB to determine the beam that is successfully monitored and avoided.
  • the terminal when the terminal sends an RRC connection request to the base station, since the channel corresponding to the first SSB and the second SSB that has an associated relationship is not necessarily in an idle state, it is necessary to The beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to determine a beam that successfully monitors and avoids, so as to improve the success rate of the terminal sending and receiving the RRC connection request.
  • step 1205 the RRC connection request is sent by using the beam that monitors and avoids successfully.
  • the beam that successfully monitors and avoids is used to send the RRC connection request, so as to improve the success rate of the terminal sending and receiving the RRC connection request.
  • step 1205 can also be implemented by the following steps:
  • the RRC connection request is sent using the reserved beam.
  • the beams that are successfully monitored and avoided are screened according to the quality detection information obtained by the terminal's detection. Sorting, screening the beams that have successfully monitored and avoided to obtain the reserved beams.
  • the reserved beams are the beams corresponding to the SSBs with the best quality sorting, thereby improving the success rate of sending the RRC connection request.
  • the quality detection information in this embodiment is sorted in ascending order according to the index of the SSB or the index of the associated CSI-RS, so as to generate the quality detection information, and the quality detection information includes the SSB and/or Or the quality ranking of the associated CSI-RS, Table 2-4 shows a schematic diagram of the meaning of the values of the quality ranking. Among them, when the ranking is greater than 0, the smaller the ranking value is, the better the beam quality corresponding to the SSB is.
  • Step 1206 Monitor the beam corresponding to the first SSB and the beam that successfully monitors and avoids to receive the RRC connection response sent by the base station.
  • the RRC connection response carries beam indication information, and the beam indication information is used to indicate the target SSB determined according to the quality detection information.
  • the base station determines the target SSB for the terminal to perform data transmission according to the quality detection information carried in the RRC connection request, and sends an RRC connection response to the terminal
  • the base station also needs to perform monitoring and avoidance detection on the beam to determine the beam that successfully monitors and avoids, and the SSB determined by the base station for the successful monitoring and avoidance beam that can be used to send the RRC connection response can be An SSB can also monitor the beam that successfully avoids for the base station. Therefore, the terminal needs to monitor the beam corresponding to the first SSB and the beam that successfully monitors and avoids, so as to receive the RRC connection response sent by the receiving station and improve data delivery. reliability.
  • Step 1207 use the target SSB to send and/or receive data.
  • step 905 in the embodiment of FIG. 9 , the principle is the same, and details are not repeated here.
  • the terminal in the unlicensed spectrum, on the basis of introducing beam switching and beam refinement in the random access process, receives the random access response carrying the measurement indication information sent by the base station to Perform quality detection on the beam of the SSB to generate quality detection information, and monitor the beam corresponding to the SSB to determine the beam that successfully monitors and avoids, and uses the beam that successfully monitors and avoids for data transmission to enhance the robustness of unlicensed spectrum channel transmission.
  • the beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to determine that after monitoring and avoiding the successful beam, the quality detection information needs to be updated. For this reason, after step 1204, the following steps are also included:
  • the index value of the SSB corresponding to the beam that fails to monitor and avoid is deleted.
  • the quality detection information sent by the terminal to the base station does not need to include the reference signal received power value RSRP of the SSB, in the quality detection information, delete the reference signal received power value for the SSB corresponding to the beam that failed to monitor and avoid. RSRP, to reduce the data volume of the quality detection information that the terminal needs to report to the base station, and improve the transmission speed.
  • the update quality of the SSBs corresponding to the beams that fail to monitor and avoid is sorted. For example, the quality ranking of the SSBs corresponding to the beams that fail to monitor and avoid is updated to 0, and the quality rankings of the SSBs corresponding to other beams that do not monitor and avoid failing to remain unchanged, so as to improve the accuracy of the quality ranking.
  • the quality detection information update the quality ranking of the SSBs corresponding to the beams that fail to monitor and avoid, and re-sort the quality of the SSBs corresponding to the beams that successfully monitor and avoid, for example, assign the beams that fail to monitor and avoid to correspond to
  • the quality ranking of the SSBs is updated to 0, and the value of 0 is excluded, and the quality ranking of the SSBs corresponding to the beams whose monitoring and avoidance are successful is performed again, so as to improve the accuracy of the quality ranking.
  • the index value of the SSB corresponding to the beam that failed to monitor and avoid is deleted to reduce the need for the terminal to report
  • the data volume of the quality detection information to the base station increases the transmission speed.
  • this embodiment provides an interactive method for random access. As shown in FIG. 13 , the method includes the following steps:
  • Step 1301 the base station broadcasts the SIB message.
  • the SIB message carries the association relationship among multiple SSBs and reference signal configuration information.
  • the association relationship between the multiple SSBs is used to determine the candidate SSB for quality detection, and the candidate SSB includes the first SSB used by the terminal to send the random access request, and has an association relationship with the first SSB the second SSB.
  • the SIB message also carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs.
  • Step 1302 Send a random access request to the base station.
  • Step 1303 Send a random access response carrying measurement indication information to the terminal.
  • the measurement indication information carried in the random access response is used to indicate the detection of the quality of the SSB beam of the synchronous broadcast block.
  • Step 1304 Send an RRC connection request carrying quality detection information to the base station.
  • the quality detection information carried in the RRC connection request is obtained by detecting the quality of the synchronous broadcast block SSB according to the measurement indication information.
  • Step 1305 Send an RRC connection response to the terminal.
  • connection responses sent in this embodiment of the present application There are two types of connection responses sent in this embodiment of the present application, which are referred to as a first RRC connection response and a second RRC connection response for the convenience of distinction.
  • the first RRC connection response includes beam indication information
  • the second RRC connection response includes beam indication information. Does not contain beam indication information.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, which is the same as the SSB corresponding to the beam used to receive the random access request sent by the terminal, that is to say, the base station side
  • the SSB corresponding to the beam used for sending data does not change. If the SSB that successfully monitors and avoids has an associated CSI-RS, an RRC connection response carrying the beam indication information is sent to inform the terminal of the beam corresponding to the CSI-RS that needs to be switched to. beam switching.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, such as SS1, and the SSB corresponding to the beam receiving the random access request sent by the terminal is also SSB1.
  • an RRC connection response carrying the beam indication information is sent to inform The CSI-RS that the terminal needs to switch to.
  • the base station needs to switch the SSB to the SSB corresponding to the current beam that successfully monitors and avoids.
  • the terminal is instructed to perform SSB handover, thereby sending a second connection response that does not carry beam indication information.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, such as SS2, and the SSB corresponding to the beam receiving the random access request sent by the terminal, such as SSB1, that is, SSB2 and SSB1 are different, then the base station needs to switch beams, and the base station directly Switch to monitor the SSB2 corresponding to the successfully avoided beam, and send a second RRC connection response on the SSB2.
  • Step 1306 use the target SSB to send and/or receive data.
  • the corresponding spectrum includes the licensed spectrum and the unlicensed frequency.
  • the licensed spectrum can be understood as the exclusive spectrum.
  • the non-licensed spectrum belongs to the shared spectrum.
  • the following describes the interaction flow between the terminal and the base station in the scenarios of licensed spectrum and unlicensed spectrum.
  • the base station configures the broadcasted system information block SIB message, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • the base station After detecting the random access request sent by the terminal, the base station sends a random access response carrying the measurement indication information to the terminal, so that the terminal can synchronize the beam quality of the broadcast block SSB and the beam quality of the associated CSI-RS according to the measurement indication information. Take measurements to get quality inspection information.
  • the measurement indication information is carried in the reserved bits in the downlink control information DCI, for example, the value corresponding to the reserved bits in the DCI 1_0 of the downlink control channel PDCCH is 011, see Table 2-3 above , the base station instructs the terminal to report the quality measurement results of the current SSB and its associated SSB and CSI-RS.
  • the terminal sends an RRC connection request carrying the quality detection information to the base station.
  • the terminal reports the quality detection information of the current SSB and its associated SSB and CSI-RS to the base station according to the measurement indication information.
  • the reported quality detection information includes SSB0, SSB1, SSB2, SSB4, and reference signal received power values RSRP of CSI-RS3, CSI-RS4, and CSI-RS5, as shown in Table 3-1 and Table 3-2 below.
  • the base station sends the first RRC connection response carrying the beam indication information to the terminal.
  • the base station if the base station is ready to send an RRC connection response, if the base station uses the SSB that receives the quality detection information sent by the terminal to send beam indication information, and if there is an associated CSI-RS in the current SSB, the associated CSI-RS will be sent from the current SSB. -Select the beam with the best quality in the RS, and send the RRC connection response carrying the beam indication information to inform the terminal to switch to the beam corresponding to the CSI-RS with the best quality, which realizes the beam based on the refined configuration of the beam in advance. switch.
  • the base station when the base station is ready to send an RRC connection response, uses the SSB that receives the random access request sent by the terminal, receives the quality detection information sent by the terminal, and determines the corresponding beam with better quality according to the quality detection information If the SSB of the base station is changed, the base station needs to switch the SSB to the SSB corresponding to the currently determined beam with the best quality, that is to say, the SSB at the base station has changed, and then sends the first connection response carrying the beam indication information, instructing the terminal to perform the corresponding beam. Handover can increase the success probability of random access when the channel is easily interfered.
  • the quality detection information reported by the terminal to the base station includes beam quality detection information of SSB0, SSB1, SSB2 and SSB4, wherein the RSRP value corresponding to SSB2 is the largest, so the quality of SSB2 is the best.
  • the target SSB the receiving beam corresponding to SSB2 is used as the target beam, and the target SSB can be switched according to the quality detection information to adjust the beam corresponding to the SSB used by the terminal for data transmission. probability of success.
  • the base station configures the broadcasted system information block SIB message, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • the terminal sends a random access request to the base station.
  • the beam 1 selected by the terminal to send the signal corresponds to the synchronous broadcast block SSB1
  • the SSBs that are associated with SSB1 are ⁇ SSB0, SSB2 ⁇
  • the CSI-RS that are associated with SSB1 are is ⁇ CSI-RS3, CSI-RS4, CSI-RS5 ⁇ .
  • the base station sends a random access response carrying the measurement indication information to the terminal, so that the terminal measures the beam quality of the synchronous broadcast block SSB and the beam quality of the associated CSI-RS according to the measurement indication information to obtain quality detection information .
  • the measurement indication information is carried in the reserved bits in the downlink control information DCI.
  • the value corresponding to the reserved bits in the DCI1_0 of the downlink control channel PDCCH is 110. See Table 2-3 above.
  • the base station instructs the terminal to report the quality ranking of the current SSB and its associated SSB and CSI-RS.
  • the terminal sends an RRC connection request carrying the quality detection information to the base station.
  • the terminal reports the quality detection information including the quality ranking of the beams corresponding to the current SSB and its associated SSB and CSI-RS to the base station.
  • the quality detection information reported by the terminal includes the ordering of the reference signal measurement results of SSB0, SSB1, SSB2, and CSI-RS3, CSI-RS4, and CSI-RS5, as shown in Table 3-3 and Table 3-4, among which, The smaller the number corresponding to the ranking, the better the signal quality.
  • the base station sends a first RRC connection response carrying beam indication information to the terminal according to the quality detection information reported by the terminal.
  • the beam indication information is carried in the downlink allocation index field in the downlink control information DCI.
  • the downlink allocation index field in the downlink control information DCI is used to indicate that the terminal is used to receive the receiving beam corresponding to the RRC connection response.
  • the beam indication information sent by the base station is still being sent by beam 1, that is to say, the beam currently used by the base station has not changed. It is determined that SSB1 is the target SSB. Further, since SSB1 also has CSI-RS3, CSI-RS4, and CSI-RS5 that are associated, the beam corresponding to CSI-RS5 with the best quality is used for the terminal to receive the first RRC connection response. According to the quality detection information, the target SSB is switched to adjust the beam corresponding to the SSB used by the terminal for data transmission, and the success probability of random access is increased when the channel is easily interfered. Second: in an unauthorized scenario, based on the association list, determine the first SSB and the second SSB that have an association relationship.
  • the base station configures the broadcasted system information block SIB message, wherein the SIB message carries the association relationship between multiple SSBs and reference signal configuration information.
  • the terminal sends a random access request to the base station. For example, the terminal selects beam 1, which corresponds to the synchronous broadcast block SSB1, the SSBs that are associated with SSB1 are ⁇ SSB0, SSB2 ⁇ , and the CSI-RS that are associated with SSB1 are ⁇ CSI-RS -RS3, CSI-RS4, CSI-RS5 ⁇ .
  • the base station sends a random access response carrying measurement indication information to the terminal, so that the terminal measures the beam quality of the synchronous broadcast block SSB and the beam quality of the associated CSI-RS according to the measurement indication information to obtain quality detection information.
  • the measurement indication information is carried in the reserved bits in the downlink control information DCI.
  • the value corresponding to the reserved bits in DCI 1_0 of the downlink control channel PDCCH is 110, see Table 2-3 above.
  • the base station instructs the terminal to report the quality ranking of the current SSB and its associated SSB and CSI-RS.
  • the terminal sends an RRC connection request carrying quality detection information to the base station.
  • the method for the terminal to monitor and avoid each beam may refer to the description in the corresponding embodiment of FIG. 12 , which will not be repeated here.
  • the quality detection information including the quality ranking of the current SSB and its associated SSB and CSI-RS is reported to the base station.
  • the quality detection information reported by the terminal includes the ordering of reference signal measurement results of SSB0, SSB1, SSB2, and CSI-RS3, CSI-RS4, and CSI-RS5, as shown in Table 3-6 and Table 3-7, where, The smaller the number corresponding to the ranking, the better the signal quality.
  • the base station sends the first RRC connection response carrying the beam indication information to the terminal.
  • the beam indication information is carried in the downlink allocation index field in the downlink control information DCI.
  • the base station monitors the RRC connection request sent by the terminal on the SSB that the terminal sends the random request and its associated SSB, excludes the SSB that does not exceed the measurement threshold and LBT failure in the quality report, obtains the reserved SSB, and compares the reserved SSB and the associated CSI- Perform monitoring and avoidance LBT on the RS, and send a first RRC connection response on the SSB that successfully monitors and avoids, wherein the carried beam indication information is carried in the downlink allocation index field in the downlink control information DCI.
  • connection responses sent in this embodiment of the present application There are two types of connection responses sent in this embodiment of the present application, which are referred to as a first RRC connection response and a second RRC connection response for the convenience of distinction.
  • the first RRC connection response includes beam indication information
  • the second RRC connection response includes beam indication information. Does not contain beam indication information.
  • the base station needs to switch the SSB to the SSB corresponding to the beam that currently monitors and avoids successfully.
  • the terminal is instructed to perform SSB handover, thereby sending a second connection response that does not carry beam indication information.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, such as SS2, and the SSB corresponding to the beam receiving the random access request sent by the terminal, such as SSB1, that is, SSB2 and SSB1 are different, then the base station needs to switch beams, and the base station directly Switch to monitor the SSB2 corresponding to the successfully avoided beam, and send a second RRC connection response on the SSB2.
  • the base station if the base station is ready to send an RRC connection response, it monitors the SSB corresponding to the beam that successfully avoids and is the same as the SSB corresponding to the beam used to receive the random access request sent by the terminal, that is to say, the base station side
  • the SSB corresponding to the beam used for sending data does not change. If the SSB that successfully monitors and avoids has an associated CSI-RS, an RRC connection response carrying the beam indication information is sent to inform the terminal of the beam corresponding to the CSI-RS that needs to be switched to. beam switching.
  • the base station monitors the SSB corresponding to the beam that successfully avoids, such as SS1, and the SSB corresponding to the beam receiving the random access request sent by the terminal is also SSB1.
  • an RRC connection response carrying the beam indication information is sent to inform The CSI-RS that the terminal needs to switch to.
  • the downlink allocation index field in the downlink control information DCI may be used as the beam indication field.
  • the base station performs monitoring and avoidance to determine a method for monitoring and avoiding a successful beam, which may refer to the description in the embodiment shown in FIG. 7 , which will not be repeated here.
  • the terminal monitors the beam corresponding to the first SSB and the beam that successfully monitors and avoids to receive the RRC connection response sent by the base station. It is not repeated here.
  • FIG. 14 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • the base station includes a memory 1401 , a transceiver 1402 and a processor 1403 .
  • the memory 1401 is used to store computer programs; the transceiver 1402 is used to send and receive data under the control of the processor 1403; the processor 1403 is used to read the computer program in the memory 1401 and perform the following operations:
  • the random access response carries measurement indication information, where the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB;
  • the terminal receiving a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal detecting beam quality according to the measurement indication information;
  • Sending a first RRC connection response to the terminal wherein the first RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine, according to the quality detection information, for sending and/or sending or the target SSB to receive the data.
  • the processor 1403 may be a CPU, an ASIC, an FPGA or a CPLD, and the processor 1403 may also adopt a multi-core architecture.
  • the method before the random access request sent by the receiving terminal, the method further includes:
  • the SIB message Broadcasting a system information block SIB message to the terminal, wherein the SIB message carries an association relationship between multiple SSBs, and the association relationship is used to determine a candidate SSB for quality detection from the multiple SSBs, and the
  • the candidate SSBs include a first SSB used by the terminal to send the random access request, and a second SSB that is associated with the first SSB.
  • the receiving a radio resource control RRC connection request sent by the terminal includes:
  • the beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to receive the RRC connection request.
  • the quality detection information is further used to instruct the terminal to monitor the SSB corresponding to the beam that fails to avoid when sending the RRC connection request, and to send the first signal to the terminal.
