WO2022054525A1 - Cleaning device - Google Patents

Cleaning device Download PDF

Info

Publication number
WO2022054525A1
WO2022054525A1 PCT/JP2021/030374 JP2021030374W WO2022054525A1 WO 2022054525 A1 WO2022054525 A1 WO 2022054525A1 JP 2021030374 W JP2021030374 W JP 2021030374W WO 2022054525 A1 WO2022054525 A1 WO 2022054525A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
cleaning
sensor
sensors
pipes
Prior art date
Application number
PCT/JP2021/030374
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 成毛
昌明 上田
昇 山本
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2022054525A1 publication Critical patent/WO2022054525A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/023Cleaning the external surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/04Feeding and driving arrangements, e.g. power operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G3/00Rotary appliances
    • F28G3/10Rotary appliances having scrapers, hammers, or cutters, e.g. rigidly mounted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the technology disclosed here relates to cleaning equipment.
  • the cleaning device disclosed in Patent Document 1 cleans a pipe while traveling on the pipe.
  • the cleaning device includes a traveling mechanism that travels on the pipe and a cleaning mechanism that is lowered and raised from the traveling mechanism to the gap between the pipes.
  • the traveling mechanism moves the cleaning mechanism to an appropriate position above the gap between the pipes. From that state, the cleaning mechanism enters the gap between the pipes. However, deposits are attached on the pipe, and an error may occur in the movement by the traveling mechanism. If the cleaning mechanism is not in the proper position, the cleaning mechanism will not be able to properly enter the gap between the pipes.
  • the technology disclosed here was made in view of this point, and the purpose thereof is to improve the movement accuracy of the traveling mechanism traveling on the pipe.
  • the cleaning device disclosed here includes a device main body, a traveling mechanism provided on the device main body and traveling on a plurality of pipes arranged in a predetermined arrangement direction, and the plurality of cleaning devices descending from the device main body.
  • a cleaning mechanism that enters between the two pipes included in the pipes to clean the deposits on the surface of the pipes, and a cleaning mechanism provided on the main body of the device in the arrangement direction with respect to one of the two pipes. It includes a first sensor for detecting a relative position and a second sensor provided in the main body of the device for detecting a relative position in the arrangement direction of the two tubes with respect to the other tube.
  • the cleaning device it is possible to improve the moving accuracy of the traveling mechanism traveling on the pipe.
  • FIG. 1 is a side view of the cleaning device according to the first embodiment.
  • FIG. 2 is a front view of the cleaning device.
  • FIG. 3 is a front view of the cleaning device showing the cleaning mechanism in a cross-sectional view.
  • FIG. 4 is a view of the cleaning mechanism in the Y-axis direction.
  • FIG. 5 is a cross-sectional view of the cleaning unit in the SS line of FIG. 4 in a state where the scraper is housed.
  • FIG. 6 is a cross-sectional view of the cleaning unit in the SS line of FIG. 4 in a state where the scraper is expanded.
  • FIG. 7 is a view of the cleaning mechanism in a state where the guide is contracted in the X-axis direction.
  • FIG. 8 is a view of the cleaning mechanism with the guide expanded in the X-axis direction.
  • FIG. 9 is a view of the state in which the cleaning mechanism is cleaning the pipe in the X-axis direction.
  • FIG. 10 is an explanatory diagram illustrating the positional relationship between the sensor and the tube.
  • FIG. 11 is an explanatory diagram illustrating the dimensional relationship between the first and second sensors and the two pipes.
  • FIG. 12 is an explanatory diagram showing the positional relationship between the first and second sensors and the two pipes when the first and second sensors are displaced from the central position to the first pipe side in the arrangement direction.
  • FIG. 13 is an explanatory diagram showing the positional relationship between the first and second sensors and the two pipes when the first and second sensors are displaced from the central position to the second pipe side in the arrangement direction.
  • FIG. 14 is a view of the main body of the apparatus when the traveling direction of the traveling mechanism and the two pipes are parallel to each other in the Z-axis direction.
  • FIG. 15 is a view of the main body of the device when the traveling direction of the traveling mechanism is tilted with respect to the two pipes in the Z-axis direction.
  • FIG. 16 is a block diagram of the main body controller.
  • FIG. 17 is a flowchart of cleaning control.
  • FIG. 18 is a flowchart of cleaning control according to the first modification.
  • FIG. 19 is a side view of the cleaning device according to the modified example 2.
  • FIG. 20 is a side view of the cleaning device according to the second embodiment.
  • FIG. 21 is a view of the state in which the cleaning mechanism is cleaning the pipe as viewed in the Y-axis direction.
  • Embodiment 1 The cleaning device 100 according to the first embodiment cleans the deposits adhering to the surface of the pipe included in the pipe group.
  • FIG. 1 is a side view of the cleaning device 100.
  • FIG. 2 is a front view of the cleaning device 100.
  • FIG. 3 is a front view of the cleaning device showing the cleaning mechanism in a cross-sectional view.
  • a tube group Q (see FIGS. 2 and 3) formed by a plurality of tubes P is provided.
  • a fluid such as water circulates inside the pipe P.
  • the tube P is a heat transfer tube and exchanges heat with the heat generated in the combustion chamber of the boiler.
  • the plurality of pipes P extend horizontally and are arranged horizontally and vertically. That is, in the tube group Q, a plurality of tubes P are arranged in a state parallel to each other in the horizontal direction, and a plurality of tubes P are arranged in a state parallel to each other in the vertical direction.
  • the tube P is made of a conductive material. Further, the tube P is a circular tube having a substantially circular cross section.
  • one tube P and the other tube P are connected to each other to form one tube. That is, in the tube group Q, when one tube extends horizontally and then folds back and extends horizontally again, or when one tube extends horizontally and then folds back and extends horizontally again. May be repeated and extend in a meandering manner as a whole.
  • each of the portions extending in the horizontal direction is regarded as one tube P. Therefore, even if it is actually one continuous pipe, if there are a plurality of portions extending in the horizontal direction, it is treated as a plurality of pipes P.
  • the ash generated by combustion can adhere to the pipe P. Some of the ash melts into clinker.
  • deposits such as ash and clinker are attached to the surface of the tube P.
  • the deposit is not limited to the one that is in direct contact with the surface of the pipe P, but also includes the one that is further stacked on the one that is in direct contact with the surface of the pipe P.
  • the deposit is not limited to the one that is in direct contact with the surface of the tube P, but also the ash that is further deposited on the ash.
  • the cleaning device 100 is placed on a plurality of pipes P arranged in a predetermined arrangement direction (here, the horizontal direction).
  • the cleaning device 100 includes a device main body 1, a traveling mechanism 2 provided on the device main body 1 and traveling on the pipe P included in the pipe group Q, and a plurality of cleaning devices 100 descending from the device main body 1 and arranged in the horizontal direction.
  • a cleaning mechanism 3 that enters the pipe group Q through a gap between the two pipes P included in the pipe P to clean the deposits on the surface of the pipe P, and two pipes P provided in the main body 1 of the apparatus.
  • the cleaning device 100 may further include a main body controller 9 (see FIG. 1) that controls the cleaning device 100.
  • the cleaning device 100 lowers and raises the cleaning mechanism 3 between the two pipes P to clean the two pipes P and the deposits adhering to the pipes P arranged below them.
  • the cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a.
  • the apparatus main body 1 may be provided at a position where the position of 2 in the traveling direction is different from that of the second sensor 71b, and may further include a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the other tube P.
  • the cleaning device 100 may further include a vision sensor 8 (see FIG. 1) that captures at least one of the device main body 1 and the traveling mechanism 2 mounted on a plurality of pipes P.
  • the vision sensor 8 is an example of an image pickup device.
  • the main body controller 9 is an example of a control unit.
  • the X-axis is set in the traveling direction of the cleaning device 100 (that is, the traveling direction of the traveling mechanism 2)
  • the Z-axis is set in the vertical direction of the cleaning device 100 (that is, the elevating direction of the cleaning mechanism 3)
  • the cleaning device 100 is set.
  • the Y-axis is set in the width direction (that is, the direction orthogonal to both the traveling direction and the vertical direction).
  • the U-axis, V-axis, and W-axis that are orthogonal to each other with respect to the tube group Q are defined.
  • the U-axis is set in the direction in which the tube P extends
  • the V-axis is set in the direction orthogonal to and horizontal to the U-axis
  • the W-axis is set in the direction orthogonal to and vertical to the U-axis.
  • the apparatus main body 1 has a flat plate-shaped base 11 extending on an XY plane, a case 12 provided on the base 11 for accommodating the cleaning mechanism 3, and an elevating mechanism 14 for raising and lowering the cleaning mechanism 3 from the apparatus main body 1. ing.
  • An opening 11a (see FIG. 3) penetrating the base 11 is formed substantially in the center of the base 11.
  • the case 12 is formed in a square cylinder shape having a substantially rectangular cross section with the X-axis direction as the longitudinal direction. The case 12 penetrates the opening 11a of the base 11.
  • the traveling mechanism 2 has two crawlers 21 attached to the lower surface of the base 11.
  • the crawler 21 is configured to travel in the X-axis direction. That is, the rotation axis of the drive wheel of the crawler 21 extends in the Y-axis direction.
  • the two crawlers 21 are arranged in the Y-axis direction with the opening 11a of the base 11 interposed therebetween.
  • the cleaning mechanism 3 descends and rises from the device main body 1 to clean the deposits on the surface of the pipe P located below the traveling mechanism 2.
  • the cleaning mechanism 3 is housed in the case 12 when cleaning is not performed. When cleaning, the cleaning mechanism 3 descends downward from the case 12 and cleans the surface of the pipe P included in the pipe group Q while traveling in the pipe group Q.
  • the elevating mechanism 14 has two winches 15 and a wire 16 wound around each winch 15.
  • the winch 15 is installed on the upper surface of the base 11.
  • the two winches 15 are arranged so as to sandwich the case 12 in the X-axis direction.
  • the wire 16 is wound around the reel of the winch 15.
  • One end of the wire 16 is attached to the cleaning mechanism 3. That is, the cleaning mechanism 3 is suspended by the two wires 16 and is moved up and down in the Z-axis direction by the elevating mechanism 14.
  • Each of the first to fourth sensors 71a to 71d has the same configuration.
  • sensor 71 detects the relative position between the sensor 71 and the tube P in the arrangement direction. Specifically, the sensor 71 detects the distance from the sensor 71 to the surface of the tube P.
  • the sensor 71 is attached to the lower surface of the base 11.
  • the vision sensor 8 images the apparatus main body 1 mounted on the plurality of tubes P from above. Therefore, the vision sensor 8 acquires an image including at least one of the device main body 1 and the traveling mechanism 2 and a plurality of tubes P on which the traveling mechanism 2 is mounted.
  • the main body controller 9 is mounted on the device main body 1.
  • An external controller 98 that the operator operates when inputting a command may be connected to the main body controller 9.
  • the external controller 98 is connected to the main body controller 9 via the cable 99.
  • the operator inputs a command to the main body controller 9 by operating the external controller 98.
  • the external controller 98 can input an operation command to the cleaning device 100 as a command.
  • the external controller 98 may be capable of inputting various settings related to operation.
  • the external controller 98 may be wirelessly connected to the main body controller 9.
  • FIG. 4 is a view of the cleaning mechanism 3 in the Y-axis direction.
  • FIG. 5 is a cross-sectional view of the cleaning unit 4 in the SS line of FIG. 4 in a state where the scraper 34 is housed.
  • FIG. 6 is a cross-sectional view of the cleaning unit 4 in the SS line of FIG. 4 in a state where the scraper 34 is expanded.
  • FIG. 7 is a view of the cleaning mechanism 3 with the guide 5 contracted in the X-axis direction.
  • FIG. 8 is a view of the cleaning mechanism 3 with the guide 5 expanded in the X-axis direction.
  • the cleaning mechanism 3 has a frame 31, three cleaning units 4 supported by the frame 31, and a guide 5 that guides the cleaning mechanism 3 in the traveling direction when the cleaning mechanism 3 advances in the pipe group Q. ing.
  • the frame 31 is formed in a substantially quadrangular frame shape.
  • a cover 31a is attached to the frame 31, whereby the frame 31 is formed in a box shape as a whole.
  • Each of the pair of vertical frames 31b provided at both ends of the frame 31 in the X-axis direction and extending in the Z-axis direction is provided with a locking portion 31c to which the wire 16 of the elevating mechanism 14 is attached.
  • the dimension of the frame 31 in the Y -axis direction is set to be smaller than the distance GV between the two tubes P.
  • the dimension of the frame 31 in the X-axis direction is set to be larger than the distance GV between the two tubes P. That is, when the X-axis direction of the cleaning device 100 and the U-axis direction of the pipe group Q coincide with each other, the frame 31 can enter between the two pipes P.
  • the three cleaning units 4 are supported by the frame 31.
  • the three cleaning units 4 project downward from the lower part of the frame 31.
  • the three cleaning units 4 are arranged in the X-axis direction.
  • the positions of the three cleaning units 4 are different in the Z-axis direction (that is, the elevating direction of the cleaning mechanism 3).
  • the cleaning unit 4 in the middle projects downward as compared with the cleaning units 4 on both sides.
  • first cleaning unit 4A when the three cleaning units 4 are distinguished from each other, they are referred to as "first cleaning unit 4A”, “second cleaning unit 4B", and "third cleaning unit 4C" in the order of arrangement in the X-axis direction.
  • the cleaning unit 4 is configured to come into contact with the pipe P while rotating around a rotation axis A parallel to the Z axis (that is, parallel to the elevating direction of the cleaning mechanism 3) to remove deposits on the surface of the pipe P. ing.
  • the cleaning unit 4 has a rotating shaft 32 that rotates around a rotating shaft A extending in parallel with the Z axis, and the surface of the pipe P is attached by contacting the surface of the pipe P. It has a scraper 34 for removing kimono, a disk 35 provided coaxially with the rotation axis A, and an excavation portion 36 provided on the rotation axis A at the tip of the cleaning unit 4.
  • the rotary shaft 32 is rotationally driven by a motor (not shown) supported by the frame 31.
  • the cleaning unit 4 is an example of a cleaning unit
  • the scraper 34 is an example of a contact unit.
  • a disk 35, a scraper 34, and an excavation portion 36 are provided at the tip of the rotary shaft 32.
  • Four discs 35 are arranged coaxially with the rotation axis A at equal intervals.
  • the disk 35 is attached to the rotating shaft 32 in a non-rotatable state. That is, the disk 35 rotates integrally with the rotating shaft 32.
  • the diameter of the disk 35 is set to be smaller than the distance GV between the two tubes P.
  • Three gaps are formed by the four disks 35. As shown in FIGS. 5 and 6, three scrapers 34 are arranged in each gap. Between each of the two adjacent discs 35, three swing shafts 37 extending along the swing shaft B parallel to the rotation shaft A are provided. The three swing shafts 37 are provided at positions eccentric from the rotation shaft A at equal intervals around the rotation shaft A. Each scraper 34 is connected to the swing shaft 37 in a swingable state. The scraper 34 is formed in a substantially arc shape.
  • the scraper 34 is made of, for example, an aluminum alloy, carbon steel, urethane rubber or brass.
  • the scraper 34 is completely within the gap between the two discs 35. Is housed in. That is, the scraper 34 is housed inside the outer peripheral edge E of the disk 35.
  • the shape of the cleaning unit 4 when viewed in the Z -axis direction (that is, the elevating direction of the cleaning mechanism 3) has a diameter of the distance GV between the two pipes P. It is within the circle.
  • "accommodated inside the outer peripheral edge E” means that the scraper 34 does not protrude from the outer peripheral edge E. That is, the scraper 34 may be flush with the outer peripheral edge E when housed between the disks 35.
  • the scraper 34 swings so that the tip portion 34a is separated from the rotation axis A by the centrifugal force of the rotation shaft 32, and expands outward in the radial direction about the rotation axis A. At this time, the scraper 34 protrudes outward from the outer peripheral edge E of the disk 35 (that is, protrudes outward from the outer peripheral edge E).
  • the "radial direction” means the radial direction centered on the rotation axis A.
  • the excavation portion 36 is arranged at the tip of the rotary shaft 32.
  • the excavated portion 36 is attached to the rotating shaft 32 in a non-rotatable state. That is, the excavated portion 36 rotates integrally with the rotating shaft 32.
  • the excavated portion 36 is formed in a substantially conical shape, that is, in a sharp shape.
  • the excavation section 36 is formed with a groove for allowing the chips cut by the excavation section 36 to escape.
  • a guide 5 is provided in each of the pair of vertical frames 31b in the frame 31.
  • the guide 5 has a pair of first blades 51A and second blades 51B, and four first to fourth links 61 to 64 connecting the first blades 51A and the second blades 51B to the vertical frame 31b. ..
  • the first blade 51A and the second blade 51B have symmetrical shapes.
  • the first blade 51A and the second blade 51B guide the cleaning mechanism 3 by coming into contact with the pipe P outside the guide 5 in the Y-axis direction.
  • the first to fourth links 61 to 64 all have the same shape.
  • link 6 When each of the first link 61, the second link 62, the third link 63, and the fourth link 64 is not distinguished, it is simply referred to as "link 6".
  • Each blade 51 has a shape extending in the Z-axis direction.
  • Each blade 51 has an edge 53 extending substantially in the Z-axis direction on the outside in the Y-axis direction (that is, the side far from the center in the Y-axis direction of the frame 31). The edge 53 comes into contact with the tube P.
  • the first to fourth links 61 to 64 are connected to each blade 51.
  • each link 6 in the longitudinal direction is rotatably attached to the vertical frame 31b.
  • the first link 61 and the second link 62 are attached to the same rotation shaft C.
  • the third link 63 and the fourth link 64 are attached to the same rotation axis D.
  • One end in the longitudinal direction of each link 6 (hereinafter referred to as "first end") is connected to the first blade 51A, and the other end in the longitudinal direction of each link 6 (hereinafter referred to as "second end"). Is connected to the second blade 51B.
  • first end portion 61a of the first link 61 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the first blade 51A. ..
  • the second end 61b of the first link 61 is rotatably attached to the second blade 51B.
  • the first end portion 62a of the second link 62 is rotatably attached to the first blade 51A.
  • the second end portion 62b of the second link 62 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the second blade 51B.
  • first end portion 63a of the third link 63 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the first blade 51A. ..
  • the second end 63b of the third link 63 is rotatably attached to the second blade 51B.
  • the first end 64a of the fourth link 64 is rotatably attached to the first blade 51A.
  • the second end portion 64b of the fourth link 64 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the second blade 51B.
  • first link 61 and the second link 62 the first end portion 61a of the first link 61 and the second end portion 62b of the second link 62 are separated from each other in the Y-axis direction, and the second end portion of the first link 61 is separated.
  • the 61b and the first end portion 62a of the second link 62 are urged around the rotation axis C by a coil spring (not shown) so as to be separated from each other in the Y-axis direction.
  • the first end portion 63a of the third link 63 and the second end portion 64b of the fourth link 64 are separated from each other in the Y-axis direction
  • the third link 63 is the third link 63.
  • the two end portions 63b and the first end portion 64a of the fourth link 64 are urged around the rotation axis D by a coil spring (not shown) so as to be separated from each other in the Y-axis direction.
  • first blade 51A and the second blade 51B are urged to separate from each other in the Y-axis direction while maintaining the posture extending in the Z-axis direction. That is, the first blade 51A and the second blade 51B are urged to press the edge 53 against the pipe P located outside the guide 5 in the Y-axis direction.
  • FIG. 9 is a view of the state in which the cleaning mechanism 3 is cleaning the pipe P in the X-axis direction.
  • the cleaning mechanism 3 enters the gap between the two pipes P in a state where the arrangement direction of the three cleaning units 4 is parallel to the two pipes P. At this time, the cleaning mechanism 3 rotates the rotary shaft 32 to clean the two pipes P and the deposits adhering to the pipes P arranged below them.
  • the scraper 34 expands outward in the radial direction about the rotation axis A due to the centrifugal force generated by the rotation of the rotation shaft 32. However, if there is not enough space, the scraper 34 will not expand to the maximum and will expand to the extent possible. That is, when the space on the outer side in the radial direction of the scraper 34 differs depending on the position in the Z-axis direction, the scraper 34 descends while changing the spread according to the space on the outer side in the radial direction. When the cleaning mechanism 3 descends in the pipe group Q, as shown in FIG. 9, the scraper is located at a position where the pipe P does not exist on the radial outside of the scraper 34, or the pipe P exists on the radial outside of the scraper 34.
  • the scraper 34 In the position where 34 cannot reach, the scraper 34 is in the fully expanded state (see the scraper 34 relatively upper of the first cleaning unit 4A in FIG. 9). At the position where the pipe P exists on the radial outer side of the scraper 34 and the scraper 34 reaches the pipe P, the scraper 34 expands to the state where the scraper 34 is in contact with the pipe P (the scraper at a relatively lower portion of the first cleaning unit 4A in FIG. 9). 34 and scraper 34 of the second cleaning unit 4B). As a result, when the scraper 34 passes by the side of the pipe P, the scraper 34 comes into contact with the surface of the pipe P while changing the radial spread according to the surface shape of the pipe P.
  • the scraper 34 enters between the plurality of pipes P arranged along the traveling direction of the cleaning mechanism 3 (that is, arranged in the W-axis direction), and the deposit existing between the plurality of pipes P. And contact the surfaces of the plurality of tubes P to remove the deposits on the tubes P.
  • the scraper 34 is not only the portion of the surface of the pipe P facing the space through which the cleaning mechanism 3 passes, but also the direction (for example, the V-axis direction) intersecting the traveling direction of the cleaning mechanism 3 from the space. ) Also removes deposits adhering to the distant part (that is, the deep part).
  • the diameter of the circumscribed circle F (see FIG. 6) of the scraper 34 in the state where the scraper 34 is most expanded is set to be larger than the distance between the axes of the two pipes P arranged in the V-axis direction.
  • the scraper 34 can remove the deposits on the substantially half circumference of the surface of the pipe P by passing by the side of the pipe P in the W-axis direction.
  • the scraper 34 scrapes off the deposits adhering to the surface of the pipe P.
  • the guide 5 guides the cleaning mechanism 3. Specifically, the first blade 51A and the second blade 51B of the guide 5 are urged in a direction in which they are separated from each other in the Y-axis direction. Therefore, the first blade 51A contacts the tube P on one side in the V-axis direction, and the second blade 51B contacts the tube P on the other side in the V-axis direction. In this way, the cleaning mechanism 3 is positioned in the V-axis direction with respect to the pipes P located on both sides in the V-axis direction.
  • the cleaning mechanism 3 cleans the pipe P not only when descending but also when ascending. Even when the cleaning mechanism 3 rises, the scraper 34 contacts the surface of the pipe P while changing the radial spread according to the surface shape of the pipe P, and scrapes off the deposits adhering to the surface of the pipe P. I will drop it. That is, the cleaning mechanism 3 can clean the surface of the pipe P with the scraper 34 both when descending and when ascending.
  • the cleaning mechanism 3 is provided with three cleaning units 4 arranged in the X-axis direction, three locations of the pipe P whose U-axis direction positions are different due to one descent and / or ascent of the cleaning mechanism 3 are provided. Be cleaned.
  • Each sensor 71 is an eddy current sensor. Specifically, although not shown, the sensor 71 has an exciting coil and a receiving coil. When a high frequency current is applied to the exciting coil, an eddy current is generated in the object. The receiving coil detects this eddy current. The magnitude of the eddy current detected by the receiving coil changes according to the distance between the sensor 71 and the object. That is, the sensor 71 substantially detects the distance between the sensor 71 and the object by acquiring the detection voltage corresponding to the distance between the sensor 71 and the object. In the cleaning device 100, the object is the pipe P. The sensor 71 detects the distance to the surface of the tube P.
  • the traveling mechanism 2 travels on the plurality of pipes P arranged in the arrangement direction
  • the plurality of pipes P arranged in the arrangement direction form a traveling surface on which the traveling mechanism 2 travels.
  • the sensor 71 moves in parallel with respect to the traveling surface, that is, the plane including the arrangement direction and the tube axis direction.
  • FIG. 10 is an explanatory diagram illustrating the positional relationship between the sensor and the tube.
  • the sensor 71 is arranged so that the axis of the exciting coil faces the vertical direction. Since the magnetic field generated by the sensor 71 has a spread, the sensor 71 also detects a distance to an object existing in a range having a certain spread around the vertical lower part. Here, for convenience of explanation, as shown by the solid arrow in FIG. 10, the sensor 71 detects the distance to the point vertically below the sensor 71 on the surface of the tube P.
  • the distance between the sensor 71 and the surface of the tube P also changes. Specifically, as the sensor 71 moves from the position indicated by the solid line to the side closer to the top of the tube P in the arrangement direction as shown by the alternate long and short dash line, the distance between the sensor 71 and the surface of the tube P becomes shorter. Further, as the sensor 71 moves in the arrangement direction and passes through the top of the tube P as shown by the broken line, the distance between the sensor 71 and the surface of the tube P becomes longer. As described above, the distance between the sensor 71 and the surface of the tube P changes according to the relative position of the tube P and the sensor 71 in the arrangement direction.
  • the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are arranged so that the positions of the traveling mechanism 2 in the traveling direction are different from each other.
  • the first and second sensors 71a and 71b are arranged at one end of the base 11 in the traveling direction.
  • the third and fourth sensors 71c and 71d are arranged at the other end of the base 11 in the traveling direction.
  • the first and second sensors 71a and 71b are paired, and the third and fourth sensors 71c and 71d are paired. Each pair detects the position of the cleaning mechanism 3 in the arrangement direction.
  • the first and second sensors 71a and 71b are arranged so that the positions in the directions orthogonal to the traveling direction (specifically, the width direction of the cleaning device 100) are different. ..
  • the first and second sensors 71a and 71b are equidistant from the cleaning mechanism 3 on both sides in the width direction. That is, in the width direction, the cleaning mechanism 3 is located at the center between the first sensor 71a and the second sensor 71b.
  • the arrangement of the third and fourth sensors 71c and 71d in the width direction is the same as that of the first and second sensors 71a and 71b.
  • the position in the width direction of the first sensor 71a and the position in the width direction of the third sensor 71c are the same, and the position in the width direction of the second sensor 71b and the position in the width direction of the fourth sensor 71d are the same.
  • the first and second sensors 71a and 71b are arranged so that the positions in the arrangement direction are different from each other as shown in FIG. 2 when the traveling direction of the traveling mechanism 2 is oriented along the two pipes P. Will be done. Similarly, the positions of the third and fourth sensors 71c and 71d in the arrangement direction are different from each other as shown in FIG. 3 when the traveling direction of the traveling mechanism 2 is oriented along the two pipes P. Arranged like this.
