WO2022054577A1 - 熱電材料、その製造方法、および、熱電発電素子 - Google Patents

熱電材料、その製造方法、および、熱電発電素子 Download PDF

Info

Publication number
WO2022054577A1
WO2022054577A1 PCT/JP2021/031156 JP2021031156W WO2022054577A1 WO 2022054577 A1 WO2022054577 A1 WO 2022054577A1 JP 2021031156 W JP2021031156 W JP 2021031156W WO 2022054577 A1 WO2022054577 A1 WO 2022054577A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric material
thermoelectric
inorganic compound
less
sintering
Prior art date
Application number
PCT/JP2021/031156
Other languages
English (en)
French (fr)
Inventor
孝雄 森
ジハン リウ
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2022547484A priority Critical patent/JPWO2022054577A1/ja
Priority to US18/025,608 priority patent/US20230371382A1/en
Priority to EP21866537.0A priority patent/EP4212476A4/en
Publication of WO2022054577A1 publication Critical patent/WO2022054577A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a thermoelectric material, a method for producing the same, and a thermoelectric power generation element, and more particularly to a thermoelectric material containing a Mg 3 Bi 2 system thermoelectric material, a method for producing the same, and a thermoelectric power generation element.
  • thermoelectric power generation devices are attracting attention as solid-state devices capable of recovering thermal energy and directly converting it into electrical energy.
  • thermoelectric power generation element is a direct conversion element to electric energy, there are merits such as ease of maintenance and scalability due to the absence of moving parts. For this reason, thermoelectric semiconductors are being actively researched as materials for IoT operating power supplies and the like.
  • thermoelectric material with the highest performance near room temperature is a Bi 2 Te 3 system material, and due to the rarity of Te, there is a problem of widespread practical use.
  • Te Te
  • Mg 3 Sb 2 based materials are listed as one candidate (for example, Patent Documents 1 and 2 and non-patents). See Document 1).
  • Non-Patent Document 1 reports a dope thermoelectric material in which a magnesium (Mg) site of Mg 3.2 Sb 1.5 Bi 0.49 Te 0.01 is doped with Fe, Co, Hf and Ta (for example, Patent). See Document 1). According to Non-Patent Document 1, a small amount of the above-mentioned metal element is doped into a Mg site of Mg 3 Sb 2 as a matrix and Mg 3.2 Sb 1.5 Bi 0.5 Te 0.01 as a matrix, thereby performing thermoelectricity. It is disclosed that the electric conductivity and Seebeck coefficient of the material are high and the figure of merit is improved.
  • Mg magnesium
  • Patent Document 1 relates to a thermoelectric conversion material represented by Mg 3 + mA B b D 2-e E e .
  • the element A represents at least one selected from the group consisting of Ca, Sr, Ba, and Yb
  • the element B represents at least one selected from the group consisting of Mn and Zn.
  • the value is -0.39 or more and 0.42 or less
  • the value of a is 0 or more and 0.12 or less
  • the value of b is 0 or more and 0.48 or less
  • the element D is a group consisting of Sb and Bi.
  • element E represents at least one selected from the group consisting of Se and Te
  • the value of e is 0.001 or more and 0.06 or less.
  • Patent Document 2 relates to a thermoelectric conversion material represented by Mg 3 + ma A a B 2-c-e C c E e .
  • the element A represents at least one selected from the group consisting of Ca, Sr, Ba, Nb, Zn, and Al
  • the element B represents at least one selected from the group consisting of Sb and Bi.
  • the element C represents at least one selected from the group consisting of Mn, Si and Cr
  • the element E represents at least one selected from the group consisting of Se and Te
  • the value of m is ⁇ 0. .1 or more and 0.4 or less
  • the value of a is 0 or more and 0.1 or less
  • the value of c is 0 or more and 0.1 or less
  • the value of e is 0.01 or more and 0.06 or less.
  • Patent Documents 1 and 2 and Non-Patent Document 1 also disclose various combinations of materials, but the values of the power factor and the dimensionless figure of merit ZT are not sufficient, especially at room temperature. Considering IoT power generation applications, it is expected that thermoelectric materials with a high power factor of over 14 ⁇ Wcm -1 K -2 at room temperature and a dimensionless figure of merit ZT of over 0.3 will be developed.
  • an object is to provide a thermoelectric material having excellent thermoelectric characteristics at room temperature, a method for producing the same, and a thermoelectric power generation element thereof.
  • the thermoelectric material is magnesium (Mg), antimony (Sb) and / or bismuth (Bi), copper (Cu), and optionally M (where M is selenium (where M is). It contains an inorganic compound containing Se) and at least one element selected from the group consisting of tellurium (Te)), wherein the inorganic compound is Mg a Sb 2-b-c Bi b Mc Cu d .
  • the parameters a, b, c and d are 3 ⁇ a ⁇ 3.5, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 0.06, 0 ⁇ d ⁇ 0.1, and b + c ⁇ 2 May be satisfied. The above problem is solved.
  • the parameter d is 0.005 ⁇ d ⁇ 0.05 May be satisfied.
  • the parameters a, b, c and d are 3 ⁇ a ⁇ 3.5, 0.2 ⁇ b ⁇ 0.7, 0 ⁇ c ⁇ 0.06, and 0.005 ⁇ d ⁇ 0.05 May be satisfied.
  • the inorganic compound may have a La 2 O 3 type structure and may have the symmetry of the space group P-3m1.
  • the Cu may be infiltrated into the La 2 O 3 type structure.
  • the thermoelectric material may be n-type.
  • the thermoelectric material may be in a form selected from the group consisting of powders, sintered bodies and thin films.
  • the thermoelectric material is in the form of a powder or a sintered body, and the inorganic compound may consist of crystal grains having an average particle size in the range of 3.5 ⁇ m or more and 30 ⁇ m or less.
  • the inorganic compound may consist of crystal grains having an average particle size in the range of 4 ⁇ m or more and 20 ⁇ m or less.
  • the thermoelectric material is in the form of a thin film, and the inorganic compound is composed of crystal grains having an average particle size in the range of 3.5 ⁇ m or more and 30 ⁇ m or less, and may further contain an organic material.
  • the method for producing the thermoelectric material is a raw material containing magnesium (Mg), a raw material containing antimony (Sb), and / or a raw material containing bismuth (Bi), and copper.
  • the sintering may be discharge plasma sintering.
  • the discharge plasma sintering may be performed in a temperature range of 723 K or more and 1173 K or less, under a pressure of 30 MPa or more and 100 MPa or less, and for a time of 1 minute or more and 10 minutes or less. Further may include crushing the sintered body obtained by the above-mentioned sintering. Further may include mixing the powder obtained by grinding with the organic material. It may further include performing a physical vapor deposition method using the sintered body obtained by sintering as a target.
  • the thermoelectric power generation element includes a p-type thermoelectric material and an n-type thermoelectric material connected in series alternately, and the n-type thermoelectric material may be the thermoelectric material. The above problem is solved.
  • the thermoelectric material is magnesium (Mg), antimony (Sb) and / or bismuth (Bi), copper (Cu), and optionally M (where M is selenium. It contains an inorganic compound containing Se) and at least one element selected from the group consisting of tellurium (Te).
  • the inorganic compound is represented by Mg a Sb 2-b-c Bi b M c Cu d , 3 ⁇ a ⁇ 3.5, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 0.06, 0 ⁇ d ⁇ 0. 1 and b + c ⁇ 2 are satisfied.
  • thermoelectric material As described above, by adding Cu to the inorganic compound having Mg, Sb and / or Bi, and M as the parent phase, the electric conductivity at room temperature is improved and the thermal conductivity is effectively reduced. It is possible to provide a thermoelectric material with an improved figure of merit. Such thermoelectric materials are advantageous for thermoelectric power generation elements.
  • the method for producing a thermoelectric material is a raw material containing magnesium (Mg), a raw material containing antimony (Sb), and / or a raw material containing bismuth (Bi), and copper (Cu). ) And, if necessary, M (where M is an element selected from the group consisting of selenium (Se) and tellurium (Te)).
  • thermoelectric material in an embodiment of the present invention A flowchart showing a process of manufacturing a thermoelectric material in an embodiment of the present invention.
  • Schematic diagram showing a powder, a dusting machine, a sintering furnace, and a sintered body using a thermoelectric material in an embodiment of the present invention The figure which shows the appearance of the sample of Example 1.
  • the figure which shows the temperature dependence of the electric conductivity of the sample of Example 6 to Example 7. The figure which shows the temperature dependence of the Seebeck coefficient of the sample of Example 6 to Example 7.
  • the figure which shows the temperature dependence of the electric output factor of the sample of Example 8 to Example 10. The figure which shows the temperature dependence of the total thermal conductivity of the sample of Example 8 to Example 10.
  • thermoelectric material is magnesium (Mg), antimony (Sb) and / or bismuth (Bi), copper (Cu), and optionally M (where M is selenium (Se)).
  • Mg magnesium
  • Sb antimony
  • Ba bismuth
  • Cu copper
  • M magnesium
  • Te copper
  • Te inorganic compound containing at least one element selected from the group consisting of tellurium (Te).
  • Inorganic compounds are represented by Mg a Sb 2-bc Bi b Mc Cu d , and the parameters a to d are, respectively. 3 ⁇ a ⁇ 3.5, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 0.06, 0 ⁇ d ⁇ 0.1, and b + c ⁇ 2 Meet.
  • Mg a Sb 2-bc Bi b Mc Cu d the parameters a to d are, respectively. 3 ⁇ a ⁇ 3.5, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 0.06, 0 ⁇ d ⁇ 0.1, and b + c ⁇ 2 Meet.
  • thermoelectric material in which the electric conductivity is improved, the thermal conductivity is effectively reduced, and the figure of merit is improved, particularly at room temperature (temperature range of 273 K or more and 320 K or less).
  • the thermoelectric material can function as an n-type thermoelectric material having electrons as carriers by satisfying the above-mentioned composition.
  • the matrix of the inorganic compound is preferably composed of Mg a Sb 2-bc Bi b Mc , to which Cu may be added.
  • the matrix is preferably an Mg 3 Sb 2 system crystal, has a La 2 O 3 type structure, and belongs to the P-3m1 space group (164th of the International Tables for Crystallography).
  • "-3" means "3 with an overbar”.
  • the Mg 3 Sb 2 system is composed of the above-mentioned elements (for example, Mg, Sb, Bi, Se, Te), and has the above-mentioned crystal structure (for example, La 2 O 3 type structure) and space group (for example, P-3 m1). It may have a space group).
  • elements for example, Mg, Sb, Bi, Se, Te
  • space group for example, P-3 m1
  • (Sb, Bi) it means that Sb and Bi can enter the seat where Sb and Bi enter without distinguishing each other, and when ((Sb, Bi), M) is described.
  • M is an element selected at least from the group consisting of Se and Te.
  • An exemplary composition of Mg 3.2 (Sb, Bi) 2 is Mg 3.2 Sb 1.5 Bi 0.5 .
  • An exemplary composition of Mg 3.2 ((Sb, Bi), M) 2 is Mg 3.2 Sb 1.5 Bi 0.49 Te 0.01 .
  • Each of these may have the above-mentioned crystal structure and space group, and it is considered that the so-called excess component constitutes a so-called defect in a part of the crystal structure, and the inorganic compound as a whole is n-type or the like. Properties may be endowed.
  • the Mg 3 Sb 2 system crystal has a La 2 O 3 type structure and belongs to the P-3m1 space group.
  • FIG. 1B schematically shows the crystal structure of the Mg 3 Sb 2 system crystal.
  • the constituent components constituting the Mg 3 Sb 2 system crystal may be replaced with other elements, or may be solid-solved as interstitial atoms (for example, Cu).
  • the lattice constant may change, but it is considered that the atomic position given by the crystal structure, the site occupied by the atom and its coordinates does not change so much that the chemical bond between the skeleton atoms is broken. ..
  • the matrix represented by Mg a Sb 2-bc Bi b Mc may be an Mg 3 Sb 2 system crystal, but Sb and Bi are completely replaceable with each other. good.
  • the Mg 3 Sb 2 system crystal may contain an Mg 3 Bi 2 crystal structure.
  • the parameter b may include 0 and be greater than or equal to 0. It may be 0.2 or more. Further, it may be 2 or less. Further, it may be 0.7 or less. Further, c representing the component amount of M (Se and / or Te) may include 0 and may be more than that. It may be 0.06 or less.
  • the addition of M may be imparted to an inorganic compound having some properties without causing destruction of the crystal structure of the Mg 3 Sb 2 system crystal of the matrix.
  • the parameter d representing the amount of Cu components is larger than 0. Further, more preferably, it may be 0.001 or more, or 0.005 or more.