  • An RRC connection response including:
  • the quality detection information from the first SSB and the second SSB, exclude the SSB corresponding to the beam that fails to monitor and avoid and/or the detected SSB whose beam quality is lower than the set quality threshold, and obtain the reserved SSB ;
  • the reserved SSB monitor the beam corresponding to the reserved SSB to determine the beam that monitors and avoids successfully;
  • a first RRC connection response is sent.
  • the method further includes:
  • a second RRC connection response is sent, and the second RRC connection response does not carry the beam indication information.
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB.
  • the association relationship includes: an association strategy
  • the association relationship includes: an association strategy; the association strategy includes a number threshold, and the number threshold is used to determine the relationship between the first SSB and the first SSB in the available SSB sequence of the base station.
  • the second SSB with an associated relationship, wherein the number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold; the number threshold includes Threshold for the number of positive and/or negative sequences along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, and the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information, further used to indicate that the quality detection of the CSI-RS associated with the candidate SSB is performed;
  • the beam indication information includes: determination policy indication information of the target SSB, determination policy indication information for determining the target CSI-RS from the associated CSI-RS of the target SSB, and the index of the target CSI-RS A combination of one or more of the value and the index value of the target SSB.
  • the index value of the CSI-RS associated with the SSB whose index value is M is greater than or equal to (N ⁇ M) and less than or equal to (N ⁇ M+N ⁇ 1 ); wherein, N is the total number of CSI-RSs associated with a single SSB, and N and M are natural numbers.
  • the quality detection information includes: an index value of an SSB with the best quality, a reference signal received power value RSRP of each candidate SSB, and CSI associated with each candidate SSB - A combination of one or more of the RSRP of the RS, the quality ranking of each candidate SSB, and the quality ranking of the CSI-RS associated with each candidate SSB.
  • the method further includes:
  • the target SSB is used for the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the measurement indication information is carried in a reserved bit in the downlink control information DCI.
  • the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • the above-mentioned base station provided in this embodiment of the present application can implement all the method steps implemented by the above-mentioned method embodiments in FIG. 1 , FIG. 2 , FIG. 7 , and FIG. 8 , and the method steps implemented by the base station side in FIG. , and can achieve the same technical effect, and the same parts and beneficial effects in this embodiment as those in the method embodiment will not be described in detail here.
  • FIG. 15 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal includes a memory 1501 , a transceiver 1502 and a processor 1503 .
  • a memory 1501 As shown in FIG. 15 , a memory 1501 , a transceiver 1502 and a processor 1503 are included.
  • the memory 1501 is used to store the computer program; the transceiver 1502 is used to send and receive data under the control of the processor; the processor 1503 is used to read the computer program in the memory and perform the following operations:
  • the RRC connection request carries quality detection information, wherein the quality detection information is the beam quality of the synchronous broadcast block SSB by the terminal according to the measurement indication information detected;
  • the base station receiving an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine the target SSB according to the quality detection information;
  • Data is sent and/or received using the target SSB.
  • the processor 1503 may be a CPU, an ASIC, an FPGA or a CPLD, and the processor 1503 may also adopt a multi-core architecture.
  • the method before sending the random access request to the base station, the method further includes:
  • SIB message broadcast by the base station, wherein the SIB message carries the association relationship between multiple SSBs;
  • the candidate SSB is determined from the plurality of SSBs; wherein, the candidate SSB includes a first SSB used by the terminal to send the random access request, and a relationship with the first SSB There is a second SSB associated with it.
  • the sending a radio resource control RRC connection request to the base station includes:
  • the RRC connection request is sent by using the beam that successfully monitors and avoids.
  • the sending the RRC connection request by using the beams that successfully monitor and avoid includes:
  • the RRC connection request is sent using the reserved beam.
  • the method further includes:
  • the index value of the SSB corresponding to the beam that fails to monitor and avoid is deleted.
  • the receiving an RRC connection response sent by the base station includes:
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB.
  • the association relationship includes: an association strategy
  • the association strategy includes a number threshold, and the number threshold is used to determine the first SSB and the second SSB associated with the first SSB in the available SSB sequence of the base station, wherein, The number of continuous or non-consecutive available SSBs between the second SSB and the first SSB is less than or equal to the number threshold.
  • the number threshold includes a positive and/or reverse number threshold along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, and the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information, further used to indicate that the quality detection of the CSI-RS associated with the candidate SSB is performed;
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the CSI-RS associated with the target SSB, the target CSI-RS A combination of one or more of the index value and the index value of the target SSB.
  • the quality detection information includes: an index value of an SSB with the best quality, a reference signal received power value RSRP of each candidate SSB, and CSI associated with each candidate SSB - A combination of one or more of the RSRP of the RS, the quality ranking of each candidate SSB, and the quality ranking of the CSI-RS associated with each candidate SSB.
  • the receiving the measurement indication information sent by the base station includes:
  • the base station receiving the retransmission indication of the RRC connection request sent by the base station, wherein the retransmission indication carries the measurement indication information;
  • the measurement indication information is carried in a reserved bit in the downlink control information DCI; the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • the above-mentioned terminal provided by this embodiment of the present application can implement all the method steps implemented by the above-mentioned method embodiments in FIG. 9 to FIG. 12 and the method steps implemented by the terminal side in FIG. 13 , and can achieve the same Technical effects, the same parts and beneficial effects in this embodiment as those in the method embodiment will not be described in detail here.
  • FIG. 16 is a schematic structural diagram of a random access device provided by the embodiment of the present application.
  • the apparatus includes: a first receiving module 1601 , a first sending module 1602 , a second receiving module 1603 and a second sending module 1604 .
  • the first receiving module 1601 is configured to receive a random access request sent by a terminal.
  • the first sending module 1602 is configured to send a random access response to the terminal, wherein the random access response carries measurement indication information, and the measurement indication information is used to instruct the terminal to detect the beam quality of the synchronous broadcast block SSB.
  • the second receiving module 1603 is configured to receive a radio resource control RRC connection request sent by the terminal, wherein the RRC connection request carries quality detection information, and the quality detection information is obtained by the terminal detecting beam quality according to the measurement indication information.
  • the second sending module 1604 is configured to send a first RRC connection response to the terminal, wherein the first RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine whether to send and/or receive according to the quality detection information The target SSB of the data.
  • the device further includes:
  • a broadcasting module configured to broadcast a system information block SIB message to the terminal, wherein the SIB message carries an association relationship between multiple SSBs, and the association relationship is used to determine the quality detection method from the multiple SSBs
  • the candidate SSBs include a first SSB used by the terminal to send the random access request, and a second SSB that is associated with the first SSB.
  • the above-mentioned second receiving module 1603 is specifically used for:
  • the beam corresponding to the first SSB and the beam corresponding to the second SSB are monitored to receive the RRC connection request.
  • the quality detection information is further used to instruct the terminal to monitor the SSB corresponding to the beam that fails to avoid and avoid when sending the RRC connection request.
  • the second sending module 1604 is specifically used for:
  • the quality detection information from the first SSB and the second SSB, exclude the SSB corresponding to the beam that fails to monitor and avoid and/or the detected SSB whose beam quality is lower than the set quality threshold, and obtain the reserved SSB ;
  • the reserved SSB monitor the beam corresponding to the reserved SSB to determine the beam that monitors and avoids successfully;
  • a first RRC connection response is sent.
  • the second sending module 1604 is further configured to:
  • a second RRC connection response is sent, and the second RRC connection response does not carry beam indication information.
  • the association relationship includes: an association list
  • the association list includes an index of the first SSB and an index of the second SSB that is associated with the first SSB;
  • the association relationship includes: an association strategy; the association strategy includes a number threshold, and the number threshold is used to determine the relationship between the first SSB and the first SSB in the available SSB sequence of the base station.
  • the second SSB with an associated relationship, wherein the number of continuous or non-continuous available SSBs between the second SSB and the first SSB is less than or equal to the number threshold; the number threshold includes Threshold for the number of positive and/or negative sequences along the available SSB sequence.
  • the SIB message further carries reference signal configuration information, where the reference signal configuration information is used to indicate the channel state information reference signal CSI- RS; the measurement indication information is further used to indicate that the quality detection of the CSI-RS associated with the candidate SSB is performed;
  • the beam indication information includes: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the CSI-RS associated with the target SSB, the target CSI-RS A combination of one or more of the index value and the index value of the target SSB.
  • the index value of the CSI-RS associated with the SSB whose index value is M is greater than or equal to (N ⁇ M) and less than or equal to (N ⁇ M+N ⁇ 1 ); wherein, N is the total number of CSI-RSs associated with a single SSB, and N and M are natural numbers.
  • the quality detection information includes: an index value of an SSB with the best quality, a reference signal received power value RSRP of each candidate SSB, and CSI associated with each candidate SSB - A combination of one or more of the RSRP of the RS, the quality ranking of each candidate SSB, and the quality ranking of the CSI-RS associated with each candidate SSB.
  • the device further includes:
  • a third sending module configured to send a retransmission indication of the RRC connection request to the terminal, wherein the retransmission indication carries the measurement indication information.
  • the target SSB is used for the terminal to receive data on the downlink shared channel PDSCH and/or send data on the uplink shared channel PUSCH.
  • the measurement indication information is carried in a reserved bit in the downlink control information DCI.
  • the beam indication information is carried in a downlink allocation index field in the downlink control information DCI.
  • the above-mentioned device provided by the embodiment of the present application can implement all the method steps implemented by the corresponding embodiment of the random access method executed by the above-mentioned device, and can achieve the same technical effect, and this implementation is not repeated here.
  • the same parts and beneficial effects as the method embodiment will be described in detail.
  • FIG. 17 is a schematic structural diagram of a random access apparatus provided by an embodiment of the present application.
  • the apparatus includes: a first sending module 1701 , a first receiving module 1702 , a second sending module 1703 , and second receiving modules 1704 and 1705 .
  • the first sending module 1701 is configured to send a random access request to the base station.
  • the first receiving module 1702 is configured to receive measurement indication information sent by the base station.
  • the second sending module 1703 is configured to send a radio resource control RRC connection request to the base station, wherein the RRC connection request carries quality detection information, wherein the quality detection information is the measurement indication information of the terminal according to the measurement It is obtained by detecting the beam quality of the synchronous broadcast block SSB.
  • the second receiving module 1704 is configured to receive an RRC connection response sent by the base station, wherein the RRC connection response carries beam indication information, and the beam indication information is used to instruct the terminal to determine the target SSB according to the quality detection information.
  • the transmission module 1705 is used for sending and/or receiving data using the target SSB.
  • the above device further includes:
  • a third receiving module configured to receive a system information block SIB message broadcast by the base station, wherein the SIB message carries the association relationship between multiple SSBs;
  • a determining module configured to determine candidate SSBs from the multiple SSBs according to the association relationship; wherein the candidate SSBs include a first SSB used by the terminal to send a random access request, and a second SSB that has an association relationship with the first SSB .
  • the above-mentioned second sending module 1703 includes:
  • a monitoring unit configured to monitor the beam corresponding to the first SSB and the beam corresponding to the second SSB, to determine the beam that monitors and avoids successfully;
  • the sending unit is used for sending the RRC connection request by using the beam that has successfully monitored and avoided.
  • the beams that have been successfully monitored and avoided are screened, and the reserved beams are obtained; the RRC connection request is sent by using the reserved beams.
  • the above-mentioned second sending module 1703 further includes:
  • an update unit configured to delete the reference signal received power value RSRP for the SSB corresponding to the beam that fails to monitor and avoid in the quality detection information; or, in the quality detection information, to update the quality ranking of the SSB corresponding to the beam that fails to monitor and avoid; or , in the quality detection information, update the quality ranking of the SSBs corresponding to the beams that fail to monitor and avoid, and re-sort the quality of the SSBs that succeed in monitoring and avoidance; or, in the quality detection information, delete the SSBs corresponding to the beams that fail to monitor and avoid index value.
  • the above-mentioned second receiving module 1704 is specifically configured to:
  • the beam corresponding to the first SSB and the beam that has successfully monitored and avoided are monitored to receive the RRC connection response sent by the base station.
  • the association relationship includes: an association list
  • the association list includes the index of the first SSB and the index of the second SSB that is associated with the first SSB.
  • the association relationship includes: an association strategy
  • the number threshold is used to determine the first SSB and the second SSB associated with the first SSB in the available SSB sequence of the base station, wherein the second SSB and the first SSB are continuous Or the number of non-consecutive available SSBs is less than or equal to the number threshold.
  • the count threshold includes a count threshold in positive and/or reverse order along the available SSB sequence.
  • the SIB message also carries reference signal configuration information, and the reference signal configuration information is used to indicate the channel state information reference signal CSI-RS associated with multiple SSBs; the measurement indication information, and also Used to indicate quality detection of the CSI-RS associated with the candidate SSB;
  • Beam indication information including: the determination strategy indication information of the target SSB, the determination strategy indication information for the target CSI-RS determined from the target SSB associated CSI-RS, the index value of the target CSI-RS and the index value of the target SSB One or more combinations of .
  • the quality detection information includes: an index value of an SSB with the best quality, a reference signal received power value RSRP of each candidate SSB, an RSRP of the associated CSI-RS of each candidate SSB, One or more of the quality rankings of the candidate SSBs and the quality rankings of the CSI-RSs associated with each candidate SSB are combined.
  • the first receiving module 1702 is specifically configured to:
  • the measurement indication information is carried in the reserved bits in the downlink control information DCI; the beam indication information is carried in the downlink allocation index field in the downlink control information DCI.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network side device, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.
  • the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program
  • the computer program is used to enable the processor to implement the random access described in the method embodiments corresponding to FIG. 1 , FIG. 2 , FIG. 7 , and FIG. 8 by executing the present application. method.
  • the processor-readable storage medium may be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program
  • the computer program is used to cause the processor to execute the random access method described in the method embodiments of FIG. 9 to FIG. 12 of the present application.
  • the processor-readable storage medium may be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the present application also proposes a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, to execute the above-mentioned FIG. 1 , FIG. 2 , and FIG. 7 The random access method described in the method embodiment corresponding to FIG. 8 .
  • the present application also proposes a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, to execute the methods shown in FIGS. 9 to 12 of the present application.
  • the random access method described in the example is the random access method described in the example.
  • the present application also proposes a communication device, including a processing circuit and an interface circuit, the interface circuit is used for receiving computer codes or instructions and transmitting them to the processing circuit, and the processing circuit is used for running all
  • the computer code or instructions are used to execute the random access method described in the method embodiments corresponding to FIG. 1 , FIG. 2 , FIG. 7 , and FIG. 8 .
  • the present application also proposes a communication device, including a processing circuit and an interface circuit, the interface circuit is used for receiving computer codes or instructions and transmitting them to the processing circuit, and the processing circuit is used for running all
  • the computer code or instruction is used to execute the random access method described in the method embodiments of FIG. 9 to FIG. 12 of the present application.
  • the present application also proposes a computer program, the computer program includes computer program code, when the computer program code is run on a computer, so that the computer executes the above-mentioned FIG. 1 , FIG. 2 , FIG. 7 and The random access method described in the method embodiment corresponding to FIG. 8 .
