WO2022054963A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2022054963A1
WO2022054963A1 PCT/JP2021/034017 JP2021034017W WO2022054963A1 WO 2022054963 A1 WO2022054963 A1 WO 2022054963A1 JP 2021034017 W JP2021034017 W JP 2021034017W WO 2022054963 A1 WO2022054963 A1 WO 2022054963A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchange
heat exchanger
exchange medium
corrugated fin
Prior art date
Application number
PCT/JP2021/034017
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 文後
慶彦 岡▲崎▼
Original Assignee
株式会社ティラド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティラド filed Critical 株式会社ティラド
Priority to CN202180053671.2A priority Critical patent/CN115997097A/en
Priority to DE112021004801.5T priority patent/DE112021004801T5/en
Priority to JP2022548383A priority patent/JPWO2022054963A1/ja
Publication of WO2022054963A1 publication Critical patent/WO2022054963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A heat exchanger that dissipates heat from an object to be heat exchanged to a heat exchange medium, with improved heat dissipation efficiency on the downstream side of the heat exchange medium. In the present invention, the upward-sloping surface 6b and the downward-sloping surface 6c of each wave 6 of a corrugated fin 5 interposed in a heat exchanger body are formed with alternating recessed and protruding ridges 10 in the thickness direction of the strip-shaped metal plate thereof. The inclination angle of each of the recessed and protruding ridges 10 is within the range of 10-60 degrees with respect to the main flow of a heat exchange medium 21, and the adjacent recessed and protruding ridges 10 are arranged in the same direction. This structure allows the heat exchange medium 21 flowing inside the corrugated fin 5 to circulate, thereby improving the heat dissipation performance on the downstream side of the heat exchange medium 21.

Description

熱交換器Heat exchanger
 熱交換対象物の熱を熱交換媒体へ放熱する熱交換器、特に、半導体素子等の熱交換対象物の熱を放熱するヒートシンクに関する。 Regarding heat exchangers that dissipate heat of heat exchange objects to heat exchange media, especially heat exchangers that dissipate heat of heat exchange objects such as semiconductor elements.
 従来技術として、半導体素子等の熱交換対象物を放熱するヒートシンクにおいて、熱交換対象物からコアに熱が伝導し、コアより熱交換媒体へ熱移動を行うことで、熱交換対象物の温度が低下するものが知られている。
 このようなヒートシンクでは、その内部を流通する熱交換媒体は、その流れに従い順次コアと熱交換を行う。
As a conventional technique, in a heat sink that dissipates heat from a heat exchange object such as a semiconductor element, heat is conducted from the heat exchange object to the core, and heat is transferred from the core to the heat exchange medium to raise the temperature of the heat exchange object. Some are known to decline.
In such a heat sink, the heat exchange medium circulating inside the heat sink sequentially exchanges heat with the core according to the flow.
 しかしながら、その流れの上流域の熱交換対象物と熱交換された熱交換媒体は、その流れの下流域に到達したときに、熱交換により温度上昇している為、下流域に位置する熱交換対象物の熱交換性能が低下する。その結果、熱交換媒体の流れの下流域に位置する熱交換対象物の放熱が阻害され、その位置の熱交換対象物の温度が増大する。
 そこで、この問題を解決するため、熱交換媒体の下流側に位置する熱交換対象物の熱交換性能の低下を抑制し、下流域に配置された熱交換対象物の温度増大を抑える熱交換器の構造を提供する。
However, when the heat exchange medium that has been heat-exchanged with the heat exchange object in the upstream region of the flow reaches the downstream region of the flow, the temperature rises due to heat exchange, so that the heat exchange is located in the downstream region. The heat exchange performance of the object deteriorates. As a result, heat dissipation of the heat exchange object located in the downstream region of the flow of the heat exchange medium is hindered, and the temperature of the heat exchange object at that position increases.
Therefore, in order to solve this problem, a heat exchanger that suppresses the deterioration of the heat exchange performance of the heat exchange target located on the downstream side of the heat exchange medium and suppresses the temperature increase of the heat exchange target located in the downstream region. Provides the structure of.
 請求項1に記載の本発明は、離間して対向する一対の天板プレート2と底板プレート3を有し、それら一対のプレート2、3の外周を被蔽する周壁部4とからなる箱状の熱交換器本体1が形成され、その熱交換器本体1の内部にはインナフィンが介装されており、
 前記インナフィンは帯状金属板が波形に折返し曲折されたコルゲートフィン5であり、
 そのコルゲートフィン5の各波6の稜線部6aが前記一対のプレート2、3に接合されており、前記一対のプレート2、3のうち、少なくとも一方のプレートのフィン接合面の反対面に熱交換対象物20が取り付けられ、
 前記熱交換器本体1の内部にコルゲートフィン5の波の稜線方向に沿って熱交換媒体21が流通して、前記熱交換対象物20と熱交換する熱交換器において、
 前記各波6の立上面6bおよび立下面6cに、前記帯状金属板の厚み方向に凹凸条10が交互に形成されており、
 前記各凹凸条10は熱交換媒体21の主流に対して10~60度の傾斜角度を有するとともに、隣接する前記各凹凸条10が同方向に配置されている熱交換器である。
 請求項2に記載の本発明は、請求項1に記載の熱交換器において、
 前記コルゲートフィン5の稜線部6aに接合された前記一対のプレート2、3の一つのみに熱交換対象物20が取付けられた場合に、
 前記各凹凸条10が熱交換媒体21の主流の上流から下流に向かうに従い、前記熱交換対象物20から遠ざかる様に形成された熱交換器である。
 請求項3に記載の本発明は、請求項1または請求項2のいずれかに記載の熱交換器において、
 前記コルゲートフィン5の各波6の隣接する面6b、6cの間隔をAとし、
 前記凹凸条10の凹凸の高さをWhとしたときに、
 Wh/Aの値が0.1以上0.8以下であることを特徴とする熱交換器である。
 請求項4に記載の本発明は、請求項3に記載の熱交換器において、
 前記Wh/Aの値が0.15以上0.68以下であることを特徴とする熱交換器である。
The present invention according to claim 1 has a pair of top plate plates 2 and bottom plate plates 3 facing apart from each other, and has a box shape including a peripheral wall portion 4 covering the outer periphery of the pair of plates 2 and 3. The heat exchanger main body 1 of the above is formed, and an inner fin is interposed inside the heat exchanger main body 1.
The inner fin is a corrugated fin 5 in which a strip-shaped metal plate is folded back into a corrugated shape.
