WO2015196563A1 - 小区测量处理方法、装置、终端及基站 - Google Patents

小区测量处理方法、装置、终端及基站 Download PDF

Info

Publication number
WO2015196563A1
WO2015196563A1 PCT/CN2014/085950 CN2014085950W WO2015196563A1 WO 2015196563 A1 WO2015196563 A1 WO 2015196563A1 CN 2014085950 W CN2014085950 W CN 2014085950W WO 2015196563 A1 WO2015196563 A1 WO 2015196563A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement interval
start time
cell
subframe
Prior art date
Application number
PCT/CN2014/085950
Other languages
English (en)
French (fr)
Inventor
陈中明
杜忠达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015196563A1 publication Critical patent/WO2015196563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters

Definitions

  • the present invention relates to the field of communications, and in particular, to a cell measurement processing method, apparatus, terminal, and base station.
  • cell reselection and handover are important functions.
  • the UE In order to successfully implement cell reselection, the UE needs to measure the signal quality of different cells in order to select a suitable cell for camping. After the UE establishes a connection with the network in a certain cell, the UE still needs to measure the signal quality of its neighboring cell, so as to select a suitable cell for handover to meet the mobility requirement.
  • the network side sends a measurement control message to the UE, where the measurement control message includes a measurement identifier (MID) and a measurement object (Measurement Object, referred to as MO). ), Report Configuration (referred to as RC) and other related properties of the measurement.
  • the UE performs the measurement according to the measurement object and the report configuration in the measurement control message, and generates a measurement report according to the measurement result and reports it to the network side.
  • Each measurement task includes measurement identifiers, measurement object attributes (such as carrier frequency (carrier center frequency point, ARFCN), neighbor list, etc.) and report configuration attributes (such as event trigger report or periodic report, trigger event triggered condition).
  • the carrier frequency of the measurement object it is divided into the same frequency measurement and the inter-frequency measurement. That is, the carrier frequency of the measurement object is the same as the carrier frequency of the serving cell, and the carrier frequency of the measurement object and the carrier cell are located. Different frequencies are measured by different frequencies. According to the radio access technology of the measurement object, there are also different system measurements, which refer to measurement tasks that are not E-UTRAN, including UMTS, GERAN and CDMA2000.
  • the carrier frequency of the serving cell refers to the central frequency point at which the UE communicates with the serving cell. For measurements of intra-frequency measurement tasks, the UE can perform measurements directly without the need for a measurement gap.
  • the terminal Due to the limitation of the terminal capability, some terminals need to configure the measurement interval on the measurement side of the inter-frequency and inter-system measurement tasks, that is, the specified time interval. During this time, the UE temporarily interrupts the communication with the serving cell to perform the different operation. Measurement of frequency and different systems. If the measurement interval needs to be configured, the base station configures the measurement interval to the UE by using a Radio Resource Control (RRC) reconfiguration message.
  • RRC Radio Resource Control
  • the parameters for configuring the measurement interval include the offset and the period.
  • the terminal calculates the start time of the measurement interval according to the offset.
  • the terminal period parameter determines the period and duration of the measurement interval. There are two current periods, 40ms and 80ms, and the duration is 6ms.
  • the UE can communicate with the base station through only one cell in the connected state.
  • the base station determines to configure the measurement interval for the UE, the information of the measurement interval, the base station and the terminal. The understanding is consistent.
  • the UE performs inter-frequency system measurement within the time specified by the measurement interval, and the base station may not schedule the UE.
  • Dual Connectivity Dual Connectivity
  • the multiple service nodes of the terminal are multiple base stations, and the delay between the base stations is not negligible.
  • one network node is a macro base station called MeNB
  • another network node is a small cell base station called SeNB.
  • the terminal needs to calculate the start time of the measurement interval on the MeNB and the SeNB respectively, for example, according to the time information of the MeNB, so that the measurement interval on the MeNB is the same as that in the prior art, and the measurement interval on the SeNB. It is calculated according to the time information of the MeNB.
  • the measurement interval time on the SeNB is the time of the measurement interval on the MeNB, that is, the two time coincides, when the subframe boundaries of the SeNB and the MeNB are not aligned.
  • the terminal calculates the start time of the measurement interval on the SeNB has not yet been disclosed. If the terminal and the base station have different understandings of the start time of the measurement interval on the SeNB, the base station scheduling terminal has a great influence. When the terminal cannot be scheduled, the resource allocation is a waste of resources, and when the terminal can be scheduled, no resource allocation is reduced. The throughput of the terminal.
  • the present invention provides a method, a device, a terminal, and a base station for processing a cell, so as to at least solve the problem in the related art that the start time of the measurement interval cannot be determined due to the double link of the UE, resulting in waste of resources and low user throughput.
  • a cell measurement processing method including: receiving measurement interval configuration information of a user equipment UE delivered by a base station under a dual link; and determining that the UE is first under the dual link The cell to which the network node belongs is not aligned with the subframe of the cell to which the second network node belongs; determining the start time of the first measurement interval at which the measurement is started on the cell to which the first network node belongs according to the measurement interval configuration information; Determining the first measurement interval start time, and a predetermined policy for recording a relationship between the first measurement interval start time and a second measurement interval start time on the cell to which the second network node belongs to start performing measurement Two measurement interval start time.
  • Determining the second measurement interval start time by the predetermined policy includes: determining that the first measurement interval start time corresponds to a corresponding subframe n of a cell to which the second network node belongs; determining that is relative to the corresponding subframe n The subframe corresponding to the predetermined location is the second measurement interval start time.
  • determining that the subframe corresponding to the predetermined position of the corresponding subframe n is the second measurement interval start time comprises: determining that the nNth subframe before the corresponding subframe n is the a measurement interval start time; determining that the corresponding subframe n is the second measurement interval start time; determining that the n+M subframes after the corresponding subframe n is the second measurement interval start time; , N, M are a predetermined number.
  • the method further includes at least one of: performing measurement according to the first measurement interval start time to obtain a first measurement result; performing measurement according to the second measurement interval start time The second measurement result is obtained.
  • the method further includes: reporting the first measurement result and/or the second measurement result to the base station.
  • a cell measurement processing method including: transmitting measurement interval configuration information under a dual link to a user equipment UE, wherein the UE is first in the double link
  • the subframes under the network node are not aligned with the subframes of the cells to which the second network node belongs, and the first measurement interval start time of performing measurement on the cell to which the first network node belongs is determined according to the measurement interval configuration information.
  • the second measurement interval start time at which the cell to which the second network node performs measurement has a predetermined relationship; and the measurement received by the UE is performed according to the first measurement interval start time and/or the second measurement interval start time. The measurement results obtained afterwards.
  • the method before the transmitting the measurement interval configuration information under the dual link to the UE, the method further includes: determining a predetermined interval between the first measurement interval start time and the second measurement interval start time Relationship; scheduling the UE according to the predetermined relationship.
  • a cell measurement processing apparatus including: a receiving module, configured to receive measurement interval configuration information of a user equipment UE delivered by a base station under a double link; and a first determining module, configured to Determining that the UE is not aligned with the subframe of the cell to which the second network node belongs under the dual link, and the second determining module is configured to determine the first according to the measurement interval configuration information.
  • the third determining module is configured to set the start time according to the first measurement interval, and to record the first measurement interval start time and the first The predetermined policy of the relationship between the start of the second measurement interval starting to perform measurement on the cell to which the two network nodes belong determines the second measurement interval start time.
  • the third determining module includes: a first determining unit, configured to determine that the first measurement interval start time corresponds to a corresponding subframe n of a cell to which the second network node belongs; and second determining unit, setting The subframe corresponding to the predetermined position relative to the corresponding subframe n is the second measurement interval start time.
  • the second determining unit includes: a first determining subunit, configured to determine that the nNth subframe before the corresponding subframe n is the second measurement interval start time; and the second determining subunit, setting To determine that the corresponding subframe n is the second measurement interval start time; the third determining subunit is configured to determine that the n+M subframes after the corresponding subframe n are the second measurement interval. Time; wherein the N, M are a predetermined number.
  • the apparatus further includes at least one of the following: a first measurement module configured to perform measurement according to the first measurement interval start time to obtain a first measurement result; and a second measurement module configured to be according to the second measurement interval The start time is performed to obtain a second measurement result.
  • a first measurement module configured to perform measurement according to the first measurement interval start time to obtain a first measurement result
  • a second measurement module configured to be according to the second measurement interval The start time is performed to obtain a second measurement result.
  • the device further comprises: a reporting module, configured to report the first measurement result and/or the second measurement result to the base station.
  • a reporting module configured to report the first measurement result and/or the second measurement result to the base station.
  • a terminal comprising the apparatus of any of the above.
  • a cell measurement processing apparatus including: a sending module, configured to send measurement interval configuration information under a dual link to a user equipment UE, where the UE is in the double The sub-frame of the cell to which the first network node belongs is not aligned with the subframe of the cell to which the second network node belongs, and the measurement performed by the cell under the first network node determined according to the measurement interval configuration information a measurement interval start time has a predetermined relationship with a second measurement interval start time at which the cell to which the second network node performs measurement; the receiving module is configured to receive the start time of the first measurement interval reported by the UE and/or Or the measurement result obtained after the measurement is performed at the second measurement interval start time.