  • the measurement point is a point on the surface of the tube P where the distance from the sensor 71 is detected.
  • each sensor 71 mainly detects the distance to a point located vertically below the sensor 71 on the surface of the tube P. That is, the position of the sensor 71 and the position of the measurement point are the same in the arrangement direction.
  • the arrangement direction position of the sensor 71 will be described as the arrangement direction position of the measurement points.
  • FIG. 11 is an explanatory diagram illustrating the dimensional relationship between the first and second sensors 71a and 71b and the two pipes P.
  • the pitch in the array direction of the two sensors 71 in each pair (that is, the pitch in the array direction of the measurement points of the two sensors 71 in each pair) M is larger than the distance GV between the two tubes P in the array direction. Moreover, it is set smaller than the dimension L of the entire two tubes P in the arrangement direction. Further, the pitch M in the arrangement direction of the two sensors 71 does not match the pitch M in the arrangement direction of the two tubes P (that is, the distance between the tube axes of the two tubes P) N.
  • the pitch M in the arrangement direction of the two sensors 71 is smaller than the pitch N in the arrangement direction of the two tubes P.
  • the pipe P to which the first sensor 71a of the two pipes P approaches is referred to as “the first pipe P1”
  • the pipe P to which the second sensor 71b of the two pipes P approaches is referred to as “the first pipe P1”. It is called "second tube P2”.
  • the two sensors 71 are vertically below the two sensors 71.
  • a situation may occur in which the tube P of is located.
  • the first sensor 71a may detect the distance S1 to the surface of the first tube P1
  • the second sensor 71b may detect the distance S2 to the surface of the second tube P2.
  • the third sensor 71c can also detect the distance to the surface of the first tube P1
  • the fourth sensor 71d can also detect the distance to the surface of the second tube P2.
  • each of the two sensors 71 simultaneously detects the distance to the top of the two tubes P. The situation cannot occur. For example, when the first sensor 71a detects the distance S1 to the surface of the top of the first tube P1, the second sensor 71b detects the distance S2 to the surface of a portion other than the top of the second tube P2.
  • the cleaning mechanism 3 since the cleaning mechanism 3 is located at the center between the first sensor 71a and the second sensor 71b in the width direction of the cleaning device 100, the cleaning mechanism 3 is located at the center of the two pipes P in the arrangement direction.
  • the first and second sensors 71a, 71b detect distances S1 and S2 to parts other than the top of each of the two tubes P.
  • the first and second sensors 71a and 71b are arranged between the axis of the first tube P1 and the axis of the second tube P2 in the arrangement direction. At this time, the distance S1 from the first sensor 71a to the first pipe P1 and the distance S2 from the second sensor 71b to the second pipe P2 are substantially equal.
  • this position of the first and second sensors 71a and 71b with respect to the two pipes P is referred to as a "center position".
  • FIG. 12 shows the positional relationship between the first and second sensors 71a and 71b and the two pipes P when the first and second sensors 71a and 71b are displaced from the central position to the first pipe P1 side in the arrangement direction. It is explanatory drawing which shows.
  • FIG. 13 shows the positional relationship between the first and second sensors 71a and 71b and the two pipes P when the first and second sensors 71a and 71b are displaced from the central position to the second pipe P2 side in the arrangement direction. It is explanatory drawing which shows.
  • the distances S1 and S2 to the surface of the tube P detected by each of the first and second sensors 71a and 71b change according to the relative positions of the sensor 71 and the tube P in the arrangement direction as described above.
  • the pitch M in the arrangement direction of the first and second sensors 71a and 71b does not match the pitch N in the arrangement direction of the two tubes P. Therefore, when one of the measurement points of the two sensors 71 approaches the top of the tube P in the arrangement direction, the other measurement point of the two sensors 71 moves away from the top of the tube P. For example, as shown in FIG. 12, when the first and second sensors 71a and 71b are displaced from the central position to the side of the first tube P1 in the arrangement direction, the measurement point of the first sensor 71a is located at the top of the first tube P1. While approaching, the measurement point of the second sensor 71b moves away from the top of the second tube P2.
  • the distance S1 from the first sensor 71a to the first pipe P1 becomes shorter, while the distance S2 from the second sensor 71b to the second pipe P2 becomes longer.
  • the measurement point of the first sensor 71a moves away from the top of the first tube P1.
  • the measurement point of the second sensor 71b approaches the top of the second tube P2.
  • the distance S1 from the first sensor 71a to the first pipe P1 becomes longer, while the distance S2 from the second sensor 71b to the second pipe P2 becomes shorter.
  • the two sensors 71 in the arrangement direction and the two sensors 71
  • the relative relationship between the detection distance of one sensor 71 and the detection distance of the other sensor 71 changes. That is, the relative relationship between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b correlates with the relative positions of the first sensor 71a and the second sensor 71b and the two tubes P in the arrangement direction.
  • the distance difference ⁇ S becomes 0.
  • the distance difference ⁇ S becomes smaller than 0.
  • the distance difference ⁇ S decreases monotonically until the first sensor 71a reaches the position of the top of the first tube P1 in the arrangement direction.
  • the detection distance S1 of the first sensor 71a starts to increase.
  • the rate of increase of the detection distance S2 of the second sensor 71b gradually increases according to the displacement of the second sensor 71b toward the first tube P1.
  • the second tube P2 does not exist below the second sensor 71b, and the second sensor 71b does not detect the distance to the second tube P2.
  • the distance difference ⁇ S becomes larger than 0.
  • the distance difference ⁇ S increases monotonically until the second sensor 71b reaches the position of the top of the second tube P2 in the arrangement direction.
  • the detection distance S2 of the second sensor 71b starts to increase.
  • the rate of increase of the detection distance S1 of the first sensor 71a gradually increases according to the displacement of the first sensor 71a toward the second tube P2. Eventually, the first tube P1 does not exist below the first sensor 71a, and the first sensor 71a does not detect the distance to the first tube P1.
  • the first and second sensors 71a and 71b detect the distance to the surface of each of the two tubes P arranged in the arrangement direction, so that the first sensor 71a and 71b are the first with respect to the two tubes P in the arrangement direction. And the relative positions of the second sensors 71a and 71b are detected.
  • the first and second sensors 71a and 71b and the cleaning mechanism 3 are provided on the base 11. That is, the first and second sensors 71a and 71b substantially detect the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction.
  • the third and fourth sensors 71c and 71d are also arranged in the same manner as the first and second sensors 71a and 71b. Therefore, the third and fourth sensors 71c and 71d also detect the distances to the respective surfaces of the two tubes P arranged in the arrangement direction, so that the third and third sensors 71c and 71d with respect to the two tubes P in the arrangement direction can also be detected. 4 The relative positions of the sensors 71c and 71d, and by extension, the relative positions of the cleaning mechanism 3 with respect to the two tubes P in the arrangement direction are detected.
  • FIG. 14 is a view of the apparatus main body 1 when the traveling direction of the traveling mechanism 2 and the two pipes P are parallel to each other in the Z-axis direction.
  • FIG. 15 is a view of the apparatus main body 1 in the Z-axis direction when the traveling direction of the traveling mechanism 2 is tilted with respect to the two pipes P.
  • the traveling direction of the traveling mechanism 2 when the traveling direction of the traveling mechanism 2 is parallel to the two pipes P, the arrangement of the cleaning mechanism 3 detected by the first and second sensors 71a and 71b.
  • the relative position in the direction coincides with the relative position in the arrangement direction of the cleaning mechanism 3 detected by the third and fourth sensors 71c and 71d.
  • the relative position in the arrangement direction of the cleaning mechanism 3 detected by the first and second sensors 71a and 71b and the relative position in the arrangement direction of the cleaning mechanism 3 detected by the third and fourth sensors 71c and 71d are different. This means that, as shown in FIG. 15, the traveling direction of the traveling mechanism 2 is tilted with respect to the two pipes P.
  • the first to fourth sensors 71a to 71d substantially detect the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction.
  • the vision sensor 8 acquires an image including at least one of the device main body 1 and the traveling mechanism 2 and a plurality of tubes P on which the traveling mechanism 2 is mounted. According to the image of the vision sensor 8, the positional relationship of the traveling mechanism 2 with respect to the plurality of pipes P can be detected. Specifically, when the image includes a plurality of pipes P and the traveling mechanism 2, the positional relationship of the traveling mechanism 2 with respect to the plurality of pipes P can be acquired. Depending on the dimensions and arrangement of the apparatus main body 1 and the traveling mechanism 2, the traveling mechanism 2 may not be included in the image, but the apparatus main body 1 may be included. However, since the traveling mechanism 2 is provided in the device main body 1, if the positional relationship of the device main body 1 with respect to the plurality of pipes P is known, the positional relationship of the traveling mechanism 2 with respect to the plurality of pipes P can also be known.
  • the detection distances of the first to fourth sensors 71a to 71d and the acquired images of the vision sensor 8 are input to the main body controller 9.
  • the main body controller 9 executes a cleaning control for cleaning the pipe P included in the pipe group Q by the cleaning mechanism 3. At that time, the main body controller 9 executes the traveling control of the traveling mechanism 2 based on the detection results of the first to fourth sensors 71a to 71d and the acquired image of the vision sensor 8. For example, the main body controller 9 operates the traveling mechanism 2 to move the cleaning device 100 to a target position, and operates the cleaning mechanism 3 and the elevating mechanism 14 at that position.
  • FIG. 16 is a block diagram of the main body controller 9. Specifically, the main body controller 9 has a processing unit 91 and a storage unit 92.
  • the storage unit 92 is a computer-readable storage medium that stores various programs and various data.
  • the storage unit 92 is formed of a magnetic disk such as a hard disk, an optical disk such as a CD-ROM and a DVD, or a semiconductor memory.
  • the processing unit 91 has various processors such as a CPU (Central Processing Unit) and / or a DSP (Digital Signal Processor), and various semiconductor memories such as VRAM, RAM and / or ROM.
  • the processing unit 91 comprehensively controls each unit of the cleaning device 100 by reading and executing various programs stored in the storage unit 92, and realizes various functions for executing cleaning control and traveling control.
  • the processing unit 91 has a first inclination calculation unit 93, a position calculation unit 94, a second inclination calculation unit 95, a traveling execution unit 96, and a cleaning execution unit 97 as functional blocks. There is.
  • the first inclination calculation unit 93 determines the inclination of the traveling mechanism 2 in the traveling direction with respect to the two pipes P to be cleaned (hereinafter referred to as “inclination of the traveling mechanism 2”) based on the acquired image of the vision sensor 8. calculate.
  • the first inclination calculation unit 93 performs image processing of the acquired image of the vision sensor 8 to extract the tube P located below the apparatus main body 1 and the traveling mechanism 2.
  • the first inclination calculation unit 93 determines whether or not the inclination of the traveling mechanism 2 is within the predetermined first inclination range based on the extracted pipe P and the traveling mechanism 2.
  • the position calculation unit 94 calculates the relative position (hereinafter, referred to as “arrangement direction position of the cleaning mechanism 3”) of the cleaning mechanism 3 with respect to the two pipes P to be cleaned. Specifically, the position calculation unit 94 calculates the arrangement direction position of the cleaning mechanism 3 based on the detection distances of the first and second sensors 71a and 71b. In addition, the position calculation unit 94 calculates the arrangement direction position of the cleaning mechanism 3 based on the detection distances of the third and fourth sensors 71c and 71d. Further, the position calculation unit 94 determines whether or not the cleaning mechanism 3 is within a predetermined position range including the center of the two pipes P in the arrangement direction based on the calculated position in the arrangement direction of the cleaning mechanism 3. do. When the cleaning mechanism 3 is within the position range, the cleaning mechanism 3 is inside the gap GV of the two pipes P in the arrangement direction, and the cleaning mechanism 3 can descend and enter the gap GV . can.
  • the distance difference ⁇ S (hereinafter referred to as “first distance difference ⁇ S1”) of the detection distances of the first and second sensors 71a and 71b satisfies the following equation (1).
  • second distance difference ⁇ S2 the distance difference ⁇ S (hereinafter referred to as “second distance difference ⁇ S2”) of the detection distances of the third and fourth sensors 71c and 71d satisfies the following equation (2), the cleaning mechanism 3 is in the position range. Judge that it is included.
  • Equation (1) means that the first distance difference ⁇ S1 is within a predetermined range including 0.
  • equation (2) means that the second distance difference ⁇ S2 is within a predetermined range including 0.
  • the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d have the same arrangement in the arrangement direction with respect to the cleaning mechanism 3, so that ⁇ 1 and ⁇ 2 have the same values. , ⁇ 1 and ⁇ 2 are the same value. Further, since the cleaning mechanism 3 is located at the center between the first sensor 71a and the second sensor 71b in the arrangement direction, the absolute values of ⁇ 1 and ⁇ 1 are the same. Similarly, since the cleaning mechanism 3 is located at the center between the third sensor 71c and the fourth sensor 71d in the arrangement direction, the absolute values of ⁇ 2 and ⁇ 2 are the same. However, the values of ⁇ 1, ⁇ 1, ⁇ 2 and ⁇ 2 are not limited thereto.
  • the first distance difference ⁇ S1 is a parameter related to the arrangement direction position of the cleaning mechanism 3. That is, finding the first distance difference ⁇ S1 substantially corresponds to finding the position in the arrangement direction of the cleaning mechanism 3.
  • the second distance difference ⁇ S2 is a parameter related to the arrangement direction position of the cleaning mechanism 3. That is, finding the second distance difference ⁇ S2 substantially corresponds to finding the position in the arrangement direction of the cleaning mechanism 3.
  • the second inclination calculation unit 95 calculates the inclination of the traveling mechanism 2 in a range that is more detailed than that of the first inclination calculation unit 93.
  • the second inclination calculation unit 95 calculates the inclination of the traveling mechanism 2 based on the detection distances of the first to fourth sensors 71a to 71d.
  • the second inclination calculation unit 95 determines whether or not the inclination of the traveling mechanism 2 is within a predetermined second inclination range including the case where the two pipes P and the traveling direction of the traveling mechanism 2 are parallel to each other.
  • the second inclined range is a range smaller than the first inclined range.
  • the second inclination calculation unit 95 is based on the arrangement direction position of the cleaning mechanism 3 calculated based on the detection distances of the first and second sensors 71a and 71b and the detection distances of the third and fourth sensors 71c and 71d.
  • the inclination of the traveling mechanism 2 is calculated based on the calculated position in the arrangement direction of the cleaning mechanism 3. Specifically, the second inclination calculation unit 95 calculates the inclination of the traveling mechanism 2 by using the first distance difference ⁇ S1 and the second distance difference ⁇ S2.
  • the second inclination calculation unit 95 determines that the two pipes P and the traveling direction of the traveling mechanism 2 are parallel to each other.
  • the difference ⁇ S3 between the first distance difference ⁇ S1 and the second distance difference ⁇ S2 (hereinafter referred to as “front-back distance difference ⁇ S3”) is not 0, the second inclination calculation unit 95 refers to the two pipes P. It is determined that the traveling direction of the traveling mechanism 2 is tilted. The larger the inclination of the traveling mechanism 2, the larger the absolute value of the front-rear distance difference ⁇ S3.
  • the second inclination calculation unit 95 determines that the inclination of the traveling mechanism 2 is within the second inclination range when the front-rear distance difference ⁇ S3 satisfies the following equation (3).
  • Equation (3) means that the front-back distance difference ⁇ S3 is within a predetermined range including 0.
  • the traveling execution unit 96 calculates the driving force of each of the two crawlers 21 and outputs the calculated driving force to the two crawlers 21.
  • the traveling execution unit 96 basically makes the driving force of the two crawlers 21 the same.
  • the traveling execution unit 96 makes the driving forces of the two crawlers 21 different. For example, the traveling execution unit 96 sets the output of the crawler 21 located on the inner side in the radial direction to 0 when turning, and sets the output of the crawler 21 located on the outer side in the radial direction to a predetermined value.
  • the travel execution unit 96 controls the travel mechanism 2 so that the cleaning mechanism 3 falls within the position range and the tilt of the travel mechanism 2 falls within the second tilt range. Specifically, the traveling execution unit 96 first sets the inclination of the traveling mechanism 2 to the first inclination range based on the acquired image of the vision sensor 8 (that is, based on the determination result of the first inclination calculation unit 93). The driving force of the two crawlers 21 is calculated so as to enter, and the driving force is output to the two crawlers 21.
  • a first condition the fact that the inclination of the traveling mechanism 2 falls within the first inclination range is referred to as a "first condition".
  • the traveling execution unit 96 is based on the detection distances of the first to fourth sensors 71a to 71d (that is, based on the determination results of the position calculation unit 94 and the second inclination calculation unit 95).
  • the driving force of the two crawlers 21 is calculated so that the cleaning mechanism 3 falls within the position range and the tilt of the traveling mechanism 2 falls within the second tilt range, and the driving force is output to the two crawlers 21. ..
  • the fact that the cleaning mechanism 3 falls within the position range and the tilt of the traveling mechanism 2 falls within the second tilt range is referred to as a "second condition".
  • the cleaning execution unit 97 executes cleaning control by the cleaning mechanism 3.
  • the cleaning execution unit 97 controls the travel mechanism 2 via the travel execution unit 96 to move the cleaning mechanism 3 to a desired cleaning position on a plurality of pipes P, and lowers and raises the cleaning mechanism 3 at the cleaning position. Clean the pipe P.
  • the cleaning execution unit 97 changes the cleaning position and repeats cleaning by the cleaning mechanism 3.
  • FIG. 17 is a flowchart of cleaning control.
  • various settings related to cleaning control for example, the number of pipes P in the arrangement direction, the pitch of the pipes P in the arrangement direction, the moving distance of the traveling mechanism 2 along the pipe P, and the descent of the cleaning mechanism 3 by the elevating mechanism 14).
  • Distance etc. is set in the main body controller 9. This setting is made, for example, by the operator via the external controller 98.
  • the operator places the cleaning device 100 on the pipe P.
  • the operator operates the external controller 98 to move the cleaning device 100 to the cleaning start position.
  • the cleaning start position is such that the two crawler 21s are parallel to the two pipes P, the cleaning mechanism 3 is located at one end of the two pipes P in the U-axis direction, and the cleaning mechanism 3 is located. It is a position located between two tubes P in the arrangement direction of the tubes P (that is, in the V-axis direction).
  • the operator inputs a cleaning start command via the external controller 98.
  • the processing unit 91 determines whether or not the second condition is satisfied. Specifically, the traveling execution unit 96 first determines in step St2 whether or not the first condition is satisfied based on the determination result of the first inclination calculation unit 93. If the first condition is not satisfied, the traveling execution unit 96 sets each of the two crawlers 21 so as to satisfy the first condition based on the determination result of the first inclination calculation unit 93 in step St3. The driving force is calculated, and the calculated driving force is output to the two crawlers 21.
  • the traveling execution unit 96 again determines whether or not the first condition is satisfied (step St2).
  • the traveling execution unit 96 repeats steps St2 and St3 until the first condition is satisfied.
  • the traveling execution unit 96 determines in step St4 whether or not the second condition is satisfied based on the determination results of the position calculation unit 94 and the second inclination calculation unit 95. If the second condition is not satisfied, the traveling execution unit 96 sets each of the two crawlers 21 so as to satisfy the second condition based on the determination result of the first inclination calculation unit 93 in step St5. The driving force is calculated, and the calculated driving force is output to the two crawlers 21.
  • the traveling execution unit 96 again determines whether or not the second condition is satisfied (step St4).
  • the traveling execution unit 96 repeats steps St4 and St5 until the second condition is satisfied.
  • the cleaning execution unit 97 rotationally drives the rotary shaft 32 of the cleaning mechanism 3 in step St6, and in this state, the cleaning mechanism 3 is lowered between the two pipes P by the elevating mechanism 14. Let me.
  • the scraper 34 scrapes off the deposits on the surface of the pipe P while changing the spread in the radial direction according to the space in the pipe group Q.
  • the cleaning execution unit 97 raises the cleaning mechanism 3 by the elevating mechanism 14. Even when the cleaning mechanism 3 rises, the scraper 34 contacts the surface of the pipe P while changing the radial spread according to the surface shape of the pipe P, and scrapes off the deposits on the surface of the pipe P. go. That is, the cleaning mechanism 3 cleans the surface of the pipe P with the scraper 34 both when descending and when ascending.
  • the cleaning execution unit 97 is the other end portion of the two pipes P in the U-axis direction (that is, the end portion where the cleaning is started). It is determined whether or not the end (the end opposite to) has been reached. Whether or not the cleaning mechanism 3 has reached the other ends of the two pipes P is determined based on the moving distance along the pipes P of the traveling mechanism 2 set at the start of the cleaning control. Whether or not the cleaning mechanism 3 has reached the ends of the two pipes P may be determined by using a sensor such as a limit switch.
  • step St8 the cleaning execution unit 97 determines whether or not the second condition is satisfied, and then cleans. It is determined whether or not the number of times of one round trip of the mechanism 3 descent and ascent (hereinafter referred to as "cleaning number") has reached a predetermined number of times.
  • the cleaning execution unit 97 moves the travel mechanism 2 along the two pipes P via the travel execution unit 96 in step St9. Move by a predetermined amount in the U-axis direction.
  • the predetermined amount corresponds to the dimensions of the three cleaning units 4 in the X-axis direction.
  • the cleaning execution unit 97 lowers and raises the cleaning mechanism 3 again in step St6.
  • the cleaning mechanism 3 cleans the portion of the pipe P whose position in the U-axis direction is different from that when the cleaning mechanism 3 is lowered and raised.
  • the traveling execution unit 96 executes the traveling control in steps St2 to St5 again.
  • the cleaning mechanism 3 makes one round trip of descent and ascent, and a predetermined amount of movement along the two pipes P is performed a predetermined number of times. If the second condition is not satisfied, the arrangement direction position of the cleaning mechanism 3 and the inclination of the traveling mechanism 2 are adjusted so that the second condition is satisfied.
  • the traveling mechanism 2 periodically adjusts the arrangement direction position of the cleaning mechanism 3 and the inclination of the traveling mechanism 2, the position of the cleaning mechanism 3 in the U-axis direction is changed to continue cleaning the pipe P.
  • step St10 the cleaning execution unit 97 determines whether or not the cleaning of the gaps of all the pipes P in the arrangement direction is completed. Specifically, the cleaning execution unit 97 determines whether or not the cleaning of the gaps of all the pipes P is completed based on the number of pipes P in the arrangement direction set at the start of the cleaning control.
  • the cleaning execution unit 97 moves the cleaning mechanism 3 to the gaps of the adjacent pipes P via the traveling execution unit 96.
  • the traveling execution unit 96 turns the two crawlers 21 from a state parallel to the pipe P to a state substantially orthogonal to the two pipes P.
  • the traveling execution unit 96 causes the traveling mechanism 2 to cross the pipe P, and moves the traveling mechanism 2 until the cleaning mechanism 3 is located in the gap next to the gap between the two pipes P for which cleaning has been completed. ..
  • the traveling execution unit 96 determines whether or not the cleaning mechanism 3 is located in the gap of the adjacent pipe P based on the acquired image of the vision sensor 8.
  • the traveling execution unit 96 may determine the amount of movement of the traveling mechanism 2 based on the pitch of the pipes P in the arrangement direction set at the start of the cleaning control.
  • One of the two new pipes P is one of the two pipes P that has been cleaned first.
  • the traveling execution unit 96 When the cleaning mechanism 3 moves to the gap of the adjacent pipe P, the traveling execution unit 96 turns the two crawlers 21 until they are substantially parallel to the pipe P. After turning, the traveling execution unit 96 moves the traveling mechanism 2 so that the cleaning mechanism 3 is located at the end of the two pipes P in the U-axis direction.
  • the traveling execution unit 96 executes the traveling control in steps St2 to St5.
  • the cleaning execution unit 97 performs the same cleaning as described above in the new gap between the two pipes P by executing the processing after step St6. Also at this time, the travel control by the travel execution unit 96 is periodically executed so that the second condition is satisfied. In this way, the cleaning device 100 cleans the pipes P included in the pipe group Q by repeating the cleaning while changing the two pipes P.
  • the cleaning device 100 is provided with the first sensor 71a for detecting the relative distance from the first pipe P1 and the second sensor 71b for detecting the relative distance between the second pipe P2, thereby providing one pipe P. It is possible to obtain the relative position of the cleaning mechanism 3 with respect to the first pipe P1 and the second pipe P2, not the relative position of the cleaning mechanism 3 with respect to the first pipe P1 and the second pipe P2. As a result, the cleaning mechanism 3 can be appropriately arranged between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the cleaning mechanism 3 can be appropriately entered into the gap between the first pipe P1 and the second pipe P2.
  • the first and second sensors 71a and 71b can be attached to the surface of the tube P even in an environment where dust such as ash is scattered. Can detect the distance to.
  • deposits such as ash are deposited on the surface of the pipe P on which the traveling mechanism 2 is placed. Therefore, in an optical sensor using a laser or the like, an error is likely to be included in the distance to the surface of the tube P. On the other hand, the eddy current sensor can accurately detect the distance to the surface of the tube P even if the surface of the tube P is covered with deposits.
  • the eddy current sensor can detect the distance to the tube P existing in a wider range than the optical sensor. In a plurality of tubes P arranged at intervals as described above, it is possible to reduce the situation where the first and second sensors 71a and 71b cannot detect the distance to the tubes P.
  • first and second sensors 71a and 71b are arranged so that the first and second sensors 71a and 71b do not simultaneously detect the distances to the tops of the first and second pipes P1 and P2, respectively.
  • the pitch M of the first and second sensors 71a and 71b in the arrangement direction is the arrangement direction. Does not match (that is, deviates) from the pitch N of the first and second pipes P1 and P2 in.
  • the detection distances S1 and the second sensor 71b of the first sensor 71a are detected according to the change in the relative positions of the first and second sensors 71a and 71b and the first and second pipes P1 and P2 in the arrangement direction.
  • the relative relationship with the distance S2, for example, the first distance difference ⁇ S1 changes. That is, based on the relative relationship between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b, the first and second sensors 71a and 71b and the first and second tubes P1 and P2 in the arrangement direction.
  • the relative position of can be obtained.
  • the first and second sensors 71a and 71b are arranged in the arrangement direction. It is possible to determine which side of the first pipe P1 or the second pipe P2 is deviated from the center position.