The ridge line portion 6a of each wave 6 of the corrugated fin 5 is joined to the pair of plates 2 and 3, and heat is exchanged with the opposite surface of the fin joint surface of at least one of the pair of plates 2 and 3. The object 20 is attached,
In a heat exchanger in which a heat exchange medium 21 flows inside the heat exchanger main body 1 along the wave ridge direction of the corrugated fins 5 and exchanges heat with the heat exchange object 20.
Concavo-convex stripes 10 are alternately formed on the rising surface 6b and the rising surface 6c of each wave 6 in the thickness direction of the strip-shaped metal plate.
Each of the uneven strips 10 has an inclination angle of 10 to 60 degrees with respect to the mainstream of the heat exchange medium 21, and the adjacent uneven strips 10 are arranged in the same direction as a heat exchanger.
The present invention according to claim 2 is the heat exchanger according to claim 1.
When the heat exchange object 20 is attached to only one of the pair of plates 2 and 3 joined to the ridge line portion 6a of the corrugated fin 5.
The heat exchanger is formed so that the uneven strips 10 move away from the heat exchange object 20 as the uneven strips 10 move from the upstream to the downstream of the mainstream of the heat exchange medium 21.
The present invention according to claim 3 is the heat exchanger according to any one of claims 1 and 2.
Let A be the distance between the adjacent surfaces 6b and 6c of each wave 6 of the corrugated fin 5.
When the height of the unevenness of the uneven strip 10 is Wh,
It is a heat exchanger characterized by having a Wh / A value of 0.1 or more and 0.8 or less.
The present invention according to claim 4 is the heat exchanger according to claim 3.
The heat exchanger is characterized in that the value of Wh / A is 0.15 or more and 0.68 or less.
 請求項1に記載の発明は、帯状金属板が波形に折返し曲折されたコルゲートフィン5の各波6の立上面6bおよび立下面6cに、前記帯状金属板の厚み方向に凹凸条10が交互に形成され、各凹凸条10は熱交換媒体21の主流に対して10~60度の傾斜角度を有するとともに、隣接する前記各凹凸条10が同方向に配置されている熱交換器である。
 この構造によると、熱交換媒体21の対向する立上面6bおよび立下面6c(流路)に角度を持って配置された凹凸条10の溝部の中の熱交換媒体21は、図4(A)に示すように、それらの面6b、6cに形成された溝部に沿って移動しながら熱交換対象物と熱交換を行ったのち、傾斜した溝部が無くなる稜線部6aで前記溝部から離れる(図4(B)~図4(D)参照)。
 それに対して、流路内の溝部の外の熱交換対象物20と熱交換を行っていない熱交換媒体21が前記溝に流入し、熱交換対象物20と熱交換を行うことで、熱交換媒体21の下流部での熱交換性能の低下が抑制され、下流域に配置された熱交換対象物の放熱の向上が期待できる。
 請求項2に記載の発明は、請求項1に記載の熱交換器において、前記コルゲートフィン5の稜線部6aに接合された前記一対のプレート2、3の一つのみに熱交換対象物20が取付けられた場合に、各凹凸条10が熱交換媒体21の主流の上流から下流に向かうに従い、熱交換対象物20から遠ざかる様に形成されたものである。
 この構造によると、前記熱交換を行っていない熱交換媒体が熱交換対象物の近傍の溝を流れるようになり、さらに熱交換性能の向上が期待できる。
 請求項3に記載の発明は、請求項1または請求項2のいずれかに記載の熱交換器において、前記コルゲートフィン5の各波6の隣接する面6b、6cの間隔をAとし、前記凹凸条10の凹凸の高さをWhとしたときに、Wh/Aの値が0.1以上0.8以下としたものである。
 この構成により、圧力損失を考慮した場合でも熱交換性能が高い範囲で使用することができる。
 請求項4に記載の発明は、請求項3に記載の熱交換器において、前記Wh/Aの値が0.15以上0.68以下としたものである。
 この構成により、上記請求項3の発明よりも熱交換性能がさらに高い範囲で使用することができる。
According to the first aspect of the present invention, uneven strips 10 are alternately formed on the rising surface 6b and the rising surface 6c of each wave 6 of the corrugated fin 5 in which the strip-shaped metal plate is bent back in a wavy shape in the thickness direction of the strip-shaped metal plate. Each of the uneven stripes 10 is formed and has an inclination angle of 10 to 60 degrees with respect to the mainstream of the heat exchange medium 21, and the adjacent uneven strips 10 are arranged in the same direction as a heat exchanger.
According to this structure, the heat exchange medium 21 in the groove portion of the uneven strip 10 arranged at an angle on the facing upper surface 6b and the rising surface 6c (flow path) of the heat exchange medium 21 is shown in FIG. 4 (A). As shown in FIG. 4, after heat exchange with the heat exchange object while moving along the grooves formed on the surfaces 6b and 6c, the ridge portion 6a where the inclined groove disappears away from the groove (FIG. 4). (B) to FIG. 4 (D)).
On the other hand, the heat exchange medium 21 that has not exchanged heat with the heat exchange target 20 outside the groove in the flow path flows into the groove and exchanges heat with the heat exchange object 20 to exchange heat. Deterioration of heat exchange performance in the downstream portion of the medium 21 is suppressed, and improvement in heat dissipation of the heat exchange target arranged in the downstream region can be expected.
In the invention according to claim 2, in the heat exchanger according to claim 1, the heat exchange object 20 is attached to only one of the pair of plates 2 and 3 joined to the ridge portion 6a of the corrugated fin 5. When attached, each uneven strip 10 is formed so as to move away from the heat exchange object 20 from the upstream to the downstream of the mainstream of the heat exchange medium 21.
According to this structure, the heat exchange medium that has not undergone heat exchange flows through the groove in the vicinity of the heat exchange target, and further improvement in heat exchange performance can be expected.
According to the third aspect of the present invention, in the heat exchanger according to the first or second aspect, the distance between the adjacent surfaces 6b and 6c of each wave 6 of the corrugated fin 5 is set to A, and the unevenness thereof. When the height of the unevenness of the strip 10 is Wh, the value of Wh / A is 0.1 or more and 0.8 or less.
With this configuration, it can be used in a range where the heat exchange performance is high even when the pressure loss is taken into consideration.
The invention according to claim 4 is the heat exchanger according to claim 3, wherein the Wh / A value is 0.15 or more and 0.68 or less.
With this configuration, the heat exchange performance can be used in a range higher than that of the invention of claim 3.