  • the apparatus further includes: a fourth determining module, configured to determine a predetermined relationship between the first measurement interval start time and the second measurement interval start time; and a scheduling module configured to perform according to the predetermined relationship The UE performs scheduling.
  • a fourth determining module configured to determine a predetermined relationship between the first measurement interval start time and the second measurement interval start time
  • a scheduling module configured to perform according to the predetermined relationship The UE performs scheduling.
  • a base station comprising the apparatus of any of the above.
  • the measurement interval configuration information of the user equipment UE that is sent by the base station in the double link is received by the UE; and the cell to which the UE belongs under the first network node and the cell to which the second network node belongs is determined by the UE under the double link.
  • the subframe is not aligned; determining, according to the measurement interval configuration information, a first measurement interval start time on the cell to which the first network node belongs to start performing measurement; according to the first measurement interval start time, and for recording the a predetermined policy of a relationship between a first measurement interval start time and a second measurement interval start time on the cell to which the second network node belongs to perform measurement determines the second measurement interval start time, which solves the related art,
  • the UE can not determine the start time of the measurement interval under the double link, which leads to waste of resources and low user throughput, thereby achieving the effect of avoiding resource waste and improving user throughput.
  • FIG. 1 is a flowchart of a method 1 of cell measurement processing according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method 2 of cell measurement processing according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a cell measurement processing apparatus 1 according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a preferred structure of a third determining module 38 in a cell measurement processing apparatus 1 according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a preferred structure of the second determining unit 44 in the third determining module 38 in the cell measurement processing apparatus 1 according to an embodiment of the present invention
  • FIG. 6 is a block diagram 1 of a preferred structure of a cell measurement processing apparatus 1 according to an embodiment of the present invention.
  • FIG. 7 is a block diagram 2 of a preferred structure of a cell measurement processing apparatus 1 according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a cell measurement processing apparatus 2 according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing a preferred structure of a cell measurement processing apparatus 2 according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a measurement interval start time according to Embodiment 1 of the present invention.
  • FIG. 14 is a schematic diagram of a measurement interval start time according to Embodiment 3 of the present invention.
  • Figure 15 is a diagram showing the measurement interval start time according to Embodiment 4 of the present invention.
  • FIG. 1 is a flowchart of a cell measurement processing method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 receiving measurement interval configuration information of the user equipment UE delivered by the base station under the double link;
  • Step S104 determining that the UE is not aligned with the subframe of the cell under the first network node and the cell of the cell that is the second network node under the dual link;
  • Step S106 determining, according to the measurement interval configuration information, a first measurement interval start time on which the measurement is started on the cell to which the first network node belongs;
  • Step S108 determining a second measurement interval according to a first measurement interval start time, and a predetermined policy for recording a relationship between the first measurement interval start time and a second measurement interval start time on the cell to which the second network node belongs to start performing measurement. Starting time.
  • the start measurement interval time under the dual link of the UE is determined according to the predetermined policy, and the related art has the problem that the start time of the measurement interval cannot be determined due to the double link of the UE, resulting in waste of resources and The problem of low user throughput, thereby effectively avoiding resource waste and improving user throughput.
  • the second measurement interval is determined according to a first measurement interval start time, and a predetermined strategy for recording a relationship between the first measurement interval start time and a second measurement interval start time on the cell to which the second network node belongs to start performing measurement.
  • the start time may be determined by first determining that the first measurement interval start time corresponds to the corresponding subframe n of the cell to which the second network node belongs; and then determining, based on the determined corresponding subframe n, the relative subframe n
  • the subframe corresponding to the predetermined location is the second measurement interval start time.
  • the determining that the subframe corresponding to the predetermined position of the corresponding subframe n is the second measurement interval start time may also adopt multiple manners. For example, at least one of the following manners may be adopted: for example, before the corresponding subframe n can be determined.
  • the nth subframe is the second measurement interval start time; the corresponding subframe n may also be determined to be the second measurement interval start time; and the n+M subframes after the corresponding subframe n may also be determined to be the second measurement interval. Time; wherein N and M are predetermined numbers. N, M can be 0, 1, 2, and so on.
  • the first measurement result may be obtained by performing measurement according to the first measurement interval start time; and/or, performing the measurement according to the second measurement interval start time to obtain the second measurement result.
  • the first measurement result and/or the second measurement result may also be reported to the base station.
  • FIG. 2 is a flowchart of a second method for cell measurement processing according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the measurement interval configuration information under the dual link is sent to the user equipment UE, where the UE is not aligned with the subframe of the cell to which the second network node belongs under the dual link, according to the measurement interval.
  • the first measurement interval start time at which the measurement is performed on the cell to which the first network node is determined by the configuration information is determined to be a predetermined relationship with the second measurement interval start time at which the cell to which the second network node performs measurement is performed;
  • Step S204 Receive a measurement result obtained by the UE according to the first measurement interval start time and/or the second measurement interval start time.
  • the start measurement interval time under the dual link of the UE is determined according to the predetermined policy, and the related technology has the problem that the start time of the measurement interval cannot be determined due to the double link of the UE, which causes waste of resources and user throughput.
  • the predetermined relationship between the first measurement interval start time and the second measurement interval start time may be first determined; and the UE is scheduled according to the predetermined relationship.
  • a cell measurement processing device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a cell measurement processing apparatus 1 according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes a receiving module 32, a first determining module 34, a second determining module 36, and a third determining module 38. The device will be described.
  • the receiving module 32 is configured to receive the measurement interval configuration information of the user equipment UE that is sent by the base station in the double link.
  • the first determining module 34 is connected to the receiving module 32, and is configured to determine that the UE is in the dual network.
  • the sub-cell is not aligned with the subframe of the cell to which the second network node belongs;
  • the second determining module 36 is connected to the first determining module 34, and is configured to determine, according to the measurement interval configuration information, that the cell is to be executed on the cell to which the first network node belongs.
  • the first measurement interval start time is measured; the third determining module 38 is connected to the second determining module 36, configured to start according to the first measurement interval, and to record the first measurement interval start time and the second network node belongs to A predetermined policy on the cell to start performing a relationship between the measured second measurement interval start times determines a second measurement interval start time.
  • FIG. 4 is a block diagram showing a preferred structure of the third determining module 38 in the cell measurement processing apparatus 1 according to the embodiment of the present invention.
  • the third determining module 38 includes: a first determining unit 42 and a second determining unit 44.
  • the third determining module 38 will be described below.
  • the first determining unit 42 is configured to determine that the first measurement interval start time corresponds to the corresponding subframe n of the cell to which the second network node belongs; the second determining unit 44 is connected to the first determining unit 42 and is configured to determine The subframe corresponding to the predetermined position of the position of the subframe n is the second measurement interval start time.
  • FIG. 5 is a block diagram showing a preferred structure of the second determining unit 44 in the third determining module 38 in the cell measurement processing apparatus 1 according to the embodiment of the present invention.
  • the second determining unit 44 includes: a first determining subunit. 52.
  • the second determining unit 44 is described below.
  • the first determining sub-unit 52 is configured to determine that the nNth subframe before the position of the corresponding subframe n is the second measurement interval start time; and the second determining sub-unit 54 is configured to determine that the corresponding subframe n is the second measurement interval.
  • the start time; the third determining sub-unit 56 is configured to determine that the n+Mth subframe after the position of the corresponding subframe n is the second measurement interval start time; wherein N, M are a predetermined number.
  • FIG. 6 is a block diagram of a preferred structure of a cell measurement processing apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes at least one of the following: in addition to all the modules shown in FIG. 62. Second measurement module 64. The device will be described below.
  • the first measurement module 62 is connected to the second determining module 36, and is configured to perform measurement according to the first measurement interval start time to obtain the first measurement result;
  • the second measurement module 64 is connected to the third determining module 38, and is configured as The second measurement interval start time performs measurement to obtain a second measurement result.
  • FIG. 7 is a second block diagram of a preferred structure of a cell measurement processing apparatus according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes a report module 72 in addition to all the modules shown in FIG. Module 72 is described.
  • the reporting module 72 is connected to the first measurement module 62 and/or the second measurement module 64, and is configured to report the first measurement result and/or the second measurement result to the base station.