  • the parameter d is 0.1 or less, but preferably 0.05 or less and 0.025 or less. Further, the range of 0 ⁇ d ⁇ 0.1 may be satisfied, and preferably the range of 0.005 ⁇ d ⁇ 0.05 may be satisfied. Within such a range, the electric conductivity at room temperature can be further improved, the thermal conductivity can be further reduced, and the figure of merit can be improved.
  • the parameter d may more preferably satisfy the range of 0.005 ⁇ d ⁇ 0.025. In this range, the figure of merit at room temperature can be improved.
  • the parameters a to d are preferably 3 ⁇ a ⁇ 3.5, 0.2 ⁇ b ⁇ 0.7, 0 ⁇ c ⁇ 0.06, and 0.005 ⁇ d ⁇ 0.05 Meet.
  • the electric conductivity at room temperature can be further improved, the thermal conductivity can be further reduced, and the figure of merit can be improved.
  • the Cu atom is preferably an intrusive solid solution into the La 2 O 3 type structure. It was generally thought that the element added to the Mg 3 Sb 2 system crystal replaces a part of the element constituting the crystal structure. It was also thought to affect the crystal structure of the resulting inorganic compound.
  • the inventors of the present application have found that the addition of Cu can promote the grain growth of the material and the modification of the grain boundaries. Such grain growth and modification of grain boundaries contribute to the scattering mechanism of carriers, and scattering decreases at a relatively low temperature (500 K or less) such as room temperature, so that the electrical resistance at room temperature decreases and the electrical conductivity increases. It is considered that it can be improved and the thermoelectric performance can be improved.
  • the penetration type solid solution of Cu atoms can be found by measuring the changes in the a-axis and c-axis lattice constants by powder X-ray diffraction of the obtained inorganic compound.
  • the Mg 3 Sb 2 system crystal was identified from the obtained inorganic compound, and the lattice constants (for example, a and c) obtained from Rietveld analysis were increased as compared with the lattice constants of the corresponding inorganic compounds to which Cu was not added. If so, it may be possible to determine that Cu is an intrusive solid solution.
  • thermoelectric material may be in a form selected from the group consisting of powder, sintered body, and thin film. This can be applied to various thermoelectric power generation elements that exhibit high thermoelectric performance at room temperature.
  • the inorganic compound when the thermoelectric material is a powder or a sintered body, the inorganic compound may consist of crystal grains having an average particle size in the range of 3.5 ⁇ m or more and 30 ⁇ m or less. As a result, the scattering effect is enhanced, the electric conductivity at room temperature is improved, and the thermoelectric performance can be improved. More preferably, the inorganic compound may consist of crystal grains having an average particle size in the range of 4 ⁇ m or more and 20 ⁇ m or less. As a result, the scattering effect is further enhanced, the electric conductivity at room temperature is improved, and the thermal conductivity is reduced even though the particle size is large, and the thermoelectric performance can be further improved. Even more preferably, the inorganic compound may consist of crystal grains having an average particle size in the range of 4 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size of the crystal grains is determined by the image analysis software (HKL CHANNEL5, HKL Tango, ver. 5.12.722.0, Oxford Instruments) attached to the electron backscatter diffraction (EBSD) measuring device. It was analyzed and calculated by (Co., Ltd.).
  • the thermoelectric material may be in the form of a thin film
  • the thin film may be a crystalline thin film by a physical vapor deposition method described later, or a thin film containing the above-mentioned powder. May be.
  • the powder may include crushed and finely divided powder and shavings.
  • a compact can be formed by pressurizing the powder with a press such as a compactor.
  • a green compact means a powder obtained by compressing the powder into a predetermined shape.
  • the thin film refers to a thin film, and may include a layer formed by condensing a gas phase on a solid surface.
  • thermoelectric material when the thermoelectric material is a film containing a powder of an inorganic compound, the powder and the organic material are mixed and processed into a film.
  • the organic materials include poly (3,4-ethylenedioxythiophene) polystyrene sulfonic acid (PEDOT: PSS), poly [2,5-bis (3-tetradecylthiophene-2-yl) thieno [3, 2-b] Thiophene] (PBTTT), polyaniline (PANI), tetrathiafulvalene (TTF), and benzodifrangion paraphenylene vinylidene (BDPPV) can be used with at least one organic material selected from the group. can. With these organic materials, a flexible film-like thermoelectric material can be provided.
  • PEDOT poly (3,4-ethylenedioxythiophene) polystyrene sulfonic acid
  • PBTTT poly [2,5-bis (3-tetradecylthiophene-2-yl)
  • the content of the powder is not particularly limited as long as the film can be formed, but the powder is preferably 4% by mass or more and 80% by mass or less, preferably 4% by mass or more and 50% by mass with respect to the organic material. It may be contained in the range of mass% or less, more preferably 4% by mass or more and 10% by mass or less, still more preferably 4% by mass or more and 7% by mass or less. This can result in a film having flexibility and thermoelectric performance.
  • thermoelectric material may have improved electrical conductivity, effectively reduced thermal conductivity, and improved figure of merit, especially at room temperature.
  • the addition of Cu did not impair the inherent figure of merit of the Mg 3 Sb 2 based material at high temperatures (eg, 573K).
  • FIG. 1A is a flowchart showing a process of manufacturing a thermoelectric material in an embodiment of the present invention.
  • Step S110 A raw material containing magnesium (Mg), a raw material containing antimony (Sb), and / or a raw material containing bismuth (Bi), a raw material containing copper (Cu), and if necessary.
  • a mixture is prepared by mixing with a raw material containing M (where M is an element selected from the group consisting of selenium (Se) and tellurium (Te)).
  • Step S120 The mixture obtained in step S110 is calcined.
  • thermoelectric material is obtained by the above steps S110 and S120. Each step will be described in detail.
  • the raw material containing Mg may be a single Mg metal, or may be a silicate, oxide, carbonate, nitride, nitride, chloride, fluoride or acid fluoride of Mg. May be.
  • the raw material containing Sb may be a single Sb metal, or may be a silicate, an oxide, a carbonate, a nitride, an oxynitride, a chloride, a fluoride or an acid fluoride of Sb.
  • the raw material containing Bi may be a Bi metal alone, or may be a silicate, an oxide, a carbonate, a nitride, an oxynitride, a chloride, a fluoride or an acid fluoride of Bi.
  • the raw material containing Cu may be a Cu metal alone, or may be a silicate, oxide, carbonate, nitride, oxynitride, chloride, fluoride or acid fluoride of Cu.
  • the raw material containing M may be M metal alone, or may be M silicate, oxide, carbonate, nitride, oxynitride, chloride, fluoride or acid fluoride.
  • the raw material is preferably powder, granules, or small lumps from the viewpoint of mixing and handling.
  • step S110 the metal elements in the raw material are mixed so as to satisfy the following composition formula Mg a Sb 2-bc Bi b Mc Cu d .
  • the parameters a, b, c and d are 3 ⁇ a ⁇ 3.5, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 0.06, 0 ⁇ d ⁇ 0.1, and b + c ⁇ 2 Meet. Since the preferred parameters are as described above, the description thereof will be omitted.
  • the sintering is discharge plasma sintering (SPS), hot press sintering (HP), hot isotropic pressure sintering (HIP), cold isotropic pressure sintering (CIP), partz. It may be performed by any method such as energization sintering, but preferably by discharge plasma sintering (SPS). As a result, a sintered body in which grain growth is suppressed in a short time can be obtained without using a sintering aid.
  • SPS discharge plasma sintering
  • HP hot press sintering
  • HIP hot isotropic pressure sintering
  • CIP cold isotropic pressure sintering
  • the SPS may be preferably carried out in a temperature range of 723 K or more and 1173 K or less, under a pressure of 30 MPa or more and 100 MPa or less, for a time of 1 minute or more and 10 minutes or less.
  • the thermoelectric material which is the above-mentioned sintered body can be obtained with good yield under this condition.
  • the obtained sintered body may be crushed by mechanical milling such as a ball mill.
  • mechanical milling such as a ball mill.
  • this gives a thermoelectric material that is a powder.
  • thermoelectric material which is the powder thus obtained is mixed with the organic material, a flexible thermoelectric material can be provided.
  • the above-mentioned organic material and mixing ratio can be adopted.
  • a physical vapor deposition method may be performed using the obtained sintered body as a target.
  • this can provide a thin film made of a thermoelectric material.
  • thermoelectric power generation element using the thermoelectric material described in the first embodiment will be described in the embodiment of the present invention.
  • FIG. 2A is a schematic diagram showing a thermoelectric power generation element ( ⁇ -shaped) using a thermoelectric material in the embodiment of the present invention.
  • the thermoelectric power generation element 200 includes a pair of n-type thermoelectric materials 210 and p-type thermoelectric materials 220, and electrodes 230 and 240 at their respective ends.
  • the n-type thermoelectric material 210 and the p-type thermoelectric material 220 are electrically connected in series by the electrodes 230 and 240.
  • the p-type thermoelectric material 210 is not particularly limited, but is preferably one having high thermoelectric performance (for example, ZT of 0.4 to 1.6) at 500 K or less, particularly at room temperature.
  • examples of the p-type thermoelectric material 210 include BiSbTe type, MgAgSb type, AgSbSe type and the like.
  • Exemplary compositions of the BiSbTe system are, for example, Bi 0.5 Sb 1.5 Te 3 and Bi 0.4 Sb 1.6 Te 3 .
  • An exemplary composition of the MgAgSb system is, for example, MgAgSb, MgAg 0.965 Ni 0.005 Sb 0.99 .
  • An exemplary composition of the AgSbSe system is, for example, AgSbSe 2 . Note that these are examples and are not limited.
  • the n-type thermoelectric material 220 is the thermoelectric material described in the first embodiment.
  • the thermoelectric material exhibits excellent thermoelectric properties, especially at room temperature, and is therefore advantageous for waste heat recovery.
  • the electrodes 230 and 240 may be ordinary electrode materials, but examples thereof are Fe, Ag, Al, Ni, Cu and the like.
  • a chip made of an n-type thermoelectric material 210 is bonded to an electrode 240 on the low temperature side by soldering or the like, and the opposite end of the chip of the n-type thermoelectric material 210 and the electrode 230 on the high temperature side. Is shown to be joined by solder or the like.
  • a chip made of the p-type thermoelectric material 220 is bonded to the electrode 230 on the high temperature side by soldering or the like, and the opposite end of the chip of the p-type thermoelectric material 220 and the electrode 240 on the low temperature side Is shown to be joined by solder or the like.
  • thermoelectric power generation element 200 when the thermoelectric power generation element 200 is installed and the electrode at the end is connected to an electric circuit or the like, A voltage is generated by the Zeebeck effect, and as shown by the arrow in FIG. 2A, a current flows in the order of the electrode 240, the n-type thermoelectric material 210, the electrode 230, and the p-type thermoelectric material 220. Specifically, the electrons in the n-type thermoelectric material 210 obtain thermal energy from the high temperature side electrode 230, move to the low temperature side electrode 240, and release the thermal energy there, whereas the p-type thermoelectric material. A current flows by the principle that the holes of 220 obtain thermal energy from the electrode 230 on the high temperature side, move to the electrode 240 on the low temperature side, and release the thermal energy there.
  • thermoelectric material 210 the thermoelectric material described in the first embodiment of the present invention is used. 200 can be realized. Further, as the thermoelectric material, the thermoelectric material in the embodiment of the present invention has a Mg 3 Sb 2 system as a parent phase, and a powder made of an inorganic compound to which a Cu atom is added, a film containing the powder, or the present invention.
  • a flexible thermoelectric power generation module can be provided as an IoT power source. For example, in FIG.
  • FIG. 2C illustrates a sintered body made of this inorganic compound.
  • a sintered body made of this inorganic compound is used as a target 300, and particles 330 made of the blown inorganic compound adhere to the substrate 310 by sputtering with argon 320 to form a thin film 340.