 図1は本発明の熱交換器を示す分解斜視図。
 図2は同熱交換器の図1のII−II矢視断面図。
 図3は同熱交換器のコアに用いる第1実施形態のコルゲートフィン5の構造を示す要部斜視図(A)、同コルゲートフィン5の側面図(B)、同コルゲートフィン5の正面図(C)。
 図4は同コルゲートフィン(凹凸条10右下がり傾斜)5内を流通する熱交換媒体21の熱移動についての説明図。
 図5は模様が形成されていないコルゲートフィン5内を流通する熱交換媒体21の熱移動についての説明図。
 図6は熱流体解析による第1実施形態と、模様が形成されていないコルゲートフィン5との比較を示す放熱特性図。
 図7は本発明の熱交換器のコアに用いる第2実施形態のコルゲートフィン5(凹凸条10右上がり傾斜)内を流通する熱交換媒体21の熱移動についての説明図。
 図8は熱流体解析による第1実施形態、第2実施形態のコルゲートフィン5との比較を示す放熱特性図。
 図9は本発明の熱交換器のコアに用いるコルゲートフィン5と模様が形成されていないコルゲートフィン5との循環度合Nの依存性の比較を示す図。
 図10は本発明の熱交換器の他の実施形態を示す断面図。
FIG. 1 is an exploded perspective view showing the heat exchanger of the present invention.
FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 of the same heat exchanger.
FIG. 3 is a perspective view (A) of a main part showing the structure of the corrugated fin 5 of the first embodiment used for the core of the heat exchanger, a side view (B) of the corrugated fin 5, and a front view of the corrugated fin 5. C).
FIG. 4 is an explanatory diagram of heat transfer of the heat exchange medium 21 circulating in the corrugated fin (concave and convex strip 10 downward slope) 5.
FIG. 5 is an explanatory diagram of heat transfer of the heat exchange medium 21 circulating in the corrugated fin 5 in which the pattern is not formed.
FIG. 6 is a heat dissipation characteristic diagram showing a comparison between the first embodiment by thermo-fluid analysis and the corrugated fin 5 having no pattern formed.
FIG. 7 is an explanatory diagram of heat transfer of the heat exchange medium 21 circulating in the corrugated fin 5 (concave and convex strip 10 rising to the right) of the second embodiment used for the core of the heat exchanger of the present invention.
FIG. 8 is a heat dissipation characteristic diagram showing a comparison with the corrugated fins 5 of the first embodiment and the second embodiment by thermal fluid analysis.
FIG. 9 is a diagram showing a comparison of the dependence of the degree of circulation N between the corrugated fins 5 used for the core of the heat exchanger of the present invention and the corrugated fins 5 having no pattern formed.
FIG. 10 is a cross-sectional view showing another embodiment of the heat exchanger of the present invention.
 次に、図面に基づいて本発明の実施の形態につき、説明する。
 本発明の熱交換器は、半導体素子等の熱交換対象物の熱を放熱するヒートシンク等に利用するのに最適な構造を有する。
 この熱交換器は、離間して対向する一対の天板プレート2と底板プレート3を有し、それら一対のプレート2、3の外周を被蔽する周壁部4とからなる箱状の熱交換器本体1が形成されている。
 この例の熱交換器本体1は、図1に示す如く、底板プレート3と、その外周縁から一体に立上る周壁部4とで形成されたカッププレートの開口部に、天板プレート2が被嵌している。この図1に示す熱交換器本体1は、一例を示すものであり、この形状に限定されるものではない。周壁部4は、底板プレート3と別体であってもよい。
 この熱交換器本体1の内部には、そのコアを形成するインナフィンが介装されている。そのインナフィンは、帯状金属板が波形に折返し曲折されたコルゲートフィン5からなる。
 コルゲートフィン5は、一つの波6に立上面6bおよび立下面6cが対向して配置され、それらを波状に接続する稜線部6aを有する。
 その各波6の稜線部6aが、図2に示す如く、一対の天板プレート2と底板プレート3に接合されている。
 熱交換器本体1には、一対のプレート2、3のうち、少なくとも一方のプレートの外面(フィン接合面の反対面)に熱交換対象物20が取り付けられている。この例では、天板プレート2の外面に熱交換対象物20が取付けられている。
 熱交換器本体1の外面には、熱交換媒体21が流入する入口22と、それが流出する出口23が設けられる。その熱交換媒体21は、熱交換器本体1の内部に配置されたコルゲートフィン5の波の稜線部6aの稜線方向に沿って流通する。
 例として、熱交換媒体21には、冷却水等の冷媒を用いることができる。
 一例として、図1に示す如く、天板プレート2の外表面に、熱交換媒体21の流れに沿って、間隔をあけて複数の熱交換対象物20を配置すると、熱交換対象物20から生じる熱は、天板プレート2を介して、コルゲートフィン5に伝導し、そのコルゲートフィン5より熱交換媒体21へ熱移動を行うことで、熱交換対象物20の温度が低下する。このような熱交換器では、その内部を流通する熱交換媒体20は、その流れの下流域ほどコアと熱交換を行う。
 図5は、立上面6bおよび立下面6cの表面に模様が形成されていないコルゲートフィン5をコアとして用い、そのコア内を流通する熱交換媒体21の熱移動について示した説明図である。
 熱交換媒体21の流れの上流域(図5(A)のB地点)に配置された熱交換対象物20から生じた熱24は、図示しない天板プレート2を介して、それに接続されたコルゲートフィン5の稜線部6aの近傍を流通している熱交換媒体21に伝熱される(図5(B)参照)。熱交換媒体21の流れのうち、熱24を受熱した受熱済み媒体21aは、天板プレート2側をそのまま流通し、熱交換媒体21の流れの下流域(図5(A)のD地点)に到達したときに、熱交換により温度上昇している為、下流域に配置された熱交換対象物20からの受熱をする作用が低下する。
 その結果、熱交換媒体21の流れの下流域に位置する熱交換対象物の放熱が阻害され、その位置の熱交換対象物の温度が増大する。熱交換媒体21の流れのうち、天板プレート2から離れた位置を流れる熱24を受熱していない未受熱媒体21bは、そのままコルゲートフィン5内の流路を素通りして、出口23から排出される。
 この実施例では、上記の問題を解決するため、下記の構造を有する。
 コアを構成するコルゲートフィン5の立上面6bおよび立下面6cの表面に、帯状金属板の厚み方向に凸部10aと凹部10bが交互に波型に形成された凹凸条10の模様が形成されている。そして、凹凸条10の模様は、コルゲートフィン5の稜線部6aの近傍を除いた立上面6bおよび立下面6cに形成されている。