  • FIG. 8 is a structural block diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 8, the terminal 80 includes the cell measurement processing device 82 of any of the above.
  • FIG. 9 is a structural block diagram of a cell measurement processing apparatus 2 according to an embodiment of the present invention. As shown in FIG. 9, the apparatus includes: a sending module 92 and a receiving module 94, which will be described below.
  • the sending module 92 is configured to send measurement interval configuration information under the dual link to the user equipment UE, where the UE is not aligned with the subframe of the cell under the second network node under the dual link. Determining, according to the measurement interval configuration information, a first measurement interval start time of performing measurement on a cell under the first network node and a second measurement interval start time of performing measurement by the cell under the second network node; the receiving module 94, The method is connected to the sending module 92, and is configured to receive the measurement result obtained after the UE performs the measurement according to the first measurement interval start time and/or the second measurement interval start time.
  • FIG. 10 is a block diagram showing a preferred structure of a cell measurement processing apparatus 2 according to an embodiment of the present invention. As shown in FIG. 10, the apparatus includes a fourth determining module 102 and a scheduling module 104, in addition to all the structures shown in FIG. The structure will be described below.
  • the fourth determining module 102 is connected to the sending module 92, and is configured to determine a predetermined relationship between the first measurement interval start time and the second measurement interval start time; the scheduling module 104 is connected to the fourth determining module 102, and is configured to The UE is scheduled according to a predetermined relationship.
  • the base station 112 includes the cell measurement processing device 114 of any of the above.
  • a cell measurement processing scheme is provided, and the MeNB and the SeNB are taken as an example for description.
  • the start time of the measurement interval on the MeNB is calculated according to the current technology, and the start time of the interval is measured on the SeNB, so that:
  • the measurement interval on the SeNB is the same as the measurement interval on the MeNB.
  • the subframe on which the measurement interval starts on the MeNB corresponds to the subframe n on the SeNB, and the next subframe of the subframe n, that is, the n+1 frame, starts the measurement interval on the SeNB.
  • the subframe where the measurement interval starts on the MeNB corresponds to the subframe n on the SeNB, and the measurement interval on the SeNB is also started in the subframe n.
  • the terminal and the base station accurately understand the start time of the measurement interval, avoiding waste of resources and improving throughput.
  • the base station 1 is a macro base station, has one cell, is a cell 1, the carrier frequency is f1, the base station 2 is a small cell base station, and there are two cells, which are a cell 3 and a cell respectively. 4.
  • the carrier frequencies are f3 and f4, respectively.
  • FIG. 12 is a flowchart of a cell measurement scheme according to an embodiment of the present invention. As shown in FIG. 12, the process includes the following steps:
  • Step S1202 an evolved universal radio access network (Evolved Universal Radio Access Network, EUTRAN) network side node configures cell 1 and cell 3;
  • EUTRAN evolved Universal Radio Access Network
  • Step S1204 The EUTRAN network side node determines the configuration measurement interval according to the capability of the terminal UE.
  • Step S1206 The EUTRAN network side node sends a measurement control message to the UE, and configures a measurement task and a measurement interval.
  • Step S1208 The UE calculates the start time of the measurement interval on the measurement cell 1 and the cell 3 according to the delivered information, and performs measurement.
  • step S1210 the measurement report is reported.
  • Embodiment 1 The UE is in the connected state in the EUTRAN system, and the UE configures the cell 1 with the center frequency point at f1 and the cell center with the center frequency point at f3 in the communication process, and the process is as shown in FIG. 12 .
  • Step 1 The base station configures the following measurement tasks for the terminal:
  • Step 2 Since MID1, 2, and 3 are both intra-frequency measurements for the terminal, no measurement interval is required. According to the capability of the terminal, the terminal needs to measure the interval of f4, and the base station decides to configure the measurement interval for the UE, and passes the RRC reconfiguration message. The parameters are sent to the UE: the period is 40ms and the offset is 12.
  • Step 3 After receiving the RRC reconfiguration message of the configuration measurement interval, the UE calculates the measurement interval start time on the cell 1 as SFN and the subframe is 2, and FIG. 13 is a schematic diagram of the measurement interval start time according to the first embodiment of the present invention. As shown in Figure 13. The duration is 6ms until sub-frame 7.
  • the measurement interval start time on the cell 3 is calculated, and the cell 3 and the cell 1 subframe are aligned. Therefore, the time of the measurement interval on the cell 3 coincides with the measurement interval time of the cell 1, that is, the subframe in which the measurement interval starts on the cell 1 corresponds to the SFN1 on the cell 3. Subframe 1, therefore, from SFN1, subframe 1 is the start time of the measurement interval. The duration is 6ms until subframe 6.
  • Step 5 If the cell meets the trigger condition of the measurement report, the measurement report is reported to the base station.
  • Embodiment 2 The UE is in a connected state in the EUTRAN system, and the UE configures the cell 1 with the center frequency point at f1 and the cell center with the center frequency point at f3 in the communication process, and the process is as shown in FIG. 12 .
  • Step 1 The base station configures the following measurement tasks for the terminal:
  • Step 2 Since MID1, 2, and 3 are both intra-frequency measurements for the terminal, no measurement interval is required. According to the capability of the terminal, the terminal needs to measure the interval of f4, and the base station decides to configure the measurement interval for the UE, and passes the RRC reconfiguration message. The parameters are sent to the UE: the period is 40ms and the offset is 12.
  • Step 3 After receiving the RRC reconfiguration message of the configuration measurement interval, the UE calculates the measurement interval start time on the cell 1 as SFN and the subframe is 2, as shown in FIG. The duration is 6ms until sub-frame 7.
  • the cell 3 and the cell 1 subframe are not aligned, the subframe in which the measurement interval starts on the cell 1 corresponds to the subframe 0 of the SFN1 on the cell 3, and the subframe after the subframe 0 is the subframe 1, Therefore, from SFN1, subframe 1 is the start time of the measurement interval.
  • the duration is 6ms until subframe 6.
  • the measurement interval start time of the cell 1 corresponds to the SFN1 subframe 0 of the cell 3
  • the SFN0 of the cell 3 cannot normally transmit and receive data
  • the last subframe of the measurement interval of the cell 3 Corresponding to the SFN1 subframe 8 of the cell 1, the subframe 8 cannot be normally transmitted and received.
  • Step 5 If the cell meets the trigger condition of the measurement report, the measurement report is reported to the base station.
  • Embodiment 3 The UE is in a connected state in the EUTRAN system, and the UE configures the cell 1 with the center frequency point at f1 and the cell center with the center frequency point at f3 in the communication process, and the process is as shown in FIG.
  • Step 1 The base station configures the following measurement tasks for the terminal:
  • Step 2 Since MID1, 2, and 3 are both intra-frequency measurements for the terminal, no measurement interval is required. According to the capability of the terminal, the terminal needs to measure the interval of f4, and the base station decides to configure the measurement interval for the UE, and passes the RRC reconfiguration message. The parameters are sent to the UE: the period is 40ms and the offset is 12.
  • Step 3 After receiving the RRC reconfiguration message of the configuration measurement interval, the UE calculates the measurement interval start time on the cell 1 as SFN and the subframe is 2, and FIG. 14 is a schematic diagram of the measurement interval start time according to Embodiment 3 of the present invention. As shown in Figure 14. The duration is 6ms until subframe 6.
  • the measurement interval start time on the cell 3 is calculated, and the cell 3 and the cell 1 subframe are not aligned.
  • the subframe in which the measurement interval starts on the cell 1 corresponds to the subframe 0 of the SFN1 on the cell 3, and is also measured from the SFN1 and the subframe 0 is the cell 3.
  • the duration is 6ms until subframe 5.
  • the SFN6 of the cell 3 cannot normally transmit and receive data, and similarly, the measurement interval of the cell 3 starts.
  • the frame corresponds to the SFN1 subframe 1 of the cell 1. At this time, the subframe 1 cannot receive and transmit data normally.
  • Step 5 If the cell meets the trigger condition of the measurement report, the measurement report is reported to the base station.
  • Embodiment 4 The UE is in a connected state in the EUTRAN system, and the UE configures the cell 1 with the center frequency point at f1 and the cell 3 with the center frequency point at f3 in the communication process, and the cell 4 with the center frequency point at f4.
  • the process is shown in Figure 12.
  • Step 1 The base station configures the following measurement tasks for the terminal:
  • Step 2 Since MID1, 2, and 3 are both intra-frequency measurements for the terminal, no measurement interval is required. According to the capability of the terminal, the terminal needs to measure the interval of f4, and the base station decides to configure the measurement interval for the UE, and passes the RRC reconfiguration message. The parameters are sent to the UE: the period is 40ms and the offset is 12.
  • Step 3 After receiving the RRC reconfiguration message of the configuration measurement interval, the UE calculates the measurement interval start time on the cell 1 as SFN and the subframe is 2, and FIG. 15 is a schematic diagram of the measurement interval start time according to Embodiment 4 of the present invention. As shown in Figure 15. The duration is 6ms until sub-frame 7.
  • the cell 3 and the cell 1 subframe are not aligned, the subframe in which the measurement interval starts on the cell 1 corresponds to the subframe 0 of the SFN1 on the cell 3, and the subframe after the subframe 0 is the subframe 1, Therefore, from SFN1, subframe 1 is the start time of the measurement interval.
  • the duration is 6ms until subframe 6.
  • the measurement interval start time of the cell 1 corresponds to the SFN1 subframe 0 of the cell 3
  • the SFN0 of the cell 3 cannot normally transmit and receive data
  • the last subframe of the measurement interval of the cell 3 Corresponding to the SFN1 subframe 8 of the cell 1, the subframe 8 cannot be normally transmitted and received.
  • the interval start time is measured on the cell 4.
  • the frame boundaries are aligned in a plurality of cells in one base station, and therefore, the measurement interval start time is the same as that of the cell 3. If the special case, that is, multiple cells in one base station, the frame boundaries are not aligned, the calculation may be performed according to the measurement interval start time calculation method of the cell 3.
  • Step 5 If the cell meets the trigger condition of the measurement report, the measurement report is reported to the base station.
  • cell 4 is FDD or TDD, and the calculation method is the same.
  • the measurement interval is extended.
  • the subframe is also a measurement interval, that is, the measurement interval is extended to 7 ms.
  • the uplink subframe also serves as a measurement interval time, that is, the measurement interval is extended. To 7ms. The above embodiment is also calculated for the measurement period of 80 ms.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the foregoing embodiments and the preferred embodiments not only solve the problem in the related art that the measurement time of the measurement interval cannot be determined due to the double link of the UE, resulting in waste of resources and low user throughput, thereby avoiding resources. Waste, and the effect of improving user throughput.