  • the present application also proposes a computer program, the computer program includes computer program code, when the computer program code is run on a computer, so that the computer executes the method embodiments shown in FIGS. 9 to 12 of the present application the random access method.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了随机接入方法、装置、基站、终端和存储介质,涉及无线通信技术领域。具体实现方案为:接收终端发送的随机接入请求,向终端发送随机接入响应,随机接入响应携带测量指示信息,测量指示信息用于指示终端检测同步广播块SSB的波束质量,接收终端发送的无线资源控制RRC连接请求,RRC连接请求中携带质量检测信息,质量检测信息是终端根据测量指示信息对波束质量进行检测得到的,向终端发送第一RRC连接响应,其中,第一RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据质量检测信息,确定用于发送和/或接收数据的目标SSB,实现了在随机接入过程中,根据检测到SSB的波束质量实现对波束的重新选择,提高了随机接入过程的成功率。

Description

随机接入方法、装置、基站、终端和存储介质
相关申请的交叉引用
本申请要求在2020年9月21日在中国提交的中国专利申请号No.202010997173.0的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及无线通信技术领域,具体涉及一种随机接入方法、装置、基站、终端和存储介质。
背景技术
随机接入是无线通信的基本功能,终端通过随机接入过程,与系统的上行同步以后,才能够被系统调度来进行上行的传输。其中,随机接入过程有两种形式,允许基于竞争的接入(意味着固有的冲突风险)或无竞争的接入。
在基于竞争的随机接入中,基站会配置和当前随机接入过程相关联的波束。而在52.6GHz以上的高频段,相比于低频段,具有更高的传播路径损耗。为了应对快速传播的损耗,扩大覆盖的距离,波束赋形操作的波束宽度需要更窄,窄宽度的波束使数据和控制传输的能量集中,提高了系统的数据接收质量,但窄宽度的波束的覆盖面窄,在终端移动过程中,需要进行更频繁的同步来保持通信。因此,在基于竞争的随机接入过程中,波束传输管理对于提高随机接入过程成功率较为重要。
发明内容
本申请提供了一种用于提高随机接入过程成功率的随机接入方法、装置、基站、终端和存储介质。
根据本申请的一方面,提供了一种随机接入方法,所述方法用于基站,包括:
接收终端发送的随机接入请求;
向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,所述测量指示信息用于指示终端检测同步广播块SSB的波束质量;
接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,所述质量检测信息是终端根据所述测量指示信息对波束质量进行检测得到的;
向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,所述波束指示信息用于指示终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
可选地,所述接收终端发送的随机接入请求之前,还包括:
向所述终端广播系统信息块SIB消息,其中,所述SIB消息中携带有多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
可选地,所述接收所述终端发送的无线资源控制RRC连接请求,包括:
对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。可选地,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述向所述终端发送第一RRC连接响应,包括:
根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
可选地,所述根据所述保留SSB,监听保留SSB对应的波束,以确定监听避让成功的波束之后,还包括:
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未携带所述波束指示信息。
可选地,所述关联关系包括:关联列表;
所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
可选地,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。所述SIB消息中还携带参考信号配置信息,用于指示多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息,还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
可选地,索引值为M的SSB所关联的CSI-RS的索引值大于或等于(N×M),且小于或等于(N×M+N-1);其中,N为单个SSB关联的CSI-RS的总个数,N和M为自然数。
可选地,所述质量检测信息包括:质量最佳的SSB的索引值、各所述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
可选地,所述向所述终端发送随机接入响应之后,还包括:
向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
可选地,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
可选地,所述测量指示信息承载于下行控制信息DCI中的预留比特位。
可选地,所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
根据本申请的第二方面,提供了一种随机接入方法,所述方法用于终端,包括:
向基站发送随机接入请求;
接收所述基站发送的测量指示信息;
向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的;
接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据所述质量检测信息,确定出目标SSB;
采用所述目标SSB发送和/或接收数据。
可选地,所述向基站发送随机接入请求之前,还包括:
接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息中携带多个SSB之间的关联关系;
根据所述关联关系,从多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
可选地,所述向所述基站发送无线资源控制RRC连接请求,包括:
对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束;
采用所述监听避让成功的波束发送所述RRC连接请求。
可选地,所述监听避让成功的波束为多个;所述采用所述监听避让成功的波束发送所述RRC连接请求,包括:
根据质量检测信息,对所述监听避让成功的波束进行筛选,以得到保留的波束;
采用所述保留的波束发送所述RRC连接请求。
可选地,所述对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束之后,还包括:
在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
可选地,所述接收所述基站发送的RRC连接响应,包括:
对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
可选地,所述关联关系包括:关联列表;
所述关联列表,包含所述第一SSB的索引,以及与第一SSB存在关联关系的所述第二SSB的索引。
可选地,所述关联关系包括:关联策略;
所述关联策略,包含个数阈值,所述个数阈值用于在所述基站的可用SSB序列中,确定所述第一SSB和与第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值。
可选地,所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
可选地,所述SIB消息中还携带参考信号配置信息,用于指示多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息,还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合
可选地,所述质量检测信息包括:质量最佳的SSB的索引值、各所述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
可选地,所述接收所述基站发送的测量指示信息,包括:
接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
可选地,所述测量指示信息承载于下行控制信息DCI中的预留比特位;所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
根据本申请的第三方面,提供了一种基站,包括存储器、收发机和处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的随机接入请求;
向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,所述测量指示信息用于指示终端检测同步广播块SSB的波束质量;
接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带有质量检测信息,所述质量检测信息是终端根据所述测量指示信息对波束质量进行检测得到的;
向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,所述波束指示信息用于指示终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
可选地,所述接收终端发送的随机接入请求之前,还包括:
向所述终端广播系统信息块SIB消息,其中,所述SIB消息中携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
可选地,所述接收所述终端发送的无线资源控制RRC连接请求,包括:
对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。
可选地,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述向所述终端发送第一RRC连接响应,包括:
根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
可选地,所述根据所述保留SSB,监听保留SSB对应的波束,以确定监听避让成功的波束之后,还包括:
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未保留SSB携带所述波束指示信息。
可选地,所述关联关系包括:关联列表;
所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
可选地,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。所述SIB消息中还携带参考信号配置信息,用于指示多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息,还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中 确定出目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
可选地,索引值为M的SSB所关联的CSI-RS的索引值大于或等于(N×M),且小于或等于(N×M+N-1);其中,N为单个SSB关联的CSI-RS的总个数,N和M为自然数。
可选地,所述质量检测信息包括:质量最佳的SSB的索引值、各所述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
可选地,所述向所述终端发送随机接入响应之后,还包括:
向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
可选地,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
可选地,所述测量指示信息承载于下行控制信息DCI中的预留比特位。
可选地,所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
根据本申请的第四方面,提供了一种终端,包括存储器、收发机和处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向基站发送随机接入请求;
接收所述基站发送的测量指示信息;
向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是终端根据所述测量指示信息检测同步广播块SSB的波束质量得到的;
接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据所述质量检测信息,确定出目标SSB;
采用所述目标SSB发送和/或接收数据。
可选地,所述向基站发送随机接入请求之前,还包括:
接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息中携带多个SSB之间的关联关系;
根据所述关联关系,从多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
可选地,作为一种可能的实现方式,所述向所述基站发送无线资源控制RRC连接请求,包括:
对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束;
采用所述监听避让成功的波束发送所述RRC连接请求。
可选地,所述监听避让成功的波束为多个;所述采用所述监听避让成功的波束发送所述RRC连接请求,包括:
根据质量检测信息,对所述监听避让成功的波束进行筛选,以得到保留的波束;
采用所述保留的波束发送所述RRC连接请求。
可选地,所述对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束之后,还包括:
在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
可选地,所述接收所述基站发送的RRC连接响应,包括:
对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
可选地,所述关联关系包括:关联列表;
所述关联列表,包含所述第一SSB的索引,以及与第一SSB存在关联关系的所述第二SSB的索引。
可选地,所述关联关系包括:关联策略;
所述关联策略,包含个数阈值,所述个数阈值用于在所述基站的可用SSB序列中,确定所述第一SSB和与第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值。
可选地,所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
可选地,所述SIB消息中还携带参考信号配置信息,用于指示多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息,还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合
可选地,所述质量检测信息包括:质量最佳的SSB的索引值、各所述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
可选地,所述接收所述基站发送的测量指示信息,包括:
接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
可选地,所述测量指示信息承载于下行控制信息DCI中的预留比特位;所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
根据本申请的第五方面,提供了一种随机接入装置,用于基站,包括:
第一接收模块,用于接收终端发送的随机接入请求;
第一发送模块,用于向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,测量指示信息用于指示所述终端检测同步广播块SSB的波束质量;
第二接收模块,用于接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,所述质量检测信息是所述终端根据所述测量指示信息对波束质量进行检测得到的;
第二发送模块,用于向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,波束指示信息用于指示所述终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
可选地,所述装置还包括:
广播模块,用于向所述终端广播系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
可选地,所述第二接收模块,具体用于:
对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。
可选地,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述第二发送模块,具体用于:
根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
可选地,所述第二发送模块,具体还用于:
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未携带所述波束指示信息。
可选地,所述关联关系包括:关联列表;所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
可选地,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
可选地,所述装置还包括:
第三发送模块,用于向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
可选地,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
可选地,所述测量指示信息承载于下行控制信息DCI中的预留比特位。
可选地,所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
根据本申请的第六方面,提供了一种随机接入装置,用于终端,包括:
第一发送模块,用于向基站发送随机接入请求;
第一接收模块,用于接收所述基站发送的测量指示信息;
第二发送模块,用于向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是所述终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的;
第二接收模块,用于接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定出目标SSB;
传输模块,用于采用所述目标SSB发送和/或接收数据。
可选地,所述装置还包括:
第三接收模块,用于接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系。
确定模块,用于根据所述关联关系,从所述多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
可选地,所述第二发送模块,包括:
监听单元,用于对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成 功的波束;
发送单元,用于采用所述监听避让成功的波束发送所述RRC连接请求。
可选地,监听避让成功的波束为多个;所述发送单元,具体用于:
根据质量检测信息,对所述监听避让成功的波束进行筛选,获取保留的波束;
采用所述保留的波束发送所述RRC连接请求。
可选地,所述第二发送模块,还包括:
更新单元,用于在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
可选地,所述第二接收模块,具体用于:
对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
可选地,所述关联关系包括:关联列表;所述关联列表,包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
和/或,所述关联关系包括:关联策略;所述关联策略,包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
可选地,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSBSSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
可选地,所述第一接收模块,具体用于:
接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
根据本申请的第七方面,提供了一种计算机可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一方面所述的随机接入方法。
根据本申请的第八方面,提供了一种计算机可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第二方面所述的随机接入方法。
根据本申请的第九方面,提供了一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行第一方面所述的随机接入方法。
根据本申请的第十方面,提供了一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行第二方面所述的随机接入方法。
根据本申请的第十一方面,提供了一种通信装置,包括处理电路和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理电路,所述处理电路用于运行所述计算机代码或指令,以执行第一方面所述的随机接入方法。
根据本申请的第十二方面,提供了一种通信装置,包括处理电路和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理电路,所述处理电路用于运行所述计算机代码或指令,以执行第二 方面所述的随机接入方法。
根据本申请的第十三方面,提供了一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行第一方面所述的随机接入方法。
根据本申请的第十四方面,提供了一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行第二方面所述的随机接入方法。
本申请实施例提供的解决方案包含如下的有益效果:
本申请中,基站接收终端发送的随机接入请求,向终端发送随机接入响应,随机接入响应携带测量指示信息,用于指示终端检测同步广播块SSB的波束质量,接收终端发送的无线资源控制RRC连接请求,RRC连接请求中携带质量检测信息,质量检测信息是终端根据测量指示信息进行波束质量检测得到的,向终端发送第一RRC连接响应,其中,第一RRC连接响应中携带波束指示信息,用于指示终端根据质量检测信息,确定出发送和/或接收数据的目标SSB,实现了在随机接入过程中,根据检测到SSB的波束质量实现对波束的重新选择,提高了随机接入过程的成功率。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本申请的限定。其中:
图1为本申请实施例提供的一种随机接入方法的流程示意图;
图2为本申请实施例提供的另一种随机接入方法的流程示意图;
图3为本申请实施例提供的一种基站可用的SSB序列的示意图;
图4为本申请实施例提供的一种SSB关联SSB的配置示意图;
图5为本申请实施例提供的一种SSB细分的示意图
图6为本申请提供的SSB关联的CSI-RS的对应示意图;
图7为本实施例提供的另一种随机接入方法的流程示意图;
图8为本实施例提供的另一种随机接入方法的流程示意图;
图9为本申请实施例提供的又一种随机接入方法的流程示意图;
图10为本申请实施例提供的又一种随机接入方法的流程示意图;
图11为本申请实施例提供的又一种随机接入方法的流程示意图;
图12为本申请实施例提供的又一种随机接入方法的流程示意图;
图13为本申请实施例提供的一种随机接入交互方法的流程示意图;
图14为本申请实施例提供的一种基站的结构示意图;
图15为本申请实施例提供的一种终端的结构示意图;
图16为本申请实施例提供的一种随机接入装置的结构示意图;
图17为本申请实施例提供的一种随机接入装置的结构示意图。
具体实施方式
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所 描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了随机接入方法、装置、基站、终端和存储介质,用以提高随机接入过程的成功率和性能增益。
图1为本申请实施例提供的一种随机接入方法的流程示意图,该方法用于基站,如图1所示,该方法包含以下步骤:
步骤101,接收终端发送的随机接入请求。
本申请实施例中,随机接入请求用于实现随机接入过程,例如,具有波束成形(beamforming)的第五代(the Fifth Generation,5G)新无线电(New Radio,NR)接入系统中的随机接入(RandomAccess,RA)过程。随机接入过程用于实现到接入网的无线电接入。
本实施例的执行主体为基站,基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。基站可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。基站还可协调对空中接口的属性管理。例如,本申请实施例涉及的基站可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的基站(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
步骤102,向终端发送随机接入响应,其中,随机接入响应携带测量指示信息,测量指示信息用于指示终端检测同步广播块SSB的波束质量。
本申请实施例中,基站根据接收到的终端发送的随机接入请求,向终端发送随机接入响应,随机接入响应携带测量指示信息,以指示终端根据测量指示信息,检测得到了各个同步广播块(Synchronization Signal Block,SSB)的波束质量,以生成多个SSB波束质量的检测信息,同时,指示终端将质量检测信息发送至基站。
步骤103,接收终端发送的无线资源控制RRC连接请求,其中,RRC连接请求中携带质量检测信息,质量检测信息是终端根据测量指示信息对波束质量进行检测得到的。
本申请实施例中,基站接收终端发送的无线资源控制(Radio Resource Control,RRC)连接请求,该连接请求中携带了终端对多个SSB的波束进行质量检测得到的质量检测信息,进而,基站根据质量检测信息中指示各同步广播块SSB的波束质量,从多个SSB中确定出用于终端发送和/或接收数据的目标SSB,实现了根据从终端获取的包含多个SSB的波束质量情况的质量检测信息,重新确定终端发送和/或接收数据的目标SSB,由于每个SSB具有对应的一个波束,当重新确定终端发送和/或接收数据的目标SSB后,对应的波束也发生了变化,即实现了波束的重新选择,而并非在整个随机接入过程中均采用固定不变的波束进行数据传播,提高了随机接入过程的成功率。
步骤104,向终端发送第一RRC连接响应,其中,第一RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据质量检测信息,确定用于发送和/或接收数据的目标SSB。
其中,目标SSB是指根据质量检测信息确定出的质量较高的SSB。本申请的一个实施例中,目标SSB 用于终端在下行共享信道PDSCH接收数据和/或在上行共享信道PUSCH发送数据。
本实施例中,不同场景下,基站向终端发送的RRC中携带的信息不同,本实施例中将携带波束指示信息的RRC连接响应称为第一连接响应,将未携带波束指示信息的RRC连接响应称为第二连接响应,其中,第二连接响应将在后续实施例中具体说明,此处不再赘述。
本申请实施例中,基站向终端发送第一RRC连接响应,第一RRC连接响应中携带波束指示信息,用于指示根据质量检测信息,确定出发送和/或接收数据的目标SSB,以使得终端根据该目标SSB对应的波束进行数据传输,提高了随机接入过程的成功率。
本申请实施例的随机接入方法中,接收终端发送的随机接入请求,向终端发送随机接入响应,其中,随机接入响应携带测量指示信息,用于指示终端检测同步广播块SSB的波束质量,接收终端发送的无线资源控制RRC连接请求,其中,RRC连接请求中携带质量检测信息,质量检测信息是终端根据测量指示信息进行波束质量检测得到的,向终端发送第一RRC连接响应,其中,第一RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据质量检测信息,确定用于发送和/或接收数据的目标SSB,实现了在随机接入过程中,根据检测到SSB的波束质量实现对波束的重新选择,提高了随机接入过程的成功率。
基于上述实施例,当基站当前使用的SSB的波束质量较差时,则需要进行波束的切换,也就是说需要进行SSB的重新选择,因此,为了进行SSB选择,本申请中为每个SSB设置关联的SSB,由于关联的SSB之间对应的波束方向可以是相近的,提高了波束切换的可靠性。为此,本实施例提供了另一种随机接入方法的流程示意图,如图2所示,步骤101之前包含以下步骤:
步骤201,向终端广播系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系。
其中,系统消息块(System Information Block,SIB)消息中携带多个SSB之间的关联关系,关联关系用于确定进行质量检测的候选SSB,候选SSB包括终端发送随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB。其中,与第一SSB存在关联关系的第二SSB可以为一个或多个,本实施例中不进行限定。
本申请实施例中,基站向终端广播系统信息块SIB消息,在基站配置的SIB消息中携带了各个SSB之间的关联信息,关联的SSB之间对应的波束方向相近,便于从关联的SSB之间重新选择SSB。同时,为了减少终端进行质量检测的候选SSB的数量,以降低终端的检测量,将终端发送随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB作为候选SSB,以使得终端根据接收到的随机接入响应携带的测量指示信息,检测第一SSB,以及与第一SSB存在关联关系的第二SSB的波束质量,大大降低了终端进行质量检测的数据量,提高了检测效率。
需要理解的是,SSB是基站用于广播数据的同步广播快,每一个SSB具有对应的波束,而基站端的每一个SSB对应的波束,和终端的波束是具有对应关系的,也就是说确定了基站端的SSB,就可以确定出对应的用于发送和/或接收数据的波束。
本实施例中,基站为各个SSB配置存在关联关系的SSB可通过以下可能的实现方式确定:
在本申请实施例的一种可能的实现方式中,关联关系包括:关联列表。
关联列表,包含第一SSB的索引,以及存在关联关系的第二SSB的索引。其中,SSB的索引用于对SSB进行标识。
例如,基站配置了64个实际发送的SSB,每个SSB配置了2个相关的SSB,表1-1为关联列表的示意图。
表1-1
SSB的索引 关联的SSB的索引
0 63,1
1 0,2
2 1,3
3 2,5
…… ……
63 62,1
例如,若终端发送随机接入请求的第一SSB的索引为1,则对应的存在关联关系的第二SSB的索引为0和2。
需要说明的是,表1中每个SSB配置的存在关联关系的SSB数量相同,实际应用场景中,基站也可以为每个SSB配置不同数量的存在关联关系的SSB,本实施例中不进行限定。
在本申请实施例的另一种可能的实现方式中,关联关系包括:关联策略。
关联策略,包含个数阈值,个数阈值用于在基站的可用SSB序列中,确定第一SSB和存在关联关系的第二SSB,其中,第二SSB与第一SSB之间连续或非连续的可用SSB的个数小于或等于个数阈值。其中,个数阈值包括沿可用SSB序列正序和/或逆序的个数阈值。
本申请实施例中,在基站可用的SSB序列中,可以是每一个SSB都是可用的,或者是存在部分SSB是不可用的,下面针对不同的场景进行具体说明。
在本申请的一个场景中,基站的SSB序列中包含的SSB均是可用的,下面针对关联策略,通过3种可能的实现方式,针对每个第一SSB确定存在关联关系的第二SSB。
在本申请实施例的一种可能的实现方式中,个数阈值为沿可用SSB序列正序的个数阈值。
例如,基站可用的SSB序列为{SSB0,SSB1,SSB2,…SSBn},图3为本申请实施例提供的一种基站可用的SSB序列的示意图,如图3所示,例如,基站可用的SSB数量为64个,将序列视为一个顺时针循环序列,配置沿可用SSB序列正序的个数阈值,例如为2,当前终端发送随机接入请求所采用的第一SSB为SSB1,则和SSB1存在关联关系的第二SSB为SSB2和SSB3。
在本申请实施例的第二种可能的实现方式中,个数阈值为沿可用SSB序列逆序的个数阈值。
例如,基站可用的SSB序列为{SSB0,SSB1,SSB2,…SSBn},如图3所示,例如,基站可用的SSB数量为64个,将序列视为一个顺时针循环序列,配置沿可用SSB序列正序的个数阈值,例如为1,当前终端发送随机接入请求所采用的第一SSB为SSB2,则和SSB2存在关联关系的第二SSB为SSB1。
在本申请实施例的第三种可能的实现方式中,个数阈值包括沿可用SSB序列正序和逆序的个数阈值。
例如,基站可用的SSB序列为{SSB0,SSB1,SSB2,…SSBn},如图3所示,例如,基站可用的SSB数量为64个,将序列视为一个顺时针循环序列,配置沿可用SSB序列正序的个数阈值,例如为1,并配置沿可用SSB序列逆序的个数阈值,例如为2,当前终端发送随机接入请求所采用的第一SSB为SSB1,则和SSB1存在关联关系的第二SSB为SSB0、SSB2和SSB3。
在本申请的一种场景中,基站可用的SSB序列中并不是每个SSB都实际可用,也就是说并不是每个SSB都为有效可用于发送广播数据的SSB,因此,需要以基站在SBI中广播的小区实际发送的SSB的个数和位置为基础,作为一种可能的实现方式,可通过对SSB分组标识的方式,确定和第一SSB存在关联关系的第二SSB。
例如,如图4所示,基站可用的SSB数量为64个,将64个SSB分为8组,每组8个SSB,也就是说通过组来指示每个SSB的位置。本申请中用一个8位的字符串指示每一组SSB是否发送,同时,针对每一组,用一个8位的字符串指示该组中每一个SSB是否发送,其中,字符串中0代表未发送,1代表发送。
例如,8组SSB对应的字符串为:11111111,即8组SSB都发送;每一组SSB对应的字符串为:11101111,即一组SSB中,其中SSB3不发送,也就是说在确定和第一SSB存在关联关系的第二SSB中,SSB3不作为和第一SSB存在关联关系的第二SSB。
本实施例中,以组1为例进行说明,组1中8个SSB的索引为:[SSB0、SSB1、SSB2、SSB3、SSB4、 SSB5、SSB6、SSB7],其中,SSB3为不可用的SSB。
作为一种可能的实现方式,基于关联策略,个数阈值包括沿可用SSB序列正序和逆序的个数阈值,例如,沿可用SSB序列正序的个数阈值为1,沿可用SSB序列逆序的个数阈值为2,若终端发送随机接入请求所采用的第一SSB为SSB1,则确定的和SSB1关联的第二SSB为SSB0、SSB2和SSB4。
作为另一种可能的实现方式,基于关联策略,个数阈值包括沿可用SSB序列正序的个数阈值,例如,沿可用SSB序列正序的个数阈值为2,若终端发送随机接入请求所采用的第一SSB为SSB1,则确定的和SSB1关联的第二SSB为SSB2和SSB4。作为又一种可能的实现方式,基于关联策略,个数阈值包括沿可用SSB序列逆序的个数阈值,例如,沿可用SSB序列逆序的个数阈值为2,若终端发送随机接入请求所采用的第一SSB为SSB4,则确定的和SSB4关联的第二SSB为SSB1和SSB2。
需要说明的是,是确定多个SSB存在关联关系的SSB时,可以根据上述的关联策略和关联关系共同确定,原理相同,本实施例中不再赘述。
本实施例的随机接入方法中,接收基站广播的系统信息块SIB消息,SIB消息中携带多个SSB之间的关联关系,根据关联关系,确定候选SSB,从而,终端根据测量指示信息,检测同步广播块SSB质量时,可对候选SSB进行质量检测,候选SSB包括终端发送随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB,由于未对全部的SSB进行质量检测,降低了质量检测的SSB的数量。
实际应用中,基站和终端在高频交互时,所使用的频谱可以为授权频谱,也可以为非授权频谱,若使用的是授权频谱,则不需要进行信道的空闲确认,如果是使用的非授权频谱,也就是说是共享的频谱,则需要采用监听避让机制(Listen Before Talk,LBT),即进行信道空闲的确认。
基于上述实施例,图7为本实施例提供的又一种随机接入方法的流程示意图,对应的是高频段的授权频谱场景,不需要进行信道的空闲确认。如图7所示,该方法包含以下步骤:
步骤601,向终端广播系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
本实施例中,多个SSB之间的关联关系,用于确定进行质量检测的候选SSB,候选SSB包括终端发送所述随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB。SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS。
其中,步骤601中关于SIB消息中携带的多个SSB之间的关联关系,可参照图2实施例中的解释说明,原理相同,此处不再赘述。
本实施例中,SIB消息中携带多个SSB之间的关联关系,同时,SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS,其中,CSI-RS(Channel-state information RS)的目的是对信道状态进行评估,以实现波束精细化,也就是说将波束和CSI-RS关联,实现了对波束的精细划分,以提高随机接入过程的成功率。其中,基站针对多个SSB配置关联的信道状态信息参考信息,可通过以下两种可能的实现方式实现:
在本申请实施例的一种可能的实现方式中,基站给多个SSB配置参考信号配置信息,该参考信号配置信息例如CSI-RS集合,CSI集合中包含和相应SSB关联的CSI-RS,其中,和相应SSB关联的CSI-RS的数量可以相同也可以不同,本实施例中不进行限定。如下表1-2所示。
表1-2
Figure PCTCN2021097451-appb-000001
Figure PCTCN2021097451-appb-000002
例如,终端发送随机接入请求所采用的第一SSB对应的波束为波束1,其对应的同步广播块SSB的索引为SSB1,和SSB1关联的CSI-RS为{CSI-RS3,CSI-RS4},即图5中用编号1和2指示CSI-RS3和CSI-RS4。
在本申请实施例的另一种可能的实现方式中,基站配置一个CSI-RS集合,CSI-RS集合中的每个CSI-RS具有对应的索引值。配置单个SSB关联的CSI-RS的总个数为N,基于索引值,确定相应SSB所关联的CSI-RS的索引值。其中,索引值为M的SSB所关联的CSI-RS的索引值大于或等于(N×M),且小于或等于(N×M+N-1),N和M为自然数。
例如,图6为每个SSB关联的CSI-RS的对应示意图,如图6所示,例如,终端发送随机接入请求所采用的第一SSB对应的波束为波束1,其对应的同步广播块的索引为SSB1,SSB1关联的CSI-RS的总个数为N=3,则关联的CSI-RS根据公式{N*M,…,N*M+N-1}计算得到为{CSI-RS3,CSI-RS4,CSI-RS5}。
本实施例的随机接入方法中,通过基站配置多个SSB关联的信道状态信息参考信号,由于每个SSB均具有对应的波束,实现了对SSB对应的波束的精细化处理,以提高随机接入方法的成功率。
步骤602,接收终端发送的随机接入请求。
具体,步骤602具体可参照图1实施例中的步骤101,原理相同,此处不再赘述。
步骤603,向终端发送随机接入响应,其中,随机接入响应携带测量指示信息,测量指示信息用于指示终端检测同步广播块SSB的波束质量,以及候选SSB关联的CSI-RS的波束质量。
本申请实施例中,基站在向终端发送随机接入响应时,随机接入响应携带的测量指示信息承载于下行控制信息(Downlink Control Information,DCI)中的预留比特位,以指示终端进行质量信息的测量。例如,通过DCI 1_0中预留的比特位指示终端需要测量上报的质量检测信息。
表1-3中,示出了一种测量指示信息,采用DCI中的预留的3比特位生成测量指示信息,具体见下表1-3。DCI中使用预留比特位中的多个比特位指示终端进行不同的参考信号的测量和上报基站。例如,多个比特位可取预留比特中的最高N位或最低N位。
例如,按照下表使用预留比特中的最高3位,通过8种组合对终端需要进行测量的信息进行指示。
表1-3
测量指示信息含义 DCI中3个预留比特位的取值
无须测量上报 000
上报当前SSB和其关联的SSB的测量值 001
上报当前SSB和其关联的CSI-RS的测量值 010
上报当前SSB和其关联的SSB、CSI-RS的测量值 011
上报当前SSB和其关联的SSB的质量排序 100
上报当前SSB和其关联的CSI-RS的质量排序 101
上报当前SSB和其关联的SSB、CSI-RS的质量排序 110
上报质量最好的SSB的索引 111
例如,在下行控制信息DCI 1_0中的3个预留比特位的值为110,基站指示终端上报当前SSB和其关联的SSB,以及与当前SSB存在关联关系的CSI-RS的质量排序。
需要说明的是,表1-3中的测量值是指终端测量得到的质量值,如参考信号接收功率值RSRP,或者是其它可用于指示质量情况的其它测量值,本实施例中不进行限定。
需要理解的是,实际应用场景中,基站发送给终端的测量指示信息,可以占用更多的比特位,从而指示终端测量的质量检测信息可以包含表1-3中的多个,例如,同时包含当前SSB和其关联的SSB、CSI-RS的测量值和当前SSB和其关联的SSB、CSI-RS的质量排序,本实施例中对此不进行限定。
需要说明的是,终端上报给基站的质量检测信息,可以为基站向终端发送测量指示信息之前测量的质量检测信息,也可用是向终端发送测量指示信息之后的质量检测信息,或者是两者结合,本实施例中不进行限定。
步骤604,接收终端发送的无线资源控制RRC连接请求,其中,RRC连接请求中携带质量检测信息,质量检测信息是终端根据测量指示信息对波束质量进行检测得到的。
其中,质量检测信息包括:质量最佳的SSB的索引值、多个候选SSB的参考信号接收功率值(Reference Signal Receiving Power,RSRP)、多个候选SSB关联CSI-RS的RSRP、多个候选SSB的质量排序和多个候选SSB关联CSI-RS的质量排序中的一个或多个组合。
本申请实施例中,质量检测信息是根据测量指示信息的指示进行质量检测得到的,测量指示信息可以指示终端进行质量检测得到上述质量检测信息中的一个或多个,具体可以根据实际应用场景的需求进行灵活设置,本实施例中不进行限定。
步骤605,向终端发送第一RRC连接响应,其中,第一RRC连接响应中携带波束指示信息,用于指示终端根据质量检测信息,确定用于发送和/或接收数据的目标SSB。
本实施例中,目标SSB用于终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
其中,波束指示信息,包括:目标SSB的确定策略指示信息、用于从目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、目标CSI-RS的索引值和目标SSB的索引值中的一个或多个组合。
在一种场景下,若目标SSB没有关联的CSI-RS,则波束指示信息,包括:目标SSB的确定策略指示信息和目标SSB的索引值,也就是说终端根据波束指示信息从第一SSB和关联的第二SSB中确定目标SSB,以及目标SSB的索引值。
在另一种场景下,若目标SSB具有关联的CSI-RS,则波束指示信息包含用于从目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、目标CSI-RS的索引值。
本申请实施例中,波束指示信息承载于下行控制信息DCI中的下行分配索引字段。由于DCI中的下行分配索引字段属于DCI中的保留字段,使用DCI中的下行分配索引字段来承载波束指示信息,可以避免在DCI中增加信息比特,实现了保持原有DCI大小,降低了数据量。
在一种场景下,可以使用DCI中的下行分配索引字段中的1比特指示波束指示信息,例如,在基站指示终端使用当前SSB对应的波束进行发送和接收时,或者质量最好的SSB对应波束不存在具有关联关系的CSI-RS对应的波束时,使用1比特指示波束指示信息。
在另一种场景下,可以使用DCI中的下行分配索引字段中的2比特指示波束指示信息,例如,在基站发送第一RRC连接响应时,使用的SSB存在关联的CSI-RS,指示终端在关联的CSI-RS对应的波束上接收波束指示信息。
需要说明的是,实际场景中,还可以采用更多的比特指示波束指示信息,本实施例中不进行限定。
本申请实施例的随机接入方法中,在高频段的授权频谱中,在随机接入过程中引入波束切换和波束精细化的基础上,基站向终端发送携带测量指示信息的随机接入响应,以上报对应的SSB的波束的质量信息,从而终端和基站根据质量测量的结果及时调整终端发送和/或接收数据的目标SSB,实现了在信道易被干扰的情况下,通过目标SSB的切换,提高随机接入的成功概率。
基于上述实施例,在非授权频谱的随机接入过程中,由于非授权频谱上的信道是共享信道,其可用性并不能时刻得到保证,因此,需要采用监听避让机制LBT,LBT是一种信道接入机制,能使无线局域网之间有效共享相同的频谱资源。LBT要求在传输数据前先监听信道,进行空闲信道评估,在确保信道空闲的情况下再进行数据传输,以提高数据传输的成功概率。为此,本申请提供了又一种随机接入方法的流程示意图,如图8所示,该方法包含以下步骤:
步骤701,向终端广播系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
步骤702,接收终端发送的随机接入请求。
步骤703,向终端发送随机接入响应,其中,随机接入响应携带测量指示信息,测量指示信息用于指示终端检测同步广播块SSB的波束质量,以及候选SSB关联的CSI-RS的波束质量。
具体地,步骤701-步骤703可参照上述实施例中的解释说明,原理相同,此处不再赘述。
步骤704,对第一SSB对应的波束,以及第二SSB对应的波束进行监听,以接收到RRC连接请求。
在非授权的频谱场景下,基站在接收终端发送的RRC连接请求时,由于终端针对第一SSB和关联的第二SSB已经进行了监听避让的检测,并从第一SSB和第二SSB中确定了监听避让成功的SSB,也就是确定处于空闲状态的SSB,用于发送RRC连接请求,从而,基站端需要对第一SSB对应的波束,以及第二SSB对应的波束进行监听,以接收到RRC连接请求提高了RRC连接请求接收的成功率。
步骤705,根据质量检测信息,从第一SSB和第二SSB中排除监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,以得到保留SSB。
其中,质量检测信息还用于指示终端发送RRC连接请求时监听避让失败的波束对应的SSB,也就是说质量检测信息中包含了第一SSB和第二SSB对应的波束的质量检测信息,以及第一SSB和第二SSB中监听避让失败的波束对应的SSB。