 この凹凸条10は、熱交換媒体21の主流に対して10~60度の傾斜角度θを有するとともに、隣接する凸部10a、凹部10bが同方向に傾斜している。立上面6bおよび立下面6cの凹凸条10の傾斜角度も、同方向に傾斜する。また、この実施例では、図3に示す如く、その凹凸条10の傾斜は、熱交換媒体21の主流が上流から下流に向かうに従い、右下方向へ下がる(熱交換対象物20から遠ざかる)傾斜に形成されている。
 図4(A)に示す如く、コルゲートフィン5の流路中の熱交換媒体21は、熱交換媒体21の上流位置(図4(A)のB地点)で、熱24を受熱し、受熱済み媒体21aとなる。その受熱済み媒体21aは、それらの面6b、6cに形成された溝部10cに沿って、天板プレート2側から底板プレート3側へ移動しながら熱交換対象物20と熱交換を行った後、傾斜した溝部10cが無くなる稜線部6a(底板プレート3に接続される稜線部6a)の位置(図4(A)のD地点)で前記溝部10cから離れる。
 それに対して、流路内の溝部10cの外の熱交換対象物20と熱交換を行っていない未受熱媒体21bは、図4(C)に示すように、溝部10cに流入し、図4(A)のD地点では、受熱済み媒体21aと入れ替わる。それらの媒体21a、21bの流れが、天板プレート2側と底板プレート3側との間で循環されることにより、熱交換媒体21の下流側の熱交換対象物20と熱交換を行うことができるようになる。その結果、熱交換器全体の熱交換性能の低下が抑制される。
 図6は、図4の本発明の凹凸条10の模様(凹凸条10が右下がり傾斜模様)を有するコルゲートフィン5を用いた熱交換器と、図5の模様が形成されていないコルゲートフィン5を用いた熱交換器との熱抵抗の対比を示している。
 図6のグラフの横軸は、図1において、熱交換媒体21の入口側20a(Inlet側)、中間部20b(Middle)、出口側20c(Outlet側)に配置された熱交換対象物20の各部位を示している。1つの熱交換対象物20の中に、熱交換媒体21の流れに沿って2つの発熱部位があり、その6か所の発熱部位を示している。
 図6のグラフの縦軸は、それぞれの部位での熱抵抗(℃/W)を示している。
 実験条件は、熱交換媒体21は水、流量Vwが6L/min、水入口温度Tw1が70℃、各6ヶ所の入熱量はそれぞれ300Wである。
 図6に記載の内容から、本発明の凹凸条10の模様(凹凸条10が右下がり傾斜模様)を有するコルゲートフィン5を用いた熱交換器の方が、模様が形成されていないコルゲートフィン5を用いた熱交換器より各所において、放熱特性が良好である。
 また、入口22側の熱抵抗を100とした時、出口23側における熱抵抗の比率は、本発明の凹凸条10の模様(凹凸条10が右下がり傾斜模様)を有するコルゲートフィン5を用いた熱交換器は127.1(比率の差は、27.1%)であるのに対し、模様が形成されていないコルゲートフィン5を用いた熱交換器は134.8(比率の差は、34.8%)であり、本発明の熱交換器の方が、出口23側での放熱特性の低下割合が少ない。
 上記実験条件を変更した場合でも、図6のグラフの熱抵抗の値が示す絶対値は変化するが、その値が示す傾向は変わらない。
 次に、図7は本発明の熱交換器に用いるコルゲートフィン5の第2の実施の形態を示し、その内部を流通する熱交換媒体21の熱移動についての説明している。
 この例が、図4の例と異なる点は、凹凸条10の模様が、底板プレート3側から天板プレート2側に向けて右上がりの傾斜角度で形成されている。
 この例も、天板プレート2側に熱交換対象物が取り付けられている条件で説明する。
 この場合、図7(A)に示す如く、熱交換対象物20と熱交換を行っていない未受熱媒体21bが、右上がり傾斜した溝部10cに沿って、下流方向へ行くに従い、天板プレート2側へ移動する。図7(A)のD地点では、受熱済み媒体21aと入れ替わる。
 図8は、図4の第1の実施の形態の模様(熱交換媒体21の主流方向に対して凹凸条10が右下がり傾斜模様)を有するコルゲートフィン5を用いた熱交換器と、図7の第2の実施の形態の模様(熱交換媒体21の主流方向に対して凹凸条10が右上がり傾斜模様)を有するコルゲートフィン5を用いた熱交換器との熱抵抗の対比を示している。
 グラフの横軸と縦軸の説明は、図6と同様なので省略する。実験条件は、図6と同様である。
 図8に示す如く、第2の実施の形態の模様を形成したものを用いても、熱交換媒体21の循環は行われ、放熱性能は模様が形成されていないコルゲートフィン5よりも向上する。
 但し、第1の実施の形態の模様を形成したものを用いたほうが、放熱特性が高くなる。
 上記実験条件を変更した場合でも、図8のグラフの熱抵抗の値が示す絶対値は変化するが、その値が示す傾向は変わらない。
 上述のように、本発明では、熱交換媒体21の受熱済み媒体21aと未受熱媒体21bの循環により熱交換器全体の放熱特性の向上を提案している。一般的には、循環の度合を増大させると放熱特性は向上する。しかしながら、循環による圧力損失の増加に伴い、流量の低下も同時に引き起こされ、放熱特性の低下の原因となる。
 次に述べる事項は、上記の原因を十分に回避できる範囲について検討したものである。つまり、循環の度合に対する圧力損失を考慮に入れた放熱特性の向上代の最適値を数値計算により見出した。
 熱交換媒体21の循環度合をNとし、凹凸条10の模様の容積をVwaveとし、一つの波6の容積をVcellとすると、循環度合Nは、次の式で表すことができる。
(式1)
 N=(Vwave)/(Vcell)
 Vwaveと、Vcellは、凹凸条10の模様の断面積をSwave(図3(C)参照)とし、一つの波6の断面積をScell(図3(C)参照)とすると、夫々、次の式で表すことができる。
(式2)
 Vwave=Swave×(凹凸条10模様の長さ)×(凸部10a、凹部10bの数)×2
 =(Wp×sinθ×Wh/2)×(B/sinθ)×(L/Wp)×2
 =Wh×B×L
(式3)
 Vcell=Scell×L
 =(A×B)×L
 ここで、Wpは凹凸条10の模様のピッチ、Whは凹凸条10の模様の高さ、θは凹凸条10の模様の傾斜角度、Aは一つの波6の平均幅、Bは一つの波6の高さ、Lは流路長さである。
 (式2)及び(式3)を(式1)に代入し、整理すると、循環度合Nは(式4)となる。
(式4)
 N=Wh/A
 図9(a)、(b)は、放熱特性指標であるフットプリント熱伝達率及び圧力損失の循環度合(N)依存性を熱流体解析によって確認した結果を示している。
 図9(c)は、循環度合(N)を関数とした圧力損失を考慮した放熱特性指数を示す。
 図9の(a)、(b)、(c)の横軸は、夫々、循環度合Nをとる。
 図9(a)の縦軸は、模様が形成されていないコルゲートフィン5を用いた熱交換器(以下、比較対象と記載する)の熱伝達率を1とした時の本発明のフットプリント熱伝達率比率(arb.unit)をとる。図9(b)の縦軸は、圧力損失指数(arb.unit)をとる。図9(c)の縦軸は、圧力損失を考慮した放熱特性指数(arb.unit)をとる。各グラフの実線は本発明であり、一点鎖線は比較対象を示す。実験条件は、図6と同様である。
 図9(a)では、循環度合(N)が増加すると、放熱特性は向上するものの、循環度合(N)が一定の値を超えると、その増加率は徐々に小さくなる。一方、図9(b)では、圧力損失は一様に増大する。
 図9(c)の循環度合(N)が0~0.3の範囲では、圧力損失の増加率よりも放熱特性の増加率の方が大きいため、圧力損失を考慮した放熱性能指数は循環度合(N)の増加に伴い向上する。
 一方で、循環度合(N)が0.3を超える範囲では、圧力損失の増加率が放熱特性の増加率を超える為、圧力損失を考慮した放熱特性指数は低下する。これは、圧力損失の増大に伴う流量の低下によって、フットプリント熱伝達率が低下する為と推測できる。
 以上より、圧力損失を考慮した放熱特性の向上は循環度合(N)が0.3のときに最大値を示すことがわかった。
 図9(C)からわかるように、循環度合(N)は、式5の範囲で、放熱特性の値が最大値の50%以上となる。
(式5)
 0.1≦N≦0.8
 また、循環度合(N)は、式6の範囲で、放熱特性の値が最大値の75%以上となる。
(式6)
 0.15≦N≦0.68
 なお、本発明の第1の実施の形態、および第2の実施の形態では、天板プレート2の片側にのみ熱交換対象物20が取り付けられる熱交換器に対するコルゲートフィン5の効果について説明を行ったが、底板プレート3の片側にのみ熱交換対象物20を取付けた場合でも同じように言える。
 また、図10に示すように、天板プレート2及び底板プレート3の両側に熱交換対象物20を取付けた場合でも、同様の効果が得られる。
Next, an embodiment of the present invention will be described with reference to the drawings.