Abstract

本发明提供了一种小区测量处理方法、装置、终端及基站,其中,该方法包括:接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;确定UE在双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;依据测量间隔配置信息确定第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;依据第一测量间隔开始时间,以及设置为记录第一测量间隔开始时间与第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定第二测量间隔开始时间,通过本发明,有效避免资源浪费,以及提高用户吞吐量的效果。

Description

小区测量处理方法、装置、终端及基站 技术领域
本发明涉及通信领域,具体而言,涉及一种小区测量处理方法、装置、终端及基站。
背景技术
在蜂窝移动通信系统中,小区重选和切换是其重要的功能。为了顺利实现小区重选,UE需要对不同小区的信号质量进行测量,以便选择合适的小区进行驻留。当UE在某个小区与网络建立连接之后,UE仍然需要对其相邻小区的信号质量进行测量,以便选择合适的小区进行切换,满足移动性要求。
终端在连接态下,测量的具体过程是:网络侧将测量控制消息发送给UE,其中,该测量控制消息中包括测量标识(Measurement Identity,简称为MID)、测量对象(Measurement Object,简称为MO)、报告配置(Report Configuration,简称为RC)以及测量的其他相关属性。UE根据测量控制消息中的测量对象、报告配置去执行测量,并根据测量结果生成测量报告上报给网络侧。每个测量任务都包含测量标识、测量对象属性(如载频(载波的中心频点,即ARFCN),邻区列表等)和报告配置属性(如事件触发上报或周期上报,触发事件由触发条件定义(A1、A2…),触发条件相关的门限、偏移等,TTT(Time To Trigger))。根据测量对象所在的载频不同,分为同频测量和异频测量,即测量对象的载频与服务小区所在的载频相同则为同频测量,测量对象的载频与服务小区所在的载频不同则为异频测量。根据测量对象的无线接入技术,还有异系统测量,异系统测量指的是测量对象不是E-UTRAN的测量任务,包含UMTS,GERAN和CDMA2000。服务小区所在的载频指的是UE与该服务小区进行通讯的中心频点。对于同频测量任务的测量,UE可以直接执行测量,不需要测量间隔(measurement gap)。由于终端能力的限制,有些终端对于异频和异系统的测量任务的测量,需要网络侧配置测量间隔,即指定的一段时间,在这段时间内,UE暂时中断与服务小区的通讯去执行异频和异系统的测量。如果需要配置测量间隔,基站通过无线资源控制(Radio Resource Control,简称为RRC)重配消息将测量间隔配置给UE。配置测量间隔的参数包含偏移和周期,终端按照偏移计算测量间隔开始的时间,终端周期参数确定测量间隔的周期和时长,目前的周期有两种,40ms和80ms,时长都是6ms。终端这样计算测量间隔的开始时间:帧号确定:SFN mod T=FLOOR(配置的偏移/10), 子帧号确定:subframe=配置的偏移mod 10;其中T=MGRP/10;MGRP(Measurement Gap Repetition Period)为周期配置的40ms或80ms。
LTE中,UE在连接态下只能通过一个小区与基站进行通讯,当UE执行异频和异系统测量任务的测量时,基站决定给UE配置测量间隔,这个测量间隔的信息,基站和终端的理解是一致的,UE在这个测量间隔指定的时间内,执行异频异系统测量,基站可以不调度UE。
由于频谱资源的匮乏,以及移动用户的大流量业务的激增,采用高频点如3.5GHz进行热点覆盖的需求日益明显,采用低功率的节点成为新的应用场景,为的是增加用户吞吐量和增强移动性能。但是由于高频点的信号衰减比较厉害,小区的覆盖范围比较小,并且与现有的小区不共站点,目前不少公司和运营商都倾向于寻求一种新的增强方案,双连接(Dual Connectivity)就是其中之一。双连接下终端可以同时与两个以上的网络节点保持连接,但是控制面连接只与其中一个小区比如宏小区有连接。终端的多个服务节点是多个基站,基站之间的时延不可忽略。比如,一个网络节点是宏基站称为MeNB,另外一个网络节点是小小区基站称为SeNB。当采用一个测量间隔的时候,终端需要在MeNB和SeNB上分别计算测量间隔的开始时间,比如都按照MeNB的时间信息来计算,这样,MeNB上测量间隔跟现有技术一样,SeNB上的测量间隔需要按照MeNB的时间信息来计算,如果MeNB和SeNB子帧边界对齐,那么SeNB上的测量间隔时间就是MeNB上测量间隔的时间即两个时间重合,当SeNB和MeNB的子帧边界不对齐的时候,终端如何计算SeNB上的测量间隔的开始时间,尚未有公开的技术。如果终端和基站对于SeNB上测量间隔的开始时间有不同的理解,对于基站调度终端产生很大的影响,对于终端不能调度的时候分配资源就是浪费资源,对于终端能调度的时候没有分配资源就是降低终端的吞吐量。
因此,在相关技术中,存在由于UE双链接下无法确定测量间隔的开始时间,导致资源浪费和用户吞吐量低的问题。
发明内容
本发明提供了一种小区测量处理方法、装置、终端及基站,以至少解决相关技术中,存在由于UE双链接下无法确定测量间隔的开始时间,导致资源浪费和用户吞吐量低的问题。
根据本发明的一个方面,提供了一种小区测量处理方法,包括:接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;确定所述UE在所述双链接下第一 网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;依据所述测量间隔配置信息确定所述第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定所述第二测量间隔开始时间。
优选地,依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的所述预定策略确定所述第二测量间隔开始时间包括:确定所述第一测量间隔开始时间对应到所述第二网络节点下所属小区的对应子帧n;确定相对于所述对应子帧n的预定位置对应的子帧为所述第二测量间隔开始时间。
优选地,确定相对于所述对应子帧n的所述预定位置对应的子帧为所述第二测量间隔开始时间包括:确定在所述对应子帧n之前的第n-N个子帧为所述第二测量间隔开始时间;确定所述对应子帧n为所述第二测量间隔开始时间;确定在所述对应子帧n之后的第n+M个子帧为所述第二测量间隔开始时间;其中,所述N、M为预定数目。
优选地,在依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的所述预定策略确定所述第二测量间隔开始时间之后,还包括以下至少之一:依据所述第一测量间隔开始时间执行测量获得第一测量结果;依据所述第二测量间隔开始时间执行测量获得第二测量结果。
优选地,还包括:将所述第一测量结果和/或所述第二测量结果上报给所述基站。
根据本发明的另一方面,提供了一种小区测量处理方法,包括:向用户设备UE下发在双链接下的测量间隔配置信息,其中,所述UE在所述双链接下所述第一网络节点下所属小区与所述第二网络节点下所属小区的子帧不对齐,依据所述测量间隔配置信息确定的所述第一网络节点下所属小区上执行测量的第一测量间隔开始时间与所述第二网络节点下所属小区执行测量的第二测量间隔开始时间存在预定关系;接收所述UE上报的依据所述第一测量间隔开始时间和/或所述第二测量间隔开始时间进行测量后获得的测量结果。
优选地,在向所述UE下发在所述双链接下的所述测量间隔配置信息之前,还包括:确定所述第一测量间隔开始时间与所述第二测量间隔开始时间之间的预定关系;依据所述预定关系对所述UE进行调度。
根据本发明的还一方面,提供了一种小区测量处理装置,包括:接收模块,设置为接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;第一确定模块,设置为确定所述UE在所述双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;第二确定模块,设置为依据所述测量间隔配置信息确定所述第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;第三确定模块,设置为依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定所述第二测量间隔开始时间。
优选地,所述第三确定模块包括:第一确定单元,设置为确定所述第一测量间隔开始时间对应到所述第二网络节点下所属小区的对应子帧n;第二确定单元,设置为确定相对于所述对应子帧n的预定位置对应的子帧为所述第二测量间隔开始时间。
优选地,所述第二确定单元包括:第一确定子单元,设置为确定在所述对应子帧n之前的第n-N个子帧为所述第二测量间隔开始时间;第二确定子单元,设置为确定所述对应子帧n为所述第二测量间隔开始时间;第三确定子单元,设置为确定在所述对应子帧n之后的第n+M个子帧为所述第二测量间隔开始时间;其中,所述N、M为预定数目。
优选地,该装置还包括以下至少之一:第一测量模块,设置为依据所述第一测量间隔开始时间执行测量获得第一测量结果;第二测量模块,设置为依据所述第二测量间隔开始时间执行测量获得第二测量结果。
优选地,该装置还包括:上报模块,设置为将所述第一测量结果和/或所述第二测量结果上报给所述基站。