  • the cleaning device 100 is further provided with the third and fourth sensors 71c and 71d arranged at different positions in the traveling direction of the traveling mechanism 2 in addition to the first and second sensors 71a and 71b.
  • the inclination of the traveling mechanism 2 can be obtained.
  • the position in the arrangement direction of the cleaning mechanism 3 is out of the appropriate range. You can determine if there is a possibility. That is, by obtaining the inclination of the traveling mechanism 2, it is possible to prevent the position of the cleaning mechanism 3 in the arrangement direction from deviating from an appropriate range in the future.
  • the cleaning device 100 can accurately determine the inclination of the traveling mechanism 2 by including the vision sensor 8. That is, since the determination of the inclination of the traveling mechanism 2 based on the acquired image of the vision sensor 8 is performed based on the overall image of the two pipes P and the traveling mechanism 2 or the device main body 1, the traveling mechanism is approximate. Suitable for determining the inclination of 2. On the other hand, since the inclination determination of the traveling mechanism 2 based on the detection distances of the first to fourth sensors 71a to 71d is performed based on the relative position of the device main body 1 with respect to the two local pipes P, the detailed traveling mechanism Suitable for determining the inclination of 2.
  • the processing unit 91 first determines whether or not the inclination of the traveling mechanism 2 is within the first inclination range based on the acquired image of the vision sensor 8, and the inclination of the traveling mechanism 2 is within the first inclination range. If so, it is determined whether or not the inclination of the traveling mechanism 2 is within the second inclination range smaller than the first inclination range based on the detection distances of the first to fourth sensors 71a to 71d. By doing so, the inclination of the traveling mechanism 2 can be accurately determined.
  • the cleaning device 100 descends from the device main body 1, the traveling mechanism 2 provided on the device main body 1 and traveling on a plurality of pipes P arranged in a predetermined arrangement direction, and the device main body 1.
  • a cleaning mechanism 3 that enters between the two pipes P included in the plurality of pipes P to clean the deposits on the surface of the pipes P, and one of the two pipes P provided in the apparatus main body 1.
  • the first sensor 71a for detecting the relative position in the arrangement direction with respect to the first tube P1 which is the tube P of the above, and the arrangement direction of the two tubes P with respect to the second tube P2 which is the other tube P provided in the device main body 1. It is provided with a second sensor 71b for detecting the relative position of the above.
  • the relative position of the apparatus main body 1 with respect to the first and second tubes P1 and P2 in the arrangement direction is based on the relative position detected by the first sensor 71a and the relative position detected by the second sensor 71b.
  • the cleaning mechanism 3 is provided in the apparatus main body 1, as a result, the relative positions of the cleaning mechanism 3 with respect to the first and second pipes P1 and P2 in the arrangement direction are obtained.
  • the cleaning mechanism 3 with respect to the first and second pipes P1 and P2 is not the relative position of the cleaning mechanism 3 with respect to one pipe P.
  • the relative position is calculated.
  • the cleaning mechanism 3 can be arranged at an appropriate position between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the moving accuracy of the traveling mechanism 2 traveling on the pipe P can be improved.
  • the first sensor 71a detects the distance to the surface of the first tube P1 as a relative position in the arrangement direction with respect to the first tube P1, and the second sensor 71b serves as a relative position in the arrangement direction with respect to the second tube P2. , The distance to the surface of the second pipe P2 is detected.
  • the first and second sensors 71a and 71b are distance measuring sensors. Since the first and second sensors 71a and 71b are provided in the device main body 1, if the position of the device main body 1 with respect to the first and second tubes P1 and P2 changes in the arrangement direction, the first sensor with respect to the first tube P1 The relative position of the sensor 71a in the arrangement direction and the relative position of the second sensor 71b with respect to the second tube P2 in the arrangement direction also change.
  • the relative position of the first sensor 71a in the arrangement direction changes, the distance between the first sensor 71a and the first tube P1 changes, and similarly, when the relative position of the second sensor 71b in the arrangement direction changes, the second sensor The distance between 71b and the second tube P2 also changes. Therefore, based on the detection distance which is the detection result of the first and second sensors 71a and 71b, the relative position of the apparatus main body 1 with respect to the first and second pipes P1 and P2 in the arrangement direction, that is, the arrangement direction of the cleaning mechanism 3. The position can be determined.
  • the cleaning device 100 obtains the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction based on the detection results (that is, the detection distance) by the first and second sensors 71a and 71b (that is, the main body controller 9 (that is, the detection distance).
  • a control unit is further provided.
  • the main body controller 9 obtains the arrangement direction position of the cleaning mechanism 3 based on the detection distances by the first and second sensors 71a and 71b. For example, the main body controller 9 determines whether or not the arrangement direction position of the cleaning mechanism 3 is within a predetermined range based on the detection distances of the first and second sensors 71a and 71b. That is, the user does not need to determine the arrangement direction position of the cleaning mechanism 3 based on the detection distances by the first and second sensors 71a and 71b.
  • the cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a, and the third sensor 71c for detecting the relative position in the arrangement direction with respect to the first tube P1.
  • the apparatus main body 1 is provided with a position of the traveling mechanism 2 in the traveling direction different from that of the second sensor 71b, and further includes a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the second tube P2.
  • the third and fourth sensors 71c and 71d are provided in addition to the first and second sensors 71a and 71b.
  • the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, the positions in the arrangement direction of the cleaning mechanism 3 can be obtained at two locations where the positions of the traveling mechanism 2 in the traveling direction are different. As a result, the position in the arrangement direction of the cleaning mechanism 3 can be accurately obtained.
  • the main body controller 9 obtains the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction based on the detection results by the first, second, third and fourth sensors 71a, 71b, 71c, 71d.
  • the main body controller 9 obtains the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c and 71d.
  • the main body controller 9 obtains the inclination of the traveling mechanism 2 in addition to the position in the arrangement direction of the cleaning mechanism 3.
  • the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, the traveling mechanism 2 is based on the arrangement direction position of the cleaning mechanism 3 obtained by the first and second sensors 71a and 71b and the arrangement direction position of the cleaning mechanism 3 obtained by the third and fourth sensors 71c and 71d. Can be calculated. If the inclination of the traveling mechanism 2 is known, it is possible to prevent the position of the cleaning mechanism 3 in the arrangement direction from deviating from an appropriate range.
  • the cleaning device 100 further includes a vision sensor 8 (imaging device) that captures at least one of the traveling mechanism 2 and the device main body 1 mounted on the plurality of tubes P, and the main body controller 9 is a vision sensor. Based on the image acquired by 8, it is determined whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the predetermined first inclination range, and the first, second, and third Based on the detection results of the fourth sensors 71a, 71b, 71c, and 71d, whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the second inclination range smaller than the first inclination range. To judge.
  • a vision sensor 8 imaging device
  • the main body controller 9 is a vision sensor. Based on the image acquired by 8, it is determined whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the predetermined first inclination range, and the first, second, and third Based on the detection results
  • the inclination of the traveling mechanism 2 is determined by two methods.
  • the relatively large inclination of the traveling mechanism 2 is determined based on the image acquired by the vision sensor 8.
  • the inclination of the relatively small traveling mechanism 2 is determined based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d. Since the determination based on the image acquired by the vision sensor 8 is made based on the overall image of the two pipes P and the traveling mechanism 2 or the device main body 1, it is suitable for roughly determining the inclination of the traveling mechanism 2. There is.
  • the determination based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d is performed based on the relative position of the apparatus main body 1 with respect to the two local tubes P. It is suitable for detailed determination of the inclination of the traveling mechanism 2. By properly using these determinations according to the magnitude of the inclination of the traveling mechanism 2, the inclination of the traveling mechanism 2 can be accurately determined.
  • the main body controller 9 controls the traveling mechanism 2 based on the detection results of the first and second sensors 71a and 71b so that the cleaning mechanism 3 falls within a predetermined position range in the arrangement direction.
  • the main body controller 9 controls the traveling mechanism 2 based on the detection distances of the first and second sensors 71a and 71b. As a result, the position of the cleaning mechanism 3 in the arrangement direction is adjusted so that the cleaning mechanism 3 falls within a predetermined range in the arrangement direction.
  • the cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a.
  • the apparatus main body 1 is provided at a position where the position of 2 in the traveling direction is different from that of the second sensor 71b, and further includes a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the second tube P2, and the main body controller 9 is arranged.
  • the traveling mechanism 2 is controlled based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c and 71d so that the cleaning mechanism 3 falls within a predetermined position range in the direction.
  • the third and fourth sensors 71c and 71d are provided in addition to the first and second sensors 71a and 71b.
  • the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, it is possible to determine the arrangement direction position of the cleaning mechanism 3 at different positions in the traveling direction of the traveling mechanism 2. As a result, the arrangement direction position of the cleaning mechanism 3 is accurately adjusted.
  • the cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a, and the third sensor 71c for detecting the relative position in the arrangement direction with respect to the first tube P1.
  • the main body 1 is provided with a position of the traveling mechanism 2 in the traveling direction different from that of the second sensor 71b, and further includes a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the second tube P2, and the main body controller 9 is provided.
  • the traveling mechanism 2 is controlled based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c, 71d to adjust the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction. do.
  • the main body controller 9 adjusts the inclination of the traveling mechanism 2 in addition to the arrangement direction position of the cleaning mechanism 3.
  • the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, the traveling mechanism 2 is based on the arrangement direction position of the cleaning mechanism 3 obtained by the first and second sensors 71a and 71b and the arrangement direction position of the cleaning mechanism 3 obtained by the third and fourth sensors 71c and 71d. Can be calculated. If the inclination of the traveling mechanism 2 is known, it is possible to prevent the position of the cleaning mechanism 3 in the arrangement direction from deviating from an appropriate range.
  • the cleaning device 100 further includes a traveling mechanism 2 mounted on a plurality of tubes P and a vision sensor 8 for capturing at least one of the device main body 1, and the main body controller 9 is a cleaning mechanism 3 in the arrangement direction. Controls the traveling mechanism 2 based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c, 71d so that The traveling mechanism 2 is controlled based on the image acquired by the vision sensor 8 so that the inclination of the traveling direction of 2 falls within the predetermined first inclination range, and the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction. Controls the traveling mechanism 2 based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c and 71d so as to enter the second inclination range smaller than the first inclination range.
  • the cleaning mechanism 3 is set in a predetermined position range in the arrangement direction based on the detection distances of the third and fourth sensors 71c and 71d.
  • the traveling mechanism 2 is controlled so as to enter. That is, the traveling mechanism 2 is controlled based on the arrangement direction position of the cleaning mechanism 3 at different positions in the traveling direction of the traveling mechanism 2.
  • the arrangement direction position of the cleaning mechanism 3 is accurately adjusted.
  • the tilt of the traveling mechanism 2 is adjusted in two ways. The relatively large inclination of the traveling mechanism 2 is adjusted based on the image acquired by the vision sensor 8.
  • the inclination of the relatively small traveling mechanism 2 is adjusted based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d. Since the adjustment based on the image acquired by the vision sensor 8 is performed based on the overall image of the two pipes P and the traveling mechanism 2 or the device main body 1, it is suitable for roughly adjusting the inclination of the traveling mechanism 2. There is. On the other hand, the adjustment based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d is performed based on the relative position of the apparatus main body 1 with respect to the two local tubes P. , Suitable for detailed tilt adjustment of the traveling mechanism 2. By properly using these adjustments according to the magnitude of the inclination of the traveling mechanism 2, the inclination of the traveling mechanism 2 can be accurately adjusted.
  • first, second, third and fourth sensors 71a, 71b, 71c and 71d are eddy current sensors that detect the eddy current generated in the pipe P.
  • the distance to the surface of the pipe P can be accurately detected even in an environment where dust such as ash flies, or in a situation where the surface of the pipe P is covered with deposits. Can be done.
  • the processing unit 91 may obtain the driving force of the two crawlers 21 by using the traveling model stored in the storage unit 92. Specifically, the traveling model satisfies the second condition when the inclination of the traveling mechanism 2 obtained based on the acquired image of the vision sensor 8 and the detection distances of the first to fourth sensors 71a to 71d are input. The driving force of the two crawlers 21 is output.
  • the traveling model is generated in advance by machine learning or the like and stored in the storage unit 92.
  • FIG. 18 is a flowchart of cleaning control according to the first modification.
  • the travel execution unit 96 executes travel control in step St12 instead of steps St2 to St5 in the flowchart of FIG.
  • the first inclination calculation unit 93 calculates the inclination of the traveling mechanism 2 based on the acquired image of the vision sensor 8.
  • the travel execution unit 96 reads the travel model from the storage unit 92, and inputs the detection distances of the first to fourth sensors 71a to 71d and the inclination of the travel mechanism 2 calculated by the first inclination calculation unit 93 into the travel model. By doing so, the driving force of the two crawlers 21 is obtained.
  • the traveling execution unit 96 outputs the obtained driving force to the two crawlers 21.
  • the traveling model When the second condition is satisfied, the traveling model does not output the driving force of the two crawlers 21. In that case, the traveling execution unit 96 does not adjust the position in the arrangement direction of the cleaning mechanism 3 and the inclination of the traveling mechanism 2 by the traveling control. Substantially, the traveling model determines whether or not the second condition is satisfied. Other steps are the same as the flowchart of FIG. The position calculation unit 94 and the second inclination calculation unit 95 are omitted.
  • the driving force of the two crawlers 21 can be directly obtained from the detection distances of the first to fourth sensors 71a to 71d and the inclination of the traveling mechanism 2 calculated by the first inclination calculation unit 93. Can be asked.
  • the derivation of the driving force of the two crawlers 21 by the processing unit 91 is not limited to the method using the traveling model.
  • the processing unit 91 may obtain the driving force of the two crawlers 21 by fuzzy control (fuzzy inference).
  • the storage unit 92 stores a membership function related to fuzzy control.
  • the membership function may be user adjustable.
  • the processing unit 91 inputs two crawlers 21 by fuzzy inference, using the inclination of the traveling mechanism 2 obtained based on the acquired image of the vision sensor 8 and the detection distances of the first to fourth sensors 71a to 71d as inputs. Outputs the driving force of.
  • the input may be the inclination of the traveling mechanism 2 obtained based on the acquired image of the vision sensor 8, the first distance difference ⁇ S1, the second distance difference ⁇ S2, the front-rear distance difference ⁇ S3, and the like.
  • the traveling mechanism 2 may have another set of crawlers in addition to the above-mentioned two crawlers 21.
  • FIG. 19 is a side view of the cleaning device 100 according to the modified example 2.
  • the traveling mechanism 2 of the cleaning device 100 according to the modification 2 further has two second crawlers 22.
  • the crawler 21 will be referred to as a “first crawler 21”.
  • the traveling direction of the second crawler 22 is orthogonal to the traveling direction of the first crawler 21. Specifically, the second crawler 22 is configured to travel in the Y-axis direction. One second crawler 22 is arranged at one end of the base 11 in the X-axis direction. The other second crawler 22 is arranged at the other end of the base 11 in the X-axis direction.
  • the second crawler 22 is configured to be able to move up and down with respect to the base 11. Specifically, the second crawler 22 is between the retracted position above the first crawler 21 (two-dot chain line in FIG. 19) and the traveling position below the first crawler 21 (solid line in FIG. 19). It is configured to be able to move up and down. That is, when the device main body 1 moves in the X-axis direction (that is, moves along the tube P), the second crawler 22 is located at the retracted position and is not in contact with the tube P, and the first crawler 22 is not in contact with the tube P. The crawler 21 is in contact with the pipe P. The traveling mechanism 2 travels in the X-axis direction by the first crawler 21.
  • the apparatus main body 1 moves in the Y-axis direction (that is, crosses the pipe P)
  • the second crawler 22 is located at the traveling position and is in contact with the pipe P
  • the first crawler 21 is in contact with the pipe P. Not in contact.
  • the traveling mechanism 2 travels in the Y-axis direction by the second crawler 22.
  • the first and second sensors 71a and 71b are arranged so that the positions of the tubes P in the arrangement direction are different from each other. Will be done. That is, when the apparatus main body 1 crosses the pipe P, it is determined whether or not the cleaning mechanism 3 has entered the gap of the new pipe P in the arrangement direction based on the detection distances of the first and second sensors 71a and 71b. be able to.
  • FIG. 20 is a side view of the cleaning device 200.
  • the cleaning device 200 mainly differs from the cleaning mechanism 3 and the elevating mechanism 14 of the cleaning device 100 in the configurations of the cleaning mechanism 203 and the elevating mechanism 214.
  • the configuration of the cleaning device 200 different from that of the cleaning device 100 will be mainly described.
  • the same configurations as those of the cleaning device 100 are designated by the same reference numerals, and the description thereof will be omitted.
  • the cleaning device 200 is placed on a plurality of pipes P arranged in a predetermined arrangement direction in the horizontal direction.
  • the cleaning device 200 includes a device main body 201, a traveling mechanism 2 provided on the device main body 201 and traveling on the pipe P included in the pipe group Q, and a plurality of cleaning devices 200 descending from the device main body 201 and arranged in the horizontal direction.
  • the cleaning mechanism 203 that enters the pipe group Q through the gap between the two pipes P included in the pipe P and cleans the deposits on the surface of the pipe P, and the two pipes P provided in the apparatus main body 201.
  • the cleaning device 200 may further include a main body controller 9 that controls the cleaning device 200.
  • the cleaning device 200 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a, and the traveling mechanism is provided with a third sensor 71c for detecting a relative position in the arrangement direction with respect to one of the pipes P.
  • the apparatus main body 1 may be provided at a position where the position of 2 in the traveling direction is different from that of the second sensor 71b, and may further include a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the other tube P.
  • the cleaning device 200 may further include a vision sensor 8 that captures at least one of the device main body 201 and the traveling mechanism 2 mounted on a plurality of pipes P. In FIG. 20, the second sensor 71b and the fourth sensor 71d are not shown.
  • the cleaning device 200 lowers and raises the cleaning mechanism 203 in the gap between two pipes P among the plurality of pipes P on which the traveling mechanism 2 is mounted by the elevating mechanism 214, and lowers and raises the two pipes P and below them. Clean the deposits adhering to the pipes P lined up in.
  • the X-axis, the Y-axis, and the Z-axis that are orthogonal to each other with respect to the cleaning device 200 are defined.
  • the X-axis is set in the traveling direction of the cleaning device 200 (that is, the traveling direction of the traveling mechanism 2)
  • the Z-axis is set in the vertical direction of the cleaning device 200 (that is, the elevating direction of the elevating mechanism 214).
  • the Y-axis is set in the width direction of the cleaning device 200 (that is, the direction orthogonal to both the traveling direction and the vertical direction).
  • the device main body 201 has a flat plate-shaped base 211 extending on an XY plane, and a frame 212 provided on the base 211 and supporting the elevating mechanism 214.
  • An opening (not shown) penetrating the base 211 is formed substantially in the center of the base 211.
  • the traveling mechanism 2 is attached to the lower surface of the base 211.
  • the configuration of the traveling mechanism 2 of the cleaning device 200 is substantially the same as the configuration of the traveling mechanism 2 of the cleaning device 100.
  • the cleaning mechanism 203 has a nozzle 204 for injecting a liquid and a supply unit for supplying the liquid to the nozzle.
  • the nozzle 204 is configured to remove deposits on the surface of the tube P by injecting a fluid.
  • the liquid to be sprayed is water.
  • the nozzle 204 has a nozzle body 241 and a plurality of nozzles 242.
  • the nozzle body 241 is formed in a columnar shape having an axial center H extending in the Z-axis direction.
  • the plurality of nozzles 242 are arranged symmetrically with respect to the ZX plane. More specifically, the plurality of nozzles 242 are arranged at equal intervals in the circumferential direction about the axis H in the nozzle body 241. From the nozzle 242, the liquid is ejected in the radial direction about the axis H. That is, the liquid is ejected radially from the nozzle 204 around the axis H.
  • the shape of the nozzle 204 when viewed in the Z-axis direction is the distance GV in the V -axis direction of the two pipes P on which the cleaning device 200 is placed (FIGS. 2 and 2). 3) is within the circle whose diameter is.
  • the nozzle 204 is an example of a cleaning unit.
  • the supply unit has a liquid supply source provided outside the cleaning device 200, and a hose 251 connecting the supply source and the nozzle 204.
  • the elevating mechanism 214 is a so-called pantograph.
  • the elevating mechanism 214 has a plurality of links 215 constituting the pantograph. Specifically, two links 215 in which the central portions in the longitudinal direction are rotatably connected in an intersecting state are set as one set, and the two links in the longitudinal direction end of one set of two links 215 are two links in another set. It is rotatably connected to each of the longitudinal ends of the 215.
  • a relatively short link 215 is rotatably connected to each of the lowermost set of two links 215 at one end in the longitudinal direction (the end to which another set of links is not connected).
  • a nozzle 204 (specifically, a nozzle body 241) is connected to these short links 215.
  • the elevating mechanism 214 also functions as a support portion for supporting the nozzle 204 in the cleaning mechanism 203.
  • the frame 212 has a pair of vertical frames 212a extending in the Z-axis direction from the base 211, and a horizontal frame 212b connected to the upper ends of the pair of vertical frames 212a and extending in the X-axis direction.
  • One of the uppermost sets of links 215 (hereinafter referred to as "first link 215A") is connected to the horizontal frame 212b in a state of being rotatable and non-sliding in the X-axis direction.
  • the other link 215 of the uppermost set (hereinafter referred to as "second link 215B") is connected to the horizontal frame 212b in a state of being rotatable and slidable in the X-axis direction (see the arrow in FIG. 20). ).
  • the second link 215B is moved in the X-axis direction along the horizontal frame 212b by the drive unit (not shown).
  • the drive unit not shown.
  • the longitudinal end of the second link 215B is moved away from the longitudinal end of the first link 215A, the Z-axis dimension of the entire pantograph shrinks, resulting in the nozzle 204 rising.
  • the one end portion in the longitudinal direction of the second link 215B is moved toward the one end portion in the longitudinal direction of the first link 215A, the Z-axis direction dimension of the entire pantograph becomes large, and as a result, the nozzle 204 is lowered.
  • the dimension of the elevating mechanism 214 in the Y -axis direction is smaller than the distance GV of the two pipes P
  • the dimension of the elevating mechanism 214 in the X-axis direction is larger than the distance GV of the two pipes P.
  • FIG. 21 is a view of the state in which the cleaning mechanism 203 is cleaning the pipe P as viewed in the Y-axis direction.
  • the cleaning device 200 cleans the two pipes P and the pipes P arranged below the two pipes P by lowering and raising the cleaning mechanism 203 between the two pipes P. Cleaning is started from a state in which the two crawlers 21 are placed on the two pipes P in a state parallel to the pipes P and the nozzle 204 is located between the two pipes P in the V-axis direction.
  • the nozzle 204 is lowered between the two pipes P by the elevating mechanism 214. At this time, the liquid is ejected from the nozzle 204.
  • the sprayed liquid removes deposits on the surface of the tube P. Since the nozzle 204 injects the liquid in the direction intersecting the Z axis, the liquid is ejected between the plurality of tubes P arranged along the traveling direction of the nozzle 204 (that is, arranged in the W axis direction). By spraying, the deposits existing between the plurality of tubes P are removed, and the deposits on the surface of the plurality of tubes P are removed.
  • the nozzle 204 is not only in the portion of the surface of the tube P facing the space through which the nozzle 204 passes, but also in the direction intersecting the traveling direction of the nozzle 204 (for example, the V-axis direction) from the space. It also removes deposits attached to distant parts (that is, deep parts). Since the nozzle 204 injects the liquid radially around the axis H, the deposits on the tubes P on both sides of the nozzle 204 are removed in the V-axis direction.
  • the nozzle 204 passes by the side of the tube P in the W-axis direction to remove the deposits on the substantially half circumference of the surface of the tube P.
  • the nozzle 204 When the nozzle 204 descends until it passes through the lowermost pipe P among the pipes P to be cleaned, it is raised by the elevating mechanism 214. Even when the nozzle 204 rises, the nozzle 204 injects a liquid into the pipe P to scrape off the deposits on the pipe P. That is, the nozzle 204 cleans the surface of the tube P both when descending and when ascending.
  • the cleaning device 200 moves along the two pipes P in the U-axis direction by a predetermined amount. After that, the nozzle 204 again performs descent and ascent. That is, the nozzle 204 cleans the portion of the pipe P whose U-axis direction position is different from that of the previous nozzle 204 when the nozzle 204 is lowered and raised.
  • the cleaning device 200 Similar to the cleaning device 100, the cleaning device 200 repeatedly lowers and raises the nozzle 204 while changing the position in the U-axis direction, and the cleaning device 200 is mounted on the two pipes P in the U-axis direction. The movement from one end to the other end is completed. Subsequently, the cleaning device 200 moves in the V-axis direction, arranges the nozzle 204 between two different pipes P, and applies the same to the new two pipes P and the pipe P below the new pipe P as described above. Clean it. In this way, the cleaning device 200 cleans the pipes P included in the pipe group Q by repeating the above-mentioned cleaning while changing the two pipes P on which the cleaning device 200 is placed.
  • the first to fourth sensors 71a to 71d are arranged in the same manner as the cleaning device 100.
  • the cleaning device 200 is provided with a first sensor 71a for detecting the relative distance to the first pipe P1 and a second sensor 71b for detecting the relative distance to the second pipe P2, whereby the cleaning mechanism 203 for one pipe P is provided.
  • the relative position of the cleaning mechanism 203 with respect to the first pipe P1 and the second pipe P2 can be obtained instead of the relative position of.
  • the cleaning mechanism 203 can be appropriately arranged between the first pipe P1 and the second pipe P2 in the arrangement direction.
  • the cleaning mechanism 203 can be appropriately entered into the gap between the first pipe P1 and the second pipe P2.
  • the cleaning device 200 is the same as the cleaning device 100 with respect to the relative position of the cleaning mechanism 203 with respect to the first pipe P1 and the second pipe P2 in the arrangement direction and the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction. It plays the action effect of.
  • the cleaning device 200 includes the device main body 201 and the traveling mechanism 2 provided in the device main body 201 and traveling on a plurality of pipes P included in the pipe group Q and arranged in a predetermined arrangement direction.
  • the cleaning mechanism 203 that descends from the device main body 1 and enters the tube group Q through the gaps between the two pipes P included in the plurality of pipes P to clean the deposits on the surface of the pipes P, and the device main body.
  • the first sensor 71a provided in 201 to detect the relative position in the arrangement direction with respect to the first tube P1 which is one tube P of the two tubes P, and the other of the two tubes P provided in the apparatus main body 201. It is provided with a second sensor 71b for detecting a relative position in the arrangement direction with respect to the second tube P2 which is the tube P of the above.