The heat exchanger of the present invention has an optimum structure for use as a heat sink or the like that dissipates heat from a heat exchange object such as a semiconductor element.
This heat exchanger has a pair of top plate plates 2 and bottom plate plates 3 facing apart from each other, and is a box-shaped heat exchanger composed of a peripheral wall portion 4 covering the outer periphery of the pair of plates 2 and 3. The main body 1 is formed.
In the heat exchanger body 1 of this example, as shown in FIG. 1, the top plate plate 2 covers the opening of the cup plate formed by the bottom plate plate 3 and the peripheral wall portion 4 integrally rising from the outer peripheral edge thereof. It fits. The heat exchanger main body 1 shown in FIG. 1 is an example, and is not limited to this shape. The peripheral wall portion 4 may be separate from the bottom plate plate 3.
Inside the heat exchanger main body 1, an inner fin forming the core is interposed. The inner fin is composed of a corrugated fin 5 in which a strip-shaped metal plate is folded back into a corrugated shape.
The corrugated fin 5 has a rising surface 6b and a rising surface 6c facing each other on one wave 6, and has a ridge portion 6a connecting them in a wavy shape.
As shown in FIG. 2, the ridge line portion 6a of each wave 6 is joined to the pair of top plate plates 2 and bottom plate plates 3.
A heat exchange object 20 is attached to the outer surface (opposite surface of the fin joint surface) of at least one of the pair of plates 2 and 3 in the heat exchanger main body 1. In this example, the heat exchange object 20 is attached to the outer surface of the top plate 2.
On the outer surface of the heat exchanger main body 1, an inlet 22 into which the heat exchange medium 21 flows in and an outlet 23 through which the heat exchange medium 21 flows out are provided. The heat exchange medium 21 circulates along the ridgeline direction of the wave ridgeline portion 6a of the corrugated fins 5 arranged inside the heat exchanger main body 1.
As an example, a refrigerant such as cooling water can be used as the heat exchange medium 21.
As an example, as shown in FIG. 1, when a plurality of heat exchange objects 20 are arranged on the outer surface of the top plate 2 at intervals along the flow of the heat exchange medium 21, the heat exchange objects 20 are generated. The heat is conducted to the corrugated fin 5 via the top plate 2, and the heat is transferred from the corrugated fin 5 to the heat exchange medium 21, so that the temperature of the heat exchange object 20 is lowered. In such a heat exchanger, the heat exchange medium 20 circulating inside the heat exchanger exchanges heat with the core in the downstream region of the flow.
FIG. 5 is an explanatory diagram showing the heat transfer of the heat exchange medium 21 circulating in the core using the corrugated fin 5 having no pattern formed on the surfaces of the rising surface 6b and the rising surface 6c as a core.
The heat 24 generated from the heat exchange object 20 arranged in the upstream region of the flow of the heat exchange medium 21 (point B in FIG. 5A) is a corrugated connected to the heat exchange object 20 via a top plate 2 (not shown). Heat is transferred to the heat exchange medium 21 circulating in the vicinity of the ridge line portion 6a of the fin 5 (see FIG. 5B). Of the flow of the heat exchange medium 21, the heat-received medium 21a that has received heat 24 flows through the top plate 2 side as it is, and reaches the downstream region (point D in FIG. 5A) of the flow of the heat exchange medium 21. When it reaches the temperature, the temperature rises due to heat exchange, so that the action of receiving heat from the heat exchange object 20 arranged in the downstream region is reduced.