根据本发明的还一方面,提供了一种终端,包括上述任一项所述的装置。
根据本发明的还一方面,提供了一种小区测量处理装置,包括:下发模块,设置为向用户设备UE下发在双链接下的测量间隔配置信息,其中,所述UE在所述双链接下所述第一网络节点下所属小区与所述第二网络节点下所属小区的子帧不对齐,依据所述测量间隔配置信息确定的所述第一网络节点下所属小区上执行测量的第一测量间隔开始时间与所述第二网络节点下所属小区执行测量的第二测量间隔开始时间存在预定关系;接收模块,设置为接收所述UE上报的依据所述第一测量间隔开始时间和/或所述第二测量间隔开始时间进行测量后获得的测量结果。
优选地,该装置还包括:第四确定模块,设置为确定所述第一测量间隔开始时间与所述第二测量间隔开始时间之间的预定关系;调度模块,设置为依据所述预定关系对所述UE进行调度。
根据本发明的再一方面,提供了一种基站,包括上述任一项所述的装置。
通过本发明,采用接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;确定所述UE在所述双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;依据所述测量间隔配置信息确定所述第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定所述第二测量间隔开始时间,解决了相关技术中,存在由于UE双链接下无法确定测量间隔的开始时间,导致资源浪费和用户吞吐量低的问题,进而达到了避免资源浪费,以及提高用户吞吐量的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的小区测量处理方法一的流程图;
图2是根据本发明实施例的小区测量处理方法二的流程图;
图3是根据本发明实施例的小区测量处理装置一的结构框图;
图4是根据本发明实施例的小区测量处理装置一中第三确定模块38的优选结构框图;
图5是根据本发明实施例的小区测量处理装置一中第三确定模块38中第二确定单元44的优选结构框图;
图6是根据本发明实施例的小区测量处理装置一的优选结构框图一;
图7是根据本发明实施例的小区测量处理装置一的优选结构框图二;
图8是根据本发明实施例的终端的结构框图;
图9是根据本发明实施例的小区测量处理装置二的结构框图;
图10是根据本发明实施例的小区测量处理装置二的优选结构框图;
图11是根据本发明实施例的基站的结构框图;
图12是根据本发明实施例的小区测量方案的流程图;
图13是根据本发明实施例一的测量间隔开始时间示意图;
图14是根据本发明实施例三的测量间隔开始时间示意图;
图15是根据本发明实施例四的测量间隔开始时间示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种小区测量处理方法,图1是根据本发明实施例的小区测量处理方法一的流程图,如图1所示,该流程包括如下步骤:
步骤S102,接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;
步骤S104,确定UE在双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;
步骤S106,依据测量间隔配置信息确定第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;
步骤S108,依据第一测量间隔开始时间,以及用于记录第一测量间隔开始时间与第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定第二测量间隔开始时间。
通过上述步骤,对于用户设备UE侧而言,依据预定策略确定UE双链接下的开始测量间隔时间,解决了相关技术中,存在由于UE双链接下无法确定测量间隔的开始时间,导致资源浪费和用户吞吐量低的问题,进而有效地避免资源浪费,以及提高用户吞吐量。
优选地,依据第一测量间隔开始时间,以及用于记录第一测量间隔开始时间与第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定第二测量间隔开始时间,可以采用以下方式:先确定第一测量间隔开始时间对应到第二网络节点下所属小区的对应子帧n;之后,基于确定的该对应子帧n,确定相对于对应子帧n的预定位置对应的子帧为第二测量间隔开始时间。
其中,确定相对于对应子帧n的预定位置对应的子帧为第二测量间隔开始时间也可以采用多种方式,例如,可以采用以下方式至少之一:例如,可以确定在对应子帧n之前的第n-N个子帧为第二测量间隔开始时间;也可以确定对应子帧n为第二测量间隔开始时间;还可以确定在对应子帧n之后的第n+M个子帧为第二测量间隔开始时间;其中,N、M为预定数目。N、M可以为0,1,2等等。
在依据第一测量间隔开始时间,以及用于记录第一测量间隔开始时间与第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定第二测量间隔开始时间之后,还可以依据第一测量间隔开始时间执行测量获得第一测量结果;和/或,依据第二测量间隔开始时间执行测量获得第二测量结果。
较优地,还可以将第一测量结果和/或第二测量结果上报给基站。
图2是根据本发明实施例的小区测量处理方法二的流程图,如图2所示,该流程包括如下步骤:
步骤S202,向用户设备UE下发在双链接下的测量间隔配置信息,其中,UE在双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐,依据测量间隔配置信息确定的第一网络节点下所属小区上执行测量的第一测量间隔开始时间与第二网络节点下所属小区执行测量的第二测量间隔开始时间存在预定关系;
步骤S204,接收UE上报的依据第一测量间隔开始时间和/或第二测量间隔开始时间进行测量后获得的测量结果。
通过上述步骤,对于基站侧而言,依据预定策略确定UE双链接下的开始测量间隔时间,解决了相关技术中,存在由于UE双链接下无法确定测量间隔的开始时间,导致资源浪费和用户吞吐量低的问题,进而有效地避免资源浪费,以及提高用户吞吐量。
在向UE下发在双链接下的测量间隔配置信息之前,还可以先确定第一测量间隔开始时间与第二测量间隔开始时间之间的预定关系;依据预定关系对UE进行调度。
在本实施例中还提供了一种小区测量处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的小区测量处理装置一的结构框图,如图3所示,该装置包括接收模块32、第一确定模块34、第二确定模块36和第三确定模块38,下面对该装置进行说明。
接收模块32,设置为接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;第一确定模块34,连接至上述接收模块32,设置为确定UE在双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;第二确定模块36,连接至上述第一确定模块34,设置为依据测量间隔配置信息确定第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;第三确定模块38,连接至上述第二确定模块36,设置为依据第一测量间隔开始时间,以及用于记录第一测量间隔开始时间与第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定第二测量间隔开始时间。
图4是根据本发明实施例的小区测量处理装置一中第三确定模块38的优选结构框图,如图4所示,该第三确定模块38包括:第一确定单元42和第二确定单元44,下面对该第三确定模块38进行说明。
第一确定单元42,设置为确定第一测量间隔开始时间对应到第二网络节点下所属小区的对应子帧n;第二确定单元44,连接至上述第一确定单元42,设置为确定相对于对应子帧n的位置的预定位置对应的子帧为第二测量间隔开始时间。
图5是根据本发明实施例的小区测量处理装置一中第三确定模块38中第二确定单元44的优选结构框图,如图5所示,该第二确定单元44包括:第一确定子单元52、第二确定子单元54、第三确定子单元56,下面对该第二确定单元44进行说明。
第一确定子单元52,设置为确定在对应子帧n的位置之前的第n-N个子帧为第二测量间隔开始时间;第二确定子单元54,设置为确定对应子帧n为第二测量间隔开始时间;第三确定子单元56,设置为确定在对应子帧n的位置之后的第n+M个子帧为第二测量间隔开始时间;其中,N、M为预定数目。
图6是根据本发明实施例的小区测量处理装置一的优选结构框图一,如图6所示,该装置除包括图3所示的所有模块外,还包括以下至少之一:第一测量模块62、第二测量模块64,下面对该装置进行说明。
第一测量模块62,连接至上述第二确定模块36,设置为依据第一测量间隔开始时间执行测量获得第一测量结果;第二测量模块64,连接至上述第三确定模块38,设置为依据第二测量间隔开始时间执行测量获得第二测量结果。
图7是根据本发明实施例的小区测量处理装置一的优选结构框图二,如图7所示,该装置除包括图6所示的所有模块外,还包括上报模块72,下面对该上报模块72进行说明。
上报模块72,连接至上述第一测量模块62和/或第二测量模块64,设置为将第一测量结果和/或第二测量结果上报给基站。
图8是根据本发明实施例的终端的结构框图,如图8所示,该终端80包括上述任一项的小区测量处理装置一82。
图9是根据本发明实施例的小区测量处理装置二的结构框图,如图9所示,该装置包括:下发模块92和接收模块94,下面对该装置进行说明。