  • this thin film 340 is peeled off from the substrate 310 by an existing technique to form a single film.
  • FIG. 2D illustrates a powder 350 made of this inorganic compound.
  • thermoelectric power generation element 200 having a large amount of power generation can be provided at room temperature.
  • a thermoelectric power generation element having a large amount of power generation can be provided because it exhibits a high dimensionless performance index (ZT) even in a high temperature region.
  • thermoelectric material may be used for the U-shaped thermoelectric power generation element (FIG. 2B).
  • the n-type thermoelectric material 210 and the p-type thermoelectric material 220 made of the thermoelectric material are directly connected by the joint portion 215 on the high temperature side.
  • the low temperature side electrodes 240a and 240b may be electrically connected to the low temperature side electrodes of different U-shaped thermoelectric power generation elements.
  • Mg (powder, purity 99.99%, manufactured by Sigma-Aldrich Japan LLC), Sb (powder, purity 99.99%, manufactured by Sigma-Aldrich Japan LLC), and Bi (powder, purity 99. 99%, Sigma-Aldrich Japan GK), Te (powder, purity 99.99%, made by Sigma-Aldrich Japan GK) and, if necessary, Cu (powder, purity 99.99%, made by Sigma-Aldrich Japan GK) Made by) and used.
  • the raw materials were mixed as described above to produce a thermoelectric material.
  • the raw materials are mixed so as to satisfy the general formula Mg 3.2 Sb 0.5 Bi 1.498 Te 0.002 Cu 0.01 , and in Examples 8 to 10, the general formula Mg is used.
  • 3.2 The raw materials were mixed so as to satisfy Sb 0.5 Bi 1.495 Te 0.005 Cu 0.01 , and a thermoelectric material was produced.
  • Each raw material powder was weighed so as to satisfy the composition shown in Table 1, filled in a stainless steel ball mill container in a glove box, and mixed in a ball mill for 5 hours. Then, it was fired at 973K for 5 minutes in a discharge plasma sintering apparatus (SPS, SPS Syntex, Inc., SPS-1080 system). Specifically, a graphite sintered die (die) (inner diameter 10 mm, height 30 mm) was filled with the mixture, and the temperature was maintained at a heating rate of 100 K / min and a sintering temperature of 973 K for 5 minutes under a uniaxial stress of 60 MPa. In this way, a sintered body was obtained.
  • the sintered body was observed.
  • surface observation was performed with a scanning electron microscope (SEM, manufactured by JEOL Ltd., JSM-7800F) equipped with an electron backscatter diffraction detector (EBSD) and an energy dispersive X-ray spectroscope (EDS), and average grains were observed. The diameter was calculated. The above-mentioned image analysis software was used to calculate the average particle size.
  • the obtained calcined product was wet-ground with ethanol in an agate mortar.
  • the particles of the fired body after pulverization were sieved by a mesh (opening 45 ⁇ m), and only the particles having a particle size of 45 ⁇ m or less that passed through the mesh were taken out.
  • the particles were identified by powder X-ray diffraction method (Rigaku Co., Ltd., SmartLab3), and the composition was analyzed by fluorescent X-ray analysis (HORIBA, Ltd., EMAX Evolution EX). The results of X-ray diffraction are shown in FIGS. 7 and 8.
  • the sintered body was processed into a rectangular parallelepiped of 1.5 mm ⁇ 1.5 mm ⁇ 9 mm with a high-speed cutter, and the electrical conductivity and thermoelectric properties were measured.
  • the electrical conductivity was measured by the DC four-terminal method. Seebeck coefficient and thermal conductivity are used as thermoelectric properties by the steady temperature difference method, respectively, using a thermoelectric property measurement and evaluation device (Advance Riko Co., Ltd., ZEM-3) and a thermal conductivity evaluation device (Netch, HyperflashXXX). Was measured.
  • the measurement conditions were all measured from room temperature to a temperature range of 800 K under a helium gas atmosphere.
  • the electric output factor was calculated from the thermoelectromotive force obtained from the electric conductivity or resistivity and the Seebeck coefficient, and the dimensionless performance index ZT was calculated from the Seebeck coefficient, electric conductivity and thermal conductivity.
  • Table 1 summarizes the production conditions of the samples of Examples 1 to 10.
  • the samples of Examples 1 to 10 were all sintered with a stress of 60 MPa.
  • Examples 1 to 5 were sintered at a sintering temperature of 973 K (700 ° C.) for 5 minutes.
  • Examples 6 and 8 are sintered at a sintering temperature of 973K (700 ° C.) for 10 minutes,
  • Examples 7 and 9 are sintered at a sintering temperature of 1023K (750 ° C.) for 10 minutes, and
  • Example 10 is sintered. Sintered at a temperature of 1073 K (800 ° C.) for 10 minutes. The results will be described below.
  • FIG. 3 is a diagram showing the appearance of the sample of Example 1.
  • Example 1 As shown in FIG. 3, the sample of Example 1 was a disk-shaped sintered body having a diameter of 10 mm and a thickness of 2 mm. Although not shown, other samples had similar morphology.
  • FIG. 4 is a diagram showing SEM images and EDS mapping of the samples of Examples 1 to 5.
  • FIGS. 4 (A) to 4 (E) show SEM images of the samples of Example 5 and Examples 1 to 4, respectively, and FIG. 4 (F) shows the EDS mapping of the sample of Example 2.
  • FIGS. 4 (A) to 4 (E) clear grain growth was observed by adding Cu, and the particle size also increased as the amount of addition increased.
  • FIG. 4 (F) is shown in gray scale, it was confirmed that Mg, Bi and Sb were uniformly located throughout.
  • FIG. 5 is a diagram showing an EBSD image of the sample of Example 2.
  • FIG. 6 is a diagram showing an EBSD image of the sample of Example 5.
  • Example 5 and 6 show grain mapping and grain size histograms along with an inverted pole (IPF) map.
  • IPF inverted pole
  • FIG. 7 is a diagram showing XRD patterns of the samples of Examples 1 to 5.
  • FIG. 8 is a diagram showing the dependence of the lattice constant of the samples of Examples 1 to 5 on the amount of Cu added.
  • the samples of Examples 1 to 4 have an inorganic crystal having a La 2 O 3 type structure containing Mg, Sb, Bi, and Te as a parent crystal, and contain an inorganic compound to which Cu is added. It has been shown.
  • FIG. 9 is a diagram showing the temperature dependence of the electrical conductivity of the samples of Examples 1 to 5.
  • FIG. 16 is a diagram showing the temperature dependence of the electrical conductivity of the samples of Examples 6 to 7, and
  • FIG. 22 is a diagram showing the temperature dependence of the electrical conductivity of the samples of Examples 8 to 10.
  • the electric conductivity of the samples of Examples 1 to 4 to which Cu was added was higher than that of the sample of Example 5 to which Cu was not added, and in particular, it was remarkably increased near room temperature.
  • the samples of Examples 1 to 4 had an electric conductivity (electric resistivity) that could be used as a thermoelectric material, and had a temperature dependence. Focusing on the electrical resistivity at room temperature, it was possible to increase the electrical resistivity at room temperature to about 5 ⁇ 10 4 ( ⁇ m) -1 by controlling the amount of Cu added.
  • FIGS. 16 to 27 numbers representing the sintering temperature in degrees Celsius are displayed, 700 in FIGS. 16 to 21 is Example 6, 750 is Example 7, and 700 in FIGS. 22 to 27 is an example. In 8, 750 is Example 9 and 800 is Example 10. According to FIG. 16, the higher the sintering temperature, the slightly higher the electric conductivity, and according to FIG. 22, similarly, the higher the sintering temperature, the slightly higher the electric conductivity.
  • FIG. 10 is a diagram showing the dependence of the carrier concentration and mobility of the samples of Examples 1 to 5 on the amount of Cu added.
  • FIGS. 11, 17, and 23 are diagrams showing the temperature dependence of the Seebeck coefficient of the samples of Examples 1 to 5, Examples 6 to 7, and Examples 8 to 10.
  • FIG. 12 is a diagram showing the temperature dependence of the electrical output factor of the samples of Examples 1 to 5.
  • FIG. 18 is a diagram showing the temperature dependence of the electrical output factor of the samples of Examples 6 to 7.
  • FIG. 24 is a diagram showing the temperature dependence of the electrical output factor of the samples of Examples 8 to 10.
  • the electric output factor (power factor) of the samples of Examples 1 to 4 to which Cu was added is more dramatic in the low temperature region of 300K to 400K than that of the sample of Example 5 to which Cu was not added. It was found that the number of samples increased. For example, comparing the electrical output factor (21.03 ⁇ Wcm -1 K -2 ) of the sample of Example 2 at room temperature (300 K) with that of the sample of Example 5 (7.16 ⁇ W cm -1 K -2 ), about 3 It has doubled. From this, it can be said that it is suitable for various thermoelectric cooling applications and recovery of poor heat as an IoT operating power source, and it is possible to provide a thermoelectric power generation element for consumer use. According to FIGS. 18 and 24, the same results as in Examples 1 to 4 were obtained.
  • FIG. 13 is a diagram showing the temperature dependence of the total thermal conductivity of the samples of Examples 1 to 5.
  • FIG. 19 is a diagram showing the temperature dependence of the total thermal conductivity of the samples of Examples 6 to 7.
  • FIG. 25 is a diagram showing the temperature dependence of the total thermal conductivity of the samples of Examples 8 to 10.
  • FIG. 14 is a diagram showing the temperature dependence of the lattice thermal conductivity of the samples of Examples 1 to 5.
  • FIG. 20 is a diagram showing the temperature dependence of the lattice thermal conductivity of the samples of Examples 6 to 7.
  • FIG. 26 is a diagram showing the temperature dependence of the lattice thermal conductivity of the samples of Examples 8 to 10.
  • the total thermal conductivity was slightly reduced by the addition of Cu.
  • the Lorentz number L was calculated, the electron thermal conductivity was subtracted from the total thermal conductivity, and the lattice thermal conductivity was obtained.
  • FIG. 14 an example in which Cu was added in a relatively low temperature region of 400 K or less.
  • the lattice thermal conductivity of the samples of Examples 1 to 4 was significantly lower than that of the sample of Example 5 to which Cu was not added.
  • the lattice thermal conductivity of the sample of Example 2 was reduced by 20 to 30%. According to FIGS. 19 and 25 and FIGS. 20 and 26, the same results as in Examples 1 to 4 were obtained.
  • FIG. 15 is a diagram showing the temperature dependence of the dimensionless figure of merit ZT of the samples of Examples 1 to 5.
  • FIG. 21 is a diagram showing the temperature dependence of the dimensionless figure of merit ZT of the samples of Examples 6 to 7.
  • FIG. 27 is a diagram showing the temperature dependence of the dimensionless figure of merit ZT of the samples of Examples 8 to 10.
  • Table 3 summarizes the above thermoelectric characteristics.
  • E represents a power of 10.
  • Examples 6 to 10 it was found that the samples of Examples 1 to 4 to which Cu was added had a large electric conductivity at room temperature and the figure of merit was improved. Further, it was shown that the addition amount (d value) of Cu is preferably in the range of 0.005 ⁇ d ⁇ 0.05, and more preferably in the range of 0.005 ⁇ d ⁇ 0.025. Further, in Examples 6 to 10, it was shown that the power factor at room temperature formed by the Seebeck coefficient and the electric conductivity was significantly enhanced as compared with Examples 1 to 5. In Examples 6 to 10, since the composition ratio of Bi was larger than that of Sb (see Table 1), the bandgap was small, and a particularly high electric conductivity was obtained without significantly impairing the Seebeck coefficient at room temperature. Is.
  • the lattice thermal conductivity was relatively low.
  • heat conduction includes heat conduction due to heat transfer due to the movement of charged particles such as electrons and heat conduction due to transfer of lattice vibration without such particle movement.
  • the thermal conductivity is low and the electric conductivity is high. That is, in Examples 6 to 10, it is considered that such a preferable state was obtained.
  • the composition ratio of Bi larger than that of Sb, b> 1 is more preferable, b ⁇ 1.2 is more preferable, and b ⁇ 1.4 is even more preferable.
  • thermoelectric material is particularly excellent in thermoelectric performance near room temperature, can function as an alternative material for the Bi 2 Te 3 system, and is used in a thermoelectric cooling device and a power generation device used in various electric devices. Will be done.
  • a flexible thermoelectric power generation element can be provided as an IoT power source.
  • thermoelectric power generation element 210 n-type thermoelectric material 220 p-type thermoelectric material 230, 240 electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