  • the relative position of the apparatus main body 201 with respect to the first and second tubes P1 and P2 in the arrangement direction is based on the relative position detected by the first sensor 71a and the relative position detected by the second sensor 71b.
  • the cleaning mechanism 203 is provided in the apparatus main body 201, as a result, the relative positions of the cleaning mechanism 203 with respect to the first and second pipes P1 and P2 in the arrangement direction are obtained.
  • the cleaning mechanism 203 with respect to the first and second pipes P1 and P2 is not the relative position of the cleaning mechanism 203 with respect to one pipe P.
  • the relative position is calculated.
  • the cleaning mechanism 203 can be arranged at an appropriate position between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the moving accuracy of the traveling mechanism 2 traveling on the pipe P can be improved.
  • the configuration of the traveling mechanism 2 or the elevating mechanism 14, 214 is not limited to the above-mentioned configuration.
  • the traveling mechanism 2 may be a wheel instead of a crawler.
  • the elevating mechanism 14 may be a rack and pinion or a pantograph instead of a winch.
  • the elevating mechanism 214 may be a winch or a rack and pinion instead of a pantograph.
  • the number of cleaning units 4 provided in the cleaning mechanism 3 is not limited to three.
  • the number of cleaning units 4 may be one, two, or four or more.
  • the position of each cleaning unit 4 in the elevating direction of the cleaning mechanism 3, that is, in the Z-axis direction is not limited to the above-mentioned position.
  • the positions of the three cleaning units 4 in the Z-axis direction may be the same.
  • the positions of the three cleaning units 4 in the Z-axis direction may all be different.
  • the configuration of the cleaning unit 4 is not limited to the above configuration.
  • the number of scrapers 34 included in the cleaning unit 4 is not limited to three, and may be one, two, or four or more.
  • the cleaning unit 4 may not have the disk 35 or the excavation section 36.
  • the cleaning unit 4 described above is provided with a plurality of scrapers 34 in each of the three gaps formed by the four discs 35. That is, three sets of scrapers 34 are provided.
  • the number of sets of the scraper 34 may be one set, two sets, or four sets or more.
  • the shape of the scraper 34 may be, for example, a straight line instead of an arc shape.
  • the scraper 34 may have a sliding configuration instead of a swinging configuration.
  • the scraper 34 may have an elongated hole formed therein, and the scraper 34 may be connected to the pin so that the pin provided between the two discs 35 is inserted into the elongated hole. In this configuration, the scraper 34 is slidable with respect to the pin so that the pin moves relatively in the elongated hole. If the scraper 34 is slidable, when the centrifugal force of the rotating shaft 32 acts on the scraper 34, the scraper 34 slides according to the centrifugal force and expands outward in the radial direction.
  • the cleaning mechanism 3 is provided with the guide 5, but the guide 5 may not be provided.
  • the configuration of the guide 5 is not limited to the above-mentioned configuration.
  • the guide 5 does not have to have the link 6.
  • the blade 51 may be slidably connected to the frame 31 and may be urged outward in the Y-axis direction by a spring or the like.
  • the configuration of the nozzle 204 is not limited to the above configuration.
  • the number and arrangement of the nozzles 242 can be arbitrarily set.
  • the cleaning mechanism 203 may have a plurality of nozzles 204.
  • the positions of the plurality of nozzles 204 in the Z-axis direction do not have to match.
  • the traveling mechanism 2 travels along the two pipes P
  • a plurality of nozzles 204 have entered between the two pipes P, and the traveling mechanism 2 turns. At this time, only the nozzle 204 located at the lowermost position may enter between the two pipes P.
  • the substance sprayed from the nozzle 204 of the cleaning mechanism 203 is not limited to the liquid.
  • the nozzle 204 may inject a gas such as air or particles suitable for cleaning the tube P.
  • the "grain” also includes fine particles such as powder.
  • a "granular material” is a tiny sphere such as metal or ceramic.
  • the number of sensors 71 is not limited to four.
  • the third and fourth sensors 71c, 71d may be omitted.
  • two more sensors 71 may be provided.
  • the sensor 71 is not limited to the eddy current sensor. It may be an optical sensor using a laser or the like or an ultrasonic sensor using ultrasonic waves.
  • the arrangement of the two sensors 71 (first and second sensors 71a, 71b or the third and fourth sensors 71c, 71d) having different positions in the arrangement direction is not limited to the above-mentioned arrangement.
  • the pitch M in the arrangement direction of the two sensors 71 may be larger than the pitch N in the arrangement direction of the two tubes P.
  • the detection distance S1 of the first sensor 71a and the detection distance S1 according to the change in the relative position between the first and second sensors 71a and 71b and the first and second tubes P1 and P2 in the arrangement direction.
  • the relative relationship of the second sensor 71b with the detection distance S2, for example, the first distance difference ⁇ S1 changes.
  • the orientation of the sensor 71 is not limited to vertically downward.
  • the sensor 71 may be arranged so as to face diagonally downward.
  • the two sensors 71 having different positions in the arrangement direction may have different positions in the traveling direction.
  • the vision sensor 8 may be omitted.
  • the cleaning devices 100 and 200 do not have to adjust the inclination of the traveling mechanism 2. Although it is not possible to prevent the cleaning mechanism 3 from being out of the position range, the arrangement direction position of the cleaning mechanism 3 is adjusted based on the detection distances of the first and second sensors 71a and 71b. By doing so, the cleaning mechanism 3 can be appropriately entered into the gap between the two pipes P. However, by providing the two sensors 71 having different positions in the arrangement direction at a plurality of locations having different positions in the traveling direction, the inclination of the traveling mechanism 2 can be obtained based on the detection distance of the sensors 71. In that case, the cleaning devices 100 and 200 adjust the inclination of the traveling mechanism 2.
  • the combination of the two sensors 71 (for example, the first and second sensors 71a and 71b) and the vision sensor 8 may be used.
  • the arrangement direction position of the cleaning mechanism 3 is determined based on the detection distances of the two sensors 71, and the inclination of the traveling mechanism 2 is determined based on the acquired image of the vision sensor 8.
  • first condition and the second condition can be set arbitrarily.
  • first condition and the second condition are conditions set in stages, and the second condition is a stricter condition than the first condition.
  • the first condition is a condition determined based on the detection result of the vision sensor 8
  • the second condition is a condition determined based on the detection results of the first to fourth sensors 71a to 71d.
  • the second condition it may be determined whether or not all of the first to fourth sensors 71a to 71d can detect the distance to the pipe P. If any of the first to fourth sensors 71a to 71d cannot detect the distance to the pipe P, it cannot be determined whether or not the second condition is satisfied. Whether or not all of the first to fourth sensors 71a to 71d detect the distance to the pipe P is determined by the appropriate range of the detection results of the first to fourth sensors 71a to 71d (that is, the sensor 71). The position of the traveling mechanism 2 or the cleaning mechanism 3 that is within the output range when the distance to the pipe P can be detected) or is determined based on the acquired image of the vision sensor 8 is located on the two pipes P.
  • the processing unit 91 determines the traveling mechanism 2 or cleaning based on the acquired image of the vision sensor 8.
  • the position of the cleaning mechanism 3 may be adjusted by calculating the driving force of the two crawlers 21 so that the position of the mechanism 3 falls within an appropriate position range with respect to the two pipes P.
  • the main body controller 9 may issue an alarm to urge the user to manually adjust the position of the cleaning mechanism 3.
  • the timing for adjusting the driving force of the traveling mechanism 2 so that the first condition and the second condition are satisfied is when a predetermined amount of movement along the two pipes P is performed a predetermined number of times (that is, in step St8). Judgment) is not limited. For example, in parallel with the movement of the traveling mechanism 2, it is monitored whether the first condition and the second condition are satisfied, and the driving force of the traveling mechanism 2 is adjusted so that the first condition and the second condition are satisfied. You may.
  • the main body controller 9 controls the traveling mechanism 2 so that the first condition and the second condition are satisfied, but the present invention is not limited to this.
  • the main body controller 9 does not have to control the traveling mechanism 2 only by obtaining the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction.
  • the main body controller 9 is in the arrangement direction based on the detection distance by the first and second sensors 71a, 71b or the detection distance by the first, second, third and fourth sensors 71a, 71b, 71c, 71d.
  • the relative position of the cleaning mechanism 3 with respect to the two pipes P is obtained, and the traveling mechanism 2 with respect to the two pipes P is based on the detection results by the first, second, third and fourth sensors 71a, 71b, 71c, 71d. Even if the inclination of the traveling direction is obtained, or the inclination of the traveling mechanism 2 with respect to the two pipes P is obtained based on the image acquired by the vision sensor 8, and the obtained result is output (for example, displayed). good.
  • the main body controller 9 determines whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the first inclination range based on the image acquired by the vision sensor 8, and also determines whether or not the inclination is within the first inclination range. , It is determined whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the second inclination range based on the detection results of the second, third and fourth sensors 71a, 71b, 71c, 71d. You may. The operator may operate the external controller 98 to control the traveling mechanism 2 based on the result obtained by the main body controller 9 or the determined result.
  • the tube P is not limited to a circular tube.
  • the sensor 71 is a vortex current sensor, even if it is a square tube, the size of the portion of the tube P that exists in the detection range of the sensor 71 according to the relative position between the sensor 71 and the tube P in the arrangement direction. Since the current changes, the sensor 71 can detect the relative position in the arrangement direction with respect to the tube P. Even if the sensor 71 is not a vortex current sensor (that is, even if the sensor 71 is an optical sensor or the like), the distance from the surface of the tube to the traveling surface of the traveling mechanism 2 depends on the position in the arrangement direction.
  • the distance from the sensor 71 to the surface of the tube P changes according to the relative position between the sensor 71 and the tube P in the arrangement direction. Therefore, the sensor 71 can detect the relative position in the arrangement direction with respect to the tube P.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Cleaning In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Incineration Of Waste (AREA)

Abstract

This cleaning device 100 comprises: a device body 1; a traveling mechanism 2 which is provided to the device body 1 and travels on a plurality of tubes P arranged in a predetermined arrangement direction; a cleaning mechanism 3 which descends from the device body 1, enters between two tubes P included in the plurality of tubes P, and cleans matter attached to the surfaces of the tubes P; a first sensor 71a which is provided to the device body 1 and detects the relative position in the arrangement direction with respect to a first tube P1 which is one tube P among the two tubes P; and a second sensor 71b which is provided to the device body 1 and detects the relative position in the arrangement direction with respect to a second tube P2 which is the other tube P among the two tubes P.

Description

清掃装置Cleaning device
 ここに開示された技術は、清掃装置に関する。 The technology disclosed here relates to cleaning equipment.
 従来より、ボイラ管等の管の表面に付着した付着物を除去する清掃装置が知られている。例えば、特許文献1に開示された清掃装置は、管上を走行しながら管の清掃を行う。具体的には、清掃装置は、管上を走行する走行機構と、走行機構から管と管の隙間に降下及び上昇させられる清掃機構とを備えている。 Conventionally, a cleaning device for removing deposits adhering to the surface of a pipe such as a boiler pipe has been known. For example, the cleaning device disclosed in Patent Document 1 cleans a pipe while traveling on the pipe. Specifically, the cleaning device includes a traveling mechanism that travels on the pipe and a cleaning mechanism that is lowered and raised from the traveling mechanism to the gap between the pipes.
特開2001-336897号公報Japanese Unexamined Patent Publication No. 2001-336897
 前述のような清掃装置において、走行機構は、清掃機構を管と管との隙間の上方の適切な位置に移動させる。その状態から清掃機構が管と管との隙間に進入していく。しかしながら、管上には付着物が付着しており、走行機構による移動に誤差が生じる場合もある。清掃機構が適切な位置に位置していないと、清掃機構が管と管との隙間に適切に進入することができない。 In the cleaning device as described above, the traveling mechanism moves the cleaning mechanism to an appropriate position above the gap between the pipes. From that state, the cleaning mechanism enters the gap between the pipes. However, deposits are attached on the pipe, and an error may occur in the movement by the traveling mechanism. If the cleaning mechanism is not in the proper position, the cleaning mechanism will not be able to properly enter the gap between the pipes.
 ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、管上を走行する走行機構の移動精度を向上させることにある。 The technology disclosed here was made in view of this point, and the purpose thereof is to improve the movement accuracy of the traveling mechanism traveling on the pipe.
 ここに開示された清掃装置は、装置本体と、前記装置本体に設けられ、所定の配列方向に配列された複数の管の上を走行する走行機構と、前記装置本体から降下して、前記複数の管に含まれる2本の管の間に進入して、管の表面の付着物を清掃する清掃機構と、前記装置本体に設けられ、前記2本の管の一方の管に対する前記配列方向の相対位置を検出する第1センサと、前記装置本体に設けられ、前記2本の管の他方の管に対する前記配列方向の相対位置を検出する第2センサとを備える。 The cleaning device disclosed here includes a device main body, a traveling mechanism provided on the device main body and traveling on a plurality of pipes arranged in a predetermined arrangement direction, and the plurality of cleaning devices descending from the device main body. A cleaning mechanism that enters between the two pipes included in the pipes to clean the deposits on the surface of the pipes, and a cleaning mechanism provided on the main body of the device in the arrangement direction with respect to one of the two pipes. It includes a first sensor for detecting a relative position and a second sensor provided in the main body of the device for detecting a relative position in the arrangement direction of the two tubes with respect to the other tube.
 前記清掃装置によれば、管上を走行する走行機構の移動精度を向上させることができる。 According to the cleaning device, it is possible to improve the moving accuracy of the traveling mechanism traveling on the pipe.
図1は、実施形態1に係る清掃装置の側面図である。FIG. 1 is a side view of the cleaning device according to the first embodiment. 図2は、清掃装置の正面図である。FIG. 2 is a front view of the cleaning device. 図3は、清掃機構を断面図で表した、清掃装置の正面図である。FIG. 3 is a front view of the cleaning device showing the cleaning mechanism in a cross-sectional view. 図4は、清掃機構をY軸方向に見た図である。FIG. 4 is a view of the cleaning mechanism in the Y-axis direction. 図5は、スクレーパが収容された状態の、図4のS-S線における清掃ユニットの断面図である。FIG. 5 is a cross-sectional view of the cleaning unit in the SS line of FIG. 4 in a state where the scraper is housed. 図6は、スクレーパが拡がった状態の、図4のS-S線における清掃ユニットの断面図である。FIG. 6 is a cross-sectional view of the cleaning unit in the SS line of FIG. 4 in a state where the scraper is expanded. 図7は、ガイドが縮まった状態の清掃機構をX軸方向に見た図である。FIG. 7 is a view of the cleaning mechanism in a state where the guide is contracted in the X-axis direction. 図8は、ガイドが拡がった状態の清掃機構をX軸方向に見た図である。FIG. 8 is a view of the cleaning mechanism with the guide expanded in the X-axis direction. 図9は、清掃機構が管を清掃している状態をX軸方向に見た図である。FIG. 9 is a view of the state in which the cleaning mechanism is cleaning the pipe in the X-axis direction. 図10は、センサと管との位置関係を説明する説明図である。FIG. 10 is an explanatory diagram illustrating the positional relationship between the sensor and the tube. 図11は、第1及び第2センサと2本の管との寸法関係を説明する説明図である。FIG. 11 is an explanatory diagram illustrating the dimensional relationship between the first and second sensors and the two pipes. 図12は、第1及び第2センサが配列方向において中央位置から第1管側へ変位した場合の第1及び第2センサと2本の管との位置関係を示す説明図である。FIG. 12 is an explanatory diagram showing the positional relationship between the first and second sensors and the two pipes when the first and second sensors are displaced from the central position to the first pipe side in the arrangement direction. 図13は、第1及び第2センサが配列方向において中央位置から第2管側へ変位した場合の第1及び第2センサと2本の管との位置関係を示す説明図である。FIG. 13 is an explanatory diagram showing the positional relationship between the first and second sensors and the two pipes when the first and second sensors are displaced from the central position to the second pipe side in the arrangement direction. 図14は、走行機構の走行方向と2本の管とが平行な場合の装置本体をZ軸方向に見た図である。FIG. 14 is a view of the main body of the apparatus when the traveling direction of the traveling mechanism and the two pipes are parallel to each other in the Z-axis direction. 図15は、走行機構の走行方向が2本の管に対して傾いている場合の装置本体をZ軸方向に見た図である。FIG. 15 is a view of the main body of the device when the traveling direction of the traveling mechanism is tilted with respect to the two pipes in the Z-axis direction. 図16は、本体コントローラのブロック図である。FIG. 16 is a block diagram of the main body controller. 図17は、清掃制御におけるフローチャートである。FIG. 17 is a flowchart of cleaning control. 図18は、変形例1に係る清掃制御のフローチャートである。FIG. 18 is a flowchart of cleaning control according to the first modification. 図19は、変形例2に係る清掃装置の側面図である。FIG. 19 is a side view of the cleaning device according to the modified example 2. 図20は、実施形態2に係る清掃装置の側面図である。FIG. 20 is a side view of the cleaning device according to the second embodiment. 図21は、清掃機構が管を清掃している状態をY軸方向を向いて見た図である。FIG. 21 is a view of the state in which the cleaning mechanism is cleaning the pipe as viewed in the Y-axis direction.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail based on the drawings.
 《実施形態1》
 実施形態1に係る清掃装置100は、管群に含まれる管の表面に付着した付着物を清掃する。ここでは、清掃装置100がボイラの伝熱管を清掃する場合について説明する。図1は、清掃装置100の側面図である。図2は、清掃装置100の正面図である。図3は、清掃機構を断面図で表した、清掃装置の正面図である。
<< Embodiment 1 >>
The cleaning device 100 according to the first embodiment cleans the deposits adhering to the surface of the pipe included in the pipe group. Here, a case where the cleaning device 100 cleans the heat transfer tube of the boiler will be described. FIG. 1 is a side view of the cleaning device 100. FIG. 2 is a front view of the cleaning device 100. FIG. 3 is a front view of the cleaning device showing the cleaning mechanism in a cross-sectional view.
 ボイラ内には、複数の管Pによって形成された管群Q(図2,3参照)が設けられている。管Pの内部には、水等の流体が流通している。管Pは、伝熱管であり、ボイラの燃焼室で発生した熱と熱交換を行う。例えば、複数の管Pは、水平方向に延びており、水平方向及び鉛直方向に配列されている。つまり、管群Qにおいては、水平方向において複数の管Pが互いに平行な状態で配列されていると共に、鉛直方向において複数の管Pが互いに平行な状態で配列されている。管Pは、導電性を有する材料で形成されている。また、管Pは、略円形断面を有する円管である。 In the boiler, a tube group Q (see FIGS. 2 and 3) formed by a plurality of tubes P is provided. A fluid such as water circulates inside the pipe P. The tube P is a heat transfer tube and exchanges heat with the heat generated in the combustion chamber of the boiler. For example, the plurality of pipes P extend horizontally and are arranged horizontally and vertically. That is, in the tube group Q, a plurality of tubes P are arranged in a state parallel to each other in the horizontal direction, and a plurality of tubes P are arranged in a state parallel to each other in the vertical direction. The tube P is made of a conductive material. Further, the tube P is a circular tube having a substantially circular cross section.
 尚、一の管Pと他の管Pとは、それぞれの端部が繋がって、1本の管を形成する場合もある。つまり、管群Qには、1本の管が水平方向に延びた後、折り返して再び水平方向に延びる場合や、1本の管が水平方向に延びた後、折り返して再び水平方向に延びることを繰り返し、全体として蛇行するように延びる場合がある。本明細書では、このような場合であっても、水平方向に延びる部分の1つ1つを1本の管Pとして捉えるものとする。そのため、実際には連続した1本の管であっても、水平方向に延びる部分が複数存在すれば、複数の管Pとして扱う。 In some cases, one tube P and the other tube P are connected to each other to form one tube. That is, in the tube group Q, when one tube extends horizontally and then folds back and extends horizontally again, or when one tube extends horizontally and then folds back and extends horizontally again. May be repeated and extend in a meandering manner as a whole. In the present specification, even in such a case, each of the portions extending in the horizontal direction is regarded as one tube P. Therefore, even if it is actually one continuous pipe, if there are a plurality of portions extending in the horizontal direction, it is treated as a plurality of pipes P.
 ボイラでは、燃焼により生じた灰が管Pに付着し得る。灰の一部は、溶融してクリンカになるものもある。このように、管Pの表面には、灰やクリンカ等の付着物が付着している。ここで、付着物とは、管Pの表面に直接的に接触しているものに限られず、管Pの表面に直接的に接触しているものにさらに積み重なっているものも含む。例えば、管Pの表面に直接的に接触している灰だけでなく、その上にさらに堆積している灰も付着物に含まれる。 In the boiler, the ash generated by combustion can adhere to the pipe P. Some of the ash melts into clinker. As described above, deposits such as ash and clinker are attached to the surface of the tube P. Here, the deposit is not limited to the one that is in direct contact with the surface of the pipe P, but also includes the one that is further stacked on the one that is in direct contact with the surface of the pipe P. For example, not only the ash that is in direct contact with the surface of the tube P, but also the ash that is further deposited on the ash is included in the deposit.
 清掃装置100は、所定の配列方向(ここでは、水平方向)に配列された複数の管Pの上に載置される。清掃装置100は、装置本体1と、装置本体1に設けられ、管群Qに含まれる管Pの上を走行する走行機構2と、装置本体1から降下して、水平方向に配列された複数の管Pに含まれる2本の管Pの隙間から管群Q内に進入して、管Pの表面の付着物を清掃する清掃機構3と、装置本体1に設けられ、2本の管Pの一方の管Pに対する配列方向の相対位置を検出する第1センサ71aと、装置本体1に設けられ、2本の管Pの他方の管Pに対する配列方向の相対位置を検出する第2センサ71bとを備えている。清掃装置100は、清掃装置100を制御する本体コントローラ9(図1参照)をさらに備えていてもよい。清掃装置100は、2本の管Pの間に清掃機構3を降下及び上昇させ、2本の管P及びそれらの下方に並ぶ管Pに付着した付着物を清掃する。 The cleaning device 100 is placed on a plurality of pipes P arranged in a predetermined arrangement direction (here, the horizontal direction). The cleaning device 100 includes a device main body 1, a traveling mechanism 2 provided on the device main body 1 and traveling on the pipe P included in the pipe group Q, and a plurality of cleaning devices 100 descending from the device main body 1 and arranged in the horizontal direction. A cleaning mechanism 3 that enters the pipe group Q through a gap between the two pipes P included in the pipe P to clean the deposits on the surface of the pipe P, and two pipes P provided in the main body 1 of the apparatus. The first sensor 71a for detecting the relative position in the arrangement direction with respect to one tube P and the second sensor 71b provided in the apparatus main body 1 for detecting the relative position in the arrangement direction with respect to the other tube P of the two tubes P. And have. The cleaning device 100 may further include a main body controller 9 (see FIG. 1) that controls the cleaning device 100. The cleaning device 100 lowers and raises the cleaning mechanism 3 between the two pipes P to clean the two pipes P and the deposits adhering to the pipes P arranged below them.
 清掃装置100は、走行機構2の走行方向の位置が第1センサ71aと異なる位置において装置本体1に設けられ、一方の管Pに対する配列方向の相対位置を検出する第3センサ71cと、走行機構2の走行方向の位置が第2センサ71bと異なる位置において装置本体1に設けられ、他方の管Pに対する配列方向の相対位置を検出する第4センサ71dとをさらに備えていてもよい。清掃装置100は、複数の管Pに載置された状態の装置本体1及び走行機構2の少なくも一方を撮像するビジョンセンサ8(図1参照)をさらに備えていてもよい。ビジョンセンサ8は、撮像装置の一例である。本体コントローラ9は、制御部の一例である。 The cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a. The apparatus main body 1 may be provided at a position where the position of 2 in the traveling direction is different from that of the second sensor 71b, and may further include a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the other tube P. The cleaning device 100 may further include a vision sensor 8 (see FIG. 1) that captures at least one of the device main body 1 and the traveling mechanism 2 mounted on a plurality of pipes P. The vision sensor 8 is an example of an image pickup device. The main body controller 9 is an example of a control unit.
 以下、説明の便宜上、清掃装置100を基準に互いに直交するX軸、Y軸及びZ軸を規定する。清掃装置100の走行方向(即ち、走行機構2の走行方向)にX軸を設定し、清掃装置100の上下方向(即ち、清掃機構3の昇降方向)にZ軸を設定し、清掃装置100の幅方向(即ち、走行方向及び上下方向の両方に直交する方向)にY軸を設定する。 Hereinafter, for convenience of explanation, the X-axis, Y-axis, and Z-axis that are orthogonal to each other with respect to the cleaning device 100 are defined. The X-axis is set in the traveling direction of the cleaning device 100 (that is, the traveling direction of the traveling mechanism 2), the Z-axis is set in the vertical direction of the cleaning device 100 (that is, the elevating direction of the cleaning mechanism 3), and the cleaning device 100 is set. The Y-axis is set in the width direction (that is, the direction orthogonal to both the traveling direction and the vertical direction).
 また、管群Qを基準に互いに直交するU軸、V軸及びW軸を規定する。管Pが延びる方向にU軸を設定し、U軸に直交し且つ水平な方向にV軸を設定し、U軸に直交し且つ鉛直な方向にW軸を設定する。 In addition, the U-axis, V-axis, and W-axis that are orthogonal to each other with respect to the tube group Q are defined. The U-axis is set in the direction in which the tube P extends, the V-axis is set in the direction orthogonal to and horizontal to the U-axis, and the W-axis is set in the direction orthogonal to and vertical to the U-axis.
 装置本体1は、XY平面上に拡がる平板状のベース11と、ベース11に設けられ、清掃機構3を収容するケース12と、清掃機構3を装置本体1から昇降させる昇降機構14とを有している。ベース11の略中央には、ベース11を貫通する開口11a(図3参照)が形成されている。ケース12は、X軸方向を長手方向とする略長方形の断面を有する角筒状に形成されている。ケース12は、ベース11の開口11aを貫通している。 The apparatus main body 1 has a flat plate-shaped base 11 extending on an XY plane, a case 12 provided on the base 11 for accommodating the cleaning mechanism 3, and an elevating mechanism 14 for raising and lowering the cleaning mechanism 3 from the apparatus main body 1. ing. An opening 11a (see FIG. 3) penetrating the base 11 is formed substantially in the center of the base 11. The case 12 is formed in a square cylinder shape having a substantially rectangular cross section with the X-axis direction as the longitudinal direction. The case 12 penetrates the opening 11a of the base 11.