下发模块92,设置为向用户设备UE下发在双链接下的测量间隔配置信息,其中,UE在双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐,依据测量间隔配置信息确定的第一网络节点下所属小区上执行测量的第一测量间隔开始时间与第二网络节点下所属小区执行测量的第二测量间隔开始时间存在预定关系;接收模块94,连接至上述下发模块92,设置为接收UE上报的依据第一测量间隔开始时间和/或第二测量间隔开始时间进行测量后获得的测量结果。
图10是根据本发明实施例的小区测量处理装置二的优选结构框图,如图10所示,该装置除包括图9所示的所有结构外,还包括第四确定模块102和调度模块104,下面对该结构进行说明。
第四确定模块102,连接至上述下发模块92,设置为确定第一测量间隔开始时间与第二测量间隔开始时间之间的预定关系;调度模块104,连接至上述第四确定模块102,设置为依据预定关系对UE进行调度。
图11是根据本发明实施例的基站的结构框图,如图11所示,该基站112包括上述任一项的小区测量处理装置二114。
针对相关技术中的上述问题,在本实施例中,提供了一种小区测量处理方案,以MeNB和SeNB为例进行说明。MeNB上测量间隔的开始时间按照当前技术来计算,SeNB上测量间隔的开始时间,这样计算:
的情况下,SeNB上测量间隔与MeNB上测量间隔时间相同。
MeNB和SeNB子帧不对齐的情况下,MeNB上测量间隔开始的子帧对应到SeNB上的子帧n,子帧n的下一个子帧即n+1帧开始SeNB上的测量间隔。或者:MeNB上测量间隔开始的子帧对应到SeNB上的子帧n,则同样以子帧n开始SeNB上的测量间隔。
通过上述方案,终端和基站准确理解测量间隔的开始时间,避免资源的浪费和提高吞吐量。
下面结合附图对本发明优选实施方式进行说明。
需要说明的是,在以下具体实施例中,基站1是宏基站,有1个小区,是小区1,载频是f1,基站2是小小区基站,有两个小区,分别是小区3和小区4,载频分别是f3和f4。
图12是根据本发明实施例的小区测量方案的流程图,如图12所示,该流程包括如下步骤:
步骤S1202,演进的通用陆地无线接入网(Evolved Universal Radio Access Network,简称为EUTRAN)网络侧节点配置小区1和小区3;
步骤S1204,EUTRAN网络侧节点依据终端UE能力决定配置测量间隔;
步骤S1206,EUTRAN网络侧节点向UE下发测量控制消息,配置测量任务,测量间隔;
步骤S1208,UE依据下发的信息,计算测量小区1和小区3上测量间隔的开始时间,执行测量;
步骤S1210,上报测量报告。
下面基于上述方案结合完整实施例进行说明。
实施例一:UE在EUTRAN系统中处于连接态,UE在通讯过程中配置了中心频点在f1上的小区1和中心频点在f3上的小区3,流程如图12所示。
步骤一:基站给终端配置了如下测量任务:
MID=1,MO=f1,RC=A3
MID=2,MO=f3,RC=A6
MID=3,MO=f3,RC=A3
MID=4,MO=f4,RC=A3
步骤二:由于MID1,2,3,对于终端来说都是同频测量,不需要测量间隔,根据终端的能力,终端测量f4需要测量间隔,基站决定给UE配置测量间隔,通过RRC重配消息发给UE,包含的参数是:周期为40ms,偏移为12。
步骤三:UE收到配置测量间隔的RRC重配消息后,计算小区1上测量间隔开始时间为SFN为1,子帧为2,图13是根据本发明实施例一的测量间隔开始时间示意图,如图13所示。时长为6ms,直到子帧7。
计算小区3上测量间隔开始时间,小区3和小区1子帧对齐,因此小区3上测量间隔的时间跟小区1的测量间隔时间重合,即小区1上测量间隔开始的子帧对应小区3上SFN1的子帧1,因此,从SFN1,子帧1为测量间隔的开始时间。时长为6ms,直到子帧6。
步骤四:之后,在测量间隔指定的时间内,暂时中断与cell1和cell3的通讯,执行测量任务MID=4的测量。
步骤五:有小区满足测量报告的触发条件,则上报测量报告给基站。
实施例二:UE在EUTRAN系统中处于连接态,UE在通讯过程中配置了中心频点在f1上的小区1和中心频点在f3上的小区3,流程如图12所示。
步骤一:基站给终端配置了如下测量任务:
MID=1,MO=f1,RC=A3
MID=2,MO=f3,RC=A6
MID=3,MO=f3,RC=A3
MID=4,MO=f4,RC=A3
步骤二:由于MID1,2,3,对于终端来说都是同频测量,不需要测量间隔,根据终端的能力,终端测量f4需要测量间隔,基站决定给UE配置测量间隔,通过RRC重配消息发给UE,包含的参数是:周期为40ms,偏移为12。
步骤三:UE收到配置测量间隔的RRC重配消息后,计算小区1上测量间隔开始时间为SFN为1,子帧为2,如图13所示。时长为6ms,直到子帧7。
计算小区3上测量间隔开始时间,小区3和小区1子帧不对齐,小区1上测量间隔开始的子帧对应小区3上SFN1的子帧0,子帧0后面的子帧为子帧1,因此,从SFN1,子帧1为测量间隔的开始时间。时长为6ms,直到子帧6。
此时,由于小区1的测量间隔开始时间对应小区3的SFN1子帧0,如果终端采用一个收发机的话,小区3的SFN0不可以正常收发数据,同样,小区3的测量间隔最后一个子帧,对应小区1的SFN1子帧8,此时子帧8也不能正常数据收发。
步骤四:之后,在测量间隔指定的时间内,暂时中断与cell1和cell3的通讯,执行测量任务MID=4的测量。
步骤五:有小区满足测量报告的触发条件,则上报测量报告给基站。
实施例三:UE在EUTRAN系统中处于连接态,UE在通讯过程中配置了中心频点在f1上的小区1和中心频点在f3上的小区3,流程如图12所示
步骤一:基站给终端配置了如下测量任务:
MID=1,MO=f1,RC=A3
MID=2,MO=f3,RC=A6
MID=3,MO=f3,RC=A3
MID=4,MO=f4,RC=A3
步骤二:由于MID1,2,3,对于终端来说都是同频测量,不需要测量间隔,根据终端的能力,终端测量f4需要测量间隔,基站决定给UE配置测量间隔,通过RRC重配消息发给UE,包含的参数是:周期为40ms,偏移为12。
步骤三:UE收到配置测量间隔的RRC重配消息后,计算小区1上测量间隔开始时间为SFN为1,子帧为2,图14是根据本发明实施例三的测量间隔开始时间示意图,如图14所示。时长为6ms,直到子帧6。
计算小区3上测量间隔开始时间,小区3和小区1子帧不对齐,小区1上测量间隔开始的子帧对应小区3上SFN1的子帧0,也从SFN1,子帧0为小区3上测量间隔的开始时间。时长为6ms,直到子帧5。
此时,由于小区1的测量间隔最后子帧时间对应小区3的SFN1子帧6,如果终端采用一个收发机的话,小区3的SFN6不可以正常收发数据,同样,小区3的测量间隔开始的子帧,对应小区1的SFN1子帧1,此时子帧1也不能正常数据收发。
步骤四:之后,在测量间隔指定的时间内,暂时中断与cell1和cell3的通讯,执行测量任务MID=4的测量。
步骤五:有小区满足测量报告的触发条件,则上报测量报告给基站。
实施例四:UE在EUTRAN系统中处于连接态,UE在通讯过程中配置了中心频点在f1上的小区1和中心频点在f3上的小区3,中心频点在f4上的小区4,流程如图12所示。
步骤一:基站给终端配置了如下测量任务:
MID=1,MO=f1,RC=A3
MID=2,MO=f3,RC=A6
MID=3,MO=f3,RC=A3
MID=4,MO=f4,RC=A3
步骤二:由于MID1,2,3,对于终端来说都是同频测量,不需要测量间隔,根据终端的能力,终端测量f4需要测量间隔,基站决定给UE配置测量间隔,通过RRC重配消息发给UE,包含的参数是:周期为40ms,偏移为12。
步骤三:UE收到配置测量间隔的RRC重配消息后,计算小区1上测量间隔开始时间为SFN为1,子帧为2,图15是根据本发明实施例四的测量间隔开始时间示意图,如图15所示。时长为6ms,直到子帧7。
计算小区3上测量间隔开始时间,小区3和小区1子帧不对齐,小区1上测量间隔开始的子帧对应小区3上SFN1的子帧0,子帧0后面的子帧为子帧1,因此,从SFN1,子帧1为测量间隔的开始时间。时长为6ms,直到子帧6。
此时,由于小区1的测量间隔开始时间对应小区3的SFN1子帧0,如果终端采用一个收发机的话,小区3的SFN0不可以正常收发数据,同样,小区3的测量间隔最后一个子帧,对应小区1的SFN1子帧8,此时子帧8也不能正常数据收发。
小区4上测量间隔开始时间,一般来说,一个基站内的多个小区,帧边界是对齐的,因此,跟小区3的测量间隔开始时间一样。如果特殊情况,即一个基站内的多个小区,帧边界也不对齐,则按照小区3的测量间隔开始时间计算方法来计算即可。
步骤四:之后,在测量间隔指定的时间内,暂时中断与cell1和cell3,cell4的通讯,执行测量任务MID=4的测量。
步骤五:有小区满足测量报告的触发条件,则上报测量报告给基站。
对于小区1和小区3,小区4是FDD,还是TDD,计算方法相同。对于当前技术中的特殊情况,测量间隔会延长,比如对于FDD的情况,如果测量间隔结束后的第一个子帧是上行子帧,则这个子帧也算是测量间隔,即测量间隔延长到7ms。对于TDD的情况,如果测量间隔开始前的一个子帧为下行子帧,测量间隔结束后的第一个子帧为上行子帧,则这个上行子帧也作为测量间隔的时间,即测量间隔延长到7ms。以上实施例,对于测量周期为80ms的,也一样计算。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,通过上述实施例及优选实施方式,不仅解决了相关技术中,存在由于UE双链接下无法确定测量间隔的开始时间,导致资源浪费和用户吞吐量低的问题,进而达到了避免资源浪费,以及提高用户吞吐量的效果。