本实施例的第一种实现方式中,基站根据从终端获取到的质量检测信息,从第一SSB和第二SSB中排除监听避让失败的波束对应的SSB,以得到终端中的保留SSB,以提高终端中保留的SSB的质量。
本实施例的第二种实现方式中,基站根据从终端获取到的质量检测信息,从第一SSB和第二SSB中排除检测的波束质量低于设定质量阈值的SSB,以得到终端中的保留SSB,以提高终端中保留的SSB的质量。
本实施例的第三种实现方式中,基站根据从终端获取到的质量检测信息,从第一SSB和第二SSB中排除监听避让失败的波束对应的SSB和检测的波束质量低于设定质量阈值的SSB,以得到终端中的保留SSB,以提高终端中保留的SSB的质量。
步骤706,根据保留SSB,监听保留SSB对应的波束,以确定监听避让成功的波束。
本实施例中,在基站侧,基站根据保留的SSB,监听保留的SSB对应的波束,以确定基站侧监听避让成功的波束对应的SSB,也就是说确定基站侧可用于进行RRC连接响应发送的SSB。
步骤707,若监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
本申请实施例中发送的连接响应包含两种,为了便于区分,称为第一RRC连接响应和第二RRC连接响应,其中,第一RRC连接响应中包含波束指示信息,第二RRC连接响应中不包含波束指示信息。
本实施例中,若基站准备发送RRC连接响应时,监听避让成功的波束对应的SSB,以及用于接收终端发送的随机接入请求的波束对应的SSB相同,也就是说基站端用于发送数据的波束对应的SSB没有变化,若监听避让成功的SSB存在关联的CSI-RS,则发送携带波束指示信息的RRC连接响应,使得终端切换至CSI-RS对应的波束,实现了波束切换。
例如,基站端监听避让成功的波束对应的SSB,比如为SS1,接收终端发送的随机接入请求的波束对应的SSB,也为SSB1,这种情况下发送携带波束指示信息的RRC连接响应,以使得终端切换至相应质量满 足预设要求的CSI-RS。
步骤708,若监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,第二RRC连接响应中未携带波束指示信息
本申请实施例中,若监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则说明基站需要切换SSB至当前监听避让成功的波束对应的SSB,则不需要指示终端进行SSB的切换,从而发送不携带波束指示信息的第二连接响应。
例如,基站端监听避让成功的波束对应的SSB,比如为SS2,接收终端发送的随机接入请求的波束对应的SSB,例如为SSB1,即SSB2和SSB1不同,那么说明基站需要切换波束,基站直接切换为监听避让成功的波束对应的SSB2,在SSB2上发送第二RRC连接响应。
本申请实施例的随机接入方法中,在非授权频谱的随机接入过程中,基于波束切换、波束精细化和波束质量测量上报操作,对多个波束进行监听避让,以确定监听避让成功的波束对应的SSB,若监听避让成功的SSB发生变化,则切换SSB至监听避让成功的SSB,增强了非授权频谱信道传输的健壮性和成功率。
基于上述实施例,在向终端发送随机接入响应之后,基站在预设时间内未收到终端发送的RRC连接请求,则可以向终端发送RRC连接请求的重传指示,并在重传指示中带有测量指示信息,以使得终端根据重传指示中携带的测量指示信息,进行质量检测得到对应的质量检测信息并上传值基站,提高了随机接入过程的成功率。
为了实现上述实施例,本申请实施例提供了一种随机接入方法,该方法用于终端,图9为本申请实施例提供的又一种随机接入方法的流程示意图。
如图9所示,该方法包含以下步骤:
步骤901,向基站发送随机接入请求。
本实施例的执行主体为终端,该终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例中,随机接入请求用于实现随机接入过程,例如,具有波束成形(beamforming)的第五代(the Fifth Generation,5G)新无线电(New Radio,NR)接入系统中的随机接入(RandomAccess,RA)过程。随机接入过程用于实现到接入网的无线电接入。
步骤902,接收基站发送的测量指示信息。
本实施例中,终端根据测量指示信息,检测同步广播块SSB的波束质量,得到质量检测信息。
在本申请实施例的一种可能的实现方式中,终端接收基站发送的随机接入响应,其中,随机接入响应中携带测量指示信息,从而,终端根据测量指示信息,检测同步广播块SSB对应波束的质量,得到质量检测信息。
在本申请实施例的另一种可能的实现方式中,接收基站发送的RRC连接请求的重传指示,其中,重传指示中携带测量指示信息。基站在向终端发送随机接入响应之后,基站在预设时间内未收到终端发送的RRC连接请求,则可以向终端发送RRC连接请求的重传指示,并在重传指示中携带测量指示信息,从而,终端可获取重传指示中携带的测量指示信息,避免了终端未接收到测量指示信息,确保了终端根据测量指示信息进行质量检测得到对应的质量检测信息,并上传值基站,提高了随机接入过程的成功率。
步骤903,向基站发送无线资源控制RRC连接请求,其中,RRC连接请求中携带质量检测信息,其中,质量检测信息是终端根据测量指示信息检测同步广播块SSB的波束质量得到的。
本申请实施例中,终端向基站发送无线资源控制RRC连接请求,该连接请求中携带了终端对多个SSB的波束进行质量检测得到的质量检测信息,以使得基站根据质量检测信息,从终端的多个SSB中确定出用于终端进行数据传输的目标SSB,实现了根据从终端获取的包含多个SSB的波束质量情况的质量检测信息,重新确定终端用于进行数据传输的SSB,由于每个SSB对应一个波束方向,当重新确定用于进行数据传输的SSB后,对应的传输波束也发生了变化,即实现了波束的重新选择,而并非在整个随机接入过程中均采用固定不变的波束进行数据传播。
步骤904,接收基站发送的RRC连接响应,其中,RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据质量检测信息,确定出目标SSB。
其中,目标SSB是终端根据质量检测信息确定出的质量较高的SSB。
本申请实施例中,终端接收基站发送的RRC连接响应,其中,RRC连接响应中携带波束指示信息,用于指示根据质量检测信息,确定出的用于终端发送和/或接收数据的目标SSB,以使得终端根据该目标SSB对应的波束进行数据传输,提高了随机接入过程的成功率。
步骤905,采用目标SSB发送和/或接收数据。
本申请的一个实施例中,目标SSB用于终端在下行共享信道PDSCH接收数据和/或在上行共享信道PUSCH发送数据。
本申请实施例的随机接入方法中,在随机接入过程中,终端向基站发送随机接入请求,进而终端接收基站发送的测量指示信息,终端根据测量指示信息检测同步广播块SSB的波束质量,并在终端向基站发送RRC连接请求时,将携带SSB的波束质量检测信息上报至基站,以使得基站根据质量检测信息,确定出用于终端进行数据传输的目标SSB,并通过波束指示信息发送至终端,以指示确定出的目标SSB,实现了在随机接入过程中,进行SSB的重新确定,从而基于重新确定的SSB对应的波束,实现对波束的重新选择,提高了随机接入过程的成功率。
基于上述实施例,当基站当前使用的SSB的波束质量较差时,则需要进行波束的切换,也就是说需要进行SSB的重新选择,因此,为了进行SSB选择,本申请中为每个SSB设置关联的SSB,由于关联的SSB之间对应的波束方向可以是相近的,提高了波束切换的可靠性。为此,本实施例提供了又一种随机接入方法的流程示意图,如图10所示,步骤901之前包含以下步骤:
步骤1001,接收基站广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系。
其中,SIB消息中携带多个SSB之间的关联关系,关联关系用于确定进行质量检测的候选SSB,候选SSB包括终端发送随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB。其中,与第一SSB存在关联关系的第二SSB可以为一个或多个,本实施例中不进行限定。
本申请实施例中,终端接收基站广播的系统信息块SIB消息,在基站配置的SIB消息中携带了多个SSB的关联信息,关联的SSB之间对应的波束方向相近,便于从关联的SSB之间重新选择SSB,提高了SSB重新选择的准确性。同时,为了减少终端进行质量检测的候选SSB的数量,以降低终端的检测量,将终端发送随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB作为候选SSB,从而,终端根据接收到的随机接入响应携带的测量指示信息,检测第一SSB,以及与第一SSB存在关联关系的第二SSB 的波束质量,,大大降低了终端进行质量检测的数据量,提高了检测效率。
需要理解的是,SSB是基站用于广播数据的同步广播快,每一个SSB具有对应的波束,而基站端的每一个SSB对应的波束,和终端的波束是具有对应关系的,也就是说确定了基站端的SSB,就可以确定终端中用于发送和/或接收数据的波束。
其中,基站为多个SSB配置存在关联关系的SSB是通过以下以下可能的实现方式确定:
在本申请实施例的一种可能的实现方式中,关联关系包括:关联列表。
关联列表,包含第一SSB的索引,以及存在关联关系的第二SSB的索引。其中,SSB的索引用于对SSB进行标识。
例如,基站配置了64个实际发送的SSB,每个SSB配置了2个相关的SSB,表2-1为关联列表的示意图。
表2-1
SSB的索引 关联的SSB的索引
0 63,1
1 0,2
2 1,3
3 2,5
…… ……
63 62,1
例如,若终端向基站发送随机接入请求的第一SSB的索引为1,则对应的存在关联关系的第二SSB的索引为0和2。
需要说明的是,表2-1中每个SSB配置的存在关联关系的SSB数量相同,实际应用场景中,基站也可以为每个SSB配置不同数量的存在关联关系的SSB,本实施例中不进行限定。
在本申请实施例的另一种可能的实现方式中,关联关系包括:关联策略。
关联策略,包含个数阈值,个数阈值用于在基站的可用SSB序列中,确定第一SSB和存在关联关系的第二SSB,其中,第二SSB与第一SSB之间连续或非连续的可用SSB的个数小于或等于个数阈值。其中,个数阈值包括沿可用SSB序列正序和/或逆序的个数阈值。本申请实施例中,在基站可用的SSB序列中,可以是每一个SSB都是可用的,或者是存在部分SSB是不可用的,下面针对不同的场景进行具体说明。
在本申请的一个场景中,基站的SSB序列中包含的SSB均是可用的,下面针对关联策略,通过3种可能的实现方式,针对每个第一SSB确定存在关联关系的第二SSB。
在本申请实施例的一种可能的实现方式中,个数阈值为沿可用SSB序列正序的个数阈值。
例如,基站可用的SSB序列为{SSB0,SSB1,SSB2,…SSBn},图3为本申请实施例提供的一种基站可用的SSB序列的示意图,如图3所示,例如,基站可用的SSB数量为64个,将序列视为一个顺时针循环序列,配置沿可用SSB序列正序的个数阈值,例如为2,当前终端发送随机接入请求所采用的第一SSB为SSB1,则和SSB1存在关联关系的第二SSB为SSB2和SSB3。
在本申请实施例的第二种可能的实现方式中,个数阈值为沿可用SSB序列逆序的个数阈值。
例如,基站可用的SSB序列为{SSB0,SSB1,SSB2,…SSBn},如图3所示,例如,基站可用的SSB数量为64个,将序列视为一个顺时针循环序列,配置沿可用SSB序列正序的个数阈值,例如为1,当前终端发送随机接入请求所采用的第一SSB为SSB2,则和SSB2存在关联关系的第二SSB为SSB1。
在本申请实施例的第三种可能的实现方式中,个数阈值包括沿可用SSB序列正序和逆序的个数阈值。
例如,基站可用的SSB序列为{SSB0,SSB1,SSB2,…SSBn},如图3所示,例如,基站可用的SSB 数量为64个,将序列视为一个顺时针循环序列,配置沿可用SSB序列正序的个数阈值,例如为1,并配置沿可用SSB序列逆序的个数阈值,例如为2,当前终端发送随机接入请求所采用的第一SSB为SSB1,则和SSB1存在关联关系的第二SSB为SSB0、SSB2和SSB3。
在本申请的一种场景中,基站可用的SSB序列中并不是每个SSB都实际可用,也就是说并不是每个SSB都为有效可用于发送广播数据的SSB,因此,需要以基站在SBI中广播的小区实际发送的SSB的个数和位置为基础,作为一种可能的实现方式,可通过对SSB分组标识的方式,确定和第一SSB存在关联关系的第二SSB。
例如,如图4所示,基站可用的SSB数量为64个,将64个SSB分为8组,每组8个SSB,也就是说通过组来指示每个SSB的位置。本申请中用一个8位的字符串指示每一组SSB是否发送,同时,针对每一组,用一个8位的字符串指示该组中每一个SSB是否发送,其中,字符串中0代表未发送,1代表发送。
例如,8组SSB对应的字符串为:11111111,即8组SSB都发送;每一组SSB对应的字符串为:11101111,即一组SSB中,其中SSB3不发送,也就是说在确定和第一SSB存在关联关系的第二SSB中,SSB3不作为和第一SSB存在关联关系的第二SSB。
本实施例中,以组1为例进行说明,组1中8个SSB的索引为:[SSB0、SSB1、SSB2、SSB3、SSB4、SSB5、SSB6、SSB7],其中,SSB3为不可用的SSB。
需要说明的是,也可以针对每组设置对应的字符串,每组设置的字符串也可以不同,以指示各组中SSB发送的情况,实现了个性化设置。
作为一种可能的实现方式,基于关联策略,个数阈值包括沿可用SSB序列正序和逆序的个数阈值,例如,沿可用SSB序列正序的个数阈值为1,沿可用SSB序列逆序的个数阈值为2,若终端发送随机接入请求所采用的第一SSB为SSB1,则确定的和SSB1关联的第二SSB为SSB0、SSB2和SSB4。
作为另一种可能的实现方式,基于关联策略,个数阈值包括沿可用SSB序列正序的个数阈值,例如,沿可用SSB序列正序的个数阈值为2,若终端发送随机接入请求所采用的第一SSB为SSB1,则确定的和SSB1关联的第二SSB为SSB2和SSB4。
作为又一种可能的实现方式,基于关联策略,个数阈值包括沿可用SSB序列逆序的个数阈值,例如,沿可用SSB序列逆序的个数阈值为2,若终端发送随机接入请求所采用的第一SSB为SSB4,则确定的和SSB4关联的第二SSB为SSB1和SSB2。
需要说明的是,是确定多个SSB存在关联关系的SSB时,可以根据上述的关联策略和关联关系共同确定,原理相同,本实施例中不再赘述。
本实施例的随机接入方法中,接收基站广播的系统信息块SIB消息,SIB消息中携带多个SSB之间的关联关系,根据关联关系,确定候选SSB,从而,终端根据测量指示信息,检测同步广播块SSB质量时,可对候选SSB进行质量检测,候选SSB包括终端发送随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB,由于未对全部的SSB进行质量检测,降低了质量检测的SSB的数量。
实际应用中,基站和终端在高频交互时,所使用的频谱可以为授权频谱,也可以为非授权频谱,若使用的是授权频谱,则不需要进行信道的空闲确认,如果是使用的非授权频谱,也就是说是共享的频谱,则需要采用监听避让机制LBT,即进行信道空闲的确认。下面针对不同的场景进行说明。
基于上述实施例,本实施例提供了又一种随机接入方法的流程示意图,对应的是高频段的授权频谱场景,不需要进行信道的空闲确认。如图11所示,该方法包含以下步骤:
步骤1101,接收基站广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
本实施例中,多个SSB之间的关联关系,用于确定进行质量检测的候选SSB,候选SSB包括终端发送所述随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB。SIB消息中还携带参考信 号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS。
其中,步骤1101中关于SIB消息中携带的多个SSB之间的关联关系,可参照图10对应实施例中的解释说明,原理相同,此处不再赘述。
本实施例中,SIB消息中携带多个SSB之间的关联关系,同时,SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS,其中,CSI-RS(Channel-state information RS)的目的是对信道状态进行评估,以实现波束精细化,也就是说将波束和CSI-RS关联,实现了对波束的精细划分,以提高随机接入过程的成功率。其中,基站针对多个SSB配置关联的信道状态信息参考信息,可通过以下两种可能的实现方式实现:
在本申请实施例的一种可能的实现方式中,基站给多个SSB配置参考信号配置信息,该参考信号配置信息例如CSI-RS集合,CSI集合中包含和相应SSB关联的CSI-RS,其中,和相应SSB关联的CSI-RS的数量可以相同也可以不同,本实施例中不进行限定。如下表2-2所示。
表2-2
Figure PCTCN2021097451-appb-000003
例如,终端发送随机接入请求所采用的第一SSB对应的波束为波束1,其对应的同步广播块SSB的索引为SSB1,和SSB1关联的CSI-RS为{CSI-RS3,CSI-RS4},即图5中用编号1和2指示CSI-RS3和CSI-RS4。
在本申请实施例的另一种可能的实现方式中,基站配置一个CSI-RS集合,CSI-RS集合中的每个CSI-RS具有对应的索引值。配置单个SSB关联的CSI-RS的总个数为N,基于索引值,确定相应SSB所关联的CSI-RS的索引值。其中,索引值为M的SSB所关联的CSI-RS的索引值大于或等于(N×M),且小于或等于(N×M+N-1),N和M为自然数。
例如,图6为每个SSB关联的CSI-RS的对应示意图,如图6所示,例如,终端发送随机接入请求所采用的第一SSB对应的波束为波束1,其对应的同步广播块的索引为SSB1,SSB1关联的CSI-RS的总个数为N=3,则关联的CSI-RS根据公式{N*M,…,N*M+N-1}计算得到为{CSI-RS3,CSI-RS4,CSI-RS5}。
本实施例中,通过基站配置各SSB关联的信道状态信息参考信号,由于每个SSB均具有对应的波束,实现了对SSB对应的波束的精细化处理,以提高随机接入方法的成功率。
步骤1102,向基站发送随机接入请求。
具体地,可参照图9对应实施例中的步骤901,原理相同,此处不再赘述。
步骤1103,接收基站发送的测量指示信息。
本申请实施例中,终端接收基站发送的测量指示信息,其中,测量指示信息,承载于下行控制信息DCI中的预留比特位,以指示终端进行质量信息的测量。例如,通过DCI 1_0中预留的比特位指示终端需要测量上报的质量信息。
表2-3中,示出了一种测量指示信息,采用DCI中的预留的3比特位生成测量指示信息,具体见下表2-3。DCI中使用预留比特位中的多个比特位指示终端进行不同的参考信号的测量和上报基站。例如,多个比特位可取预留比特中的最高N位或最低N位,其中,N为自然数。
例如,按照下表使用预留比特中的最高3位,通过8种组合对终端需要进行测量的信息进行指示。
表2-3
测量指示信息含义 DCI中3个预留比特位的取值
无须测量上报 000
上报当前SSB和其关联的SSB的测量值 001
上报当前SSB和其关联的CSI-RS的测量值 010
上报当前SSB和其关联的SSB、CSI-RS的测量值 011
上报当前SSB和其关联的SSB的质量排序 100
上报当前SSB和其关联的CSI-RS的质量排序 101
上报当前SSB和其关联的SSB、CSI-RS的质量排序 110
上报质量最好的SSB的索引 111
例如,在下行控制信息DCI 1_0中的3个预留比特位的值为110,基站指示终端上报当前SSB和其关联的SSB,以及与当前SSB存在关联关系的CSI-RS的质量排序。
需要说明的是,表2-3中的测量值是指终端测量得到的质量值,如参考信号接收功率值RSRP,或者是其它可用于指示质量情况的其它测量值,本实施例中不进行限定。
需要理解的是,实际应用场景中,基站发送给终端的测量指示信息,可以占用更多的比特位,从而指示终端测量的质量检测信息可以包含表2-3中的多个,例如,同时包含当前SSB和其关联的SSB、CSI-RS的测量值和当前SSB和其关联的SSB、CSI-RS的质量排序,本实施例中对此不进行限定。
步骤1104,向基站发送无线资源控制RRC连接请求,其中,RRC连接请求中携带质量检测信息,其中,质量检测信息是终端根据测量指示信息检测同步广播块SSB的波束质量,以及检测候选SSB关联的CSI-RS的波束质量得到的。
其中,质量检测信息包括:质量最佳的SSB的索引值、各候选SSB的参考信号接收功率值RSRP、各候选SSB关联CSI-RS的RSRP、各候选SSB的质量排序和各候选SSB关联CSI-RS的质量排序中的一个或多个组合。
本申请实施例中,质量检测信息是根据测量指示信息的指示进行质量检测得到的,测量指示信息可以指示终端进行质量检测得到上述质量检测信息中的一个或多个,具体可以根据实际应用场景的需求进行灵活设置,本实施例中不进行限定。
需要说明的是,终端上报给基站的质量检测信息,可以为基站向终端发送测量指示信息之前测量的结果,也可用是向终端发送测量指示信息之后的质量检测信息,或者是两者结合,本实施例中不进行限定。
步骤1105,接收基站发送的RRC连接响应,其中,RRC连接响应中携带波束指示信息,用于指示终端根据质量检测信息,确定出目标SSB。
具体,可参照图9实施例中步骤904,原理相同,此处不再赘述。
步骤1106,采用目标SSB发送和/或接收数据。
本实施例中,目标SSB用于终端在下行共享信道PDSCH接收数据和/或在上行共享信道PUSCH发送数据。
其中,波束指示信息,包括:目标SSB的确定策略指示信息、用于从目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、目标CSI-RS的索引值和目标SSB的索引值中的一个或多个组合。
在一种场景下,若目标SSB没有关联的CSI-RS,则波束指示信息,包括:目标SSB的确定策略指示信息和目标SSB的索引值,也就是说终端根据波束指示信息从第一SSB和关联的第二SSB中确定目标SSB,以及目标SSB的索引值。
在另一种场景下,若目标SSB具有关联的CSI-RS,则波束指示信息包含用于从目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、目标CSI-RS的索引值。
在又一种场景下,若目标SSB具有关联的CSI-RS,则波束指示信息,包括:目标SSB的确定策略指示信息、用于从目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、目标CSI-RS的索引值和目标SSB的索引值。
本申请实施例中,波束指示信息承载于下行控制信息DCI中的下行分配索引字段。由于DCI中的下行分配索引字段属于DCI中的保留字段,使用DCI中的下行分配索引字段来承载波束指示信息,可以避免在DCI中增加信息比特,实现了保持原有DCI大小,降低了数据量。
进一步,在一种场景下,可以使用1比特指示波束指示信息,例如,在基站仅指示终端使用SSB对应的波束进行发送和接收时,或者质量最好的SSB不存在关联的CSI-RS时,使用1比特指示波束指示信息。
在另一种场景下,可以使用2比特指示波束指示信息,例如,在终端接收基站发送的第一RRC连接响应时,使用的SSB存在关联的CSI-RS,指示终端在关联的CSI-RS对应的波束上接收第一RRC连接响应。
需要说明的是,实际场景中,还可以采用更多的比特指示波束指示信息,本实施例中不进行限定。
本申请实施例的随机接入方法中,在高频段的授权频谱中,在随机接入过程中引入波束切换和波束精细化的基础上,终端接收基站发送的携带测量指示信息的随机接入响应,以对SSB进行质量检测生成质量检测信息,从而终端和基站根据质量测量的结果及时调整终端进行数据发送的目标SSB,实现了在信道易被干扰的情况下,提高随机接入的成功概率。
基于上述实施例,在非授权频谱的随机接入过程中,由于非授权频谱上的信道是共享信道,其可用性并不能时刻得到保证,因此,需要采用监听避让机制(Listen Before Talk,LBT),LBT是一种信道接入机制,能使无线局域网之间有效共享相同的频谱资源。LBT要求在传输数据前先监听信道,进行空闲信道评估,在确保信道空闲的情况下再进行数据传输,以提高数据传输的成功概率。为此,本申请提供了又一种随机接入方法的流程示意图,如图12所示,该方法包含以下步骤:
步骤1201,接收基站广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
具体地,可参照图9对应实施例中的步骤901中的解释说明,原理相同,此处不再赘述。
步骤1202,向基站发送随机接入请求。
步骤1203,接收基站发送的测量指示信息。
具体,可参照图9实施例中的步骤901-步骤902,原理相同,此处不再赘述。
步骤1204,对第一SSB对应的波束和第二SSB对应的波束进行监听,以确定监听避让成功的波束。
本申请实施例中,在非授权的频谱场景下,在终端向基站发送RRC连接请求时,由于第一SSB和存在关联关系的第二SSB对应的信道并不一定是处于空闲状态,因此,需要对第一SSB对应的波束和第二SSB对应的波束进行监听,以确定监听避让成功的波束,以提高终端发送RRC连接请求接收的成功率。
步骤1205,采用监听避让成功的波束发送RRC连接请求。
在本申请的一个实施例中,在确定监听避让成功的波束后,利用监听避让成功的波束发送RRC连接请求,提高终端发送RRC连接请求接收的成功率。
实际应用中,终端对多个SSB对应的波束进行监听,监听避让成功的波束可以为多个,当监听避让成功的波束为多个时,需要根据终端对候选波束进行质量检测得到的质量检测信息,从监听避让成功的多个波束中筛选出可保留的波束。从而,在本申请实施例的一种可能的实现方式中,步骤1205还可以通过以 下步骤实现:
根据质量检测信息,对监听避让成功的波束进行筛选,以得到保留的波束;
采用保留的波束发送RRC连接请求。
本实施例中,由于确定的监听避让成功的波束为多个,根据终端进行检测得到的质量检测信息,对监听避让成功的波束进行筛选,作为一种实现方式,根据质量检测信息中波束的质量排序,对监听避让成功的波束进行筛选,以得到保留的波束,例如,保留的波束为质量排序最好的SSB对应的波束,从而提高了RRC连接请求发送的成功率。
其中,本实施例中的质量检测信息,作为一种可能的实现方式,根据SSB的索引或关联的CSI-RS的索引进行升序排序,以生成质量检测信息,质量检测信息中包含了SSB和/或关联的CSI-RS的质量排序,表2-4中示出了一种质量排序的取值含义示意图。其中,排序大于0时,排序取值越小,SSB对应的波束质量越好。
表2-4
Figure PCTCN2021097451-appb-000004
步骤1206,对第一SSB对应的波束和监听避让成功的波束进行监听,以接收基站发送的RRC连接响应。
其中,RRC连接响应中携带波束指示信息,波束指示信息用于指示根据所述质量检测信息,确定出的目标SSB。
本申请实施例中,终端向基站发送了RRC连接请求后,以使得基站根据RRC连接请求中携带的质量检测信息,确定出用于终端进行数据传输的目标SSB,并发送RRC连接响应至终端,而发送RRC连接响应时,基站也需要对波束进行监听避让的检测,以确定出监听避让成功的的波束,而基站确定的可用于发送RRC连接响应的监听避让成功的波束对应的SSB可以为第一SSB,也可以为基站端监听避让成功的波束,因此,终端需要对第一SSB对应的波束和监听避让成功的波束进行监听,以实现接收到接站发送的RRC连接响应,提高了数据下发的可靠性。
需要说明的是,关于基站中确定出监听避让成功的波束的过程,可参照图7对应实施例中的说明,此处不再赘述。
步骤1207,采用目标SSB发送和/或接收数据。
具体,可参照图9实施例中的步骤905,原理相同,此处不再赘述。
本申请实施例的随机接入方法中,在非授权频谱中,在随机接入过程中引入波束切换和波束精细化的基础上,终端接收基站发送的携带测量指示信息的随机接入响应,以对SSB的波束进行质量检测生成质量检测信息,并对SSB对应的波束进行监听,以确定监听避让成功的波束,采用监听避让成功的波束进行数据传输,增强非授权频谱信道传输的健壮性。
基于上述实施例,对第一SSB对应的波束和第二SSB对应的波束进行监听,以确定监听避让成功的波束之后,还需要更新质量检测信息,为此,步骤1204之后,还包含以下步骤:
在质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;
或者,在质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;
或者,在质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对监听避让成功的SSB 重新进行质量排序;
或者,在质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
在一种场景下,若终端发送给基站的质量检测信息,不需要包含SSB的参考信号接收功率值RSRP,则在质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP,以降低终端需要上报至基站的质量检测信息的数据量,提高传输速度。
在第二种场景下,若终端发送给基站的质量检测信息,不需要包含SSB的质量排序,则通过以下两种实现方式实现:
作为一种实现方式,在质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序。例如,将监听避让失败的波束对应的SSB的质量排序更新为0,其它未监听避让失败的波束对应的SSB的质量排序不变,以提高质量排序的准确性。
作为另一种实现方式,在质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对监听避让成功的波束对应的SSB重新进行质量排序,例如,将监听避让失败的波束对应的SSB的质量排序更新为0,并排除为0的值,并对监听避让成功的波束对应的SSB重新进行质量排序,以提高质量排序的准确性。
在第三种场景下,若终端发送给基站的质量检测信息,不需要包含SSB的索引值,则在质量检测信息中,对监听避让失败的波束对应的SSB删除索引值,以降低终端需要上报至基站的质量检测信息的数据量,提高传输速度。
为了实现上述实施例,本实施例提供了一种随机接入的交互方法,如图13所示,该方法包含以下步骤:
步骤1301,基站广播SIB消息。
其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
本实施例中,多个SSB之间的关联关系,用于确定进行质量检测的候选SSB,候选SSB包括终端发送所述随机接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB。SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS。
步骤1302,向基站发送随机接入请求。
步骤1303,向终端发送携带测量指示信息的随机接入响应。
其中,随机接入响应携带的测量指示信息用于指示检测同步广播块SSB波束的质量。
步骤1304,向基站发送携带质量检测信息的RRC连接请求。
其中,RRC连接请求中携带的质量检测信息,是根据测量指示信息检测同步广播块SSB质量得到的。
步骤1305,向终端发送RRC连接响应。
本申请实施例中发送的连接响应包含两种,为了便于区分,称为第一RRC连接响应和第二RRC连接响应,其中,第一RRC连接响应中包含波束指示信息,第二RRC连接响应中不包含波束指示信息。
本实施例的一个场景中,若基站准备发送RRC连接响应时,基站监听避让成功的波束对应的SSB,和用于接收终端发送的随机接入请求的波束对应的SSB相同,也就是说基站端用于发送数据的波束对应的SSB没有变化,若监听避让成功的SSB存在关联的CSI-RS,则发送携带波束指示信息的RRC连接响应,告知终端需要切换至的CSI-RS对应的波束,实现了波束切换。
例如,基站端监听避让成功的波束对应的SSB,比如为SS1,接收终端发送的随机接入请求的波束对应的SSB,也为SSB1,这种情况下发送携带波束指示信息的RRC连接响应,告知终端需要切换至的CSI-RS。
本实施例的另一个场景中,若监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则说明基站需要切换SSB至当前监听避让成功的波束对应的SSB,则不需要指示终端进行SSB的切换,从而发送不携带波束指示信息的第二连接响应。
例如,基站端监听避让成功的波束对应的SSB,比如为SS2,接收终端发送的随机接入请求的波束对应的SSB,例如为SSB1,即SSB2和SSB1不同,那么说明基站需要切换波束,基站直接切换为监听避让成功的波束对应的SSB2,在SSB2上发送第二RRC连接响应。
步骤1306,采用目标SSB发送和/或接收数据。
需要说明的是,前述对方法实施例的解释说明,也适用于该实施例的交互方法,此处不再赘述。
实际场景中,基站和终端间在高频段进行数据传输时,对应的频谱有授权频谱和非授权频率,其中,授权频谱可理解为专属的频谱,在使用授权频谱时,不需要对信道进行监听避让。而非授权频谱,属于共享频谱,在使用共享频谱进行数据传输时,需要先对信道进行监听,以确定空闲的信道,避免信道冲突,导致数据无法发送。为了进一步清楚的说明本实施例的随机接入方法,下面针对授权频谱和非授权频谱场景下,终端和基站间交互的流程进行说明。
第一:授权场景下,基于关联策略,确定存在关联关系的第一SSB和第二SSB。
基站配置广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
其中,关于SIB消息的相关配置方法,以实现SSB关联的SSB的配置,以及和SSB关联的CSI-RS的配置方法,以实现波束选择和波束精细化,可参照前述实施例中的解释说明,此处不再赘述。
基站检测到终端发送的随机接入请求后,向终端发送携带测量指示信息的随机接入响应,以使得终端根据测量指示信息,对同步广播块SSB的波束质量和关联的CSI-RS的波束质量进行测量,以得到质量检测信息。
本实施例中,测量指示信息承载于下行控制信息DCI中的预留比特位,例如,在下行控制信道PDCCH的DCI 1_0中的预留比特位对应的值为011,参见上述的表2-3,则基站指示终端上报当前SSB和其关联的SSB、CSI-RS的质量测量结果。
进而,终端向基站发送携带质量检测信息的RRC连接请求。
终端根据测量指示信息,将当前SSB和其关联的SSB、CSI-RS的质量检测信息上报给基站。
例如,上报的质量检测信息包含SSB0,SSB1,SSB2,SSB4和CSI-RS3,CSI-RS4,CSI-RS5的参考信号接收功率值RSRP,如下表3-1和表3-2所示。
表3-1
SSB索引 RSRP值(dBm)
0 -117
1 -95
2 -80
4 -90
表3-2
CSI-RS索引 RSRP值(dBm)
4 -94
5 -90
6 -85
进而,基站向终端发送携带波束指示信息的第一RRC连接响应。
本实施例的一个场景中,若基站准备发送RRC连接响应时,若基站利用接收终端发送的质量检测信息的SSB发送波束指示信息,若当前SSB存在关联的CSI-RS,则从存在关联的CSI-RS中选择质量最好的波 束,并发送携带波束指示信息的RRC连接响应,告知终端需要切换至的质量最好的CSI-RS对应的波束,实现了基于预先的波束的精细化配置进行波束切换。
本实施例的另一个场景中,基站准备发送RRC连接响应时,基站利用接收终端发送的随机接入请求的SSB,接收终端发送的质量检测信息,根据质量检测信息确定了质量更好的波束对应的SSB,则基站需要切换SSB至当前确定的质量最好的波束对应的SSB,也就会说基站端的SSB发生了改变,则发送携带波束指示信息的第一连接响应,指示终端进行对应波束的切换,实现了在信道易被干扰的情况下,增加随机接入的成功概率。
例如,终端上报给基站的质量检测信息包含SSB0,SSB1,SSB2和SSB4的波束质量检测信息,其中,SSB2对应的RSRP值最大,从而SSB2的质量最好,从而,终端根据波束指示信息,将SSB2作为目标SSB,将SSB2对应的接收波束作为目标波束,实现了根据质量检测信息,切换目标SSB,以调整终端用于数据传输的SSB对应的波束,在信道易被干扰的情况下,增加随机接入的成功概率。
第二:授权场景下,基于关联列表,确定存在关联关系的第一SSB和第二SSB。
基站配置广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
其中,关于SIB消息的相关配置方法,以实现SSB关联的SSB的配置,以及和SSB关联的CSI-RS的配置方法,以实现波束选择和波束精细化,可参照前述实施例中的解释说明,此处不再赘述。
终端向基站发送随机接入请求,例如,终端发送信号选择的波束1,对应的是同步广播块SSB1,和SSB1存在关联关系的SSB为{SSB0,SSB2},和SSB1存在关联关系的CSI-RS为{CSI-RS3,CSI-RS4,CSI-RS5}。
进而,基站向终端发送携带有测量指示信息的随机接入响应,以使得终端根据测量指示信息,对同步广播块SSB的波束质量和关联的CSI-RS的波束质量进行测量,以得到质量检测信息。
本实施例中,测量指示信息承载于下行控制信息DCI中的预留比特位,例如,在下行控制信道PDCCH的DCI1_0中的预留比特位对应的值为110,参见上述的表2-3,则基站指示终端上报当前SSB和其关联的SSB、CSI-RS的质量排序。
进而,终端向基站发送携带质量检测信息的RRC连接请求。
终端根据测量指示信息,将包含当前SSB和其关联的SSB、CSI-RS对应的波束的质量排序的质量检测信息上报给基站。
例如,终端上报的质量检测信息中包含的是SSB0,SSB1,SSB2和CSI-RS3,CSI-RS4,CSI-RS5的参考信号测量结果的排序,如表3-3和表3-4,其中,排名对应的数字越小,表示信号质量越好。
表3-3
SSB索引 对应的波束质量排名
0 3
1 1
2 2
表3-4
CSI-RS索引 对应的波束质量排名
3 3
4 2
5 1
进而,基站根据终端上报的质量检测信息,向终端发送携带波束指示信息的第一RRC连接响应。其中, 波束指示信息承载于下行控制信息DCI中的下行分配索引字段。本实施例中,利用下行控制信息DCI中的下行分配索引字段指示终端用于接收RRC连接响应对应的接收波束。
其中,不同场景下,波束指示信息的含义,见下表3-5,该表仅为实例,不对本申请进行限定。
表3-5
Figure PCTCN2021097451-appb-000005
例如,基站发送波束指示信息仍在波束1发送,也就是说基站当前使用的波束没有变化,基站根据终端上报的波束质量检测信息,确定波束1的质量较好,波束1对应的为SSB1,则确定SSB1为目标SSB,进一步,由于SSB1还具有存在关联关系的CSI-RS3,CSI-RS4,CSI-RS5,则将质量最好的CSI-RS5对应的波束用于终端接收第一RRC连接响应。实现了根据质量检测信息,切换目标SSB,以调整终端用于数据传输的SSB对应的波束,在信道易被干扰的情况下,增加随机接入的成功概率。第二:非授权场景下,基于关联列表,确定存在关联关系的第一SSB和第二SSB。
基站配置广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系以及参考信号配置信息。
其中,关于SIB消息的相关配置方法,以实现SSB关联的SSB的配置,以及和SSB关联的CSI-RS的配置方法,以实现波束选择和波束精细化,可参照前述实施例中的解释说明,此处不再赘述。
终端向基站发送随机接入请求,例如,终端选择的是波束1,对应同步广播块SSB1,和SSB1存在关联关系的SSB为{SSB0,SSB2},和SSB1存在关联关系的CSI-RS为{CSI-RS3,CSI-RS4,CSI-RS5}。
进而,基站向终端发送携带测量指示信息的随机接入响应,以使得终端根据测量指示信息,对同步广播块SSB的波束质量和关联的CSI-RS的波束质量进行测量,以得到质量检测信息。
本实施例中,测量指示信息承载于下行控制信息DCI中的预留比特位,例如,在下行控制信道PDCCH的DCI 1_0中的预留比特位对应的值为110,参见上述的表2-3,则基站指示终端上报当前SSB和其关联的SSB、CSI-RS的质量排序。
进而,在非授权场景下,终端向基站发送携带质量检测信息的RRC连接请求。
其中,在非授权场景下,终端对各波束进行监听避让的方法,可参照图12对应实施例中的说明,此 处不再赘述。
进而,据测量指示信息,将包含当前SSB和其关联的SSB、CSI-RS的质量排序的质量检测信息上报给基站。
例如,终端上报的质量检测信息中包含的是SSB0,SSB1,SSB2和CSI-RS3,CSI-RS4,CSI-RS5的参考信号测量结果的排序,如表3-6和表3-7,其中,排名对应的数字越小,表示信号质量越好。
表3-6
SSB索引 对应波束质量排名
0 0
1 1
2 2
表3-7
CSI-RS索引 对应波束质量排名
3 3
4 2
5 1
进而,基站向终端发送携带波束指示信息的第一RRC连接响应。其中,波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
基站在终端发送随机请求的SSB和其关联的SSB上监听终端发送的RRC连接请求,排除质量上报中没有超过测量门限和LBT失败的SSB,得到保留的SSB,将保留的SSB和关联的CSI-RS上进行监听避让LBT,在监听避让成功的SSB上发送第一RRC连接响应,其中,携带的波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
本申请实施例中发送的连接响应包含两种,为了便于区分,称为第一RRC连接响应和第二RRC连接响应,其中,第一RRC连接响应中包含波束指示信息,第二RRC连接响应中不包含波束指示信息。
本申请实施例的一个场景中,若监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则说明基站需要切换SSB至当前监听避让成功的波束对应的SSB,则不需要指示终端进行SSB的切换,从而发送不携带波束指示信息的第二连接响应。
例如,基站端监听避让成功的波束对应的SSB,比如为SS2,接收终端发送的随机接入请求的波束对应的SSB,例如为SSB1,即SSB2和SSB1不同,那么说明基站需要切换波束,基站直接切换为监听避让成功的波束对应的SSB2,在SSB2上发送第二RRC连接响应。
本实施例的另一个场景中,若基站准备发送RRC连接响应时,监听避让成功的波束对应的SSB,和用于接收终端发送的随机接入请求的波束对应的SSB相同,也就是说基站端用于发送数据的波束对应的SSB没有变化,若监听避让成功的SSB存在关联的CSI-RS,则发送携带波束指示信息的RRC连接响应,告知终端需要切换至的CSI-RS对应的波束,实现了波束切换。
例如,基站端监听避让成功的波束对应的SSB,比如为SS1,接收终端发送的随机接入请求的波束对应的SSB,也为SSB1,这种情况下发送携带波束指示信息的RRC连接响应,告知终端需要切换至的CSI-RS。
其中,如下表3-8所示,可以使用下行控制信息DCI中的下行分配索引字段作为波束指示字段。
表3-8
Figure PCTCN2021097451-appb-000006
Figure PCTCN2021097451-appb-000007
其中,在非授权场景下,基站进行监听避让,以确定监听避让成功的波束的方法,可参照图7应实施例中的说明,此处不再赘述。
进一步,终端对第一SSB对应的波束和监听避让成功的波束进行监听,以接收基站发送的RRC连接响应,其中,终端进行波束监听避让的方法可参照图12对应的实施例中的说明,此处不再赘述。
需要说明的是,本申请实施例中的各个表格,以及列举的各场景下的实施例仅为一种示例,不对本申请构成限定。
为了实现上述实施例,本申请实施例提供了一种基站,图14为本申请实施例提供的一种基站的结构示意图。
如图14所示,该基站包含存储器1401、收发机1402和处理器1403。
存储器1401,用于存储计算机程序;收发机1402,用于在处理器1403的控制下收发数据;处理器1403,用于读取存储器1401中的计算机程序并执行以下操作:
接收终端发送的随机接入请求;
向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,所述测量指示信息用于指示所述终端检测同步广播块SSB的波束质量;
接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,所述质量检测信息是所述终端根据所述测量指示信息对波束质量进行检测得到的;
向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
需要说明的是,图1实施例中的相关解释说明,也适用于本实施例的基站,原理相同,此处不再赘述。
处理器1403可以是CPU、ASIC、FPGA或CPLD,处理器1403也可以采用多核架构。
在本申请实施例的一种可能的实现方式中,所述接收终端发送的随机接入请求之前,还包括:
向所述终端广播系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
在本申请实施例的一种可能的实现方式中,所述接收所述终端发送的无线资源控制RRC连接请求,包括:
对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收到所述RRC连接请求。
在本申请实施例的一种可能的实现方式中,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述向所述终端发送第一RRC连接响应,包括:
根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
在本申请实施例的一种可能的实现方式中,在所述根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束之后,所述方法还包括:
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未携带所述波束指示信息。
在本申请实施例的一种可能的实现方式中,所述关联关系包括:关联列表;
所述关联列表,包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引。
所述关联关系包括:关联策略;
和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
在本申请实施例的一种可能的实现方式中,所述SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息,还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,索引值为M的SSB所关联的CSI-RS的索引值大于或等于(N×M),且小于或等于(N×M+N-1);其中,N为单个SSB关联的CSI-RS的总个数,N和M为自然数。
在本申请实施例的一种可能的实现方式中,所述质量检测信息包括:质量最佳的SSB的索引值、各所述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,所述向所述终端发送随机接入响应之后,还包括:
向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
在本申请实施例的一种可能的实现方式中,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
在本申请实施例的一种可能的实现方式中,所述测量指示信息承载于下行控制信息DCI中的预留比特位。
在本申请实施例的一种可能的实现方式中,所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
在此需要说明的是,本申请实施例提供的上述基站,能够实现上述图1、图2、图7和图8方法实施例所实现的所有方法步骤,以及图13中基站侧实现的方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本申请实施例还提出一种终端。图15为本申请实施例提供的一种终端的结构示意图。如图15所示,该终端包括存储器1501、收发机1502和处理器1503。
如图15所示,包括存储器1501、收发机1502和处理器1503。
存储器1501,用于存储计算机程序;收发机1502,用于在处理器的控制下收发数据;处理器1503,用于读取存储器中的计算机程序并执行以下操作:
向基站发送随机接入请求;
接收基站发送的测量指示信息;