室温において熱電特性に優れた熱電材料、その製造方法およびその熱電発電素子を提供する。本発明の実施例において、熱電材料は、マグネシウム(Mg)と、アンチモン(Sb)および/またはビスマス(Bi)と、銅(Cu)と、必要に応じてM(ただし、Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)とを含有する無機化合物を含み、無機化合物は、MgSb2-b-cBiCuで表され、パラメータa、b、cおよびdは、 3≦a≦3.5、 0≦b≦2、 0≦c≦0.06、 0<d≦0.1、および、 b+c≦2 を満たす。

Description

熱電材料、その製造方法、および、熱電発電素子
 本発明は、熱電材料、その製造方法、および、熱電発電素子に関し、詳細には、MgBi系の熱電材料を含有する熱電材料、その製造方法、および、熱電発電素子に関する。
 世界の中で特に省エネルギーが進んだ我が国においてでも、廃熱回収においては、一次供給エネルギーの約3/4が熱エネルギーとして廃棄されているのが現状である。そのような状況の下、熱電発電素子は、熱エネルギーを回収して電気エネルギーに直接変換できる固体素子として注目されている。
 熱電発電素子は、電気エネルギーへの直接変換素子であるため、可動部分がないことによるメンテナンスの容易さ、スケーラビリティ等のメリットがある。このため、熱電半導体について、IoT動作電源などとしても、盛んな材料研究が行われている。
 IoT動作電源用途としては、室温近傍での実用が期待されるが、室温近傍の最高性能を有する熱電材料はBiTe系の材料で、Teの希少さのために、広範囲実用化の問題がある。しかし、室温ではこうしたTe化合物以外では比較的高性能を有する材料があまりなく問題であったが、MgSb系材料が一つの候補として挙がっている(例えば、特許文献1および2ならびに非特許文献1を参照)。
 非特許文献1は、Mg3.2Sb1.5Bi0.49Te0.01のマグネシウム(Mg)サイトにFe、Co、HfおよびTaをドープさせたドープ熱電材料を報告する(例えば、特許文献1を参照)。非特許文献1によれば、母相としてMgSb系としてMg3.2Sb1.5Bi0.5Te0.01のMgサイトに少量の上述の金属元素をドープすることによって、熱電材料の電気伝導率およびゼーベック係数が高く、性能指数が向上することを開示する。
 特許文献1は、Mg3+m2-eで表される熱電変換材料に関する。ここで、元素Aは、Ca、Sr、Ba、およびYbからなる群から選択される少なくとも1種を表し、元素Bは、MnおよびZnからなる群から選択される少なくとも1種を表し、mの値は-0.39以上0.42以下であり、aの値は0以上0.12以下であり、bの値は0以上0.48以下であり、元素Dは、SbおよびBiからなる群から選択される少なくとも1種を表し、元素Eは、SeおよびTeからなる群から選択される少なくとも1種を表し、eの値は、0.001以上0.06以下である。
 特許文献2は、Mg3+m-a2-c-eにより表される熱電変換材料に関する。ここで、元素Aは、Ca、Sr、Ba、Nb、Zn、およびAlからなる群から選択される少なくとも1種を表し、元素Bは、SbおよびBiからなる群から選択される少なくとも1種を表し、元素Cは、Mn、SiおよびCrからなる群から選択される少なくとも1種を表し、元素Eは、SeおよびTeからなる群から選択される少なくとも1種を表し、mの値は-0.1以上0.4以下であり、aの値は0以上0.1以下であり、cの値は0以上0.1以下であり、eの値は、0.01以上0.06以下である。
 特許文献1、2ならびに非特許文献1においても、種々の材料の組み合わせを開示するが、特に、室温においてパワーファクタおよび無次元性能指数ZTの値は十分ではない。IoT発電用途を考えると、室温において14μWcm-1-2を超える高いパワーファクタ、および、0.3を超える無次元性能指数ZTを有する熱電材料が開発されることが期待される。
国際公開第2017/072982号 特開2018-190953号公報
Jun Maoら,PNAS,114(40),10548-10553,2017
 以上から、本発明の実施例において、課題は、室温において熱電特性に優れた熱電材料、その製造方法およびその熱電発電素子を提供することである。
 本発明の実施例において、熱電材料は、マグネシウム(Mg)と、アンチモン(Sb)および/またはビスマス(Bi)と、銅(Cu)と、必要に応じてM(ただし、前記Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)とを含有する無機化合物を含み、前記無機化合物は、MgSb2-b-cBiCuで表され、パラメータa、b、cおよびdは、
 3≦a≦3.5、
 0≦b≦2、
 0≦c≦0.06、
 0<d≦0.1、および、
 b+c≦2
 を満たしてもよい。上記課題が解決される。
 前記パラメータdは、
 0.005≦d≦0.05
 を満たしてもよい。
 前記パラメータa、b、cおよびdは、
 3≦a≦3.5、
 0.2≦b≦0.7、
 0≦c≦0.06、および、
 0.005≦d≦0.05
 を満たしてもよい。
 前記無機化合物は、La型構造を有し、空間群P-3m1の対称性を有してもよい。
 前記Cuは、前記La型構造に侵入型固溶していてもよい。
 前記熱電材料は、n型であってもよい。
 前記熱電材料は、粉末、焼結体および薄膜からなる群から選択される形態であってもよい。
 前記熱電材料は、粉末または焼結体の形態であり、前記無機化合物は、3.5μm以上30μm以下の範囲の平均粒径を有する結晶粒からなってもよい。
 前記無機化合物は、4μm以上20μm以下の範囲の平均粒径を有する結晶粒からなってもよい。
 前記熱電材料は、薄膜の形態であり、前記無機化合物は、3.5μm以上30μm以下の範囲の平均粒径を有する結晶粒からなり、有機材料をさらに含有してもよい。
 本発明の実施例において、上記熱電材料を製造する方法は、マグネシウム(Mg)を含有する原料と、アンチモン(Sb)を含有する原料、および/または、ビスマス(Bi)を含有する原料と、銅(Cu)を含有する原料と、必要に応じてM(ただし、前記Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)を含有する原料とを混合し、混合物を調製することと、前記混合物を焼結することとを包含してもよい。上記課題は解決される。
 前記焼結することは、放電プラズマ焼結してもよい。
 前記放電プラズマ焼結は、723K以上1173K以下の温度範囲で、30MPa以上100MPa以下の圧力下で、1分以上10分以下の時間、焼結してもよい。
 前記焼結することによって得られた焼結体を粉砕することをさらに包含してもよい。
 前記粉砕することによって得られた粉末と有機材料とを混合することをさらに包含してもよい。
 前記焼結することによって得られた焼結体をターゲットに用いて物理的気相成長法を行うことをさらに包含してもよい。
 本発明の実施例において、熱電発電素子は、交互に直列に接続されたp型熱電材料およびn型熱電材料を備え、前記n型熱電材料は、上記熱電材料であってもよい。上記課題は解決される。
 本発明の実施例において、熱電材料は、マグネシウム(Mg)と、アンチモン(Sb)および/またはビスマス(Bi)と、銅(Cu)と、必要に応じてM(ただし、前記Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)とを含有する無機化合物を含む。無機化合物は、MgSb2-b-cBiCuで表され、3≦a≦3.5、0≦b≦2、0≦c≦0.06、0<d≦0.1、および、b+c≦2を満たす。このように、Mgと、Sbおよび/またはBiと、Mとを母相とする無機化合物にCuを添加することにより、室温における電気伝導率が向上し、熱伝導率も効果的に低減し、性能指数が向上した熱電材料を提供できる。このような熱電材料は、熱電発電素子に有利である。
 本発明の実施例において、熱電材料の製造方法は、マグネシウム(Mg)を含有する原料と、アンチモン(Sb)を含有する原料、および/または、ビスマス(Bi)を含有する原料と、銅(Cu)を含有する原料と、必要に応じてM(ただし、前記Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)を含有する原料とを混合し、混合物を調製することと、この混合物を焼結することとにより、上述の熱電材料が得られるため、汎用性に優れる。
本発明の実施例において、熱電材料を製造する工程を示すフローチャート La型構造を有するMg(Sb,Bi)系結晶を模式的に示す図 本発明の実施例において、熱電材料を用いた熱電発電素子(π字型)を示す模式図 本発明の実施例において、熱電材料を用いた熱電発電素子(U字型)を示す模式図 本発明の実施例において、熱電材料を用いた薄膜製造を示す模式図 本発明の実施例において、熱電材料を用いた粉末、圧粉機、焼結炉、焼結体を示す模式図 例1の試料の外観を示す図 例1~例5の試料のSEM像およびEDSマッピングを示す図 例2の試料のEBSD像を示す図 例5の試料のEBSD像を示す図 例1~例5の試料のXRDパターンを示す図 例1~例5の試料の格子定数のCu添加量依存性を示す図 例1~例5の試料の電気伝導率の温度依存性を示す図 例1~例5の試料のキャリア濃度および移動度のCu添加量依存性を示す図 例1~例5の試料のゼーベック係数の温度依存性を示す図 例1~例5の試料の電気出力因子の温度依存性を示す図 例1~例5の試料の全熱伝導率の温度依存性を示す図 例1~例5の試料の格子熱伝導率の温度依存性を示す図 例1~例5の試料の無次元性能指数ZTの温度依存性を示す図 例6~例7の試料の電気伝導率の温度依存性を示す図 例6~例7の試料のゼーベック係数の温度依存性を示す図 例6~例7の試料の電気出力因子の温度依存性を示す図 例6~例7の試料の全熱伝導率の温度依存性を示す図 例6~例7の試料の格子熱伝導率の温度依存性を示す図 例6~例7の試料の無次元性能指数ZTの温度依存性を示す図 例8~例10の試料の電気伝導率の温度依存性を示す図 例8~例10の試料のゼーベック係数の温度依存性を示す図 例8~例10の試料の電気出力因子の温度依存性を示す図 例8~例10の試料の全熱伝導率の温度依存性を示す図 例8~例10の試料の格子熱伝導率の温度依存性を示す図 例8~例10の試料の無次元性能指数ZTの温度依存性を示す図