 走行機構2は、ベース11の下面に取り付けられた2本のクローラ21を有している。クローラ21は、X軸方向に進行するように構成されている。つまり、クローラ21の駆動輪の回転軸は、Y軸方向に延びている。2本のクローラ21は、ベース11の開口11aを挟んでY軸方向に並んでいる。 The traveling mechanism 2 has two crawlers 21 attached to the lower surface of the base 11. The crawler 21 is configured to travel in the X-axis direction. That is, the rotation axis of the drive wheel of the crawler 21 extends in the Y-axis direction. The two crawlers 21 are arranged in the Y-axis direction with the opening 11a of the base 11 interposed therebetween.
 清掃機構3は、装置本体1から降下及び上昇して、走行機構2よりも下方に位置する管Pの表面の付着物を清掃する。清掃機構3は、清掃を行わないときには、ケース12内に収容されている。清掃機構3は、清掃を行うときには、ケース12から下方へ降下し、管群Q内を進行しながら、管群Qに含まれる管Pの表面を清掃する。 The cleaning mechanism 3 descends and rises from the device main body 1 to clean the deposits on the surface of the pipe P located below the traveling mechanism 2. The cleaning mechanism 3 is housed in the case 12 when cleaning is not performed. When cleaning, the cleaning mechanism 3 descends downward from the case 12 and cleans the surface of the pipe P included in the pipe group Q while traveling in the pipe group Q.
 昇降機構14は、2基のウインチ15と、各ウインチ15に巻き上げられるワイヤ16とを有している。ウインチ15は、ベース11の上面に設置されている。2基のウインチ15は、X軸方向においてケース12を挟むように配置されている。ワイヤ16は、ウインチ15のリールに巻き掛けられている。ワイヤ16の一端は、清掃機構3に取り付けられている。つまり、清掃機構3は、2本のワイヤ16でつり下げられた状態となっており、昇降機構14によってZ軸方向に昇降させられる。 The elevating mechanism 14 has two winches 15 and a wire 16 wound around each winch 15. The winch 15 is installed on the upper surface of the base 11. The two winches 15 are arranged so as to sandwich the case 12 in the X-axis direction. The wire 16 is wound around the reel of the winch 15. One end of the wire 16 is attached to the cleaning mechanism 3. That is, the cleaning mechanism 3 is suspended by the two wires 16 and is moved up and down in the Z-axis direction by the elevating mechanism 14.
 第1~第4センサ71a~71dのそれぞれは、同じ構成をしている。以下、第1~第4センサ71a~71dのそれぞれを区別しない場合には、単に「センサ71」と称する。センサ71は、配列方向におけるセンサ71と管Pとの相対位置を検出する。具体的には、センサ71は、センサ71から管Pの表面までの距離を検出する。センサ71は、ベース11の下面に取り付けられている。 Each of the first to fourth sensors 71a to 71d has the same configuration. Hereinafter, when each of the first to fourth sensors 71a to 71d is not distinguished, it is simply referred to as "sensor 71". The sensor 71 detects the relative position between the sensor 71 and the tube P in the arrangement direction. Specifically, the sensor 71 detects the distance from the sensor 71 to the surface of the tube P. The sensor 71 is attached to the lower surface of the base 11.
 ビジョンセンサ8は、複数の管Pに載置された装置本体1を上方から撮像する。そのため、ビジョンセンサ8は、装置本体1及び走行機構2の少なくも一方と走行機構2が載置された複数の管Pとが含まれる画像を取得する。 The vision sensor 8 images the apparatus main body 1 mounted on the plurality of tubes P from above. Therefore, the vision sensor 8 acquires an image including at least one of the device main body 1 and the traveling mechanism 2 and a plurality of tubes P on which the traveling mechanism 2 is mounted.
 本体コントローラ9は、装置本体1に搭載されている。本体コントローラ9には、オペレータが指令を入力する際に操作する外部コントローラ98が接続されていてもよい。外部コントローラ98は、ケーブル99を介して本体コントローラ9に接続されている。オペレータは、外部コントローラ98を操作することによって、本体コントローラ9に指令を入力する。例えば、外部コントローラ98は、指令として、清掃装置100への動作指令が入力可能である。それに加えて、外部コントローラ98は、動作に関連する各種設定を入力可能であってもよい。尚、外部コントローラ98は、本体コントローラ9に無線接続されていてもよい。 The main body controller 9 is mounted on the device main body 1. An external controller 98 that the operator operates when inputting a command may be connected to the main body controller 9. The external controller 98 is connected to the main body controller 9 via the cable 99. The operator inputs a command to the main body controller 9 by operating the external controller 98. For example, the external controller 98 can input an operation command to the cleaning device 100 as a command. In addition, the external controller 98 may be capable of inputting various settings related to operation. The external controller 98 may be wirelessly connected to the main body controller 9.
 以下、清掃機構3についてさらに詳細に説明する。図4は、清掃機構3をY軸方向に見た図である。図5は、スクレーパ34が収容された状態の、図4のS-S線における清掃ユニット4の断面図である。図6は、スクレーパ34が拡がった状態の、図4のS-S線における清掃ユニット4の断面図である。図7は、ガイド5が縮まった状態の清掃機構3をX軸方向に見た図である。図8は、ガイド5が拡がった状態の清掃機構3をX軸方向に見た図である。 Hereinafter, the cleaning mechanism 3 will be described in more detail. FIG. 4 is a view of the cleaning mechanism 3 in the Y-axis direction. FIG. 5 is a cross-sectional view of the cleaning unit 4 in the SS line of FIG. 4 in a state where the scraper 34 is housed. FIG. 6 is a cross-sectional view of the cleaning unit 4 in the SS line of FIG. 4 in a state where the scraper 34 is expanded. FIG. 7 is a view of the cleaning mechanism 3 with the guide 5 contracted in the X-axis direction. FIG. 8 is a view of the cleaning mechanism 3 with the guide 5 expanded in the X-axis direction.
 清掃機構3は、フレーム31と、フレーム31に支持された3つの清掃ユニット4と、清掃機構3が管群Q内を進行する際に清掃機構3を進行方向に案内するガイド5とを有している。 The cleaning mechanism 3 has a frame 31, three cleaning units 4 supported by the frame 31, and a guide 5 that guides the cleaning mechanism 3 in the traveling direction when the cleaning mechanism 3 advances in the pipe group Q. ing.
 フレーム31は、図4に示すように、概ね四角形の枠状に形成されている。フレーム31は、カバー31aが取り付けられており、これにより、全体として箱状に形成されている。フレーム31のうちX軸方向の両端に設けられ、Z軸方向に延びる一対の縦フレーム31bのそれぞれには、昇降機構14のワイヤ16が取り付けられる係止部31cが設けられている。 As shown in FIG. 4, the frame 31 is formed in a substantially quadrangular frame shape. A cover 31a is attached to the frame 31, whereby the frame 31 is formed in a box shape as a whole. Each of the pair of vertical frames 31b provided at both ends of the frame 31 in the X-axis direction and extending in the Z-axis direction is provided with a locking portion 31c to which the wire 16 of the elevating mechanism 14 is attached.
 フレーム31のY軸方向の寸法は、2本の管Pの間隔Gよりも小さく設定されている。一方、フレーム31のX軸方向の寸法は、2本の管Pの間隔Gよりも大きく設定されている。つまり、清掃装置100のX軸方向と管群QのU軸方向とが一致する場合には、フレーム31は、2本の管Pの間に進入することができる。 The dimension of the frame 31 in the Y -axis direction is set to be smaller than the distance GV between the two tubes P. On the other hand, the dimension of the frame 31 in the X-axis direction is set to be larger than the distance GV between the two tubes P. That is, when the X-axis direction of the cleaning device 100 and the U-axis direction of the pipe group Q coincide with each other, the frame 31 can enter between the two pipes P.
 3つの清掃ユニット4は、フレーム31に支持されている。3つの清掃ユニット4は、フレーム31の下部から下方に突出している。 The three cleaning units 4 are supported by the frame 31. The three cleaning units 4 project downward from the lower part of the frame 31.
 3つの清掃ユニット4は、X軸方向に配列されている。3つの清掃ユニット4は、Z軸方向(即ち、清掃機構3の昇降方向)における位置が異なっている。具体的には、真ん中の清掃ユニット4は、両側の清掃ユニット4に比べて下方に突出している。以下、3つの清掃ユニット4をそれぞれ区別する場合には、X軸方向に並ぶ順に、「第1清掃ユニット4A」、「第2清掃ユニット4B」、「第3清掃ユニット4C」と称する。 The three cleaning units 4 are arranged in the X-axis direction. The positions of the three cleaning units 4 are different in the Z-axis direction (that is, the elevating direction of the cleaning mechanism 3). Specifically, the cleaning unit 4 in the middle projects downward as compared with the cleaning units 4 on both sides. Hereinafter, when the three cleaning units 4 are distinguished from each other, they are referred to as "first cleaning unit 4A", "second cleaning unit 4B", and "third cleaning unit 4C" in the order of arrangement in the X-axis direction.
 清掃ユニット4は、Z軸と平行(即ち、清掃機構3の昇降方向と平行)な回転軸A回りに回転しながら管Pに接触して管Pの表面の付着物を除去するように構成されている。具体的には、清掃ユニット4は、図4に示すように、Z軸と平行に延びる回転軸A回りに回転する回転シャフト32と、管Pの表面に接触することによって管Pの表面の付着物を除去するスクレーパ34と、回転軸Aと同軸に設けられた円板35と、回転軸A上であって清掃ユニット4の先端に設けられた掘削部36とを有している。回転シャフト32は、フレーム31に支持されたモータ(図示省略)によって回転駆動される。清掃ユニット4は、清掃部の一例であり、スクレーパ34は、接触部の一例である。 The cleaning unit 4 is configured to come into contact with the pipe P while rotating around a rotation axis A parallel to the Z axis (that is, parallel to the elevating direction of the cleaning mechanism 3) to remove deposits on the surface of the pipe P. ing. Specifically, as shown in FIG. 4, the cleaning unit 4 has a rotating shaft 32 that rotates around a rotating shaft A extending in parallel with the Z axis, and the surface of the pipe P is attached by contacting the surface of the pipe P. It has a scraper 34 for removing kimono, a disk 35 provided coaxially with the rotation axis A, and an excavation portion 36 provided on the rotation axis A at the tip of the cleaning unit 4. The rotary shaft 32 is rotationally driven by a motor (not shown) supported by the frame 31. The cleaning unit 4 is an example of a cleaning unit, and the scraper 34 is an example of a contact unit.
 回転シャフト32の先端部に、円板35、スクレーパ34及び掘削部36が設けられている。4枚の円板35が、回転軸Aと同軸上に等間隔で配置されている。円板35は、回転シャフト32に回転不能な状態で取り付けられている。つまり、円板35は、回転シャフト32と一体的に回転する。円板35の直径は、2本の管Pの間隔Gよりも小さく設定されている。 A disk 35, a scraper 34, and an excavation portion 36 are provided at the tip of the rotary shaft 32. Four discs 35 are arranged coaxially with the rotation axis A at equal intervals. The disk 35 is attached to the rotating shaft 32 in a non-rotatable state. That is, the disk 35 rotates integrally with the rotating shaft 32. The diameter of the disk 35 is set to be smaller than the distance GV between the two tubes P.
 4枚の円板35によって3つの隙間が形成されている。図5,6に示すように、各隙間に3つのスクレーパ34が配置されている。隣り合う各2つの円板35の間には、回転軸Aと平行な揺動軸Bに沿って延びる3本の揺動シャフト37が設けられている。3本の揺動シャフト37は、回転軸Aから偏心した位置において、回転軸A回りに等間隔を空けて設けられている。各スクレーパ34は、揺動シャフト37に揺動可能な状態で連結されている。スクレーパ34は、概ね円弧状に形成されている。スクレーパ34は、例えば、アルミ合金、炭素鋼、ウレタンゴム又は真鍮で形成されている。 Three gaps are formed by the four disks 35. As shown in FIGS. 5 and 6, three scrapers 34 are arranged in each gap. Between each of the two adjacent discs 35, three swing shafts 37 extending along the swing shaft B parallel to the rotation shaft A are provided. The three swing shafts 37 are provided at positions eccentric from the rotation shaft A at equal intervals around the rotation shaft A. Each scraper 34 is connected to the swing shaft 37 in a swingable state. The scraper 34 is formed in a substantially arc shape. The scraper 34 is made of, for example, an aluminum alloy, carbon steel, urethane rubber or brass.
 図5に示すように、スクレーパ34のうち揺動軸Bから遠い端部である先端部34aが回転軸Aに最も接近した状態においては、スクレーパ34は、2つの円板35の隙間内に完全に収容される。すなわち、スクレーパ34は、円板35の外周縁Eの内側に収容される。スクレーパ34が円板35内に収容された状態において、Z軸方向(即ち、清掃機構3の昇降方向)に見た場合の清掃ユニット4の形状は、2本の管Pの間隔Gを直径とする円内に収まっている。ここで、「外周縁Eの内側に収容される」とは、スクレーパ34が外周縁Eからはみ出さないことを意味している。つまり、スクレーパ34は、円板35の間に収容されたときに、外周縁Eと面一な状態であってもよい。 As shown in FIG. 5, in the state where the tip portion 34a, which is the end portion of the scraper 34 far from the swing shaft B, is closest to the rotation shaft A, the scraper 34 is completely within the gap between the two discs 35. Is housed in. That is, the scraper 34 is housed inside the outer peripheral edge E of the disk 35. When the scraper 34 is housed in the disk 35, the shape of the cleaning unit 4 when viewed in the Z -axis direction (that is, the elevating direction of the cleaning mechanism 3) has a diameter of the distance GV between the two pipes P. It is within the circle. Here, "accommodated inside the outer peripheral edge E" means that the scraper 34 does not protrude from the outer peripheral edge E. That is, the scraper 34 may be flush with the outer peripheral edge E when housed between the disks 35.
 一方、図6に示すように、スクレーパ34は、回転シャフト32の遠心力によって先端部34aが回転軸Aから離れるように揺動し、回転軸Aを中心とする半径方向外側へ拡がる。このとき、スクレーパ34は、円板35の外周縁Eよりも外側へ突出する(即ち、外周縁Eから外側へはみ出す)。 On the other hand, as shown in FIG. 6, the scraper 34 swings so that the tip portion 34a is separated from the rotation axis A by the centrifugal force of the rotation shaft 32, and expands outward in the radial direction about the rotation axis A. At this time, the scraper 34 protrudes outward from the outer peripheral edge E of the disk 35 (that is, protrudes outward from the outer peripheral edge E).
 以下、特段の断りがない限り、「半径方向」とは、回転軸Aを中心とする半径方向を意味する。 Hereinafter, unless otherwise specified, the "radial direction" means the radial direction centered on the rotation axis A.
 掘削部36は、図4に示すように、回転シャフト32の先端に配置されている。掘削部36は、回転シャフト32に回転不能な状態で取り付けられている。つまり、掘削部36は、回転シャフト32と一体的に回転する。掘削部36は、概ね円錐状に、即ち、先鋭な形状に形成されている。掘削部36には、掘削部36によって削った切屑を逃がすための溝が形成されている。 As shown in FIG. 4, the excavation portion 36 is arranged at the tip of the rotary shaft 32. The excavated portion 36 is attached to the rotating shaft 32 in a non-rotatable state. That is, the excavated portion 36 rotates integrally with the rotating shaft 32. The excavated portion 36 is formed in a substantially conical shape, that is, in a sharp shape. The excavation section 36 is formed with a groove for allowing the chips cut by the excavation section 36 to escape.
 さらに、図4,7,8に示すように、フレーム31のうち一対の縦フレーム31bのそれぞれに、ガイド5が設けられている。ガイド5は、一対の第1ブレード51A及び第2ブレード51Bと、第1ブレード51A及び第2ブレード51Bを縦フレーム31bに連結する4つの第1~第4リンク61~64とを有している。第1ブレード51Aと第2ブレード51Bとは、左右対称な形状をしている。第1ブレード51A及び第2ブレード51Bは、Y軸方向におけるガイド5の外側の管Pと接触することによって、清掃機構3を案内する。第1ブレード51Aと第2ブレード51Bとを区別しない場合には、単に「ブレード51」と称する。第1~第4リンク61~64は全て、同じ形状をしている。第1リンク61、第2リンク62、第3リンク63及び第4リンク64のそれぞれを区別しない場合には、単に「リンク6」と称する。 Further, as shown in FIGS. 4, 7 and 8, a guide 5 is provided in each of the pair of vertical frames 31b in the frame 31. The guide 5 has a pair of first blades 51A and second blades 51B, and four first to fourth links 61 to 64 connecting the first blades 51A and the second blades 51B to the vertical frame 31b. .. The first blade 51A and the second blade 51B have symmetrical shapes. The first blade 51A and the second blade 51B guide the cleaning mechanism 3 by coming into contact with the pipe P outside the guide 5 in the Y-axis direction. When the first blade 51A and the second blade 51B are not distinguished, they are simply referred to as "blade 51". The first to fourth links 61 to 64 all have the same shape. When each of the first link 61, the second link 62, the third link 63, and the fourth link 64 is not distinguished, it is simply referred to as "link 6".
 各ブレード51は、Z軸方向に延びる形状をしている。各ブレード51は、Y軸方向の外側(即ち、フレーム31のY軸方向中央から遠い側)に概ねZ軸方向に延びるエッジ53を有している。エッジ53が、管Pと接触する。各ブレード51には、第1~第4リンク61~64が連結されている。 Each blade 51 has a shape extending in the Z-axis direction. Each blade 51 has an edge 53 extending substantially in the Z-axis direction on the outside in the Y-axis direction (that is, the side far from the center in the Y-axis direction of the frame 31). The edge 53 comes into contact with the tube P. The first to fourth links 61 to 64 are connected to each blade 51.
 各リンク6の長手方向中央部は、縦フレーム31bに回転自在に取り付けられている。第1リンク61と第2リンク62とは、同じ回転軸Cに取り付けられている。第3リンク63と第4リンク64とは、同じ回転軸Dに取り付けられている。各リンク6の長手方向一端部(以下、「第1端部」と称する)が第1ブレード51Aに連結され、各リンク6の長手方向他端部(以下、「第2端部」と称する)が第2ブレード51Bに連結されている。 The central portion of each link 6 in the longitudinal direction is rotatably attached to the vertical frame 31b. The first link 61 and the second link 62 are attached to the same rotation shaft C. The third link 63 and the fourth link 64 are attached to the same rotation axis D. One end in the longitudinal direction of each link 6 (hereinafter referred to as "first end") is connected to the first blade 51A, and the other end in the longitudinal direction of each link 6 (hereinafter referred to as "second end"). Is connected to the second blade 51B.
 詳しくは、第1リンク61の第1端部61aは、第1ブレード51Aに形成された、Z軸方向に延びる長孔54に、回転自在且つ長孔54内を摺動可能に取り付けられている。第1リンク61の第2端部61bは、第2ブレード51Bに回転自在に取り付けられている。第2リンク62の第1端部62aは、第1ブレード51Aに回転自在に取り付けられている。第2リンク62の第2端部62bは、第2ブレード51Bに形成された、Z軸方向に延びる長孔54に、回転自在且つ長孔54内を摺動可能に取り付けられている。 Specifically, the first end portion 61a of the first link 61 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the first blade 51A. .. The second end 61b of the first link 61 is rotatably attached to the second blade 51B. The first end portion 62a of the second link 62 is rotatably attached to the first blade 51A. The second end portion 62b of the second link 62 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the second blade 51B.
 同様に、第3リンク63の第1端部63aは、第1ブレード51Aに形成された、Z軸方向に延びる長孔54に、回転自在且つ長孔54内を摺動可能に取り付けられている。第3リンク63の第2端部63bは、第2ブレード51Bに回転自在に取り付けられている。第4リンク64の第1端部64aは、第1ブレード51Aに回転自在に取り付けられている。第4リンク64の第2端部64bは、第2ブレード51Bに形成された、Z軸方向に延びる長孔54に、回転自在且つ長孔54内を摺動可能に取り付けられている。 Similarly, the first end portion 63a of the third link 63 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the first blade 51A. .. The second end 63b of the third link 63 is rotatably attached to the second blade 51B. The first end 64a of the fourth link 64 is rotatably attached to the first blade 51A. The second end portion 64b of the fourth link 64 is rotatably and slidably attached to the elongated hole 54 extending in the Z-axis direction formed in the second blade 51B.
 第1リンク61及び第2リンク62は、第1リンク61の第1端部61aと第2リンク62の第2端部62bとがY軸方向に離れ且つ、第1リンク61の第2端部61bと第2リンク62の第1端部62aとがY軸方向に離れるように、コイルバネ(図示省略)によって回転軸C回りに付勢されている。 In the first link 61 and the second link 62, the first end portion 61a of the first link 61 and the second end portion 62b of the second link 62 are separated from each other in the Y-axis direction, and the second end portion of the first link 61 is separated. The 61b and the first end portion 62a of the second link 62 are urged around the rotation axis C by a coil spring (not shown) so as to be separated from each other in the Y-axis direction.
 同様に、第3リンク63及び第4リンク64は、第3リンク63の第1端部63aと第4リンク64の第2端部64bとがY軸方向に離れ且つ、第3リンク63の第2端部63bと第4リンク64の第1端部64aとがY軸方向に離れるように、コイルバネ(図示省略)によって回転軸D回りに付勢されている。 Similarly, in the third link 63 and the fourth link 64, the first end portion 63a of the third link 63 and the second end portion 64b of the fourth link 64 are separated from each other in the Y-axis direction, and the third link 63 is the third link 63. The two end portions 63b and the first end portion 64a of the fourth link 64 are urged around the rotation axis D by a coil spring (not shown) so as to be separated from each other in the Y-axis direction.
 こうして、第1ブレード51A及び第2ブレード51Bは、Z軸方向に延びる姿勢を維持したまま、Y軸方向へ互いに離れるように付勢されている。つまり、第1ブレード51A及び第2ブレード51Bは、Y軸方向においてガイド5の外側に位置する管Pにエッジ53を押し付けるように付勢されている。 Thus, the first blade 51A and the second blade 51B are urged to separate from each other in the Y-axis direction while maintaining the posture extending in the Z-axis direction. That is, the first blade 51A and the second blade 51B are urged to press the edge 53 against the pipe P located outside the guide 5 in the Y-axis direction.
 次に、このように構成された清掃機構3の清掃動作について説明する。図9は、清掃機構3が管Pを清掃している状態をX軸方向に見た図である。 Next, the cleaning operation of the cleaning mechanism 3 configured in this way will be described. FIG. 9 is a view of the state in which the cleaning mechanism 3 is cleaning the pipe P in the X-axis direction.
 清掃機構3は、3つの清掃ユニット4の配列方向が2本の管Pと平行な状態で、2本の管Pの隙間に進入していく。このとき、清掃機構3は、回転シャフト32を回転させ、2本の管P及びそれらの下方に並ぶ管Pに付着した付着物を清掃する。 The cleaning mechanism 3 enters the gap between the two pipes P in a state where the arrangement direction of the three cleaning units 4 is parallel to the two pipes P. At this time, the cleaning mechanism 3 rotates the rotary shaft 32 to clean the two pipes P and the deposits adhering to the pipes P arranged below them.
 回転シャフト32の回転による遠心力によってスクレーパ34が回転軸Aを中心とする半径方向外側に拡がる。ただし、十分なスペースが存在しない場合には、スクレーパ34は最大には拡がらず、可能な範囲で拡がる。つまり、スクレーパ34の半径方向外側のスペースがZ軸方向位置によって異なる場合、スクレーパ34は、半径方向外側のスペースに応じて拡がりを変化させながら降下していく。清掃機構3が管群Q内を降下する場合、図9に示すように、スクレーパ34の半径方向外側に管Pが存在しない位置、又は、スクレーパ34の半径方向外側に管Pが存在するもののスクレーパ34が届かない位置においては、スクレーパ34は、最大限拡がった状態となる(図9における第1清掃ユニット4Aの比較的上部のスクレーパ34を参照)。スクレーパ34の半径方向外側に管Pが存在し且つスクレーパ34が管Pに届く位置においては、スクレーパ34が管Pに接触する状態まで拡がる(図9における第1清掃ユニット4Aの比較的下部のスクレーパ34及び第2清掃ユニット4Bのスクレーパ34を参照)。その結果、スクレーパ34は、管Pの横を通過する際に、管Pの表面形状に倣って半径方向への拡がりを変更しながら管Pの表面に接触する。 The scraper 34 expands outward in the radial direction about the rotation axis A due to the centrifugal force generated by the rotation of the rotation shaft 32. However, if there is not enough space, the scraper 34 will not expand to the maximum and will expand to the extent possible. That is, when the space on the outer side in the radial direction of the scraper 34 differs depending on the position in the Z-axis direction, the scraper 34 descends while changing the spread according to the space on the outer side in the radial direction. When the cleaning mechanism 3 descends in the pipe group Q, as shown in FIG. 9, the scraper is located at a position where the pipe P does not exist on the radial outside of the scraper 34, or the pipe P exists on the radial outside of the scraper 34. In the position where 34 cannot reach, the scraper 34 is in the fully expanded state (see the scraper 34 relatively upper of the first cleaning unit 4A in FIG. 9). At the position where the pipe P exists on the radial outer side of the scraper 34 and the scraper 34 reaches the pipe P, the scraper 34 expands to the state where the scraper 34 is in contact with the pipe P (the scraper at a relatively lower portion of the first cleaning unit 4A in FIG. 9). 34 and scraper 34 of the second cleaning unit 4B). As a result, when the scraper 34 passes by the side of the pipe P, the scraper 34 comes into contact with the surface of the pipe P while changing the radial spread according to the surface shape of the pipe P.
 つまり、清掃機構3の進行方向に沿って配列された(即ち、W軸方向に配列された)複数の管Pの間にスクレーパ34が入り込んで、該複数の管Pの間に存在する付着物を除去すると共に該複数の管Pの表面に接触して管Pの付着物を除去する。その結果、スクレーパ34は、管Pの表面のうち、清掃機構3が通過するスペースに面している部分だけでなく、該スペースから清掃機構3の進行方向と交差する方向(例えば、V軸方向)に離れた部分(即ち、奥まった部分)に付着した付着物も除去する。 That is, the scraper 34 enters between the plurality of pipes P arranged along the traveling direction of the cleaning mechanism 3 (that is, arranged in the W-axis direction), and the deposit existing between the plurality of pipes P. And contact the surfaces of the plurality of tubes P to remove the deposits on the tubes P. As a result, the scraper 34 is not only the portion of the surface of the pipe P facing the space through which the cleaning mechanism 3 passes, but also the direction (for example, the V-axis direction) intersecting the traveling direction of the cleaning mechanism 3 from the space. ) Also removes deposits adhering to the distant part (that is, the deep part).