向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中, 所述质量检测信息是所述终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的;
接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定出目标SSB;
采用所述目标SSB发送和/或接收数据。
处理器1503可以是CPU、ASIC、FPGA或CPLD,处理器1503也可以采用多核架构。
进一步,在本申请实施例的一种可能的实现方式中,向基站发送随机接入请求之前,还包括:
接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系;
根据所述关联关系,从所述多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
在本申请实施例的一种可能的实现方式中,所述向所述基站发送无线资源控制RRC连接请求,包括:
对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束;
采用所述监听避让成功的波束发送所述RRC连接请求。
在本申请实施例的一种可能的实现方式中,所述监听避让成功的波束为多个;所述采用所述监听避让成功的波束发送所述RRC连接请求,包括:
根据质量检测信息,对所述监听避让成功的波束进行筛选,获取保留的波束;
采用所述保留的波束发送所述RRC连接请求。
在本申请实施例的一种可能的实现方式中,所述对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束之后,还包括:
在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;
或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
在本申请实施例的一种可能的实现方式中,所述接收所述基站发送的RRC连接响应,包括:
对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
在本申请实施例的一种可能的实现方式中,所述关联关系包括:关联列表;
所述关联列表,包含所述第一SSB的索引,以及与第一SSB存在关联关系的所述第二SSB的索引。
在本申请实施例的一种可能的实现方式中,所述关联关系包括:关联策略;
所述关联策略,包含个数阈值,所述个数阈值用于在所述基站的可用SSB序列中,确定所述第一SSB和与第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值。
在本申请实施例的一种可能的实现方式中,所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
在本申请实施例的一种可能的实现方式中,所述SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息,还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,所述质量检测信息包括:质量最佳的SSB的索引值、各所 述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,所述接收所述基站发送的测量指示信息,包括:
接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
在本申请实施例的一种可能的实现方式中,所述测量指示信息承载于下行控制信息DCI中的预留比特位;所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
在此需要说明的是,本申请实施例提供的上述终端,能够实现上述图9至图12方法实施例所实现的所有方法步骤,以及图13中终端侧实现的方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本申请实施例还提出一种随机接入装置,该装置设置于基站端,图16为本申请实施例提供的一种随机接入装置的结构示意图。
如图16所示,该装置包含:第一接收模块1601、第一发送模块1602、第二接收模块1603和第二发送模块1604。
第一接收模块1601,用于接收终端发送的随机接入请求。
第一发送模块1602,用于向终端发送随机接入响应,其中,随机接入响应携带测量指示信息,测量指示信息用于指示终端检测同步广播块SSB的波束质量。
第二接收模块1603,用于接收终端发送的无线资源控制RRC连接请求,其中,RRC连接请求中携带质量检测信息,质量检测信息是终端根据测量指示信息对波束质量进行检测得到的。
第二发送模块1604,用于向终端发送第一RRC连接响应,其中,第一RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据质量检测信息,确定用于发送和/或接收数据的目标SSB。
进一步,在本申请实施例的一种可能的实现方式中,所述装置,还包括:
广播模块,用于向所述终端广播系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
在本申请实施例的一种可能的实现方式中,上述第二接收模块1603,具体用于:
对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。
在本申请实施例的一种可能的实现方式中,质量检测信息还用于指示终端发送RRC连接请求时监听避让失败的波束对应的SSB,第二发送模块1604,具体用于:
根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
在本申请实施例的一种可能的实现方式中,第二发送模块1604,还用于:
若监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,第二RRC连接响应中未携带波束指示信息。
在本申请实施例的一种可能的实现方式中,关联关系包括:关联列表;
所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB 与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
在本申请实施例的一种可能的实现方式中,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,索引值为M的SSB所关联的CSI-RS的索引值大于或等于(N×M),且小于或等于(N×M+N-1);其中,N为单个SSB关联的CSI-RS的总个数,N和M为自然数。
在本申请实施例的一种可能的实现方式中,所述质量检测信息包括:质量最佳的SSB的索引值、各所述候选SSB的参考信号接收功率值RSRP、各所述候选SSB关联CSI-RS的RSRP、各所述候选SSB的质量排序和各所述候选SSB关联CSI-RS的质量排序中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,该装置,还包括:
第三发送模块,用于向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
在本申请实施例的一种可能的实现方式中,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
在本申请实施例的一种可能的实现方式中,所述测量指示信息承载于下行控制信息DCI中的预留比特位。
在本申请实施例的一种可能的实现方式中,所述波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述装置执行的随机接入方法对应实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为了实现上述实施例,本申请实施例还提出一种随机接入装置。该装置设置于终端中,图17为本申请实施例提供的一种随机接入装置的结构示意图。
如图17所示,该装置包含:第一发送模块1701、第一接收模块1702、第二发送模块1703、第二接收模块1704和1705。
第一发送模块1701,用于向基站发送随机接入请求。
第一接收模块1702,用于接收基站发送的测量指示信息。
第二发送模块1703,用于向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是所述终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的。
第二接收模块1704,用于接收基站发送的RRC连接响应,其中,RRC连接响应中携带波束指示信息,波束指示信息用于指示终端根据质量检测信息,确定出目标SSB。
传输模块1705,用于采用目标SSB发送和/或接收数据。
进一步,在本申请实施例的一种可能的实现方式中,上述装置,还包括:
第三接收模块,用于接收基站广播的系统信息块SIB消息,其中,SIB消息中携带多个SSB之间的关联关系;
确定模块,用于根据关联关系,从所述多个SSB中确定候选SSB;其中,候选SSB包括终端发送随机 接入请求所采用的第一SSB,以及与第一SSB存在关联关系的第二SSB。
在本申请实施例的一种可能的实现方式中,上述第二发送模块1703,包括:
监听单元,用于对第一SSB对应的波束和第二SSB对应的波束进行监听,以确定监听避让成功的波束;
发送单元,用于采用监听避让成功的波束发送RRC连接请求。
在本申请实施例的一种可能的实现方式中,监听避让成功的波束为多个;上述发送单元,具体用于:
根据质量检测信息,对监听避让成功的波束进行筛选,获取保留的波束;采用保留的波束发送RRC连接请求。
在本申请实施例的一种可能的实现方式中,上述第二发送模块1703,还包括:
更新单元,用于在质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;或者,在质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;或者,在质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对监听避让成功的SSB重新进行质量排序;或者,在质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
在本申请实施例的一种可能的实现方式中,上述第二接收模块1704,具体用于:
对第一SSB对应的波束和监听避让成功的波束进行监听,以接收基站发送的RRC连接响应。
在本申请实施例的一种可能的实现方式中,关联关系包括:关联列表;
关联列表,包含第一SSB的索引,以及与第一SSB存在关联关系的第二SSB的索引。
在本申请实施例的一种可能的实现方式中,关联关系包括:关联策略;
关联策略,包含个数阈值,个数阈值用于在基站的可用SSB序列中,确定第一SSB和与第一SSB存在关联关系的第二SSB,其中,第二SSB与第一SSB之间连续或非连续的可用SSB个数小于或等于个数阈值。个数阈值包括沿可用SSB序列正序和/或逆序的个数阈值。
在本申请实施例的一种可能的实现方式中,SIB消息中还携带参考信号配置信息,参考信号配置信息用于指示多个SSB关联的信道状态信息参考信号CSI-RS;测量指示信息,还用于指示对候选SSB关联的CSI-RS进行质量检测;
波束指示信息,包括:目标SSB的确定策略指示信息、用于从目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、目标CSI-RS的索引值和目标SSB的索引值中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,质量检测信息包括:质量最佳的SSB的索引值、各候选SSB的参考信号接收功率值RSRP、各候选SSB关联CSI-RS的RSRP、各候选SSB的质量排序和各候选SSB关联CSI-RS的质量排序中的一个或多个组合。
在本申请实施例的一种可能的实现方式中,第一接收模块1702,具体用于:
接收基站发送的RRC连接请求的重传指示,其中,重传指示中携带测量指示信息;或者,接收基站发送的随机接入响应,其中,随机接入响应中携带测量指示信息。
在本申请实施例的一种可能的实现方式中,测量指示信息承载于下行控制信息DCI中的预留比特位;波束指示信息承载于下行控制信息DCI中的下行分配索引字段。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述装置所执行方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该 技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述实施例,本申请还提出一种计算机可读存储介质。
其中,该计算机可读存储介质存储有计算机程序,该计算机程序用于使该处理器执行本申请能够实现上述图1、图2、图7和图8对应的方法实施例所述的随机接入方法。
其中,处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
为了实现上述实施例,本申请还提出一种计算机可读存储介质。
其中,该计算机可读存储介质存储有计算机程序,该计算机程序用于使该处理器执行本申请图9至图12方法实施例所述的随机接入方法。
其中,处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
为了实现上述实施例,本申请还提出一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行上述图1、图2、图7和图8对应的方法实施例所述的随机接入方法。
为了实现上述实施例,本申请还提出一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行本申请图9至图12方法实施例所述的随机接入方法。
为了实现上述实施例,本申请还提出一种通信装置,包括处理电路和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理电路,所述处理电路用于运行所述计算机代码或指令,以执行上述图1、图2、图7和图8对应的方法实施例所述的随机接入方法。
为了实现上述实施例,本申请还提出一种通信装置,包括处理电路和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理电路,所述处理电路用于运行所述计算机代码或指令,以执行本申请图9至图12方法实施例所述的随机接入方法。
为了实现上述实施例,本申请还提出一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行上述图1、图2、图7和图8对应的方法实施例所述的随机接入方法。
为了实现上述实施例,本申请还提出一种计算机程序,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行本申请图9至图12方法实施例所述的随机接入方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和 /或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (62)

  1. 一种随机接入方法,其特征在于,包括:
    接收终端发送的随机接入请求;
    向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,所述测量指示信息用于指示所述终端检测同步广播块SSB的波束质量;
    接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,所述质量检测信息是所述终端根据所述测量指示信息对波束质量进行检测得到的;
    向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
  2. 根据权利要求1所述的随机接入方法,其特征在于,在所述接收终端发送的随机接入请求之前,所述方法还包括:
    向所述终端广播系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
  3. 根据权利要求1或2所述的随机接入方法,其特征在于,所述接收所述终端发送的无线资源控制RRC连接请求,包括:
    对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。
  4. 根据权利要求1-3中任一项所述的随机接入方法,其特征在于,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述向所述终端发送第一RRC连接响应,包括:
    根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
    根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
    若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
  5. 根据权利要求4所述的随机接入方法,其特征在于,在所述根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束之后,所述方法还包括:
    若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未携带所述波束指示信息。
  6. 根据权利要求2-5中任一项所述的随机接入方法,其特征在于,所述关联关系包括:关联列表;所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
    和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
  7. 根据权利要求2-6中任一项所述的随机接入方法,其特征在于,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
    所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
  8. 根据权利要求1-7中任一项所述的随机接入方法,其特征在于,在所述向所述终端发送随机接入响应之后,所述方法还包括:
    向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
  9. 根据权利要求1-8中任一项所述的随机接入方法,其特征在于,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
  10. 一种随机接入方法,其特征在于,包括:
    向基站发送随机接入请求;
    接收所述基站发送的测量指示信息;
    向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是所述终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的;
    接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定出目标SSB;
    采用所述目标SSB发送和/或接收数据。
  11. 根据权利要求10所述的随机接入方法,其特征在于,所述向基站发送随机接入请求之前,还包括:
    接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系;
    根据所述关联关系,从所述多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
  12. 根据权利要求10或11所述的随机接入方法,其特征在于,所述向所述基站发送无线资源控制RRC连接请求,包括:
    对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束;
    采用所述监听避让成功的波束发送所述RRC连接请求。
  13. 根据权利要求12所述的随机接入方法,其特征在于,所述监听避让成功的波束为多个;所述采用所述监听避让成功的波束发送所述RRC连接请求,包括:
    根据质量检测信息,对所述监听避让成功的波束进行筛选,获取保留的波束;
    采用所述保留的波束发送所述RRC连接请求。
  14. 根据权利要求12或13所述的随机接入方法,其特征在于,所述对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束之后,还包括:
    在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;
    或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;
    或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;
    或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
  15. 根据权利要求10-14中任一项所述的随机接入方法,其特征在于,所述接收所述基站发送的RRC连接响应,包括:
    对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
  16. 根据权利要求11-15中任一项所述的随机接入方法,其特征在于,所述关联关系包括:关联列表; 所述关联列表,包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
    和/或,所述关联关系包括:关联策略;所述关联策略,包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
  17. 根据权利要求11-16中任一项所述的随机接入方法,其特征在于,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
    所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
  18. 根据权利要求10-17中任一项所述的随机接入方法,其特征在于,所述接收所述基站发送的测量指示信息,包括:
    接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
    或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
  19. 一种基站,其特征在于,包括存储器、收发机和处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端发送的随机接入请求;
    向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,所述测量指示信息用于指示所述终端检测同步广播块SSB的波束质量;
    接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,所述质量检测信息是所述终端根据所述测量指示信息对波束质量进行检测得到的;
    向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
  20. 根据权利要求19所述的基站,其特征在于,所述接收终端发送的随机接入请求之前,还包括:
    向所述终端广播系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
  21. 根据权利要求19或20所述的基站,其特征在于,所述接收所述终端发送的无线资源控制RRC连接请求,包括:
    对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。
  22. 根据权利要求19-21中任一项所述的基站,其特征在于,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述向所述终端发送第一RRC连接响应,包括:
    根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