 以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の要素には同様の番号を付し、その説明を省略する。
 本発明の実施例において、熱電材料は、マグネシウム(Mg)と、アンチモン(Sb)および/またはビスマス(Bi)と、銅(Cu)と、必要に応じてM(ただし、Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素)とを含有する無機化合物を含む。
 無機化合物は、MgSb2-b-cBiCuで表され、パラメータa~dは、それぞれ、
 3≦a≦3.5、
 0≦b≦2、
 0≦c≦0.06、
 0<d≦0.1、および、
 b+c≦2
 を満たす。このような組成にすることにより、Mgと、Sbおよび/またはBiと、Mとからなる無機化合物を母相とし、それにCuが添加された組成を有する無機化合物のように、全体として構成されてもよい。このようにすると、特に室温(273K以上320K以下の温度範囲)における電気伝導率が向上し、熱伝導率も効果的に低減し、性能指数が向上した熱電材料を提供できる。本発明の実施例において、熱電材料は、上述の組成を満たすことにより、電子をキャリアにもったn型の熱電材料として機能し得る。
 無機化合物の母相は、好ましくは、MgSb2-b-cBiからなり、これにCuが添加されていてもよい。ここで、母相は、好ましくは、MgSb系結晶であり、La型構造を有し、P-3m1空間群(International Tables for Crystallographyの164番目)に属する。なお、本願明細書において、「-3」は、「オーバーバー付きの3」を表すものとする。
 MgSb系とは、上述の元素(例えば、Mg、Sb、Bi、Se、Te)からなり、上述の結晶構造(例えば、La型構造)および空間群(例えば、P-3m1空間群)を有してもよい。それ以外には、特に制限はないが、例示的には、MgSb、Mg3.2(Sb,Bi)、Mg3.2((Sb,Bi),M)等が挙げられる。(Sb,Bi)と記載した際には、SbとBiとが入る席に、相互に区別することなくSbおよびBiが入ることを示し、((Sb,Bi),M)と記載した際には、Sbおよび/またはBiが入る席に、相互に区別することなくSbおよび/またはBiとMとが入ることを示す。ここで、Mは、SeおよびTeからなる群から少なくとも1種選択される元素である。Mg3.2(Sb,Bi)の例示的な組成には、Mg3.2Sb1.5Bi0.5がある。Mg3.2((Sb,Bi),M)の例示的な組成には、Mg3.2Sb1.5Bi0.49Te0.01がある。これらは、何れも上述の結晶構造および空間群を有してもよく、いわゆる過剰の成分は、一部の結晶構造におけるいわゆる欠陥を構成するとも考えられ、無機化合物全体としてn型等のような特性が賦与されるかもしれない。
 本発明の実施例において、MgSb系結晶は、La型構造を有し、P-3m1空間群に属する。図1Bに、MgSb系結晶の結晶構造を模式的に示す。MgSb系結晶を構成する構成成分が他の元素で置き換わったり、格子間原子(例えば、Cu)として固溶したりし得る。このような場合、格子定数は変化することもあるが、結晶構造と原子が占めるサイトとその座標によって与えられる原子位置は骨格原子間の化学結合が切れるほどには大きく変わることはないと考えられる。本発明の実施例については、得られた無機化合物のX線回折や中性子線回折の結果をP-3m1の空間群でリートベルト解析して求めた格子定数が、理論値(a=4.582Å、b=4.582Å、c=7.244Å)と比べて±5%以内の場合はMgSb系結晶であると判定できる。
 本発明の実施例において、MgSb2-b-cBiで表される母相は、MgSb系結晶でよいが、SbおよびBiは、相互に完全置換可能であってよい。例えば、MgSb系結晶は、MgBi結晶構造を含んでもよい。例えば、パラメータbは、0を含んで、それ以上であってもよい。0.2以上であってもよい。また、2以下であってもよい。また、0.7以下であってもよい。また、M(Seおよび/またはTe)の成分量を表すcは、0を含んで、それ以上であってもよい。0.06以下であってもよい。Mの添加は、母相のMgSb系結晶の結晶構造を破壊を引き起こすことなく、何らかの特性を得られた無機化合物に賦与してもよい。Cuの成分量を表すパラメータdは、0より大きい。また、より好ましくは、0.001以上であってもよく、0.005以上であってもよい。パラメータdは、0.1以下であるが、好ましくは、0.05以下、0.025以下であってもよい。また、0<d≦0.1の範囲を満たしてもよく、好ましくは、0.005≦d≦0.05の範囲を満たしてよい。このような範囲であれば、室温における電気伝導率がさらに向上し、熱伝導率もさらに低減し、性能指数が向上し得る。パラメータdは、より好ましくは、0.005≦d≦0.025の範囲を満たしてよい。この範囲において、室温における性能指数が向上し得る。
 パラメータa~dが、好ましくは、
 3≦a≦3.5、
 0.2≦b≦0.7、
 0≦c≦0.06、および、
 0.005≦d≦0.05
 を満たす。このような組成にすることにより、室温における電気伝導率がさらに向上し、熱伝導率もさらに低減し、性能指数が向上し得る。
 Cu原子は、好ましくは、La型構造に侵入型固溶していると考えられる。一般にMgSb系結晶に添加される元素は、結晶構造を構成する元素の一部を置換すると考えられていた。そして、結果として得られる無機化合物の結晶構造にも影響を及ぼすと考えられていた。しかしながら、本願発明者らは、Cuを添加することにより、材料の粒成長や粒界の改質を促進できることを見出した。このような粒成長や粒界の改質は、キャリアの散乱機構に寄与し、室温などの比較的低温(500K以下)において散乱が低下するため、室温における電気抵抗が低下し、電気伝導率が向上し、熱電性能が向上し得ると考えられる。
 なお、Cu原子が侵入型固溶していることは、得られる無機化合物の粉末X線回折によりa軸およびc軸の格子定数の変化を測定することによってわかると考えられる。得られた無機化合物からMgSb系結晶が同定され、リートベルト解析から求めた格子定数(例えば、a、c)が、対応するCu未添加の無機化合物の格子定数と比較して、増大している場合には、Cuが侵入型固溶していると判断できるかもしれない。
 本発明の実施例において、熱電材料は、粉末、焼結体、および、薄膜からなる群から選択される形態であってよい。これにより、室温において高い熱電性能を発揮した、各種熱電発電素子に適用できる。
 なお、本発明の実施例において、熱電材料が、粉末または焼結体である場合、無機化合物は、3.5μm以上30μm以下の範囲の平均粒径を有する結晶粒からなってもよい。これにより、散乱効果が高くなり、室温における電気伝導率が向上し、熱電性能が向上し得る。より好ましくは、無機化合物は、4μm以上20μm以下の範囲の平均粒径を有する結晶粒からなってもよい。これにより、散乱効果がさらに高くなり、室温における電気伝導率が向上し、かつ、粒径が大きくなっているのにも関わらず熱伝導率が低減し、熱電性能がさらに向上し得る。なおさらに好ましくは、無機化合物は、4μm以上10μm以下の範囲の平均粒径を有する結晶粒からなってもよい。
 なお、本願明細書において、結晶粒の平均粒径は、電子線後方散乱回折(EBSD)測定装置に付属する画像解析ソフト(HKL CHANNEL5、HKL Tango、ver.5.12.72.0、オックスフォードインスツルメンツ株式会社)によって解析、算出されたものである。
 本発明の実施例において、熱電材料は、薄膜の形態であってもよく、薄膜は、後述する物理的気相成長法等により結晶性薄膜であってもよいし、上述の粉末を含有する薄膜であってもよい。ここで、一般に、粉末とは、砕けて細かになったものや、こなを含んでよい。粉末を圧粉機のようなプレスにより加圧すると圧粉体を形成することができる。一般に、圧粉体とは、粉末を圧縮して所定の形状としたものをいう。粉末成分の融点以下の温度で加熱した場合、粉末粒子の相互の接触面が接着し、加熱時間の増加とともに圧粉体が収縮・緻密化する現象を焼結といい、焼結により得られたものを焼結体ということもできる。薄膜とは、うすい膜のことを言い、固体表面の上に気相が凝縮して形成された層を含んでもよい。
 本発明の実施例において、熱電材料が無機化合物の粉末を含有する膜である場合、粉末と有機材料と混合し、膜状に加工したものである。この場合、有機材料には、ポリ(3,4-エチレンジオキシチオフェン)ポリスチレンスルホン酸(PEDOT:PSS)、ポリ[2,5-ビス(3-テトラデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン](PBTTT)、ポリアニリン(PANI)、テトラチアフルバレン(TTF)、および、ベンゾジフランジオンパラフェニレンビニリデン(BDPPV)からなる群から少なくとも1種選択される有機材料を用いることができる。これらの有機材料であれば、フレキシブルな膜状の熱電材料を提供できる。
 この場合、膜を形成可能であれば、粉末の含有量は特に制限はないが、好ましくは、粉末は、有機材料に対して4質量%以上80質量%以下、好ましくは、4質量%以上50質量%以下、なお好ましくは、4質量%以上10質量%以下、なおさらに好ましくは、4質量%以上7質量%以下の範囲で含有されてもよい。これにより、フレキシビリティを有し、熱電性能を有する膜となり得る。
 本発明の実施例において、熱電材料は、特に室温において電気伝導率が向上し、熱伝導率も効果的に低減し、性能指数が向上し得る。Cuが添加されても、高温(例えば573Kなど)におけるMgSb系材料が本来有する優れた性能指数を損なうことはなかった。
 次に、このような本発明の実施例において、熱電材料の例示的な製造方法を説明する。
 図1Aは、本発明の実施例において、熱電材料を製造する工程を示すフローチャートである。
 ステップS110:マグネシウム(Mg)を含有する原料と、アンチモン(Sb)を含有する原料、および/または、ビスマス(Bi)を含有する原料と、銅(Cu)を含有する原料と、必要に応じてM(ただし、Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)を含有する原料とを混合し、混合物を調製する。
 ステップS120:ステップS110で得られた混合物を焼成する。