As a result, heat dissipation of the heat exchange object located in the downstream region of the flow of the heat exchange medium 21 is hindered, and the temperature of the heat exchange object at that position increases. Of the flow of the heat exchange medium 21, the unreceived heat medium 21b that has not received heat 24 flowing at a position away from the top plate 2 passes through the flow path in the corrugated fin 5 as it is and is discharged from the outlet 23. To.
In this embodiment, in order to solve the above problem, it has the following structure.
On the surfaces of the rising surface 6b and the rising surface 6c of the corrugated fin 5 constituting the core, a pattern of uneven stripes 10 in which convex portions 10a and concave portions 10b are alternately formed in a wavy shape in the thickness direction of the strip-shaped metal plate is formed. There is. The pattern of the uneven stripes 10 is formed on the rising surface 6b and the rising surface 6c except for the vicinity of the ridge line portion 6a of the corrugated fin 5.
The uneven strip 10 has an inclination angle θ of 10 to 60 degrees with respect to the mainstream of the heat exchange medium 21, and the adjacent convex portions 10a and concave portions 10b are inclined in the same direction. The inclination angles of the uneven strips 10 of the rising surface 6b and the rising surface 6c are also inclined in the same direction. Further, in this embodiment, as shown in FIG. 3, the inclination of the uneven strip 10 decreases in the lower right direction (moves away from the heat exchange object 20) as the mainstream of the heat exchange medium 21 goes from the upstream to the downstream. Is formed in.
As shown in FIG. 4A, the heat exchange medium 21 in the flow path of the corrugated fin 5 receives heat 24 at the upstream position of the heat exchange medium 21 (point B in FIG. 4A) and has received heat. It becomes the medium 21a. The heat-received medium 21a exchanges heat with the heat exchange target 20 while moving from the top plate 2 side to the bottom plate 3 side along the groove portions 10c formed on the surfaces 6b and 6c. The groove portion 10c is separated from the groove portion 10c at the position (point D in FIG. 4A) of the ridge line portion 6a (the ridge line portion 6a connected to the bottom plate plate 3) where the inclined groove portion 10c disappears.
On the other hand, the unreceived heat medium 21b that has not exchanged heat with the heat exchange object 20 outside the groove portion 10c in the flow path flows into the groove portion 10c as shown in FIG. 4C, and is shown in FIG. 4 (C). At point D in A), the heat-received medium 21a is replaced. By circulating the flows of the media 21a and 21b between the top plate 2 side and the bottom plate 3 side, heat exchange can be performed with the heat exchange object 20 on the downstream side of the heat exchange medium 21. become able to. As a result, deterioration of the heat exchange performance of the entire heat exchanger is suppressed.
FIG. 6 shows a heat exchanger using a corrugated fin 5 having the pattern of the uneven streaks 10 of the present invention of FIG. The comparison of the thermal resistance with the heat exchanger using the above is shown.
The horizontal axis of the graph of FIG. 6 is the heat exchange object 20 arranged on the inlet side 20a (Inlet side), the intermediate portion 20b (Middle), and the outlet side 20c (Outlet side) of the heat exchange medium 21 in FIG. Each part is shown. In one heat exchange object 20, there are two heat-generating parts along the flow of the heat-exchange medium 21, and the six heat-generating parts are shown.
The vertical axis of the graph of FIG. 6 shows the thermal resistance (° C./W) at each site.
The experimental conditions are that the heat exchange medium 21 is water, the flow rate Vw is 6 L / min, the water inlet temperature Tw1 is 70 ° C., and the amount of heat input at each of the six locations is 300 W.
From the contents described in FIG. 6, the heat exchanger using the corrugated fin 5 having the pattern of the uneven stripes 10 of the present invention (the uneven stripes 10 has a downward-sloping inclined pattern) is the corrugated fin 5 in which the pattern is not formed. The heat dissipation characteristics are better in various places than the heat exchanger using.
Further, when the thermal resistance on the inlet 22 side is 100, the ratio of the thermal resistance on the outlet 23 side uses the corrugated fin 5 having the pattern of the uneven stripes 10 of the present invention (the uneven stripes 10 have a downward-sloping inclined pattern). The heat exchanger is 127.1 (the difference in ratio is 27.1%), while the heat exchanger using the corrugated fin 5 without a pattern is 134.8 (the difference in ratio is 34). 0.8%), and the heat exchanger of the present invention has a smaller rate of deterioration in heat dissipation characteristics on the outlet 23 side.
Even if the above experimental conditions are changed, the absolute value indicated by the thermal resistance value in the graph of FIG. 6 changes, but the tendency indicated by the value does not change.
Next, FIG. 7 shows a second embodiment of the corrugated fin 5 used in the heat exchanger of the present invention, and describes the heat transfer of the heat exchange medium 21 circulating inside the corrugated fin 5.
This example differs from the example of FIG. 4 in that the pattern of the uneven stripes 10 is formed at an inclination angle rising to the right from the bottom plate plate 3 side to the top plate plate 2 side.
This example will also be described under the condition that the heat exchange object is attached to the top plate 2 side.
In this case, as shown in FIG. 7A, the unreceived heat medium 21b that has not exchanged heat with the heat exchange object 20 goes downstream along the groove portion 10c that is inclined upward to the right, so that the top plate 2 Move to the side. At point D in FIG. 7A, the heat-received medium 21a is replaced.
FIG. 8 shows a heat exchanger using the corrugated fin 5 having the pattern of the first embodiment of FIG. 4 (the uneven stripe 10 is inclined downward to the right with respect to the mainstream direction of the heat exchange medium 21), and FIG. The comparison of the heat resistance with the heat exchanger using the corrugated fin 5 having the pattern of the second embodiment (the uneven stripe 10 is inclined upward to the right with respect to the mainstream direction of the heat exchange medium 21) is shown. ..
The description of the horizontal axis and the vertical axis of the graph is the same as in FIG. 6, and is omitted. The experimental conditions are the same as in FIG.
As shown in FIG. 8, even if the pattern-formed one of the second embodiment is used, the heat exchange medium 21 is circulated and the heat dissipation performance is improved as compared with the corrugated fin 5 in which the pattern is not formed.
However, the heat dissipation characteristics are higher when the pattern of the first embodiment is used.
Even if the above experimental conditions are changed, the absolute value indicated by the thermal resistance value in the graph of FIG. 8 changes, but the tendency indicated by the value does not change.
As described above, the present invention proposes to improve the heat dissipation characteristics of the entire heat exchanger by circulating the heat-received medium 21a and the non-heat-received medium 21b of the heat exchange medium 21. In general, increasing the degree of circulation improves the heat dissipation characteristics. However, as the pressure loss due to circulation increases, a decrease in the flow rate is also caused at the same time, which causes a decrease in heat dissipation characteristics.