    根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
    若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
  23. 根据权利要求22所述的基站,其特征在于,所述根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束之后,还包括:
    若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未携带所述波束指示信息。
  24. 根据权利要求20-23中任一项所述的基站,其特征在于,所述关联关系包括:关联列表;
    所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
    和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和与所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
  25. 根据权利要求20-24中任一项所述的基站,其特征在于,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
    所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
  26. 根据权利要求19-25中任一项所述的基站,其特征在于,在所述向所述终端发送随机接入响应之后,所述方法还包括:
    向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
  27. 根据权利要求19-26中任一项所述的基站,其特征在于,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
  28. 一种终端,其特征在于,包括存储器、收发机和处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向基站发送随机接入请求;
    接收所述基站发送的测量指示信息;
    向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是所述终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的;
    接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定出目标SSB;
    采用所述目标SSB发送和/或接收数据。
  29. 根据权利要求28所述的终端,其特征在于,所述向基站发送随机接入请求之前,还包括:
    接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系;
    根据所述关联关系,从所述多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
  30. 根据权利要求28或29所述的终端,其特征在于,所述向所述基站发送无线资源控制RRC连接请求,包括:
    对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束;
    采用所述监听避让成功的波束发送所述RRC连接请求。
  31. 根据权利要求30所述的终端,其特征在于,所述监听避让成功的波束为多个;所述采用所述监听避让成功的波束发送所述RRC连接请求,包括:
    根据质量检测信息,对所述监听避让成功的波束进行筛选,获取保留的波束;
    采用所述保留的波束发送所述RRC连接请求。
  32. 根据权利要求30或31所述的终端,其特征在于,所述对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束之后,还包括:
    在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;
    或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;
    或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;
    或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
  33. 根据权利要求28-32中任一项所述的终端,其特征在于,所述接收所述基站发送的RRC连接响应,包括:
    对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
  34. 根据权利要求29-33中任一项所述的终端,其特征在于,所述关联关系包括:关联列表;
    所述关联列表,包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
    和/或,所述关联关系包括:关联策略;所述关联策略,包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
  35. 根据权利要求29-34中任一项所述的终端,其特征在于,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSBSSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
    所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
  36. 根据权利要求28-35中任一项所述的终端,其特征在于,所述接收所述基站发送的测量指示信息,包括:
    接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
    或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
  37. 一种随机接入装置,其特征在于,用于基站,包括:
    第一接收模块,用于接收终端发送的随机接入请求;
    第一发送模块,用于向所述终端发送随机接入响应,其中,所述随机接入响应携带测量指示信息,测量指示信息用于指示所述终端检测同步广播块SSB的波束质量;
    第二接收模块,用于接收所述终端发送的无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,所述质量检测信息是所述终端根据所述测量指示信息对波束质量进行检测得到的;
    第二发送模块,用于向所述终端发送第一RRC连接响应,其中,所述第一RRC连接响应中携带波束指示信息,波束指示信息用于指示所述终端根据所述质量检测信息,确定用于发送和/或接收数据的目标SSB。
  38. 根据权利要求37所述的随机接入装置,其特征在于,所述装置还包括:
    广播模块,用于向所述终端广播系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系,所述关联关系用于从所述多个SSB中确定进行质量检测的候选SSB,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
  39. 根据权利要求37或38所述的随机接入装置,其特征在于,所述第二接收模块,具体用于:
    对所述第一SSB对应的波束,以及所述第二SSB对应的波束进行监听,以接收所述RRC连接请求。
  40. 根据权利要求37-39中任一项所述的随机接入装置,其特征在于,所述质量检测信息还用于指示所述终端发送所述RRC连接请求时监听避让失败的波束对应的SSB,所述第二发送模块,具体用于:
    根据所述质量检测信息,从所述第一SSB和所述第二SSB中排除所述监听避让失败的波束对应的SSB和/或检测的波束质量低于设定质量阈值的SSB,获取保留SSB;
    根据所述保留SSB,监听所述保留SSB对应的波束,以确定监听避让成功的波束;
    若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的波束对应的SSB相同,则发送第一RRC连接响应。
  41. 根据权利要求40所述的随机接入装置,其特征在于,所述第二发送模块,具体还用于:
    若所述监听避让成功的波束对应的SSB与用于接收随机接入请求的SSB不同,则发送第二RRC连接响应,所述第二RRC连接响应中未携带所述波束指示信息。
  42. 根据权利要求38-41中任一项所述的随机接入装置,其特征在于,所述关联关系包括:关联列表;所述关联列表包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
    和/或,所述关联关系包括:关联策略;所述关联策略包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB的个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
  43. 根据权利要求38-42中任一项所述的随机接入装置,其特征在于,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
    所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
  44. 根据权利要求37-43中任一项所述的随机接入装置,其特征在于,所述装置还包括:
    第三发送模块,用于向所述终端发送所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息。
  45. 根据权利要求37-44中任一项所述的随机接入装置,其特征在于,所述目标SSB用于所述终端在下行共享信道PDSCH上接收数据和/或在上行共享信道PUSCH上发送数据。
  46. 一种随机接入装置,其特征在于,用于终端,包括:
    第一发送模块,用于向基站发送随机接入请求;
    第一接收模块,用于接收所述基站发送的测量指示信息;
    第二发送模块,用于向所述基站发送无线资源控制RRC连接请求,其中,所述RRC连接请求中携带质量检测信息,其中,所述质量检测信息是所述终端根据所述测量指示信息对同步广播块SSB的波束质量进行检测得到的;
    第二接收模块,用于接收所述基站发送的RRC连接响应,其中,所述RRC连接响应中携带波束指示信息,所述波束指示信息用于指示所述终端根据所述质量检测信息,确定出目标SSB;
    传输模块,用于采用所述目标SSB发送和/或接收数据。
  47. 根据权利要求46所述的随机接入装置,其特征在于,所述装置还包括:
    第三接收模块,用于接收所述基站广播的系统信息块SIB消息,其中,所述SIB消息携带多个SSB之间的关联关系。
    确定模块,用于根据所述关联关系,从所述多个SSB中确定所述候选SSB;其中,所述候选SSB包括所述终端发送所述随机接入请求所采用的第一SSB,以及与所述第一SSB存在关联关系的第二SSB。
  48. 根据权利要求46或47所述的随机接入装置,其特征在于,所述第二发送模块,包括:
    监听单元,用于对所述第一SSB对应的波束和所述第二SSB对应的波束进行监听,以确定监听避让成功的波束;
    发送单元,用于采用所述监听避让成功的波束发送所述RRC连接请求。
  49. 根据权利要求48所述的随机接入装置,其特征在于,监听避让成功的波束为多个;所述发送单元,具体用于:
    根据质量检测信息,对所述监听避让成功的波束进行筛选,获取保留的波束;
    采用所述保留的波束发送所述RRC连接请求。
  50. 根据权利要求48或49所述的随机接入装置,其特征在于,所述第二发送模块,还包括:
    更新单元,用于在所述质量检测信息中,对监听避让失败的波束对应的SSB删除参考信号接收功率值RSRP;或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序;或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB更新质量排序,并对所述监听避让成功的SSB重新进行质量排序;或者,在所述质量检测信息中,对监听避让失败的波束对应的SSB删除索引值。
  51. 根据权利要求46-50中任一项所述的随机接入装置,其特征在于,所述第二接收模块,具体用于:
    对所述第一SSB对应的波束和所述监听避让成功的波束进行监听,以接收所述基站发送的RRC连接响应。
  52. 根据权利要求47-51中任一项所述的随机接入装置,其特征在于,所述关联关系包括:关联列表;所述关联列表,包含所述第一SSB的索引,以及与所述第一SSB存在关联关系的所述第二SSB的索引;
    和/或,所述关联关系包括:关联策略;所述关联策略,包含个数阈值,所述个数阈值用于在基站的可用SSB序列中,确定所述第一SSB和所述第一SSB存在关联关系的所述第二SSB,其中,所述第二SSB与所述第一SSB之间连续或非连续的可用SSB个数小于或等于所述个数阈值;所述个数阈值包括沿所述可用SSB序列正序和/或逆序的个数阈值。
  53. 根据权利要求47-52中任一项所述的随机接入装置,其特征在于,所述SIB消息中还携带参考信号配置信息,所述参考信号配置信息用于指示与所述多个SSBSSB关联的信道状态信息参考信号CSI-RS;所述测量指示信息还用于指示对所述候选SSB关联的CSI-RS进行质量检测;
    所述波束指示信息,包括:所述目标SSB的确定策略指示信息、用于从所述目标SSB关联CSI-RS中确定出的目标CSI-RS的确定策略指示信息、所述目标CSI-RS的索引值和所述目标SSB的索引值中的一个或多个组合。
  54. 根据权利要求46-53中任一项所述的随机接入装置,其特征在于,所述第一接收模块,具体用于:
    接收所述基站发送的所述RRC连接请求的重传指示,其中,所述重传指示中携带所述测量指示信息;
    或者,接收所述基站发送的随机接入响应,其中,所述随机接入响应中携带所述测量指示信息。
  55. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行权利要求如1至9中任一项所述的随机接入方法。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使所述计算机执行如权利要求10至18中任一项所述的随机接入方法。
  57. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行如权利要求1-9中任一项所述的方法。
  58. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以执行如权利要求10-18中任一项所述的方法。
  59. 一种通信装置,其特征在于,包括处理电路和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理电路,所述处理电路用于运行所述计算机代码或指令,以执行如权利要求1-9中任 一项所述的方法。
  60. 一种通信装置,其特征在于,包括处理电路和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理电路,所述处理电路用于运行所述计算机代码或指令,以执行如权利要求10-18中任一项所述的方法。
  61. 一种计算机程序,其特征在于,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如权利要求1-9中任一项所述的方法。
  62. 一种计算机程序,其特征在于,所述计算机程序包括计算机程序代码,当所述计算机程序代码在计算机上运行时,以使得计算机执行如权利要求10-18中任一项所述的方法。
PCT/CN2021/097451 2020-09-21 2021-05-31 随机接入方法、装置、基站、终端和存储介质 WO2022057314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010997173.0A CN114258145B (zh) 2020-09-21 2020-09-21 随机接入方法、装置、基站、终端和存储介质
CN202010997173.0 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022057314A1 true WO2022057314A1 (zh) 2022-03-24

Family

ID=80777477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097451 WO2022057314A1 (zh) 2020-09-21 2021-05-31 随机接入方法、装置、基站、终端和存储介质

Country Status (2)

Country Link
CN (1) CN114258145B (zh)
WO (1) WO2022057314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609801A (zh) * 2023-04-04 2023-08-18 北京讯腾智慧科技股份有限公司 一种基站观测数据主备服务系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023674A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 信道状态信息测量的方法、用户设备及网络设备
CN109155654A (zh) * 2016-05-26 2019-01-04 高通股份有限公司 用于波束切换和报告的系统和方法
CN109792660A (zh) * 2017-09-27 2019-05-21 Oppo广东移动通信有限公司 一种信息指示方法及装置、网络设备、终端设备
CN110637496A (zh) * 2017-04-12 2019-12-31 三星电子株式会社 无线通信系统中波束恢复的方法和装置
CN110662307A (zh) * 2019-09-27 2020-01-07 中兴通讯股份有限公司 信息上报、接收方法、装置、终端、服务节点及存储介质
CN111418226A (zh) * 2017-11-28 2020-07-14 瑞典爱立信有限公司 用于无线通信的触发测量报告

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155654A (zh) * 2016-05-26 2019-01-04 高通股份有限公司 用于波束切换和报告的系统和方法
CN108023674A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 信道状态信息测量的方法、用户设备及网络设备
CN110637496A (zh) * 2017-04-12 2019-12-31 三星电子株式会社 无线通信系统中波束恢复的方法和装置
CN109792660A (zh) * 2017-09-27 2019-05-21 Oppo广东移动通信有限公司 一种信息指示方法及装置、网络设备、终端设备
CN111418226A (zh) * 2017-11-28 2020-07-14 瑞典爱立信有限公司 用于无线通信的触发测量报告
CN110662307A (zh) * 2019-09-27 2020-01-07 中兴通讯股份有限公司 信息上报、接收方法、装置、终端、服务节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (ZTE CORPORATION): "Feature lead summary on coverage enhancement for channels other than PUSCH and PUCCH", 3GPP DRAFT; R1-2007392, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 29 August 2020 (2020-08-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051922984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609801A (zh) * 2023-04-04 2023-08-18 北京讯腾智慧科技股份有限公司 一种基站观测数据主备服务系统及方法
CN116609801B (zh) * 2023-04-04 2023-12-22 北京讯腾智慧科技股份有限公司 一种基站观测数据主备服务系统及方法

Also Published As

Publication number Publication date
CN114258145A (zh) 2022-03-29
CN114258145B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US10736054B2 (en) Random access power control method and apparatus and communication system
CN112219422B (zh) 支持无线通信系统中的测量和移动性的系统和方法
US20190053094A1 (en) Signal transmission method and device
CN112584425B (zh) 一种测量能力上报的网络系统、电子设备及芯片系统
JP5059062B2 (ja) 通信システム、移動局装置および基地局装置
KR101715755B1 (ko) 이동통신 시스템에서 방송 제어 채널 송수신 방법 및 장치
WO2018098790A1 (zh) 测量方法、终端设备和网络设备
US11057924B2 (en) Method and apparatus for decoupling uplink and downlink cell selection
WO2020001502A1 (zh) 一种测量方法和测量装置
KR101919818B1 (ko) 이동통신시스템에서의 효율적인 단말기의 이동상태 추정 방법 및 그 장치
WO2022083583A1 (zh) 小区切换方法、终端、基站、装置和存储介质
KR20120007410A (ko) 다중 요소 반송파 시스템에서 핸드오버의 수행장치 및 방법
WO2015196563A1 (zh) 小区测量处理方法、装置、终端及基站
US11902840B2 (en) Time domain resource configuration method and access network device
US11096187B2 (en) Wireless communication method and system, and device
KR102420247B1 (ko) 반송파 집적 기술을 사용하는 무선 통신 시스템에서 측정 보고 송수신 방법 및 장치
WO2021185138A1 (zh) 一种网络系统、测量方法、电子设备、通信装置、芯片和计算机存储介质
JPWO2018012549A1 (ja) ユーザ端末及び無線通信方法
WO2022057314A1 (zh) 随机接入方法、装置、基站、终端和存储介质
WO2022002016A1 (zh) 一种邻区测量方法及其装置
US20180103483A1 (en) Data transmission method and apparatus
CN108810963B (zh) 测量配置及上报方法、装置、存储介质、基站、用户设备
WO2016198005A1 (zh) 非授权载波测量报告的处理方法及装置
WO2021143283A1 (zh) 在测量时隙内收发信号的方法、网元设备及可读存储介质
WO2024092767A1 (zh) 信息接收、信息发送方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868151

Country of ref document: EP

Kind code of ref document: A1