 本発明の実施例において、熱電材料は、上述のステップS110およびS120によって得られる。各ステップについて詳述する。
 ステップS110において、Mgを含有する原料は、Mg金属単体であってもよいし、Mgのケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物または酸フッ化物であってもよい。Sbを含有する原料は、Sb金属単体であってもよいし、Sbのケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物または酸フッ化物であってもよい。Biを含有する原料は、Bi金属単体であってもよいし、Biのケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物または酸フッ化物であってもよい。Cuを含有する原料は、Cu金属単体であってもよいし、Cuのケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物または酸フッ化物であってもよい。Mを含有する原料は、M金属単体であってもよいし、Mのケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物または酸フッ化物であってもよい。原料は、混合性および取り扱いの観点から粉末、粒、小塊がよい。
 ステップS110において、原料中の金属元素が、以下の組成式MgSb2-b-cBiCuを満たすように混合される。ここで、パラメータa、b、cおよびdは、
 3≦a≦3.5、
 0≦b≦2、
 0≦c≦0.06、
 0<d≦0.1、および、
 b+c≦2
 を満たす。なお、好ましいパラメータは上述した通りであるため説明を省略する。
 ステップS120において、焼結は、放電プラズマ焼結(SPS)、ホットプレス焼結(HP)、熱間等方加圧焼結(HIP)、冷間等方圧加圧焼結(CIP)、パルツ通電焼結等の任意の方法によって行われてよいが、好ましくは、放電プラズマ焼結(SPS)によって行われてもよい。これにより、焼結助剤を用いることなく、短時間で粒成長を抑制した焼結体が得られる。
 SPSは、好ましくは、723K以上1173K以下の温度範囲で、30MPa以上100MPa以下の圧力下で、1分以上10分以下の時間、行われてもよい。本発明の実施例において、この条件で、上述の焼結体である熱電材料が歩留まりよく得られる。
 さらに、得られた焼結体をボールミルなどのメカニカルミリングによって粉砕してもよい。本発明の実施例において、これにより、粉末である熱電材料が得られる。
 本発明の実施例において、このようにして得られた粉末である熱電材料を、有機材料と混合すれば、フレキシブルな熱電材料を提供できる。この場合上述の有機材料および混合割合を採用できる。
 あるいは、得られた焼結体をターゲットに用い、物理的気相成長法を行ってもよい。本発明の実施例において、これにより、熱電材料からなる薄膜を提供できる。
(実施の形態2)
 実施の形態2では、本発明の実施例において、実施の形態1で説明した熱電材料を用いた熱電発電素子について説明する。
 図2Aは、本発明の実施例において、熱電材料を用いた熱電発電素子(π字型)を示す模式図である。
 本発明の実施例において、熱電発電素子200は、一対のn型熱電材料210およびp型熱電材料220、ならびに、これらのそれぞれの端部に電極230、240を含む。電極230、240により、n型熱電材料210およびp型熱電材料220は、電気的に直列に接続される。
 ここで、p型熱電材料210は、特に制限はないが、500K以下、特に室温において熱電性能の高い(例えば、ZTが0.4~1.6)ものがよい。例示的には、p型熱電材料210は、BiSbTe系、MgAgSb系、AgSbSe系等が挙げられる。BiSbTe系の例示的な組成は、例えば、Bi0.5Sb1.5Te、Bi0.4Sb1.6Teである。MgAgSb系の例示的な組成は、例えば、MgAgSb、MgAg0.965Ni0.005Sb0.99である。AgSbSe系の例示的な組成は、例えば、AgSbSeである。これらは例示であって限定されないことに留意されたい。
 一方、本発明の実施例において、n型熱電材料220は、実施の形態1で説明した熱電材料である。本発明の実施例において、熱電材料は、とりわけ室温において優れた熱電特性を発揮するため、廃熱回収に有利である。
 電極230、240は、通常の電極材料であり得るが、例示的には、Fe、Ag、Al、Ni、Cu等である。
 図2Aでは、低温となる側の電極240に半田等によってn型熱電材料210からなるチップが接合され、n型熱電材料210のチップの反対側の端部と、高温となる側の電極230とが半田等によって接合されている様子が示される。同様に、高温側となる側の電極230に半田等によってp型熱電材料220からなるチップが接合され、p型熱電材料220のチップの反対側の端部と、低温となる側の電極240とが半田等によって接合されている様子が示される。
 電極230が高温、電極240が、電極230に比べて低温となるような環境に、本発明の実施例において、熱電発電素子200を設置して、端部の電極を電気回路等に接続すると、ゼーベック効果によって電圧が発生し、図2Aの矢印で示すように、電極240、n型熱電材料210、電極230、p型熱電材料220の順で電流が流れる。詳細には、n型熱電材料210内の電子が、高温側の電極230から熱エネルギーを得て、低温側の電極240へ移動し、そこで熱エネルギーを放出し、それに対して、p型熱電材料220の正孔が高温側の電極230から熱エネルギーを得て、低温側の電極240へ移動して、そこで熱エネルギーを放出するという原理によって電流が流れる。
 本発明の実施例において、n型熱電材料210として、本発明の実施例において、実施の形態1で説明した熱電材料を用いるので、とりわけ室温(275K以上320K以下)において発電量の大きな熱電発電素子200を実現できる。また、熱電材料として、本発明の実施例における熱電材料が、MgSb系を母相とし、これにCu原子が添加された無機化合物からなる粉末、それを含有する膜、あるいは、本発明の実施例において、熱電材料が上記無機化合物からなる焼結体をターゲットとして得た薄膜を用いた場合には、IoT電源としてフレキシブル熱電発電モジュールを提供できる。例えば、図2Cには、この無機化合物からなる焼結体をターゲット300として、アルゴン320によるスパッタリングにより、基板310上に、飛ばされた無機化合物からなる粒子330が付着し、薄膜340を形成する様子を図解する。この薄膜340は、基板310から既存の技術で剥離され単独膜に形成されることは言うまでもない。例えば、図2Dには、この無機化合物からなる粉末350を図解する。この粉末350を圧粉機370により圧粉すれば、圧粉体360が得られ、焼結炉390内に圧粉体380を配置して焼結すれば、焼結体400が得られる。
 本発明の実施例において、熱電材料を用いれば、室温において発電量の大きな熱電発電素子200を提供できるが、本発明の実施例において、熱電発電素子200は、室温より高温領域(例えば、573Kなど)での使用を制限するものではない。高温領域においても高い無次元性能指数(ZT)を示すので、大きな発電量の熱電発電素子を提供できることはいうまでもない。
 図2Aでは、π型の熱電発電素子を用いて説明したが、本発明の実施例において、熱電材料は、U字型熱電発電素子(図2B)に用いてもよい。この場合は、本発明の実施例において、熱電材料からなるn型熱電材料210およびp型熱電材料220が、高温側で接合部215で直接接続されている。低温側電極240a、240bがそれぞれ別のU字型熱電発電素子の低温側電極に電気的に接続されて構成されてもよい。
 次に具体的な実施例を用いて本発明について詳述するが、本発明がこれら実施例に限定されないことに留意されたい。
[原料]
 以降の例では、Mg(粉末、純度99.99%、シグマアルドリッチジャパン合同会社製)と、Sb(粉末、純度99.99%、シグマアルドリッチジャパン合同会社製)と、Bi(粉末、純度99.99%、シグマアルドリッチジャパン合同会社製)と、Te(粉末、純度99.99%、シグマアルドリッチジャパン合同会社製)と、必要に応じてCu(粉末、純度99.99%、シグマアルドリッチジャパン合同会社製)とを用いた。
[例1~例10]
 例1~例5では、一般式Mg3.2Sb1.5Bi0.49Te0.01Cu(d=0、0.005、0.01、0.025、0.05)を満たすように原料を混合し、熱電材料を製造した。例6~例7では、一般式Mg3.2Sb0.5Bi1.498Te0.002Cu0.01を満たすように原料を混合し、また、例8~例10では、一般式Mg3.2Sb0.5Bi1.495Te0.005Cu0.01を満たすように原料を混合し、熱電材料を製造した。
 各原料粉末を表1の組成を満たすよう秤量し、グローブボックス中でステンレス製のボールミル容器に充填して、5時間ボールミルで混合した。その後、放電プラズマ焼結装置(SPS、SPS Syntex,Inc製、SPS-1080システム)で、973Kで5分間焼成した。詳細には、グラファイト製焼結ダイ(die)(内径10mm、高さ30mm)に混合物を充填し、60MPaの一軸応力の下、昇温速度100K/分、焼結温度973K、5分保持した。このようにして焼結体を得た。例1~例5の試料は、それぞれ、d=0.005、d=0.01、d=0.025、d=0.05およびd=0の組成を満たし、例6~例10では、上述のような組成を満たした。
 焼結体を観察した。また、電子線後方散乱回折検出器(EBSD)およびエネルギー分散型X線分光器(EDS)を備える走査型電子顕微鏡(SEM、日本電子株式会社製、JSM-7800F)により表面観察を行い、平均粒径を求めた。平均粒径の算出は上述の画像解析ソフトを用いた。これらの結果を図3~図6および表2に示す。
 得られた焼成体をメノウ乳鉢でエタノールを用いた湿式粉砕を行った。粉砕後の焼成体の粒子をメッシュ(目開き45μm)により篩分けし、メッシュを通過した粒径45μm以下の粒子のみ取り出した。粒子を、粉末X線回折法(株式会社リガク製、SmartLab3)により同定し、蛍光X線分析(株式会社堀場製作所製、EMAX Evolution EX)により組成分析を行った。X線回折の結果を図7および図8に示す。