The following items are examined to the extent that the above causes can be sufficiently avoided. In other words, the optimum value of the heat dissipation characteristic improvement allowance taking into account the pressure loss with respect to the degree of circulation was found by numerical calculation.
Assuming that the circulation degree of the heat exchange medium 21 is N, the volume of the pattern of the uneven stripes 10 is Vwave, and the volume of one wave 6 is Vcell, the circulation degree N can be expressed by the following equation.
(Equation 1)
N = (Vwave) / (Vcell)
Assuming that the cross-sectional area of the pattern of the uneven strip 10 is Swave (see FIG. 3C) and the cross-sectional area of one wave 6 is Cell (see FIG. 3C), Vwave and Vcell are as follows, respectively. It can be expressed by an expression.
(Equation 2)
Vwave = Swave × (length of uneven stripe 10 pattern) × (number of convex portions 10a and concave portions 10b) × 2
= (Wp × sinθ × Wh / 2) × (B / sinθ) × (L / Wp) × 2
= Wh x B x L
(Equation 3)
Vcell = Cell × L
= (A x B) x L
Here, Wp is the pitch of the pattern of the uneven stripes 10, Wh is the height of the pattern of the uneven stripes 10, θ is the inclination angle of the pattern of the uneven stripes 10, A is the average width of one wave 6, and B is one wave. The height of 6 and L are the flow path lengths.
By substituting (Equation 2) and (Equation 3) into (Equation 1) and rearranging them, the degree of circulation N becomes (Equation 4).
(Equation 4)
N = Wh / A
FIGS. 9 (a) and 9 (b) show the results of confirming the dependence of the footprint heat transfer coefficient and the pressure loss on the degree of circulation (N), which are heat dissipation characteristic indexes, by thermo-fluid analysis.
FIG. 9C shows a heat dissipation characteristic index considering the pressure loss with the circulation degree (N) as a function.
The horizontal axes of (a), (b), and (c) in FIG. 9 each have a degree of circulation N.
The vertical axis of FIG. 9A is the footprint heat of the present invention when the heat transfer coefficient of the heat exchanger using the corrugated fin 5 having no pattern (hereinafter referred to as a comparison target) is 1. Take the transmission rate ratio (arb.unit). The vertical axis of FIG. 9B takes a pressure drop index (arb.unit). The vertical axis of FIG. 9C takes a heat dissipation characteristic index (arb.unit) in consideration of pressure loss. The solid line of each graph is the present invention, and the alternate long and short dash line indicates the comparison target. The experimental conditions are the same as in FIG.
In FIG. 9A, when the degree of circulation (N) increases, the heat dissipation characteristics improve, but when the degree of circulation (N) exceeds a certain value, the rate of increase gradually decreases. On the other hand, in FIG. 9B, the pressure loss increases uniformly.
When the degree of circulation (N) in FIG. 9 (c) is in the range of 0 to 0.3, the rate of increase in heat dissipation characteristics is larger than the rate of increase in pressure loss, so the heat dissipation performance index considering the pressure loss is the degree of circulation. It improves with the increase of (N).
On the other hand, in the range where the degree of circulation (N) exceeds 0.3, the increase rate of the pressure loss exceeds the increase rate of the heat dissipation characteristic, so that the heat dissipation characteristic index considering the pressure loss decreases. It can be inferred that this is because the footprint heat transfer coefficient decreases due to the decrease in the flow rate due to the increase in pressure loss.
From the above, it was found that the improvement of heat dissipation characteristics in consideration of the pressure loss shows the maximum value when the circulation degree (N) is 0.3.
As can be seen from FIG. 9 (C), the circulation degree (N) has a heat dissipation characteristic value of 50% or more of the maximum value in the range of the equation 5.
(Equation 5)
0.1 ≤ N ≤ 0.8
Further, the degree of circulation (N) is within the range of the formula 6, and the value of the heat dissipation characteristic is 75% or more of the maximum value.
(Equation 6)
0.15 ≤ N ≤ 0.68
In the first embodiment and the second embodiment of the present invention, the effect of the corrugated fin 5 on the heat exchanger in which the heat exchange object 20 is attached only to one side of the top plate 2 will be described. However, the same can be said even when the heat exchange object 20 is attached to only one side of the bottom plate plate 3.
Further, as shown in FIG. 10, the same effect can be obtained even when the heat exchange target 20 is attached to both sides of the top plate 2 and the bottom plate 3.
 1 熱交換器本体
 2 天板プレート
 3 底板プレート
 4 周壁部
 5 コルゲートフィン
 6 波
 6a 稜線部
 6b 立上面
 6c 立下面
 10 凹凸条
 10a 凸部
 10b 凹部
 10c 溝部
 20 熱交換対象物
 20a 入口側
 20b 中間部
 20c 出口側
 21 熱交換媒体
 21a 受熱済み媒体
 21b 未受熱媒体
 22 入口
 23 出口
 24 熱
1 Heat exchanger body 2 Top plate plate 3 Bottom plate plate 4 Peripheral wall part 5 Corrugated fin 6 Wave 6a Ridge line part 6b Rising surface 6c Standing bottom surface 10 Concavo-convex strip 10a Convex part 10b Concave part 10c Groove part 20 Heat exchange object 20a Inlet side 20b Intermediate part 20c Outlet side 21 Heat exchange medium 21a Heat received medium 21b Unheated medium 22 Inlet 23 Outlet 24 Heat

Claims (4)

  1.  離間して対向する一対の天板プレート(2)と底板プレート(3)を有し、それら一対のプレート(2、3)の外周を被蔽する周壁部(4)とからなる箱状の熱交換器本体(1)が形成され、その熱交換器本体(1)の内部にはインナフィンが介装されており、
     前記インナフィンは帯状金属板が波形に折返し曲折されたコルゲートフィン(5)であり、
     そのコルゲートフィン(5)の各波(6)の稜線部(6a)が前記一対のプレート(2、3)に接合されており、前記一対のプレート(2、3)のうち、少なくとも一方のプレートのフィン接合面の反対面に熱交換対象物(20)が取り付けられ、
     前記熱交換器本体(1)の内部にコルゲートフィン(5)の波の稜線方向に沿って熱交換媒体(21)が流通して、前記熱交換対象物(20)と熱交換する熱交換器において、
     前記各波(6)の立上面(6b)および立下面(6c)に、前記帯状金属板の厚み方向に凹凸条(10)が交互に形成されており、
     前記各凹凸条(10)は熱交換媒体(21)の主流に対して10~60度の傾斜角度を有するとともに、隣接する前記各凹凸条(10)が同方向に配置されている熱交換器。
    A box-shaped heat having a pair of top plate plates (2) and bottom plate plates (3) facing each other at a distance, and a peripheral wall portion (4) covering the outer periphery of the pair of plates (2, 3). The exchanger body (1) is formed, and the inner fin is interposed inside the heat exchanger body (1).