Claims (16)

  1. 一种小区测量处理方法,包括:
    接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;
    确定所述UE在所述双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;
    依据所述测量间隔配置信息确定所述第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;
    依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定所述第二测量间隔开始时间。
  2. 根据权利要求1所述的方法,其中,依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的所述预定策略确定所述第二测量间隔开始时间包括:
    确定所述第一测量间隔开始时间对应到所述第二网络节点下所属小区的对应子帧n;
    确定相对于所述对应子帧n的预定位置对应的子帧为所述第二测量间隔开始时间。
  3. 根据权利要求1所述的方法,其中,确定相对于所述对应子帧n的所述预定位置对应的子帧为所述第二测量间隔开始时间包括:
    确定在所述对应子帧n之前的第n-N个子帧为所述第二测量间隔开始时间;
    确定所述对应子帧n为所述第二测量间隔开始时间;
    确定在所述对应子帧n之后的第n+M个子帧为所述第二测量间隔开始时间;
    其中,所述N、M为预定数目。
  4. 根据权利要求1所述的方法,其中,在依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的所述预定策略确定所述第二测量间隔开始时间之后,还包括以下至少之一:
    依据所述第一测量间隔开始时间执行测量获得第一测量结果;
    依据所述第二测量间隔开始时间执行测量获得第二测量结果。
  5. 根据权利要求4所述的方法,其中,还包括:
    将所述第一测量结果和/或所述第二测量结果上报给所述基站。
  6. 一种小区测量处理方法,包括:
    向用户设备UE下发在双链接下的测量间隔配置信息,其中,所述UE在所述双链接下所述第一网络节点下所属小区与所述第二网络节点下所属小区的子帧不对齐,依据所述测量间隔配置信息确定的所述第一网络节点下所属小区上执行测量的第一测量间隔开始时间与所述第二网络节点下所属小区执行测量的第二测量间隔开始时间存在预定关系;
    接收所述UE上报的依据所述第一测量间隔开始时间和/或所述第二测量间隔开始时间进行测量后获得的测量结果。
  7. 根据权利要求6所述的方法,其中,在向所述UE下发在所述双链接下的所述测量间隔配置信息之前,还包括:
    确定所述第一测量间隔开始时间与所述第二测量间隔开始时间之间的预定关系;
    依据所述预定关系对所述UE进行调度。
  8. 一种小区测量处理装置,包括:
    接收模块,设置为接收到基站下发的用户设备UE在双链接下的测量间隔配置信息;
    第一确定模块,设置为确定所述UE在所述双链接下第一网络节点下所属小区与第二网络节点下所属小区的子帧不对齐;
    第二确定模块,设置为依据所述测量间隔配置信息确定所述第一网络节点下所属小区上开始执行测量的第一测量间隔开始时间;
    第三确定模块,设置为依据所述第一测量间隔开始时间,以及用于记录所述第一测量间隔开始时间与所述第二网络节点所属小区上开始执行测量的第二测量间隔开始时间之间关系的预定策略确定所述第二测量间隔开始时间。
  9. 根据权利要求8所述的装置,其中,所述第三确定模块包括:
    第一确定单元,设置为确定所述第一测量间隔开始时间对应到所述第二网络节点下所属小区的对应子帧n;
    第二确定单元,设置为确定相对于所述对应子帧n的预定位置对应的子帧为所述第二测量间隔开始时间。
  10. 根据权利要求8所述的装置,其中,所述第二确定单元包括:
    第一确定子单元,设置为确定在所述对应子帧n之前的第n-N个子帧为所述第二测量间隔开始时间;
    第二确定子单元,设置为确定所述对应子帧n为所述第二测量间隔开始时间;
    第三确定子单元,设置为确定在所述对应子帧n之后的第n+M个子帧为所述第二测量间隔开始时间;
    其中,所述N、M为预定数目。
  11. 根据权利要求8所述的装置,其中,还包括以下至少之一:
    第一测量模块,设置为依据所述第一测量间隔开始时间执行测量获得第一测量结果;
    第二测量模块,设置为依据所述第二测量间隔开始时间执行测量获得第二测量结果。
  12. 根据权利要求11所述的装置,其中,还包括:
    上报模块,设置为将所述第一测量结果和/或所述第二测量结果上报给所述基站。
  13. 一种终端,包括权利要求8至12中任一项所述的装置。
  14. 一种小区测量处理装置,包括:
    下发模块,设置为向用户设备UE下发在双链接下的测量间隔配置信息,其中,所述UE在所述双链接下所述第一网络节点下所属小区与所述第二网络 节点下所属小区的子帧不对齐,依据所述测量间隔配置信息确定的所述第一网络节点下所属小区上执行测量的第一测量间隔开始时间与所述第二网络节点下所属小区执行测量的第二测量间隔开始时间存在预定关系;
    接收模块,设置为接收所述UE上报的依据所述第一测量间隔开始时间和/或所述第二测量间隔开始时间进行测量后获得的测量结果。
  15. 根据权利要求14所述的装置,其中,还包括:
    第四确定模块,设置为确定所述第一测量间隔开始时间与所述第二测量间隔开始时间之间的预定关系;
    调度模块,设置为依据所述预定关系对所述UE进行调度。
  16. 一种基站,包括权利要求14至15中任一项所述的装置。
PCT/CN2014/085950 2014-06-27 2014-09-04 小区测量处理方法、装置、终端及基站 WO2015196563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410300773.1A CN105228198B (zh) 2014-06-27 2014-06-27 小区测量处理方法、装置、终端及基站
CN201410300773.1 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015196563A1 true WO2015196563A1 (zh) 2015-12-30