 好ましくは、スクレーパ34が最も拡がった状態におけるスクレーパ34の外接円F(図6参照)の直径は、V軸方向に並ぶ2本の管Pの軸心間の距離よりも大きく設定されている。これにより、スクレーパ34は、管Pの側方をW軸方向に通過することによって、管Pの表面のうち概ね半周部分の付着物を除去することができる。 Preferably, the diameter of the circumscribed circle F (see FIG. 6) of the scraper 34 in the state where the scraper 34 is most expanded is set to be larger than the distance between the axes of the two pipes P arranged in the V-axis direction. As a result, the scraper 34 can remove the deposits on the substantially half circumference of the surface of the pipe P by passing by the side of the pipe P in the W-axis direction.
 こうして、スクレーパ34は、管Pの表面に付着した付着物を削り落としていく。 In this way, the scraper 34 scrapes off the deposits adhering to the surface of the pipe P.
 ここで、清掃機構3が2本の管Pの間を降下していく際に、清掃機構3の進行方向の前方(即ち、清掃機構3の下方)に灰等の付着物が存在している場合がある。清掃ユニット4の先端には、掘削部36が設けられている。掘削部36は、清掃機構3が降下する際に、回転シャフト32と一体的に回転している。そのため、清掃機構3が降下する際に清掃機構3の下方に存在する付着物を掘削部36が掘削していく。これにより、清掃機構3を円滑に降下させることができる。 Here, when the cleaning mechanism 3 descends between the two pipes P, deposits such as ash are present in front of the cleaning mechanism 3 in the traveling direction (that is, below the cleaning mechanism 3). In some cases. An excavation section 36 is provided at the tip of the cleaning unit 4. The excavated portion 36 rotates integrally with the rotating shaft 32 when the cleaning mechanism 3 descends. Therefore, when the cleaning mechanism 3 descends, the excavation section 36 excavates the deposits existing below the cleaning mechanism 3. As a result, the cleaning mechanism 3 can be smoothly lowered.
 さらに、清掃機構3が管群Q内を進行する際には、ガイド5が清掃機構3を案内している。詳しくは、ガイド5の第1ブレード51A及び第2ブレード51Bは、Y軸方向において互いに離間する方向へ付勢されている。そのため、第1ブレード51Aは、V軸方向一方側の管Pに接触し、第2ブレード51Bは、V軸方向他方側の管Pに接触する。こうして、清掃機構3は、V軸方向両側に位置する管Pに対してV軸方向位置が決められる。 Further, when the cleaning mechanism 3 advances in the pipe group Q, the guide 5 guides the cleaning mechanism 3. Specifically, the first blade 51A and the second blade 51B of the guide 5 are urged in a direction in which they are separated from each other in the Y-axis direction. Therefore, the first blade 51A contacts the tube P on one side in the V-axis direction, and the second blade 51B contacts the tube P on the other side in the V-axis direction. In this way, the cleaning mechanism 3 is positioned in the V-axis direction with respect to the pipes P located on both sides in the V-axis direction.
 清掃対象の管Pのうち最も下方の管Pを清掃ユニット4が通過するまで降下すると、降下時における清掃が完了する。 When the lowermost pipe P among the pipes P to be cleaned is descended until the cleaning unit 4 passes through, the cleaning at the time of descent is completed.
 清掃機構3は、降下時だけでなく、上昇時にも管Pの清掃を実行する。清掃機構3が上昇する際にも、スクレーパ34は、管Pの表面形状に倣って半径方向への拡がりを変更しながら管Pの表面に接触し、管Pの表面に付着した付着物を削り落としていく。つまり、清掃機構3は、降下時と上昇時との両方で、管Pの表面をスクレーパ34で清掃することができる。 The cleaning mechanism 3 cleans the pipe P not only when descending but also when ascending. Even when the cleaning mechanism 3 rises, the scraper 34 contacts the surface of the pipe P while changing the radial spread according to the surface shape of the pipe P, and scrapes off the deposits adhering to the surface of the pipe P. I will drop it. That is, the cleaning mechanism 3 can clean the surface of the pipe P with the scraper 34 both when descending and when ascending.
 清掃機構3には、X軸方向に並ぶ3つの清掃ユニット4が設けられているので、清掃機構3の1回の降下及び/又は上昇によって、管PのうちU軸方向位置が異なる3箇所が清掃される。 Since the cleaning mechanism 3 is provided with three cleaning units 4 arranged in the X-axis direction, three locations of the pipe P whose U-axis direction positions are different due to one descent and / or ascent of the cleaning mechanism 3 are provided. Be cleaned.
 続いて、センサ71について詳細に説明する。 Next, the sensor 71 will be described in detail.
 各センサ71は、渦電流センサである。詳しくは、センサ71は、図示を省略するが、励磁コイルと受信コイルとを有している。励磁コイルに高周波電流が印加されることによって、対象物に渦電流が発生する。受信コイルは、この渦電流を検出する。センサ71と対象物との距離に応じて、受信コイルによって検出される渦電流の大きさが変化する。つまり、センサ71は、センサ71と対象物との距離に応じた検出電圧を取得することによって、実質的にセンサ71と対象物との距離を検出する。清掃装置100においては、対象物は管Pである。センサ71は、管Pの表面までの距離を検出する。 Each sensor 71 is an eddy current sensor. Specifically, although not shown, the sensor 71 has an exciting coil and a receiving coil. When a high frequency current is applied to the exciting coil, an eddy current is generated in the object. The receiving coil detects this eddy current. The magnitude of the eddy current detected by the receiving coil changes according to the distance between the sensor 71 and the object. That is, the sensor 71 substantially detects the distance between the sensor 71 and the object by acquiring the detection voltage corresponding to the distance between the sensor 71 and the object. In the cleaning device 100, the object is the pipe P. The sensor 71 detects the distance to the surface of the tube P.
 走行機構2は配列方向に配列された複数の管Pの上を走行するので、配列方向に配列された複数の管Pは、走行機構2が走行する走行面を形成する。このとき、センサ71は、走行面、即ち、配列方向及び管軸方向を含む平面に対して平行移動する。 Since the traveling mechanism 2 travels on the plurality of pipes P arranged in the arrangement direction, the plurality of pipes P arranged in the arrangement direction form a traveling surface on which the traveling mechanism 2 travels. At this time, the sensor 71 moves in parallel with respect to the traveling surface, that is, the plane including the arrangement direction and the tube axis direction.
 図10は、センサと管との位置関係を説明する説明図である。センサ71は、励磁コイルの軸心が鉛直方向を向くように配置されている。センサ71が発生させる磁界は拡がりを有するため、センサ71は、鉛直下方を中心に或る程度拡がりを有する範囲に存在する対象物までの距離も検出する。ここでは、説明の便宜上、図10の実線の矢印で示すように、センサ71は、管Pの表面のうちセンサ71の鉛直下方に位置する点までの距離を検出するものとする。 FIG. 10 is an explanatory diagram illustrating the positional relationship between the sensor and the tube. The sensor 71 is arranged so that the axis of the exciting coil faces the vertical direction. Since the magnetic field generated by the sensor 71 has a spread, the sensor 71 also detects a distance to an object existing in a range having a certain spread around the vertical lower part. Here, for convenience of explanation, as shown by the solid arrow in FIG. 10, the sensor 71 detects the distance to the point vertically below the sensor 71 on the surface of the tube P.
 管Pは円管なので、センサ71が配列方向へ平行移動すると、センサ71と管Pの表面との距離も変化する。詳しくは、センサ71が、一点鎖線で示すように、実線で示す位置から配列方向へ管Pの頂部へ近づく側へ移動すると、センサ71と管Pの表面との距離は短くなる。さらに、センサ71が、破線で示すように、配列方向へ移動して管Pの頂部を通り過ぎると、センサ71と管Pの表面との距離は長くなっていく。このように、センサ71と管Pの表面との距離は、配列方向における管Pとセンサ71との相対位置に応じて変化する。 Since the tube P is a circular tube, when the sensor 71 moves in parallel in the arrangement direction, the distance between the sensor 71 and the surface of the tube P also changes. Specifically, as the sensor 71 moves from the position indicated by the solid line to the side closer to the top of the tube P in the arrangement direction as shown by the alternate long and short dash line, the distance between the sensor 71 and the surface of the tube P becomes shorter. Further, as the sensor 71 moves in the arrangement direction and passes through the top of the tube P as shown by the broken line, the distance between the sensor 71 and the surface of the tube P becomes longer. As described above, the distance between the sensor 71 and the surface of the tube P changes according to the relative position of the tube P and the sensor 71 in the arrangement direction.
 図1~3に示すように、第1及び第2センサ71a,71bと第3及び第4センサ71c,71dとは、走行機構2の走行方向の位置が異なるように配置されている。具体的には、第1及び第2センサ71a,71bは、ベース11のうち走行方向における一端部に配置されている。第3及び第4センサ71c,71dは、ベース11のうち走行方向における他端部に配置されている。第1及び第2センサ71a,71bが一対となり、第3及び第4センサ71c,71dが一対となる。それぞれの対が、清掃機構3の配列方向の位置を検出する。 As shown in FIGS. 1 to 3, the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are arranged so that the positions of the traveling mechanism 2 in the traveling direction are different from each other. Specifically, the first and second sensors 71a and 71b are arranged at one end of the base 11 in the traveling direction. The third and fourth sensors 71c and 71d are arranged at the other end of the base 11 in the traveling direction. The first and second sensors 71a and 71b are paired, and the third and fourth sensors 71c and 71d are paired. Each pair detects the position of the cleaning mechanism 3 in the arrangement direction.
 詳しくは、第1及び第2センサ71a,71bは、図2に示すように、走行方向に直交する方向(具体的には、清掃装置100の幅方向)の位置が異なるように配置されている。第1及び第2センサ71a,71bは、清掃機構3から幅方向の両側へ等距離だけ離れている。すなわち、幅方向において、第1センサ71aと第2センサ71bとの間の中央に清掃機構3が位置する。第3及び第4センサ71c,71dの幅方向の配置は、第1及び第2センサ71a,71bと同様である。つまり、第1センサ71aの幅方向の位置と第3センサ71cの幅方向の位置は同じであり、第2センサ71bの幅方向の位置と第4センサ71dの幅方向の位置は同じである。 Specifically, as shown in FIG. 2, the first and second sensors 71a and 71b are arranged so that the positions in the directions orthogonal to the traveling direction (specifically, the width direction of the cleaning device 100) are different. .. The first and second sensors 71a and 71b are equidistant from the cleaning mechanism 3 on both sides in the width direction. That is, in the width direction, the cleaning mechanism 3 is located at the center between the first sensor 71a and the second sensor 71b. The arrangement of the third and fourth sensors 71c and 71d in the width direction is the same as that of the first and second sensors 71a and 71b. That is, the position in the width direction of the first sensor 71a and the position in the width direction of the third sensor 71c are the same, and the position in the width direction of the second sensor 71b and the position in the width direction of the fourth sensor 71d are the same.
 第1及び第2センサ71a,71bは、走行機構2の走行方向が2本の管Pに沿う方向を向いている際に、図2に示すように、配列方向の位置が互いに異なるように配置される。同様に、第3及び第4センサ71c,71dは、走行機構2の走行方向が2本の管Pに沿う方向を向いている際に、図3に示すように、配列方向の位置が互いに異なるように配置される。 The first and second sensors 71a and 71b are arranged so that the positions in the arrangement direction are different from each other as shown in FIG. 2 when the traveling direction of the traveling mechanism 2 is oriented along the two pipes P. Will be done. Similarly, the positions of the third and fourth sensors 71c and 71d in the arrangement direction are different from each other as shown in FIG. 3 when the traveling direction of the traveling mechanism 2 is oriented along the two pipes P. Arranged like this.
 ここで、配列方向における、2つのセンサ71の測定点と2本の管Pとの寸法関係について詳細に説明する。測定点とは、管Pの表面のうち、センサ71からの距離が検出される点である。この例では、各センサ71は、主として管Pの表面のうちセンサ71の鉛直下方に位置する点までの距離を検出する。つまり、配列方向において、センサ71の位置と測定点の位置とは、同じである。以下では、説明の便宜上、センサ71の配列方向位置を測定点の配列方向位置として説明する。 Here, the dimensional relationship between the measurement points of the two sensors 71 and the two tubes P in the arrangement direction will be described in detail. The measurement point is a point on the surface of the tube P where the distance from the sensor 71 is detected. In this example, each sensor 71 mainly detects the distance to a point located vertically below the sensor 71 on the surface of the tube P. That is, the position of the sensor 71 and the position of the measurement point are the same in the arrangement direction. Hereinafter, for convenience of explanation, the arrangement direction position of the sensor 71 will be described as the arrangement direction position of the measurement points.
 図11は、第1及び第2センサ71a,71bと2本の管Pとの寸法関係を説明する説明図である。各対の2つのセンサ71の配列方向のピッチ(即ち、各対の2つのセンサ71の測定点の配列方向のピッチ)Mは、配列方向における2本の管Pの間隔Gよりも大きく、且つ、配列方向における2本の管P全体の寸法Lよりも小さく設定されている。さらに、2つのセンサ71の配列方向のピッチMは、2本の管Pの配列方向のピッチ(即ち、2本の管Pの管軸間の距離)Nと一致しない。具体的には、2つのセンサ71の配列方向のピッチMは、2本の管Pの配列方向のピッチNよりも小さい。以下、説明の便宜上、2本の管Pのうち第1センサ71aが接近する管Pを「第1管P1」と称し、2本の管Pのうち第2センサ71bが接近する管Pを「第2管P2」と称する。 FIG. 11 is an explanatory diagram illustrating the dimensional relationship between the first and second sensors 71a and 71b and the two pipes P. The pitch in the array direction of the two sensors 71 in each pair (that is, the pitch in the array direction of the measurement points of the two sensors 71 in each pair) M is larger than the distance GV between the two tubes P in the array direction. Moreover, it is set smaller than the dimension L of the entire two tubes P in the arrangement direction. Further, the pitch M in the arrangement direction of the two sensors 71 does not match the pitch M in the arrangement direction of the two tubes P (that is, the distance between the tube axes of the two tubes P) N. Specifically, the pitch M in the arrangement direction of the two sensors 71 is smaller than the pitch N in the arrangement direction of the two tubes P. Hereinafter, for convenience of explanation, the pipe P to which the first sensor 71a of the two pipes P approaches is referred to as "the first pipe P1", and the pipe P to which the second sensor 71b of the two pipes P approaches is referred to as "the first pipe P1". It is called "second tube P2".
 2つのセンサ71のピッチMは、2本の管Pの間隔Gよりも大きく且つ2本の管P全体の寸法Lよりも小さく設定されているので、2つのセンサ71の鉛直下方に2本の管Pが位置する状況が起こり得る。例えば、第1センサ71aが第1管P1の表面までの距離S1検出し、同時に、第2センサ71bが第2管P2の表面までの距離S2を検出し得る。このとき、第3センサ71cも第1管P1の表面までの距離を検出し、同時に、第4センサ71dも第2管P2の表面までの距離を検出し得る。 Since the pitch M of the two sensors 71 is set to be larger than the distance GV of the two pipes P and smaller than the dimension L of the entire two pipes P, the two sensors 71 are vertically below the two sensors 71. A situation may occur in which the tube P of is located. For example, the first sensor 71a may detect the distance S1 to the surface of the first tube P1, and at the same time, the second sensor 71b may detect the distance S2 to the surface of the second tube P2. At this time, the third sensor 71c can also detect the distance to the surface of the first tube P1, and at the same time, the fourth sensor 71d can also detect the distance to the surface of the second tube P2.
 さらに、2つのセンサ71の配列方向のピッチMは、2本の管Pの配列方向のピッチNと一致しないので、2つのセンサ71のそれぞれが2本の管Pの頂部までの距離を同時に検出する状況が起こり得ない。例えば、第1センサ71aが第1管P1の頂部の表面までの距離S1を検出するときには、第2センサ71bは、第2管P2の頂部以外の部分の表面までの距離S2を検出する。 Further, since the pitch M in the arrangement direction of the two sensors 71 does not match the pitch N in the arrangement direction of the two tubes P, each of the two sensors 71 simultaneously detects the distance to the top of the two tubes P. The situation cannot occur. For example, when the first sensor 71a detects the distance S1 to the surface of the top of the first tube P1, the second sensor 71b detects the distance S2 to the surface of a portion other than the top of the second tube P2.
 この例では、清掃装置100の幅方向において、第1センサ71aと第2センサ71bとの間の中央に清掃機構3が位置するので、配列方向において清掃機構3が2本の管Pの中央に位置するときには、図11に示すように、第1及び第2センサ71a,71bは、2本の管Pのそれぞれの頂部以外の部分までの距離S1,S2を検出する。第1及び第2センサ71a,71bは、配列方向において第1管P1の軸心と第2管P2の軸心との間に配置されている。このとき、第1センサ71aから第1管P1までの距離S1と、第2センサ71bから第2管P2までの距離S2とは、略等しい。つまり、配列方向において、第1センサ71aと第2センサ71bとの中点と、2本の管Pの中点とが一致する。以下、2本の管Pに対する第1及び第2センサ71a,71bのこの位置を「中央位置」と称する。 In this example, since the cleaning mechanism 3 is located at the center between the first sensor 71a and the second sensor 71b in the width direction of the cleaning device 100, the cleaning mechanism 3 is located at the center of the two pipes P in the arrangement direction. When positioned, as shown in FIG. 11, the first and second sensors 71a, 71b detect distances S1 and S2 to parts other than the top of each of the two tubes P. The first and second sensors 71a and 71b are arranged between the axis of the first tube P1 and the axis of the second tube P2 in the arrangement direction. At this time, the distance S1 from the first sensor 71a to the first pipe P1 and the distance S2 from the second sensor 71b to the second pipe P2 are substantially equal. That is, in the arrangement direction, the midpoint of the first sensor 71a and the second sensor 71b coincides with the midpoint of the two pipes P. Hereinafter, this position of the first and second sensors 71a and 71b with respect to the two pipes P is referred to as a "center position".
 図12は、第1及び第2センサ71a,71bが配列方向において中央位置から第1管P1側へ変位した場合の第1及び第2センサ71a,71bと2本の管Pとの位置関係を示す説明図である。図13は、第1及び第2センサ71a,71bが配列方向において中央位置から第2管P2側へ変位した場合の第1及び第2センサ71a,71bと2本の管Pとの位置関係を示す説明図である。第1及び第2センサ71a,71bのそれぞれが検出する管Pの表面までの距離S1,S2は、前述の如く、配列方向におけるセンサ71と管Pとの相対位置に応じて変化する。ここで、第1及び第2センサ71a,71bの配列方向のピッチMは、2本の管Pの配列方向のピッチNと一致しない。そのため、配列方向において、2つのセンサ71の一方の測定点が管Pの頂部に近づく場合には、2つのセンサ71の他方の測定点は、管Pの頂部から遠ざかる。例えば、図12に示すように、第1及び第2センサ71a,71bが中央位置から配列方向の第1管P1の側へ変位すると、第1センサ71aの測定点が第1管P1の頂部に近づく一方、第2センサ71bの測定点は、第2管P2の頂部から遠ざかる。このとき、第1センサ71aから第1管P1までの距離S1は短くなる一方、第2センサ71bから第2管P2までの距離S2は長くなる。図13に示すように、第1及び第2センサ71a,71bが中央位置から配列方向の第2管P2の側へ変位すると、第1センサ71aの測定点が第1管P1の頂部から遠ざかる一方、第2センサ71bの測定点は、第2管P2の頂部へ近づく。このとき、第1センサ71aから第1管P1までの距離S1は長くなる一方、第2センサ71bから第2管P2までの距離S2は短くなる。 FIG. 12 shows the positional relationship between the first and second sensors 71a and 71b and the two pipes P when the first and second sensors 71a and 71b are displaced from the central position to the first pipe P1 side in the arrangement direction. It is explanatory drawing which shows. FIG. 13 shows the positional relationship between the first and second sensors 71a and 71b and the two pipes P when the first and second sensors 71a and 71b are displaced from the central position to the second pipe P2 side in the arrangement direction. It is explanatory drawing which shows. The distances S1 and S2 to the surface of the tube P detected by each of the first and second sensors 71a and 71b change according to the relative positions of the sensor 71 and the tube P in the arrangement direction as described above. Here, the pitch M in the arrangement direction of the first and second sensors 71a and 71b does not match the pitch N in the arrangement direction of the two tubes P. Therefore, when one of the measurement points of the two sensors 71 approaches the top of the tube P in the arrangement direction, the other measurement point of the two sensors 71 moves away from the top of the tube P. For example, as shown in FIG. 12, when the first and second sensors 71a and 71b are displaced from the central position to the side of the first tube P1 in the arrangement direction, the measurement point of the first sensor 71a is located at the top of the first tube P1. While approaching, the measurement point of the second sensor 71b moves away from the top of the second tube P2. At this time, the distance S1 from the first sensor 71a to the first pipe P1 becomes shorter, while the distance S2 from the second sensor 71b to the second pipe P2 becomes longer. As shown in FIG. 13, when the first and second sensors 71a and 71b are displaced from the central position to the side of the second tube P2 in the arrangement direction, the measurement point of the first sensor 71a moves away from the top of the first tube P1. , The measurement point of the second sensor 71b approaches the top of the second tube P2. At this time, the distance S1 from the first sensor 71a to the first pipe P1 becomes longer, while the distance S2 from the second sensor 71b to the second pipe P2 becomes shorter.
 このように、2つのセンサ71のそれぞれが2本の管Pの頂部までの距離を同時に検出する状況が起こり得ないように2つのセンサ71を配置することによって、配列方向における2つのセンサ71と2本の管Pとの相対位置が変化すると、一方のセンサ71の検出距離と他方のセンサ71の検出距離との相対関係が変化する。つまり、第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との相対関係は、配列方向における第1センサ71a及び第2センサ71bと2本の管Pとの相対位置と相関がある。 In this way, by arranging the two sensors 71 so that the situation where each of the two sensors 71 simultaneously detects the distance to the top of the two tubes P cannot occur, the two sensors 71 in the arrangement direction and the two sensors 71 When the relative positions of the two tubes P change, the relative relationship between the detection distance of one sensor 71 and the detection distance of the other sensor 71 changes. That is, the relative relationship between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b correlates with the relative positions of the first sensor 71a and the second sensor 71b and the two tubes P in the arrangement direction. be.
 第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との相対関係の一例は、第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との距離差ΔS(=S1-S2)である。第1及び第2センサ71a,71bが中央位置に位置するとき、距離差ΔSは0となる。 An example of the relative relationship between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b is the distance difference ΔS (= S1) between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b. -S2). When the first and second sensors 71a and 71b are located at the center position, the distance difference ΔS becomes 0.
 第1及び第2センサ71a,71bが配列方向において中央位置から第1管P1の側へ変位すると、距離差ΔSは0よりも小さくなる。第1センサ71aが配列方向において第1管P1の頂部の位置に達するまでは、距離差ΔSは単調に減少する。尚、第1センサ71aが配列方向において第1管P1の頂部の位置を超えると、第1センサ71aの検出距離S1は増加に転じる。一方、第2センサ71bの第1管P1側への変位に応じて、第2センサ71bの検出距離S2の増加率はしだいに大きくなる。やがて、第2センサ71bの下方に第2管P2が存在しなくなり、第2センサ71bは、第2管P2までの距離を検出しないようになる。 When the first and second sensors 71a and 71b are displaced from the central position to the side of the first pipe P1 in the arrangement direction, the distance difference ΔS becomes smaller than 0. The distance difference ΔS decreases monotonically until the first sensor 71a reaches the position of the top of the first tube P1 in the arrangement direction. When the first sensor 71a exceeds the position of the top of the first tube P1 in the arrangement direction, the detection distance S1 of the first sensor 71a starts to increase. On the other hand, the rate of increase of the detection distance S2 of the second sensor 71b gradually increases according to the displacement of the second sensor 71b toward the first tube P1. Eventually, the second tube P2 does not exist below the second sensor 71b, and the second sensor 71b does not detect the distance to the second tube P2.
 一方、第1及び第2センサ71a,71bが配列方向において中央位置から第2管P2の側へ変位すると、距離差ΔSは0よりも大きくなる。第2センサ71bが配列方向において第2管P2の頂部の位置に達するまでは、距離差ΔSは単調に増加する。尚、第2センサ71bが配列方向において第2管P2の頂部の位置を超えると、第2センサ71bの検出距離S2は増加に転じる。一方、第1センサ71aの第2管P2側への変位に応じて、第1センサ71aの検出距離S1の増加率はしだいに大きくなる。やがて、第1センサ71aの下方に第1管P1が存在しなくなり、第1センサ71aは、第1管P1までの距離を検出しないようになる。 On the other hand, when the first and second sensors 71a and 71b are displaced from the central position to the side of the second pipe P2 in the arrangement direction, the distance difference ΔS becomes larger than 0. The distance difference ΔS increases monotonically until the second sensor 71b reaches the position of the top of the second tube P2 in the arrangement direction. When the second sensor 71b exceeds the position of the top of the second tube P2 in the arrangement direction, the detection distance S2 of the second sensor 71b starts to increase. On the other hand, the rate of increase of the detection distance S1 of the first sensor 71a gradually increases according to the displacement of the first sensor 71a toward the second tube P2. Eventually, the first tube P1 does not exist below the first sensor 71a, and the first sensor 71a does not detect the distance to the first tube P1.
 このように、第1及び第2センサ71a,71bは、配列方向に配列された2本の管Pのそれぞれの表面までの距離を検出することによって、配列方向における2本の管Pに対する第1及び第2センサ71a,71bの相対位置を検出している。第1及び第2センサ71a,71b並びに清掃機構3は、ベース11に設けられている。つまり、第1及び第2センサ71a,71bは、実質的に、配列方向における2本の管Pに対する清掃機構3の相対位置を検出する。 In this way, the first and second sensors 71a and 71b detect the distance to the surface of each of the two tubes P arranged in the arrangement direction, so that the first sensor 71a and 71b are the first with respect to the two tubes P in the arrangement direction. And the relative positions of the second sensors 71a and 71b are detected. The first and second sensors 71a and 71b and the cleaning mechanism 3 are provided on the base 11. That is, the first and second sensors 71a and 71b substantially detect the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction.