 焼結体を高速カッターにより1.5mm×1.5mm×9mmの直方体に加工し、電気伝導率および熱電物性測定を行った。電気伝導率を、直流四端子法によって測定した。熱電物性としてゼーベック係数および熱伝導率を、定常温度差法により、それぞれ、熱電物性測定評価装置(アドバンス理工株式会社製、ZEM-3)、熱伝導率評価装置(ネッチ社製、HyperflashXXX)を用いて測定した。測定条件は、いずれも、ヘリウムガス雰囲気下、室温から800Kの温度範囲まで測定した。電気伝導率または電気抵抗率およびゼーベック係数より得られる熱起電力から電気出力因子(パワーファクタ)を算出し、ゼーベック係数、電気伝導率および熱伝導率から無次元性能指数ZTを算出した。これらの結果を図9~図15および表3に示し、後述する。
 簡単のため、例1~例10の試料の製造条件を表1にまとめて示す。例1~例10の試料は、いずれも応力60MPaで焼結された。例1~例5は、焼結温度973K(700℃)で5分間焼結された。例6および例8は、焼結温度973K(700℃)で10分間焼結され、例7および例9は、焼結温度1023K(750℃)で10分間焼結され、例10は、焼結温度1073K(800℃)で10分間焼結された。以下、これらの結果を説明する。
Figure JPOXMLDOC01-appb-T000001
 図3は、例1の試料の外観を示す図である。
 図3に示すように、例1の試料は、直径10mm厚さ2mmのディスク状の焼結体であった。図示しないが、他の試料も同様の形態を有した。
 図4は、例1~例5の試料のSEM像およびEDSマッピングを示す図である。
 図4(A)~(E)は、それぞれ、例5、例1~例4の試料のSEM像あり、図4(F)は、例2の試料のEDSマッピングを示す。図4(A)~(E)によれば、Cuを添加することにより、明らかな粒成長が見られ、添加量が増大するにつれて、粒径も増大した。図4(F)はグレースケールで示されるが、Mg、BiおよびSbは全体に均一に位置することを確認した。
 図5は、例2の試料のEBSD像を示す図である。
 図6は、例5の試料のEBSD像を示す図である。
 図5および図6には、逆極点(IPF)マップとともに結晶粒マッピングと、粒径のヒストグラムとが示される。図5および図6によれば、Cuを添加していない例5の試料の平均粒径は、3.24μmであるのに対し、Cuを添加した例2の試料のそれは、4.57μmであった。EBSD像およびSEM像によれば、Cuを添加した例1、例3および例4の試料は、4μm以上6μm以下の平均粒径を有する無機化合物からなることを示唆する。また、Cuを添加することによって、平均粒径が40%以上増大することが分かった。さらに、Cuの添加量が多くなるにしたがって、平均粒径が増大する傾向を示した。
 図7は、例1~例5の試料のXRDパターンを示す図である。
 図8は、例1~例5の試料の格子定数のCu添加量依存性を示す図である。
 図7によれば、例1~例5の試料のXRDパターンの回折ピークは、すべて、MgSb相のそれに一致し、例1~例5の試料は、La型構造を有し、P-3m1空間群の対称性を有する無機化合物であることが分かった。組成分析により、いずれの試料の組成も、仕込み組成に一致することを確認した。図8によれば、Cuを添加することにより、a軸およびc軸ともに増大した。一般に、Cuの原子径は、MgやSbに比べて大きくはない。したがって、Cuは、置換型固溶ではなく、侵入型固溶であることが示された。
 したがって、例1~例4の試料は、MgとSbとBiとTeとを含有するLa型構造を有する無機結晶を母体結晶とし、これにCuが添加された無機化合物を含有することが示された。
Figure JPOXMLDOC01-appb-T000002
 図9は、例1~例5の試料の電気伝導率の温度依存性を示す図である。図16は、例6~例7の試料の電気伝導率の温度依存性を示す図であり、図22は、例8~例10の試料の電気伝導率の温度依存性を示す図である。
 図9によれば、Cuを添加した例1~例4の試料の電気伝導率は、Cuを添加していない例5の試料のそれよりも増大し、特に、室温近傍において顕著に増大したことが分かった。例1~例4の試料は、熱電材料として使用可能な電気伝導率(電気抵抗率)を有し、温度依存性を有した。また、室温における電気伝導率に着目すれば、Cuの添加量を制御することによって、室温において電気伝導率を約5×10(Ωm)-1まで高めることができた。図16~図27では、焼結温度を摂氏で表した数字が表示されており、図16~図21の700は例6で、750は例7であり、図22~図27の700は例8で、750は例9であり、800は例10である。図16によれば、焼結温度が高い方が電気伝導率は若干高くなり、図22によれば、同様に焼結温度が高い方が電気伝導率は若干高くなる。
 図10は、例1~例5の試料のキャリア濃度および移動度のCu添加量依存性を示す図である。
 図10によれば、Cuの添加量が増えるにしたがって、キャリア濃度および移動度も増大する傾向を示した。特に、移動度に着目すると、Cuの添加によって100cm-1-1を超える移動度が得られた。これは、Cuの侵入型固溶によるキャリアの散乱機構が有利になったためと考える。
 図11、図17、および図23は、例1~例5、例6~例7、および例8~例10の試料のゼーベック係数の温度依存性を示す図である。
 図11によれば、いずれの試料も170μV/K以上の大きな絶対値のゼーベック係数を有するn型伝導であることが確認された。驚くことに、Cuの添加により電気伝導率が向上しているにも関わらず、ゼーベック係数の大きさを損なうことはなかった。図17によれば、いずれの試料も220μV/K以上の大きな絶対値のゼーベック係数を有するn型伝導であることが確認された。図23によれば、いずれの試料も160μV/K以上の大きな絶対値のゼーベック係数を有するn型伝導であることが確認された。
 図12は、例1~例5の試料の電気出力因子の温度依存性を示す図である。図18は、例6~例7の試料の電気出力因子の温度依存性を示す図である。図24は、例8~例10の試料の電気出力因子の温度依存性を示す図である。
 図12によれば、Cuを添加した例1~例4の試料の電気出力因子(パワーファクタ)は、Cuを添加していない例5の試料のそれよりも、300K~400Kの低温領域において劇的に増大することが分かった。例えば、室温(300K)における例2の試料の電気出力因子(21.03μWcm-1-2)と、例5の試料のそれ(7.16μWcm-1-2)とを比較すると、約3倍に増大した。このことから、各種熱電冷却応用やIoT動作電源として貧熱を回収するに好適といえ、民生利用の熱電発電素子を提供できる。図18および図24によれば、例1~例4と同様な結果が得られた。
 図13は、例1~例5の試料の全熱伝導率の温度依存性を示す図である。図19は、例6~例7の試料の全熱伝導率の温度依存性を示す図である。図25は、例8~例10の試料の全熱伝導率の温度依存性を示す図である。
 図14は、例1~例5の試料の格子熱伝導率の温度依存性を示す図である。図20は、例6~例7の試料の格子熱伝導率の温度依存性を示す図である。図26は、例8~例10の試料の格子熱伝導率の温度依存性を示す図である。
 図13によれば、Cuの添加により、全熱伝導率は、わずかに減少した。ローレンツ数Lを計算し、全熱伝導率から電子熱伝導率を差し引き、格子熱伝導率を求めたところ、図14に示すように、400K以下の比較的低い温度領域では、Cuを添加した例1~例4の試料の格子熱伝導率は、Cuを添加していない例5の試料のそれよりも顕著に低下した。例えば、測定した全温度範囲において、例2の試料の格子熱伝導率と、例5の試料のそれとを比較すると、例2の試料の格子熱伝導率は、20~30%低減した。図19および図25ならび図20および図26によれば、例1~例4と同様な結果が得られた。
 図15は、例1~例5の試料の無次元性能指数ZTの温度依存性を示す図である。図21は、例6~例7の試料の無次元性能指数ZTの温度依存性を示す図である。図27は、例8~例10の試料の無次元性能指数ZTの温度依存性を示す図である。
 図15によれば、Cuを添加した例1~例4の試料のZTは、Cuを添加していない例5の試料のそれよりも増大することが分かった。特に、Cuを添加した例1~例4の試料は、400K以下の比較的低い温度領域ではこの傾向が顕著であり、室温で0.4以上の高い値を達成することが分かった。400Kを超える高温領域では、Cuの添加によっても、MgSb本来のZTが実質維持されることを確認した。図21および図27によれば、例1~例4と同様な結果が得られた。
 以上の熱電特性を表3にまとめて示す。表3において「E」は、10の累乗を表す。
Figure JPOXMLDOC01-appb-T000003
 表3によれば、Cuを添加した例1~例4の試料は、室温において、大きな電気伝導率を有し、性能指数が向上したことが分かった。また、Cuの添加量(d値)は、0.005≦d≦0.05の範囲、中でも、0.005≦d≦0.025の範囲が好ましいことが示された。また、例6~例10においては、ゼーベック係数と電気伝導率で形成される室温のパワーファクターが、例1~例5に比べて大きく、増強されたことを示した。例6~例10では、Sbに比べてBiの組成比を大きくしたので(表1参照)、バンドギャップが小さくなり、室温でのゼーベック係数をあまり損なわずに特に高い電気伝導率が得られたためである。また、全熱伝導が高いが、格子熱伝導率は比較的低かった。一般に、熱伝導は、電子等荷電粒子の移動に伴う熱の移動による熱伝導と、このような粒子の移動を伴わない格子振動の伝達による熱伝導があると言われている。温度差に基づいて、電圧が生じる熱電素子において、熱伝導率は低く、電気伝導率が高い方が好ましいと言われている。即ち、例6~例10では、このように好ましい状態が得られていたと考えられる。例えば、パワーファクターを考慮すると、SbよりもBiの組成比を大きくすることが好ましく、b>1がより好ましく、b≧1.2がさらに好ましく、b≧1.4がなおさらに好ましい。
 本発明の実施例において、熱電材料は、とりわけ室温近傍での熱電性能に優れており、BiTe系の代替材料として機能し得、各種電気機器に用いられる熱電冷却装置および発電装置に利用される。特に、薄膜化を行えば、IoT電源としてフレキシブル熱電発電素子を提供できる。
 200 熱電発電素子
 210 n型熱電材料
 220 p型熱電材料
 230、240 電極