    The inner fin is a corrugated fin (5) in which a strip-shaped metal plate is folded back into a corrugated shape.
    The ridge portion (6a) of each wave (6) of the corrugated fin (5) is joined to the pair of plates (2, 3), and at least one of the pair of plates (2, 3) is attached. The heat exchange object (20) is attached to the opposite surface of the fin joint surface of the
    A heat exchanger in which a heat exchange medium (21) flows inside the heat exchanger body (1) along the wave ridge direction of the corrugated fins (5) and exchanges heat with the heat exchange object (20). In
    Concavo-convex stripes (10) are alternately formed on the rising surface (6b) and the rising surface (6c) of each wave (6) in the thickness direction of the strip-shaped metal plate.
    Each of the uneven strips (10) has an inclination angle of 10 to 60 degrees with respect to the mainstream of the heat exchange medium (21), and the adjacent uneven strips (10) are arranged in the same direction as a heat exchanger. ..
  2.  請求項1に記載の熱交換器において、
     前記コルゲートフィン(5)の稜線部(6a)に接合された前記一対のプレート(2、3)の一つのみに熱交換対象物(20)が取付けられた場合に、
     前記各凹凸条(10)が熱交換媒体(21)の主流の上流から下流に向かうに従い、前記熱交換対象物(20)から遠ざかる様に形成された熱交換器。
    In the heat exchanger according to claim 1,
    When the heat exchange object (20) is attached to only one of the pair of plates (2, 3) joined to the ridge line portion (6a) of the corrugated fin (5).
    A heat exchanger formed so that the uneven strips (10) move away from the heat exchange object (20) as the uneven strips (10) move from the upstream to the downstream of the mainstream of the heat exchange medium (21).
  3.  請求項1または請求項2のいずれかに記載の熱交換器において、
     前記コルゲートフィン(5)の各波(6)の隣接する面(6b、6c)の間隔をAとし、
     前記凹凸条(10)の凹凸の高さをWhとしたときに、
     Wh/Aの値が0.1以上0.8以下であることを特徴とする熱交換器。
    In the heat exchanger according to claim 1 or 2.
    Let A be the distance between the adjacent surfaces (6b, 6c) of each wave (6) of the corrugated fin (5).
    When the height of the unevenness of the uneven strip (10) is Wh,
    A heat exchanger characterized in that the value of Wh / A is 0.1 or more and 0.8 or less.
  4.  請求項3に記載の熱交換器において、
     前記Wh/Aの値が0.15以上0.68以下であることを特徴とする熱交換器。
    In the heat exchanger according to claim 3,
    A heat exchanger characterized in that the value of Wh / A is 0.15 or more and 0.68 or less.
PCT/JP2021/034017 2020-09-14 2021-09-09 Heat exchanger WO2022054963A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180053671.2A CN115997097A (en) 2020-09-14 2021-09-09 Heat exchanger
DE112021004801.5T DE112021004801T5 (en) 2020-09-14 2021-09-09 HEAT EXCHANGER
JP2022548383A JPWO2022054963A1 (en) 2020-09-14 2021-09-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154190 2020-09-14
JP2020-154190 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054963A1 true WO2022054963A1 (en) 2022-03-17

Family

ID=80632198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034017 WO2022054963A1 (en) 2020-09-14 2021-09-09 Heat exchanger

Country Status (4)

Country Link
JP (1) JPWO2022054963A1 (en)
CN (1) CN115997097A (en)
DE (1) DE112021004801T5 (en)
WO (1) WO2022054963A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343985A (en) * 2002-05-27 2003-12-03 Komatsu Electronics Inc Plate type heat exchanger
JP2016003778A (en) * 2014-06-13 2016-01-12 富士電機株式会社 Loop type thermos-siphon
WO2016043340A1 (en) * 2014-09-19 2016-03-24 株式会社ティラド Corrugated fins for heat exchanger
JP2019219139A (en) * 2018-06-22 2019-12-26 株式会社ティラド Corrugated fin for heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343985A (en) * 2002-05-27 2003-12-03 Komatsu Electronics Inc Plate type heat exchanger
JP2016003778A (en) * 2014-06-13 2016-01-12 富士電機株式会社 Loop type thermos-siphon
WO2016043340A1 (en) * 2014-09-19 2016-03-24 株式会社ティラド Corrugated fins for heat exchanger
JP2019219139A (en) * 2018-06-22 2019-12-26 株式会社ティラド Corrugated fin for heat exchanger

Also Published As

Publication number Publication date
JPWO2022054963A1 (en) 2022-03-17
CN115997097A (en) 2023-04-21
DE112021004801T5 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP3675475B2 (en) Plate heat exchanger
EP2725311B1 (en) Heat exchanger
US20060289152A1 (en) Heat exchange element and heat exchanger produced therewith
EP1653185A2 (en) Heat exchanger
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
KR101977817B1 (en) Heat exchanger
EP0650023A1 (en) Multilayered heat exchanger
JP4157768B2 (en) Evaporator
WO2022054963A1 (en) Heat exchanger
JP4504092B2 (en) Plate heat exchanger
JP2005506505A5 (en)
US7013962B2 (en) High pressure fluid cooler
CN112414185A (en) Plate heat exchanger
EP0650024B1 (en) Tube element for laminated heat exchanger
JP2011002122A (en) Plate type heat exchanger
CN112146484B (en) Plate heat exchanger
JP4317983B2 (en) Plate type heat exchanger
JP4827909B2 (en) Plate heat exchanger
JP7230020B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
WO2020184315A1 (en) Heat exchanger
KR20010023338A (en) Heat exchanger turbulizers with interrupted convolutions
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
KR100833479B1 (en) Fin used for heat exchanger, heat exchanger and heat exchanger assembly therewith
CN112432528A (en) Plate sheet of plate heat exchanger and plate heat exchanger
JP6924787B2 (en) Heat sink and heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548383

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21866919

Country of ref document: EP

Kind code of ref document: A1