 第3及び第4センサ71c,71dも、第1及び第2センサ71a,71bと同様に配置されている。そのため、第3及び第4センサ71c,71dも、配列方向に配列された2本の管Pのそれぞれの表面までの距離を検出することによって、配列方向における2本の管Pに対する第3及び第4センサ71c,71dの相対位置、ひいては、配列方向における2本の管Pに対する清掃機構3の相対位置を検出する。 The third and fourth sensors 71c and 71d are also arranged in the same manner as the first and second sensors 71a and 71b. Therefore, the third and fourth sensors 71c and 71d also detect the distances to the respective surfaces of the two tubes P arranged in the arrangement direction, so that the third and third sensors 71c and 71d with respect to the two tubes P in the arrangement direction can also be detected. 4 The relative positions of the sensors 71c and 71d, and by extension, the relative positions of the cleaning mechanism 3 with respect to the two tubes P in the arrangement direction are detected.
 さらに、第1及び第2センサ71a,71bと第3及び第4センサ71c,71dは、走行方向における異なる位置に配置されているので、第1~第4センサ71a~71dの検出距離に基づいて、2本の管P(詳しくは、2本の管Pの管軸)に対する走行機構2の走行方向の傾きを求めることができる。図14は、走行機構2の走行方向と2本の管Pとが平行な場合の装置本体1をZ軸方向に見た図である。図15は、走行機構2の走行方向が2本の管Pに対して傾いている場合の装置本体1をZ軸方向に見た図である。 Further, since the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are arranged at different positions in the traveling direction, they are based on the detection distances of the first to fourth sensors 71a to 71d. , The inclination of the traveling mechanism 2 in the traveling direction with respect to the two pipes P (specifically, the pipe shafts of the two pipes P) can be obtained. FIG. 14 is a view of the apparatus main body 1 when the traveling direction of the traveling mechanism 2 and the two pipes P are parallel to each other in the Z-axis direction. FIG. 15 is a view of the apparatus main body 1 in the Z-axis direction when the traveling direction of the traveling mechanism 2 is tilted with respect to the two pipes P.
 詳しくは、図14に示すように、2本の管Pに対して走行機構2の走行方向が平行である場合には、第1及び第2センサ71a,71bによって検出される清掃機構3の配列方向における相対位置と、第3及び第4センサ71c,71dによって検出される清掃機構3の配列方向における相対位置とは一致する。一方、第1及び第2センサ71a,71bによって検出される清掃機構3の配列方向における相対位置と第3及び第4センサ71c,71dによって検出される清掃機構3の配列方向における相対位置とが異なることは、図15に示すように、走行機構2の走行方向が2本の管Pに対して傾いていることを意味する。 Specifically, as shown in FIG. 14, when the traveling direction of the traveling mechanism 2 is parallel to the two pipes P, the arrangement of the cleaning mechanism 3 detected by the first and second sensors 71a and 71b. The relative position in the direction coincides with the relative position in the arrangement direction of the cleaning mechanism 3 detected by the third and fourth sensors 71c and 71d. On the other hand, the relative position in the arrangement direction of the cleaning mechanism 3 detected by the first and second sensors 71a and 71b and the relative position in the arrangement direction of the cleaning mechanism 3 detected by the third and fourth sensors 71c and 71d are different. This means that, as shown in FIG. 15, the traveling direction of the traveling mechanism 2 is tilted with respect to the two pipes P.
 このように、第1~第4センサ71a~71dは、実質的に、2本の管Pに対する走行機構2の走行方向の傾きも検出する。 As described above, the first to fourth sensors 71a to 71d substantially detect the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction.
 それに加えて、ビジョンセンサ8は、装置本体1及び走行機構2の少なくも一方と走行機構2が載置された複数の管Pとが含まれる画像を取得する。このビジョンセンサ8の画像によれば、複数の管Pに対する走行機構2の位置関係を検出することができる。詳しくは、画像に複数の管Pと走行機構2とが含まれている場合には、複数の管Pに対する走行機構2の位置関係を取得することができる。装置本体1と走行機構2との寸法及び配置によっては画像に走行機構2が含まれず、装置本体1が含まれる場合もあり得る。しかし、走行機構2は装置本体1に設けられているので、複数の管Pに対する装置本体1の位置関係が分かれば、複数の管Pに対する走行機構2の位置関係もわかる。 In addition, the vision sensor 8 acquires an image including at least one of the device main body 1 and the traveling mechanism 2 and a plurality of tubes P on which the traveling mechanism 2 is mounted. According to the image of the vision sensor 8, the positional relationship of the traveling mechanism 2 with respect to the plurality of pipes P can be detected. Specifically, when the image includes a plurality of pipes P and the traveling mechanism 2, the positional relationship of the traveling mechanism 2 with respect to the plurality of pipes P can be acquired. Depending on the dimensions and arrangement of the apparatus main body 1 and the traveling mechanism 2, the traveling mechanism 2 may not be included in the image, but the apparatus main body 1 may be included. However, since the traveling mechanism 2 is provided in the device main body 1, if the positional relationship of the device main body 1 with respect to the plurality of pipes P is known, the positional relationship of the traveling mechanism 2 with respect to the plurality of pipes P can also be known.
 これら第1~第4センサ71a~71dの検出距離及びビジョンセンサ8の取得画像は、本体コントローラ9に入力される。 The detection distances of the first to fourth sensors 71a to 71d and the acquired images of the vision sensor 8 are input to the main body controller 9.
 本体コントローラ9は、清掃機構3によって管群Qに含まれる管Pを清掃する清掃制御を実行する。その際、本体コントローラ9は、第1~第4センサ71a~71dの検出結果及びビジョンセンサ8の取得画像に基づいて、走行機構2の走行制御を実行する。例えば、本体コントローラ9は、走行機構2を作動させて清掃装置100を目標位置へ移動させ、その位置で清掃機構3及び昇降機構14を作動させる。 The main body controller 9 executes a cleaning control for cleaning the pipe P included in the pipe group Q by the cleaning mechanism 3. At that time, the main body controller 9 executes the traveling control of the traveling mechanism 2 based on the detection results of the first to fourth sensors 71a to 71d and the acquired image of the vision sensor 8. For example, the main body controller 9 operates the traveling mechanism 2 to move the cleaning device 100 to a target position, and operates the cleaning mechanism 3 and the elevating mechanism 14 at that position.
 図16は、本体コントローラ9のブロック図である。詳しくは、本体コントローラ9は、処理部91と記憶部92とを有している。 FIG. 16 is a block diagram of the main body controller 9. Specifically, the main body controller 9 has a processing unit 91 and a storage unit 92.
 記憶部92は、各種プログラム及び各種データを記憶する、コンピュータに読み取り可能な記憶媒体である。記憶部92は、ハードディスク等の磁気ディスク、CD-ROM及びDVD等の光ディスク、又は半導体メモリによって形成されている。 The storage unit 92 is a computer-readable storage medium that stores various programs and various data. The storage unit 92 is formed of a magnetic disk such as a hard disk, an optical disk such as a CD-ROM and a DVD, or a semiconductor memory.
 処理部91は、CPU(Central Processing Unit)及び/又はDSP(Digital Signal Processor)等の各種プロセッサと、VRAM、RAM及び/又はROM等の各種半導体メモリとを有している。処理部91は、記憶部92に記憶された各種プログラムを読み出して実行することによって、清掃装置100の各部を統括的に制御し、清掃制御及び走行制御を実行するための各種機能を実現する。具体的には、処理部91は、第1傾き算出部93と、位置算出部94と、第2傾き算出部95と、走行実行部96と、清掃実行部97とを機能ブロックとして有している。 The processing unit 91 has various processors such as a CPU (Central Processing Unit) and / or a DSP (Digital Signal Processor), and various semiconductor memories such as VRAM, RAM and / or ROM. The processing unit 91 comprehensively controls each unit of the cleaning device 100 by reading and executing various programs stored in the storage unit 92, and realizes various functions for executing cleaning control and traveling control. Specifically, the processing unit 91 has a first inclination calculation unit 93, a position calculation unit 94, a second inclination calculation unit 95, a traveling execution unit 96, and a cleaning execution unit 97 as functional blocks. There is.
 第1傾き算出部93は、ビジョンセンサ8の取得画像に基づいて、清掃対象となる2本の管Pに対する走行機構2の走行方向の傾き(以下、「走行機構2の傾き」と称する)を算出する。第1傾き算出部93は、ビジョンセンサ8の取得画像の画像処理を行って、装置本体1の下方に位置する管Pと走行機構2とを抽出する。第1傾き算出部93は、抽出された管P及び走行機構2に基づいて、走行機構2の傾きが所定の第1傾斜範囲に入っているか否かを判定する。 The first inclination calculation unit 93 determines the inclination of the traveling mechanism 2 in the traveling direction with respect to the two pipes P to be cleaned (hereinafter referred to as “inclination of the traveling mechanism 2”) based on the acquired image of the vision sensor 8. calculate. The first inclination calculation unit 93 performs image processing of the acquired image of the vision sensor 8 to extract the tube P located below the apparatus main body 1 and the traveling mechanism 2. The first inclination calculation unit 93 determines whether or not the inclination of the traveling mechanism 2 is within the predetermined first inclination range based on the extracted pipe P and the traveling mechanism 2.
 位置算出部94は、清掃対象となる2本の管Pに対する清掃機構3の配列方向の相対位置(以下、「清掃機構3の配列方向位置」と称する)を算出する。具体的には、位置算出部94は、第1及び第2センサ71a,71bの検出距離に基づいて、清掃機構3の配列方向位置を算出する。それに加えて、位置算出部94は、第3及び第4センサ71c,71dの検出距離に基づいて清掃機構3の配列方向位置を算出する。さらに、位置算出部94は、算出された清掃機構3の配列方向位置に基づいて、清掃機構3が配列方向において2本の管Pの中央を含む所定の位置範囲に入っているか否かを判定する。清掃機構3が位置範囲に入っている場合、清掃機構3が配列方向において2本の管Pの間隔Gに内側に入っており、清掃機構3は降下して間隔Gへ進入することができる。 The position calculation unit 94 calculates the relative position (hereinafter, referred to as “arrangement direction position of the cleaning mechanism 3”) of the cleaning mechanism 3 with respect to the two pipes P to be cleaned. Specifically, the position calculation unit 94 calculates the arrangement direction position of the cleaning mechanism 3 based on the detection distances of the first and second sensors 71a and 71b. In addition, the position calculation unit 94 calculates the arrangement direction position of the cleaning mechanism 3 based on the detection distances of the third and fourth sensors 71c and 71d. Further, the position calculation unit 94 determines whether or not the cleaning mechanism 3 is within a predetermined position range including the center of the two pipes P in the arrangement direction based on the calculated position in the arrangement direction of the cleaning mechanism 3. do. When the cleaning mechanism 3 is within the position range, the cleaning mechanism 3 is inside the gap GV of the two pipes P in the arrangement direction, and the cleaning mechanism 3 can descend and enter the gap GV . can.
 具体的には、位置算出部94は、第1及び第2センサ71a,71bの検出距離の距離差ΔS(以下、「第1距離差ΔS1」と称する)が以下の式(1)を満たし、且つ、第3及び第4センサ71c,71dの検出距離の距離差ΔS(以下、「第2距離差ΔS2」と称する)が以下の式(2)を満たす場合に、清掃機構3が位置範囲に入っていると判定する。 Specifically, in the position calculation unit 94, the distance difference ΔS (hereinafter referred to as “first distance difference ΔS1”) of the detection distances of the first and second sensors 71a and 71b satisfies the following equation (1). Further, when the distance difference ΔS (hereinafter referred to as “second distance difference ΔS2”) of the detection distances of the third and fourth sensors 71c and 71d satisfies the following equation (2), the cleaning mechanism 3 is in the position range. Judge that it is included.
 α1≦ΔS1≦β1 ・・・(1)
 α2≦ΔS2≦β2 ・・・(2)
 ここで、例えば、α1,α2は負の値であり、β1,β2は正の値である。つまり、式(1)は、第1距離差ΔS1が0を含む所定の範囲内に入っていることを意味する。同様に、式(2)は、第2距離差ΔS2が0を含む所定の範囲内に入っていることを意味する。
α1 ≦ ΔS1 ≦ β1 ・ ・ ・ (1)
α2 ≦ ΔS2 ≦ β2 ・ ・ ・ (2)
Here, for example, α1 and α2 are negative values, and β1 and β2 are positive values. That is, the equation (1) means that the first distance difference ΔS1 is within a predetermined range including 0. Similarly, the equation (2) means that the second distance difference ΔS2 is within a predetermined range including 0.
 尚、この例では、第1及び第2センサ71a,71bと第3及び第4センサ71c,71dとで清掃機構3に対する配列方向の配置が同じであるので、α1とα2とは同じ値であり、β1とβ2とは同じ値である。また、配列方向において第1センサ71aと第2センサ71bとの間の中央に清掃機構3が位置するので、α1とβ1の絶対値は同じである。同様に、配列方向において第3センサ71cと第4センサ71dとの間の中央に清掃機構3が位置するので、α2とβ2の絶対値は同じである。ただし、α1、β1、α2及びβ2の値は、これらに限定されない。 In this example, the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d have the same arrangement in the arrangement direction with respect to the cleaning mechanism 3, so that α1 and α2 have the same values. , Β1 and β2 are the same value. Further, since the cleaning mechanism 3 is located at the center between the first sensor 71a and the second sensor 71b in the arrangement direction, the absolute values of α1 and β1 are the same. Similarly, since the cleaning mechanism 3 is located at the center between the third sensor 71c and the fourth sensor 71d in the arrangement direction, the absolute values of α2 and β2 are the same. However, the values of α1, β1, α2 and β2 are not limited thereto.
 第1距離差ΔS1は、清掃機構3の配列方向位置に関連するパラメータである。つまり、第1距離差ΔS1を求めることは、実質的に、清掃機構3の配列方向位置を求めることに相当する。同様に、第2距離差ΔS2は、清掃機構3の配列方向位置に関連するパラメータである。つまり、第2距離差ΔS2を求めることは、実質的に、清掃機構3の配列方向位置を求めることに相当する。 The first distance difference ΔS1 is a parameter related to the arrangement direction position of the cleaning mechanism 3. That is, finding the first distance difference ΔS1 substantially corresponds to finding the position in the arrangement direction of the cleaning mechanism 3. Similarly, the second distance difference ΔS2 is a parameter related to the arrangement direction position of the cleaning mechanism 3. That is, finding the second distance difference ΔS2 substantially corresponds to finding the position in the arrangement direction of the cleaning mechanism 3.
 第2傾き算出部95は、走行機構2の傾きを、第1傾き算出部93よりも詳細な範囲で算出する。第2傾き算出部95は、第1~第4センサ71a~71dの検出距離に基づいて走行機構2の傾きを算出する。第2傾き算出部95は、走行機構2の傾きが、2本の管Pと走行機構2の走行方向とが平行な場合を含む所定の第2傾斜範囲に入っているか否かを判定する。第2傾斜範囲は、第1傾斜範囲よりも小さい範囲である。 The second inclination calculation unit 95 calculates the inclination of the traveling mechanism 2 in a range that is more detailed than that of the first inclination calculation unit 93. The second inclination calculation unit 95 calculates the inclination of the traveling mechanism 2 based on the detection distances of the first to fourth sensors 71a to 71d. The second inclination calculation unit 95 determines whether or not the inclination of the traveling mechanism 2 is within a predetermined second inclination range including the case where the two pipes P and the traveling direction of the traveling mechanism 2 are parallel to each other. The second inclined range is a range smaller than the first inclined range.
 第2傾き算出部95は、第1及び第2センサ71a,71bの検出距離に基づいて算出される清掃機構3の配列方向位置と、第3及び第4センサ71c,71dの検出距離に基づいて算出される清掃機構3の配列方向位置とに基づいて、走行機構2の傾きを算出する。具体的には、第2傾き算出部95は、第1距離差ΔS1及び第2距離差ΔS2を用いて、走行機構2の傾きを算出する。 The second inclination calculation unit 95 is based on the arrangement direction position of the cleaning mechanism 3 calculated based on the detection distances of the first and second sensors 71a and 71b and the detection distances of the third and fourth sensors 71c and 71d. The inclination of the traveling mechanism 2 is calculated based on the calculated position in the arrangement direction of the cleaning mechanism 3. Specifically, the second inclination calculation unit 95 calculates the inclination of the traveling mechanism 2 by using the first distance difference ΔS1 and the second distance difference ΔS2.
 第1距離差ΔS1と第2距離差ΔS2とが同じである場合には、第2傾き算出部95は、2本の管Pと走行機構2の走行方向とは平行であると判定する。第1距離差ΔS1と第2距離差ΔS2との差ΔS3(以下、「前後距離差ΔS3」と称する)が0でない場合には、第2傾き算出部95は、2本の管Pに対して走行機構2の走行方向が傾いていると判定する。走行機構2の傾きが大きいほど、前後距離差ΔS3の絶対値が大きくなる。第2傾き算出部95は、前後距離差ΔS3が以下の式(3)を満たす場合に、走行機構2の傾きが第2傾斜範囲に入っていると判定する。 When the first distance difference ΔS1 and the second distance difference ΔS2 are the same, the second inclination calculation unit 95 determines that the two pipes P and the traveling direction of the traveling mechanism 2 are parallel to each other. When the difference ΔS3 between the first distance difference ΔS1 and the second distance difference ΔS2 (hereinafter referred to as “front-back distance difference ΔS3”) is not 0, the second inclination calculation unit 95 refers to the two pipes P. It is determined that the traveling direction of the traveling mechanism 2 is tilted. The larger the inclination of the traveling mechanism 2, the larger the absolute value of the front-rear distance difference ΔS3. The second inclination calculation unit 95 determines that the inclination of the traveling mechanism 2 is within the second inclination range when the front-rear distance difference ΔS3 satisfies the following equation (3).
 γ≦ΔS3≦δ ・・・(3)
 ここで、例えば、γは負の値であり、δは正の値である。つまり、式(3)は、前後距離差ΔS3が0を含む所定の範囲内に入っていることを意味する。
γ ≦ ΔS3 ≦ δ ・ ・ ・ (3)
Here, for example, γ is a negative value and δ is a positive value. That is, the equation (3) means that the front-back distance difference ΔS3 is within a predetermined range including 0.
 走行実行部96は、2本のクローラ21のそれぞれの駆動力を算出し、算出された駆動力を2本のクローラ21へ出力する。走行機構2を直進させる場合には、走行実行部96は、基本的には、2本のクローラ21の駆動力を同じにする。走行機構2を旋回させる場合には、走行実行部96は、2本のクローラ21の駆動力を異ならせる。例えば、走行実行部96は、旋回時に半径方向内側に位置するクローラ21の出力を0とし、半径方向外側に位置するクローラ21の出力を所定値に設定する。 The traveling execution unit 96 calculates the driving force of each of the two crawlers 21 and outputs the calculated driving force to the two crawlers 21. When the traveling mechanism 2 travels straight, the traveling execution unit 96 basically makes the driving force of the two crawlers 21 the same. When turning the traveling mechanism 2, the traveling execution unit 96 makes the driving forces of the two crawlers 21 different. For example, the traveling execution unit 96 sets the output of the crawler 21 located on the inner side in the radial direction to 0 when turning, and sets the output of the crawler 21 located on the outer side in the radial direction to a predetermined value.
 走行実行部96は、清掃機構3が位置範囲に入り、且つ、走行機構2の傾きが第2傾斜範囲に入るように、走行機構2を制御する。具体的には、走行実行部96は、まず、ビジョンセンサ8の取得画像に基づいて(即ち、第1傾き算出部93の判定結果に基づいて)、走行機構2の傾きが第1傾斜範囲に入るように、2本のクローラ21の駆動力を算出し、駆動力を2本のクローラ21へ出力する。以下、走行機構2の傾きが第1傾斜範囲に入ることを「第1条件」と称する。 The travel execution unit 96 controls the travel mechanism 2 so that the cleaning mechanism 3 falls within the position range and the tilt of the travel mechanism 2 falls within the second tilt range. Specifically, the traveling execution unit 96 first sets the inclination of the traveling mechanism 2 to the first inclination range based on the acquired image of the vision sensor 8 (that is, based on the determination result of the first inclination calculation unit 93). The driving force of the two crawlers 21 is calculated so as to enter, and the driving force is output to the two crawlers 21. Hereinafter, the fact that the inclination of the traveling mechanism 2 falls within the first inclination range is referred to as a "first condition".
 第1条件が満たされると、走行実行部96は、第1~第4センサ71a~71dの検出距離に基づいて(即ち、位置算出部94及び第2傾き算出部95の判定結果に基づいて)、清掃機構3が位置範囲に入り、且つ、走行機構2の傾きが第2傾斜範囲に入るように、2本のクローラ21の駆動力を算出し、駆動力を2本のクローラ21へ出力する。以下、清掃機構3が位置範囲に入り、且つ、走行機構2の傾きが第2傾斜範囲に入ることを「第2条件」と称する。 When the first condition is satisfied, the traveling execution unit 96 is based on the detection distances of the first to fourth sensors 71a to 71d (that is, based on the determination results of the position calculation unit 94 and the second inclination calculation unit 95). , The driving force of the two crawlers 21 is calculated so that the cleaning mechanism 3 falls within the position range and the tilt of the traveling mechanism 2 falls within the second tilt range, and the driving force is output to the two crawlers 21. .. Hereinafter, the fact that the cleaning mechanism 3 falls within the position range and the tilt of the traveling mechanism 2 falls within the second tilt range is referred to as a "second condition".
 清掃実行部97は、清掃機構3による清掃制御を実行する。清掃実行部97は、走行実行部96を介して走行機構2を制御して、清掃機構3を複数の管P上の所望の清掃位置まで移動させ、清掃位置において清掃機構3を降下及び上昇させて管Pの清掃を行う。清掃実行部97は、清掃位置を変更して、清掃機構3による清掃を繰り返す。 The cleaning execution unit 97 executes cleaning control by the cleaning mechanism 3. The cleaning execution unit 97 controls the travel mechanism 2 via the travel execution unit 96 to move the cleaning mechanism 3 to a desired cleaning position on a plurality of pipes P, and lowers and raises the cleaning mechanism 3 at the cleaning position. Clean the pipe P. The cleaning execution unit 97 changes the cleaning position and repeats cleaning by the cleaning mechanism 3.
 以下、本体コントローラ9の制御について具体的に説明する。図17は、清掃制御におけるフローチャートである。 Hereinafter, the control of the main body controller 9 will be specifically described. FIG. 17 is a flowchart of cleaning control.
 まず、清掃制御に関連する各種設定(例えば、配列方向における管Pの本数、配列方向への管Pのピッチ、走行機構2の管Pに沿った移動距離、昇降機構14による清掃機構3の降下距離等)が本体コントローラ9に設定される。この設定は、例えば、オペレータが外部コントローラ98を介して行う。 First, various settings related to cleaning control (for example, the number of pipes P in the arrangement direction, the pitch of the pipes P in the arrangement direction, the moving distance of the traveling mechanism 2 along the pipe P, and the descent of the cleaning mechanism 3 by the elevating mechanism 14). Distance etc.) is set in the main body controller 9. This setting is made, for example, by the operator via the external controller 98.
 続いて、オペレータは、清掃装置100を管Pの上に載置する。オペレータは、外部コントローラ98を操作して、清掃装置100を清掃開始位置まで移動させる。例えば、清掃開始位置は、2本のクローラ21が2本の管Pと平行となり、且つ、清掃機構3が2本の管PのU軸方向の一端部に位置し、且つ、清掃機構3が管Pの配列方向(即ち、V軸方向)において2本の管Pの間に位置する位置である。 Subsequently, the operator places the cleaning device 100 on the pipe P. The operator operates the external controller 98 to move the cleaning device 100 to the cleaning start position. For example, the cleaning start position is such that the two crawler 21s are parallel to the two pipes P, the cleaning mechanism 3 is located at one end of the two pipes P in the U-axis direction, and the cleaning mechanism 3 is located. It is a position located between two tubes P in the arrangement direction of the tubes P (that is, in the V-axis direction).
 清掃装置100が清掃開始位置まで移動すると、オペレータは、外部コントローラ98を介して清掃開始の指令を入力する。 When the cleaning device 100 moves to the cleaning start position, the operator inputs a cleaning start command via the external controller 98.
 本体コントローラ9が清掃開始の指令を受け付けると(ステップSt1)、処理部91は、第2条件が満たされているか否かを判定する。具体的には、走行実行部96は、まずステップSt2において、第1傾き算出部93の判定結果に基づいて、第1条件が満たされているか否かを判定する。第1条件が満たされていない場合には、走行実行部96は、ステップSt3において、第1傾き算出部93の判定結果に基づいて、第1条件を満たすように2本のクローラ21のそれぞれの駆動力を算出し、算出された駆動力を2本のクローラ21へ出力する。 When the main body controller 9 receives the command to start cleaning (step St1), the processing unit 91 determines whether or not the second condition is satisfied. Specifically, the traveling execution unit 96 first determines in step St2 whether or not the first condition is satisfied based on the determination result of the first inclination calculation unit 93. If the first condition is not satisfied, the traveling execution unit 96 sets each of the two crawlers 21 so as to satisfy the first condition based on the determination result of the first inclination calculation unit 93 in step St3. The driving force is calculated, and the calculated driving force is output to the two crawlers 21.
 算出された駆動力によって2本のクローラ21が走行した後、走行実行部96は、第1条件が満たされているか否かを再び判定する(ステップSt2)。第1条件が満たされるまで、走行実行部96は、ステップSt2,St3を繰り返す。 After the two crawlers 21 have traveled by the calculated driving force, the traveling execution unit 96 again determines whether or not the first condition is satisfied (step St2). The traveling execution unit 96 repeats steps St2 and St3 until the first condition is satisfied.
 第1条件が満たされると、走行実行部96は、ステップSt4において、位置算出部94及び第2傾き算出部95の判定結果に基づいて、第2条件が満たされているか否かを判定する。第2条件が満たされていない場合には、走行実行部96は、ステップSt5において、第1傾き算出部93の判定結果に基づいて、第2条件を満たすように2本のクローラ21のそれぞれの駆動力を算出し、算出された駆動力を2本のクローラ21へ出力する。 When the first condition is satisfied, the traveling execution unit 96 determines in step St4 whether or not the second condition is satisfied based on the determination results of the position calculation unit 94 and the second inclination calculation unit 95. If the second condition is not satisfied, the traveling execution unit 96 sets each of the two crawlers 21 so as to satisfy the second condition based on the determination result of the first inclination calculation unit 93 in step St5. The driving force is calculated, and the calculated driving force is output to the two crawlers 21.