 

Claims (17)

  1.  マグネシウム(Mg)と、アンチモン(Sb)および/またはビスマス(Bi)と、銅(Cu)と、必要に応じてM(ただし、前記Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)とを含有する無機化合物を含み、
     前記無機化合物は、MgSb2-b-cBiCuで表され、
     パラメータa、b、cおよびdは、
     3≦a≦3.5、
     0≦b≦2、
     0≦c≦0.06、
     0<d≦0.1、および、
     b+c≦2
     を満たす、熱電材料。
  2.  前記パラメータdは、
     0.005≦d≦0.05
     を満たす、請求項1に記載の熱電材料。
  3.  前記パラメータa、b、cおよびdは、
     3≦a≦3.5、
     0.2≦b≦0.7、
     0≦c≦0.06、および、
     0.005≦d≦0.05
     を満たす、請求項1または2に記載の熱電材料。
  4.  前記無機化合物は、La型構造を有し、空間群P-3m1の対称性を有する、請求項1~3のいずれかに記載の熱電材料。
  5.  前記Cuは、前記La型構造に侵入型固溶している、請求項4に記載の熱電材料。
  6.  前記熱電材料は、n型である、請求項1~5のいずれかに記載の熱電材料。
  7.  前記熱電材料は、粉末、焼結体および薄膜からなる群から選択される形態である、請求項1~6のいずれかに記載の熱電材料。
  8.  前記熱電材料は、粉末または焼結体の形態であり、
     前記無機化合物は、3.5μm以上30μm以下の範囲の平均粒径を有する結晶粒からなる、請求項7に記載の熱電材料。
  9.  前記無機化合物は、4μm以上20μm以下の範囲の平均粒径を有する結晶粒からなる、請求項8に記載の熱電材料。
  10.  前記熱電材料は、薄膜の形態であり、
     前記無機化合物は、3.5μm以上30μm以下の範囲の平均粒径を有する結晶粒からなり、
     有機材料をさらに含有する、請求項7に記載の熱電材料。
  11.  マグネシウム(Mg)を含有する原料と、アンチモン(Sb)を含有する原料、および/または、ビスマス(Bi)を含有する原料と、銅(Cu)を含有する原料と、必要に応じてM(ただし、前記Mは、セレン(Se)およびテルル(Te)からなる群から少なくとも1種選択される元素である)を含有する原料とを混合し、混合物を調製することと、
     前記混合物を焼結することと
     を包含する、請求項1~10のいずれかに記載の熱電材料を製造する方法。
  12.  前記焼結することは、放電プラズマ焼結する、請求項11に記載の方法。
  13.  前記放電プラズマ焼結は、723K以上1173K以下の温度範囲で、30MPa以上100MPa以下の圧力下で、1分以上10分以下の時間、焼結する、請求項12に記載の方法。
  14.  前記焼結することによって得られた焼結体を粉砕することをさらに包含する、請求項11~13のいずれかに記載の方法。
  15.  前記粉砕することによって得られた粉末と有機材料とを混合することをさらに包含する、請求項14に記載の方法。
  16.  前記焼結することによって得られた焼結体をターゲットに用いて物理的気相成長法を行うことをさらに包含する、請求項11~13のいずれかに記載の方法。
  17.  交互に直列に接続されたp型熱電材料およびn型熱電材料を備える熱電発電素子であって、前記n型熱電材料は、請求項1~10のいずれかに記載の熱電材料である、熱電発電素子。

     
PCT/JP2021/031156 2020-09-10 2021-08-25 熱電材料、その製造方法、および、熱電発電素子 WO2022054577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022547484A JPWO2022054577A1 (ja) 2020-09-10 2021-08-25
US18/025,608 US20230371382A1 (en) 2020-09-10 2021-08-25 Thermoelectric Material, Method for Producing Same, and Thermoelectric Power Generation Element
EP21866537.0A EP4212476A4 (en) 2020-09-10 2021-08-25 THERMOELECTRIC MATERIAL, ITS PRODUCTION METHOD AND THERMOELECTRIC ENERGY GENERATION ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-151704 2020-09-10
JP2020151704 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022054577A1 true WO2022054577A1 (ja) 2022-03-17

Family

ID=80632318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031156 WO2022054577A1 (ja) 2020-09-10 2021-08-25 熱電材料、その製造方法、および、熱電発電素子

Country Status (4)

Country Link
US (1) US20230371382A1 (ja)
EP (1) EP4212476A4 (ja)
JP (1) JPWO2022054577A1 (ja)
WO (1) WO2022054577A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133245A (zh) * 2021-11-15 2022-03-04 清华大学 热电陶瓷材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225550B1 (en) * 1999-09-09 2001-05-01 Symyx Technologies, Inc. Thermoelectric material system
US20130299754A1 (en) * 2012-05-14 2013-11-14 Samsung Electronics Co., Ltd. Power factor enhanced thermoelectric material and method of producing same
WO2017072982A1 (ja) 2015-10-27 2017-05-04 パナソニックIpマネジメント株式会社 熱電変換材料
JP2018190953A (ja) 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 ジントル相熱電変換材料
JP2019207983A (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 熱電変換材料及びこれを用いた熱電変換素子
WO2020003554A1 (ja) * 2018-06-27 2020-01-02 パナソニックIpマネジメント株式会社 熱電変換素子及び熱電変換モジュール
JP2020065035A (ja) * 2018-10-18 2020-04-23 国立中山大学National Sun Yat−Sen University 熱電合金及びその製造方法と熱電合金複合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126817A1 (en) * 2014-02-18 2015-08-27 University Of Houston System THERMOELECTRIC COMPOSITIONS AND METHODS OF FABRICATING HIGH THERMOELECTRIC PERFORMANCE MgAgSb-BASED MATERIALS
WO2020168531A1 (zh) * 2019-02-22 2020-08-27 中国科学院物理研究所 一种镁锑基热电元件及其制备方法和应用
CN112624063A (zh) * 2020-12-18 2021-04-09 上海大学 N型铜掺杂二锑化三镁合金热电材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225550B1 (en) * 1999-09-09 2001-05-01 Symyx Technologies, Inc. Thermoelectric material system
US20130299754A1 (en) * 2012-05-14 2013-11-14 Samsung Electronics Co., Ltd. Power factor enhanced thermoelectric material and method of producing same
WO2017072982A1 (ja) 2015-10-27 2017-05-04 パナソニックIpマネジメント株式会社 熱電変換材料
JP2018190953A (ja) 2017-05-08 2018-11-29 パナソニックIpマネジメント株式会社 ジントル相熱電変換材料
JP2019207983A (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 熱電変換材料及びこれを用いた熱電変換素子
WO2020003554A1 (ja) * 2018-06-27 2020-01-02 パナソニックIpマネジメント株式会社 熱電変換素子及び熱電変換モジュール
JP2020065035A (ja) * 2018-10-18 2020-04-23 国立中山大学National Sun Yat−Sen University 熱電合金及びその製造方法と熱電合金複合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN MAO ET AL., PNAS, vol. 114, no. 40, 2017, pages 10548 - 10553
See also references of EP4212476A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133245A (zh) * 2021-11-15 2022-03-04 清华大学 热电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
US20230371382A1 (en) 2023-11-16
EP4212476A4 (en) 2024-03-13
JPWO2022054577A1 (ja) 2022-03-17
EP4212476A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
Liu et al. Influence of Ag doping on thermoelectric properties of BiCuSeO
Bhardwaj et al. Enhancing thermoelectric properties of a p-type Mg 3 Sb 2-based Zintl phase compound by Pb substitution in the anionic framework
CN108878633B (zh) 津特耳相热电转换材料
Shen et al. Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping
Wang et al. High performance n-type (Bi, Sb) 2 (Te, Se) 3 for low temperature thermoelectric generator
Wang et al. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance
Chen et al. Miscibility gap and thermoelectric properties of ecofriendly Mg2Si1− xSnx (0.1≤ x≤ 0.8) solid solutions by flux method
KR102165812B1 (ko) 파마티나이트계 열전재료의 제조방법
JP2007158191A (ja) 熱電材料およびこの材料を用いた熱電変換素子
Zhang et al. Solution-processed n-type Bi2Te3− xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering
Thomas et al. Reduction in thermal conductivity and electrical resistivity in Cu2SnSe3/Cu2Se composite thermoelectric system
Li et al. Comparison of thermoelectric performance of AgPbxSbTe20 (x= 20–22.5) polycrystals fabricated by different methods
JP6608961B2 (ja) P型スクッテルダイト熱電材料、その製造方法およびこれを含む熱電素子
Li et al. Thermoelectric properties of p-type (Bi2Te3) x (Sb2Te3) 1− x prepared by spark plasma sintering
Li et al. Enhanced thermoelectric properties of p-type SnS0. 2Se0. 8 solid solution doped with Ag
Muthiah et al. Facile synthesis of higher manganese silicide employing spark plasma assisted reaction sintering with enhanced thermoelectric performance
Lee et al. Preparation and thermoelectric properties of iodine-doped Bi 2 Te 3-Bi 2 Se 3 solid solutions
Adam et al. Electrical and thermoelectrical properties of Bi2− xNaxTe3 alloys
WO2022054577A1 (ja) 熱電材料、その製造方法、および、熱電発電素子
KR102399079B1 (ko) 반-호이슬러계 열전 재료, 이의 제조 방법 및 이를 포함하는 열전 소자
Arai et al. Thermoelectric properties of Sb-doped Mg2 (Si0. 95Ge0. 05) synthesized by spark plasma sintering
Xing et al. Composition optimization of p-type AgSnmSbTem+ 2 thermoelectric materials synthesized by mechanical alloying and spark plasma sintering
JP7448259B2 (ja) 熱電材料、その製造方法、および、熱電発電素子
Aminzare et al. Effect of spark plasma sintering and Sb doping on the thermoelectric properties of Co4Ge6Te6 skutterudite
JP2021015862A (ja) 熱電材料、その製造方法、および、熱電発電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866537

Country of ref document: EP

Effective date: 20230411