Family

ID=54936564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085950 WO2015196563A1 (zh) 2014-06-27 2014-09-04 小区测量处理方法、装置、终端及基站

Country Status (2)

Country Link
CN (1) CN105228198B (zh)
WO (1) WO2015196563A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742143C1 (ru) * 2017-06-15 2021-02-02 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ конфигурирования интервала измерения и соответствующие аппарат, устройство, оконечное устройство и система
US11234153B2 (en) 2017-11-09 2022-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for setting measurement interval and network device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820726B (zh) * 2017-04-01 2022-07-08 达闼机器人股份有限公司 用于终端测量的方法、装置,网络侧设备和终端侧设备
CN109391983B (zh) * 2017-08-10 2021-10-19 华为技术有限公司 一种测量间隔参数配置、测量参考信号的方法及设备
CN111034248B (zh) * 2017-08-11 2022-03-15 中兴通讯股份有限公司 用于执行与无线网络的多个节点的无线通信的方法和计算设备
CN109391960B (zh) * 2017-08-11 2023-04-25 北京紫光展锐通信技术有限公司 测量配置方法、基站及计算机可读存储介质
CN109413671A (zh) * 2017-08-17 2019-03-01 维沃移动通信有限公司 一种测量配置方法、基站及终端
CN111052785A (zh) * 2017-10-17 2020-04-21 Oppo广东移动通信有限公司 多射频接收能力终端的测量配置方法、系统及终端
WO2019098525A1 (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 En-dc 상황에서 측정을 수행하는 방법 및 사용자 장치
CN109803303B (zh) * 2017-11-16 2022-10-04 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站
CN110621071B (zh) * 2018-06-20 2022-06-17 维沃移动通信有限公司 一种测量间隔的处理方法、终端及网络节点
CN111800819A (zh) * 2019-08-05 2020-10-20 维沃移动通信有限公司 提前测量结果指示方法、终端设备和网络节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998486A (zh) * 2009-08-11 2011-03-30 中兴通讯股份有限公司 测量间隔的配置方法及装置
WO2012162673A2 (en) * 2011-05-25 2012-11-29 Qualcomm Incorporated Apparatus and method of inter-radio access technology searching
WO2013049057A1 (en) * 2011-09-26 2013-04-04 Research In Motion Limited Method and system for small cell discovery in heterogeneous cellular networks
CN103037399A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种异频测量配置方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237473B2 (en) * 2010-02-19 2016-01-12 Lenovo Group Limited Inter-frequency positioning measurements
EP3148248B1 (en) * 2011-06-21 2022-04-27 Telefonaktiebolaget LM Ericsson (publ) Methods, apparatuses and computer-readable medium for performing non-si measurements in a wireless network
CN103888987B (zh) * 2014-03-21 2017-12-19 电信科学技术研究院 一种数据传输及其控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998486A (zh) * 2009-08-11 2011-03-30 中兴通讯股份有限公司 测量间隔的配置方法及装置
WO2012162673A2 (en) * 2011-05-25 2012-11-29 Qualcomm Incorporated Apparatus and method of inter-radio access technology searching
WO2013049057A1 (en) * 2011-09-26 2013-04-04 Research In Motion Limited Method and system for small cell discovery in heterogeneous cellular networks
CN103037399A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种异频测量配置方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2742143C1 (ru) * 2017-06-15 2021-02-02 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ конфигурирования интервала измерения и соответствующие аппарат, устройство, оконечное устройство и система
US10986523B2 (en) 2017-06-15 2021-04-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring measurement gap, access network device and terminal
US11711711B2 (en) 2017-06-15 2023-07-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring measurement gap, access network device and terminal
US11234153B2 (en) 2017-11-09 2022-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for setting measurement interval and network device

Also Published As

Publication number Publication date
CN105228198B (zh) 2019-10-25
CN105228198A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2015196563A1 (zh) 小区测量处理方法、装置、终端及基站
US11051219B2 (en) Method and apparatus for controlling mobility for cell having small cell service area in mobile communication system
CN106851721B (zh) 测量间隙报告配置方法和用户设备
CN112219422B (zh) 支持无线通信系统中的测量和移动性的系统和方法
CN106165475B (zh) 测量控制方法以及基站
CN109923890B (zh) 测量方法、终端设备、网络设备和计算机可读存储介质
JP5714124B2 (ja) 測定能力の報告方法及びue
US10178575B2 (en) Method and apparatus for supporting full-duplex communication operation in wireless communication system supporting full-duplex communication
US8811351B2 (en) Method for measuring channel quality information on a downlink multi-carrier in a wireless communication system using carrier aggregation
US20180049080A1 (en) Network controlled sharing of measurement gaps for intra and inter frequency measurements for wireless networks
US20130223393A1 (en) Method for coordinating inter-cell interference and base station
EP3393170B1 (en) Signal measurement method and apparatus
CN108495370A (zh) 涉及灵活子帧操作期间的系统信息获取的方法和节点
CN110798844B (zh) 一种信息上报方法、信息接收方法及设备
WO2016180133A1 (zh) 非授权载波测量方法、装置及用户设备
CN106714232B (zh) 非授权载波的测量上报方法和终端及配置方法和基站
TW201616913A (zh) 通訊裝置,基礎結構設備,行動通訊網路及方法
KR20220024084A (ko) 조건부 핸드오버 실행 동안 랜덤 액세스를 개시하기 위한 빔 선택
JP6998893B2 (ja) マルチリンク構成方法
US20170303158A1 (en) Measurement method and device
CN108810963B (zh) 测量配置及上报方法、装置、存储介质、基站、用户设备
CN106714231B (zh) 非授权载波测量报告的处理方法及装置
CN113382434B (zh) 一种测量配置方法及设备
WO2017049929A1 (zh) 一种非授权载波的测量方法及装置
CN114258058A (zh) 测量方法、测量装置、终端及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895497

Country of ref document: EP

Kind code of ref document: A1