 算出された駆動力によって2本のクローラ21が走行した後、走行実行部96は、第2条件が満たされているか否かを再び判定する(ステップSt4)。第2条件が満たされるまで、走行実行部96は、ステップSt4,St5を繰り返す。 After the two crawlers 21 have traveled by the calculated driving force, the traveling execution unit 96 again determines whether or not the second condition is satisfied (step St4). The traveling execution unit 96 repeats steps St4 and St5 until the second condition is satisfied.
 第2条件が満たされると、清掃実行部97は、ステップSt6において、清掃機構3の回転シャフト32を回転駆動させ、この状態で清掃機構3を昇降機構14によって2本の管Pの間に降下させる。スクレーパ34は、管群Q内のスペースに応じて半径方向への拡がりを変更しながら、管Pの表面の付着物を削り落としていく。 When the second condition is satisfied, the cleaning execution unit 97 rotationally drives the rotary shaft 32 of the cleaning mechanism 3 in step St6, and in this state, the cleaning mechanism 3 is lowered between the two pipes P by the elevating mechanism 14. Let me. The scraper 34 scrapes off the deposits on the surface of the pipe P while changing the spread in the radial direction according to the space in the pipe group Q.
 設定された降下距離まで清掃機構3が降下すると、清掃実行部97は、昇降機構14によって清掃機構3を上昇させる。清掃機構3が上昇する際にも、スクレーパ34は、管Pの表面形状に倣って半径方向への拡がりを変更しながら管Pの表面に接触し、管Pの表面の付着物を削り落としていく。つまり、清掃機構3は、降下時と上昇時との両方で、管Pの表面をスクレーパ34で清掃する。 When the cleaning mechanism 3 descends to the set descent distance, the cleaning execution unit 97 raises the cleaning mechanism 3 by the elevating mechanism 14. Even when the cleaning mechanism 3 rises, the scraper 34 contacts the surface of the pipe P while changing the radial spread according to the surface shape of the pipe P, and scrapes off the deposits on the surface of the pipe P. go. That is, the cleaning mechanism 3 cleans the surface of the pipe P with the scraper 34 both when descending and when ascending.
 清掃機構3の降下及び上昇の一往復が終了すると、ステップSt7において、清掃実行部97は、清掃機構3が2本の管PのU軸方向の他端部(即ち、清掃を開始した端部とは反対側の端部)に達したか否かを判定する。清掃機構3が2本の管Pの他端部に達したか否かは、清掃制御の開始時に設定された、走行機構2の管Pに沿った移動距離に基づいて判定される。尚、清掃機構3が2本の管Pの端部に達したか否かの判定は、リミットスイッチ等のセンサを用いて行ってもよい。 When one round trip of the descent and the ascent of the cleaning mechanism 3 is completed, in step St7, the cleaning execution unit 97 is the other end portion of the two pipes P in the U-axis direction (that is, the end portion where the cleaning is started). It is determined whether or not the end (the end opposite to) has been reached. Whether or not the cleaning mechanism 3 has reached the other ends of the two pipes P is determined based on the moving distance along the pipes P of the traveling mechanism 2 set at the start of the cleaning control. Whether or not the cleaning mechanism 3 has reached the ends of the two pipes P may be determined by using a sensor such as a limit switch.
 清掃機構3が2本の管Pの他端部に達していない場合には、ステップSt8において、清掃実行部97は、第2条件が満たされているか否かの判定を行ってからの、清掃機構3の降下及び上昇の一往復を行った回数(以下、「清掃回数」と称する)が所定回数に達したか否かを判定する。 When the cleaning mechanism 3 does not reach the other end of the two pipes P, in step St8, the cleaning execution unit 97 determines whether or not the second condition is satisfied, and then cleans. It is determined whether or not the number of times of one round trip of the mechanism 3 descent and ascent (hereinafter referred to as "cleaning number") has reached a predetermined number of times.
 清掃機構3の降下及び上昇の回数が所定回数に達していない場合には、清掃実行部97は、ステップSt9において、走行実行部96を介して、走行機構2を2本の管Pに沿ってU軸方向へ所定量だけ移動させる。所定量は、3つの清掃ユニット4のX軸方向の寸法に対応する。その後、清掃実行部97は、ステップSt6において、清掃機構3を再度、降下及び上昇させる。これにより、清掃機構3は、管Pのうち、先の清掃機構3の降下及び上昇時とはU軸方向位置が異なる部分を清掃する。 When the number of descents and ascents of the cleaning mechanism 3 has not reached a predetermined number of times, the cleaning execution unit 97 moves the travel mechanism 2 along the two pipes P via the travel execution unit 96 in step St9. Move by a predetermined amount in the U-axis direction. The predetermined amount corresponds to the dimensions of the three cleaning units 4 in the X-axis direction. After that, the cleaning execution unit 97 lowers and raises the cleaning mechanism 3 again in step St6. As a result, the cleaning mechanism 3 cleans the portion of the pipe P whose position in the U-axis direction is different from that when the cleaning mechanism 3 is lowered and raised.
 こうして、清掃実行部97がステップSt6~St9を繰り返すと、やがて、清掃回数が所定回数に達する。清掃回数が所定回数に達すると、走行実行部96は、ステップSt2~St5の走行制御を再び実行する。 Thus, when the cleaning execution unit 97 repeats steps St6 to St9, the number of cleanings reaches a predetermined number. When the number of cleanings reaches a predetermined number of times, the traveling execution unit 96 executes the traveling control in steps St2 to St5 again.
 つまり、清掃機構3の降下及び上昇の一往復、及び、2本の管Pに沿った所定量の移動が所定回数行われるごとに、第2条件が満たされているか否かが確認される。第2条件が満たされていない場合には、第2条件が満たされるように清掃機構3の配列方向位置及び走行機構2の傾きが調整される。 That is, it is confirmed whether or not the second condition is satisfied every time the cleaning mechanism 3 makes one round trip of descent and ascent, and a predetermined amount of movement along the two pipes P is performed a predetermined number of times. If the second condition is not satisfied, the arrangement direction position of the cleaning mechanism 3 and the inclination of the traveling mechanism 2 are adjusted so that the second condition is satisfied.
 このように、走行機構2が清掃機構3の配列方向位置及び走行機構2の傾きを定期的に調整しながら、清掃機構3のU軸方向の位置を変更して管Pの清掃を継続する。 In this way, while the traveling mechanism 2 periodically adjusts the arrangement direction position of the cleaning mechanism 3 and the inclination of the traveling mechanism 2, the position of the cleaning mechanism 3 in the U-axis direction is changed to continue cleaning the pipe P.
 やがて、清掃機構3が2本の管Pの他端部に達すると、ステップSt7においてYESと判定される。その場合、ステップSt10において、清掃実行部97は、配列方向における全ての管Pの隙間の清掃が完了したか否かを判定する。具体的には、清掃実行部97は、清掃制御の開始時に設定された、配列方向における管Pの本数に基づいて、全ての管Pの隙間の清掃が完了したか否かを判定する。 Eventually, when the cleaning mechanism 3 reaches the other end of the two pipes P, it is determined as YES in step St7. In that case, in step St10, the cleaning execution unit 97 determines whether or not the cleaning of the gaps of all the pipes P in the arrangement direction is completed. Specifically, the cleaning execution unit 97 determines whether or not the cleaning of the gaps of all the pipes P is completed based on the number of pipes P in the arrangement direction set at the start of the cleaning control.
 全ての管Pの隙間の清掃が完了していない場合には、ステップSt11において、清掃実行部97は、走行実行部96を介して、清掃機構3を隣の管Pの隙間へ移動させる。詳しくは、走行実行部96は、2本のクローラ21を管Pと平行な状態から2本の管Pと略直交する状態まで旋回させる。そして、走行実行部96は、走行機構2に管Pを横断させ、清掃が終了した2本の管Pの隙間の隣の隙間に清掃機構3が位置するようになるまで走行機構2を移動させる。このとき、走行実行部96は、ビジョンセンサ8の取得画像に基づいて、清掃機構3が隣の管Pの隙間に位置するか否かを判定する。あるいは、走行実行部96は、清掃制御の開始時に設定された、配列方向への管Pのピッチに基づいて、走行機構2の移動量を決定してもよい。尚、新たな2本の管Pの一方は、先に清掃が終了した2本の管Pの一方の管Pである。 If the cleaning of the gaps of all the pipes P is not completed, in step St11, the cleaning execution unit 97 moves the cleaning mechanism 3 to the gaps of the adjacent pipes P via the traveling execution unit 96. Specifically, the traveling execution unit 96 turns the two crawlers 21 from a state parallel to the pipe P to a state substantially orthogonal to the two pipes P. Then, the traveling execution unit 96 causes the traveling mechanism 2 to cross the pipe P, and moves the traveling mechanism 2 until the cleaning mechanism 3 is located in the gap next to the gap between the two pipes P for which cleaning has been completed. .. At this time, the traveling execution unit 96 determines whether or not the cleaning mechanism 3 is located in the gap of the adjacent pipe P based on the acquired image of the vision sensor 8. Alternatively, the traveling execution unit 96 may determine the amount of movement of the traveling mechanism 2 based on the pitch of the pipes P in the arrangement direction set at the start of the cleaning control. One of the two new pipes P is one of the two pipes P that has been cleaned first.
 清掃機構3が隣の管Pの隙間に移動すると、走行実行部96は、2本のクローラ21を管Pと略平行な状態となるまで旋回させる。旋回後、走行実行部96は、清掃機構3が2本の管PのU軸方向の端部に位置するように走行機構2を移動させる。 When the cleaning mechanism 3 moves to the gap of the adjacent pipe P, the traveling execution unit 96 turns the two crawlers 21 until they are substantially parallel to the pipe P. After turning, the traveling execution unit 96 moves the traveling mechanism 2 so that the cleaning mechanism 3 is located at the end of the two pipes P in the U-axis direction.
 隣の管Pの隙間への清掃機構3の移動が完了すると、走行実行部96は、ステップSt2~St5の走行制御を実行する。 When the movement of the cleaning mechanism 3 to the gap of the adjacent pipe P is completed, the traveling execution unit 96 executes the traveling control in steps St2 to St5.
 その後、清掃実行部97は、ステップSt6以降の処理を実行することによって、2本の管Pの新たな隙間において前述と同様の清掃が行われる。このときにも、第2条件が満たされるように走行実行部96による走行制御が定期的に実行される。こうして、清掃装置100は、2本の管Pを変更しながら清掃を繰り返すことによって、管群Qに含まれる管Pの清掃を行う。 After that, the cleaning execution unit 97 performs the same cleaning as described above in the new gap between the two pipes P by executing the processing after step St6. Also at this time, the travel control by the travel execution unit 96 is periodically executed so that the second condition is satisfied. In this way, the cleaning device 100 cleans the pipes P included in the pipe group Q by repeating the cleaning while changing the two pipes P.
 最終的に、全ての管Pの隙間の清掃が完了すると、清掃装置100による管群Qの清掃が終了する。 Finally, when the cleaning of the gaps of all the pipes P is completed, the cleaning of the pipe group Q by the cleaning device 100 is completed.
 このように、清掃装置100は、第1管P1との相対距離を検出する第1センサ71aと第2管P2との相対距離を検出する第2センサ71bとを設けることによって、1つの管Pに対する清掃機構3の相対位置ではなく、第1管P1及び第2管P2に対する清掃機構3の相対位置を求めることができる。その結果、清掃機構3を、配列方向において第1管P1と第2管P2との間に適切に配置することができる。ひいては、清掃機構3を第1管P1と第2管P2との隙間に適切に進入させることができる。 As described above, the cleaning device 100 is provided with the first sensor 71a for detecting the relative distance from the first pipe P1 and the second sensor 71b for detecting the relative distance between the second pipe P2, thereby providing one pipe P. It is possible to obtain the relative position of the cleaning mechanism 3 with respect to the first pipe P1 and the second pipe P2, not the relative position of the cleaning mechanism 3 with respect to the first pipe P1 and the second pipe P2. As a result, the cleaning mechanism 3 can be appropriately arranged between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the cleaning mechanism 3 can be appropriately entered into the gap between the first pipe P1 and the second pipe P2.
 ここで、第1及び第2センサ71a,71bとして渦電流センサを採用することによって、灰等の粉塵が舞う環境下であっても、第1及び第2センサ71a,71bは、管Pの表面までの距離を検出することができる。 Here, by adopting the eddy current sensor as the first and second sensors 71a and 71b, the first and second sensors 71a and 71b can be attached to the surface of the tube P even in an environment where dust such as ash is scattered. Can detect the distance to.
 さらには、走行機構2が載置される管Pの表面は、灰等の付着物が堆積している。そのため、レーザ等を用いた光学式のセンサでは、管Pの表面までの距離に誤差が含まれやすい。それに対し、渦電流センサであれば、管Pの表面が付着物で覆われていても、管Pの表面までの距離を精度よく検出することができる。 Furthermore, deposits such as ash are deposited on the surface of the pipe P on which the traveling mechanism 2 is placed. Therefore, in an optical sensor using a laser or the like, an error is likely to be included in the distance to the surface of the tube P. On the other hand, the eddy current sensor can accurately detect the distance to the surface of the tube P even if the surface of the tube P is covered with deposits.
 また、渦電流センサから発生させられる磁束は拡がりを有するので、渦電流センサは、光学式のセンサに比べて広い範囲に存在する管Pまでの距離を検出することができる。前述のように間隔を空けて配列された複数の管Pにおいて、第1及び第2センサ71a,71bが管Pまでの距離を検出できない状況を減らすことができる。 Further, since the magnetic flux generated from the eddy current sensor has a spread, the eddy current sensor can detect the distance to the tube P existing in a wider range than the optical sensor. In a plurality of tubes P arranged at intervals as described above, it is possible to reduce the situation where the first and second sensors 71a and 71b cannot detect the distance to the tubes P.
 さらに、第1及び第2センサ71a,71bがそれぞれ第1及び第2管P1,P2の頂部までの距離を同時に検出しないように、第1及び第2センサ71a,71bが配置されている。例えば、第1及び第2センサ71a,71bが鉛直下方に向かって管Pの表面までの距離を検出する場合には、配列方向における第1及び第2センサ71a,71bのピッチMは、配列方向における第1及び第2管P1,P2のピッチNと一致しない(即ち、ずれている)。これにより、配列方向における第1及び第2センサ71a,71bと第1及び第2管P1,P2との相対位置の変化に応じて、第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との相対関係、例えば、第1距離差ΔS1が変化する。つまり、第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との相対関係に基づいて、配列方向における第1及び第2センサ71a,71bと第1及び第2管P1,P2との相対位置を求めることができる。さらには、第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との大小関係(すなわち、第1距離差ΔS1の符号)によって、配列方向において第1及び第2センサ71a,71bが中央位置から第1管P1と第2管P2のどちら側にずれているかを判定することができる。 Further, the first and second sensors 71a and 71b are arranged so that the first and second sensors 71a and 71b do not simultaneously detect the distances to the tops of the first and second pipes P1 and P2, respectively. For example, when the first and second sensors 71a and 71b detect the distance to the surface of the pipe P vertically downward, the pitch M of the first and second sensors 71a and 71b in the arrangement direction is the arrangement direction. Does not match (that is, deviates) from the pitch N of the first and second pipes P1 and P2 in. As a result, the detection distances S1 and the second sensor 71b of the first sensor 71a are detected according to the change in the relative positions of the first and second sensors 71a and 71b and the first and second pipes P1 and P2 in the arrangement direction. The relative relationship with the distance S2, for example, the first distance difference ΔS1 changes. That is, based on the relative relationship between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b, the first and second sensors 71a and 71b and the first and second tubes P1 and P2 in the arrangement direction. The relative position of can be obtained. Further, depending on the magnitude relationship between the detection distance S1 of the first sensor 71a and the detection distance S2 of the second sensor 71b (that is, the sign of the first distance difference ΔS1), the first and second sensors 71a and 71b are arranged in the arrangement direction. It is possible to determine which side of the first pipe P1 or the second pipe P2 is deviated from the center position.
 さらに、清掃装置100は、第1及び第2センサ71a,71bに加えて、走行機構2の走行方向における位置が異なる位置に配置された第3及び第4センサ71c,71dをさらに設けることによって、走行機構2の傾きを求めることができる。これにより、走行機構2の走行によって2本の管Pに沿った方向における清掃機構3の位置を変えつつ管Pの清掃を継続した場合に、清掃機構3の配列方向位置が適切な範囲から外れる可能性があるか否かを判断することができる。つまり、走行機構2の傾きを求めることによって、将来的に、清掃機構3の配列方向位置が適切な範囲から外れることを未然に防ぐことができる。 Further, the cleaning device 100 is further provided with the third and fourth sensors 71c and 71d arranged at different positions in the traveling direction of the traveling mechanism 2 in addition to the first and second sensors 71a and 71b. The inclination of the traveling mechanism 2 can be obtained. As a result, when the cleaning of the pipes P is continued while changing the position of the cleaning mechanism 3 in the direction along the two pipes P due to the traveling of the traveling mechanism 2, the position in the arrangement direction of the cleaning mechanism 3 is out of the appropriate range. You can determine if there is a possibility. That is, by obtaining the inclination of the traveling mechanism 2, it is possible to prevent the position of the cleaning mechanism 3 in the arrangement direction from deviating from an appropriate range in the future.
 それに加えて、清掃装置100は、ビジョンセンサ8を備えることによって、走行機構2の傾きを的確に求めることができる。つまり、ビジョンセンサ8の取得画像に基づく走行機構2の傾きの判定は、2本の管Pと走行機構2又は装置本体1との全体的な画像に基づいて行われるため、概略的な走行機構2の傾きの判定に適している。一方、第1~第4センサ71a~71dの検出距離に基づく走行機構2の傾き判定は、局所的な2本の管Pに対する装置本体1の相対位置に基づいて行われるため、詳細な走行機構2の傾きの判定に適している。そこで、処理部91は、まずはビジョンセンサ8の取得画像に基づいて、走行機構2の傾きが第1傾斜範囲に入っているか否かを判定し、走行機構2の傾きが第1傾斜範囲に入っている場合に、第1~第4センサ71a~71dの検出距離に基づいて、走行機構2の傾きが第1傾斜範囲よりも小さい第2傾斜範囲に入っているか否かを判定する。こうすることで、走行機構2の傾きを的確に判定することができる。 In addition to that, the cleaning device 100 can accurately determine the inclination of the traveling mechanism 2 by including the vision sensor 8. That is, since the determination of the inclination of the traveling mechanism 2 based on the acquired image of the vision sensor 8 is performed based on the overall image of the two pipes P and the traveling mechanism 2 or the device main body 1, the traveling mechanism is approximate. Suitable for determining the inclination of 2. On the other hand, since the inclination determination of the traveling mechanism 2 based on the detection distances of the first to fourth sensors 71a to 71d is performed based on the relative position of the device main body 1 with respect to the two local pipes P, the detailed traveling mechanism Suitable for determining the inclination of 2. Therefore, the processing unit 91 first determines whether or not the inclination of the traveling mechanism 2 is within the first inclination range based on the acquired image of the vision sensor 8, and the inclination of the traveling mechanism 2 is within the first inclination range. If so, it is determined whether or not the inclination of the traveling mechanism 2 is within the second inclination range smaller than the first inclination range based on the detection distances of the first to fourth sensors 71a to 71d. By doing so, the inclination of the traveling mechanism 2 can be accurately determined.
 以上のように、清掃装置100は、装置本体1と、装置本体1に設けられ、所定の配列方向に配列された複数の管Pの上を走行する走行機構2と、装置本体1から降下して、複数の管Pに含まれる2本の管Pの間に進入して、管Pの表面の付着物を清掃する清掃機構3と、装置本体1に設けられ、2本の管Pの一方の管Pである第1管P1に対する配列方向の相対位置を検出する第1センサ71aと、装置本体1に設けられ、2本の管Pの他方の管Pである第2管P2に対する配列方向の相対位置を検出する第2センサ71bとを備える。 As described above, the cleaning device 100 descends from the device main body 1, the traveling mechanism 2 provided on the device main body 1 and traveling on a plurality of pipes P arranged in a predetermined arrangement direction, and the device main body 1. A cleaning mechanism 3 that enters between the two pipes P included in the plurality of pipes P to clean the deposits on the surface of the pipes P, and one of the two pipes P provided in the apparatus main body 1. The first sensor 71a for detecting the relative position in the arrangement direction with respect to the first tube P1 which is the tube P of the above, and the arrangement direction of the two tubes P with respect to the second tube P2 which is the other tube P provided in the device main body 1. It is provided with a second sensor 71b for detecting the relative position of the above.
 この構成によれば、第1センサ71aにより検出される相対位置と第2センサ71bにより検出される相対位置に基づいて、配列方向における第1及び第2管P1,P2に対する装置本体1の相対位置を求めることができる。清掃機構3は装置本体1に設けられているので、結果として、配列方向における第1及び第2管P1,P2に対する清掃機構3の相対位置が求められる。このように、第1センサ71aと第2センサ71bの2つのセンサを設けることによって、1つの管Pに対する清掃機構3の相対位置ではなく、第1及び第2管P1,P2に対する清掃機構3の相対位置が求められる。これにより、清掃機構3を配列方向において第1管P1と第2管P2との間の適切な位置に配置することができる。その結果、管P上を走行する走行機構2の移動精度を向上させることができる。 According to this configuration, the relative position of the apparatus main body 1 with respect to the first and second tubes P1 and P2 in the arrangement direction is based on the relative position detected by the first sensor 71a and the relative position detected by the second sensor 71b. Can be asked. Since the cleaning mechanism 3 is provided in the apparatus main body 1, as a result, the relative positions of the cleaning mechanism 3 with respect to the first and second pipes P1 and P2 in the arrangement direction are obtained. In this way, by providing the two sensors of the first sensor 71a and the second sensor 71b, the cleaning mechanism 3 with respect to the first and second pipes P1 and P2 is not the relative position of the cleaning mechanism 3 with respect to one pipe P. The relative position is calculated. Thereby, the cleaning mechanism 3 can be arranged at an appropriate position between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the moving accuracy of the traveling mechanism 2 traveling on the pipe P can be improved.
 また、第1センサ71aは、第1管P1に対する配列方向の相対位置として、第1管P1の表面までの距離を検出し、第2センサ71bは、第2管P2に対する配列方向の相対位置として、第2管P2の表面までの距離を検出する。 Further, the first sensor 71a detects the distance to the surface of the first tube P1 as a relative position in the arrangement direction with respect to the first tube P1, and the second sensor 71b serves as a relative position in the arrangement direction with respect to the second tube P2. , The distance to the surface of the second pipe P2 is detected.
 この構成によれば、第1及び第2センサ71a,71bは、測距センサである。第1及び第2センサ71a,71bは装置本体1に設けられているので、配列方向において第1及び第2管P1,P2に対する装置本体1の位置が変化すれば、第1管P1に対する第1センサ71aの配列方向における相対位置及び第2管P2に対する第2センサ71bの配列方向における相対位置も変化する。第1センサ71aの配列方向における相対位置が変化すると、第1センサ71aと第1管P1との距離が変化し、同様に、第2センサ71bの配列方向における相対位置が変化すると、第2センサ71bと第2管P2との距離も変化する。よって、第1及び第2センサ71a,71bの検出結果である検出距離に基づいて、配列方向における第1及び第2管P1,P2に対する装置本体1の相対位置、即ち、清掃機構3の配列方向位置を求めることができる。 According to this configuration, the first and second sensors 71a and 71b are distance measuring sensors. Since the first and second sensors 71a and 71b are provided in the device main body 1, if the position of the device main body 1 with respect to the first and second tubes P1 and P2 changes in the arrangement direction, the first sensor with respect to the first tube P1 The relative position of the sensor 71a in the arrangement direction and the relative position of the second sensor 71b with respect to the second tube P2 in the arrangement direction also change. When the relative position of the first sensor 71a in the arrangement direction changes, the distance between the first sensor 71a and the first tube P1 changes, and similarly, when the relative position of the second sensor 71b in the arrangement direction changes, the second sensor The distance between 71b and the second tube P2 also changes. Therefore, based on the detection distance which is the detection result of the first and second sensors 71a and 71b, the relative position of the apparatus main body 1 with respect to the first and second pipes P1 and P2 in the arrangement direction, that is, the arrangement direction of the cleaning mechanism 3. The position can be determined.
 さらに、清掃装置100は、第1及び第2センサ71a,71bによる検出結果(即ち、検出距離)に基づいて、配列方向における2本の管Pに対する清掃機構3の相対位置を求める本体コントローラ9(制御部)をさらに備える。 Further, the cleaning device 100 obtains the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction based on the detection results (that is, the detection distance) by the first and second sensors 71a and 71b (that is, the main body controller 9 (that is, the detection distance). A control unit) is further provided.
 この構成によれば、本体コントローラ9は、第1及び第2センサ71a,71bによる検出距離に基づいて、清掃機構3の配列方向位置を求める。例えば、本体コントローラ9は、第1及び第2センサ71a,71bによる検出距離に基づいて、清掃機構3の配列方向位置が所定の範囲内に入っているか否かを求める。つまり、ユーザが、第1及び第2センサ71a,71bによる検出距離に基づいて、清掃機構3の配列方向位置を判断する必要がない。 According to this configuration, the main body controller 9 obtains the arrangement direction position of the cleaning mechanism 3 based on the detection distances by the first and second sensors 71a and 71b. For example, the main body controller 9 determines whether or not the arrangement direction position of the cleaning mechanism 3 is within a predetermined range based on the detection distances of the first and second sensors 71a and 71b. That is, the user does not need to determine the arrangement direction position of the cleaning mechanism 3 based on the detection distances by the first and second sensors 71a and 71b.
 また、清掃装置100は、走行機構2の走行方向の位置が第1センサ71aと異なる位置において装置本体1に設けられ、第1管P1に対する配列方向の相対位置を検出する第3センサ71cと、走行機構2の走行方向の位置が第2センサ71bと異なる位置において装置本体1に設けられ、第2管P2に対する配列方向の相対位置を検出する第4センサ71dとをさらに備える。 Further, the cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a, and the third sensor 71c for detecting the relative position in the arrangement direction with respect to the first tube P1. The apparatus main body 1 is provided with a position of the traveling mechanism 2 in the traveling direction different from that of the second sensor 71b, and further includes a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the second tube P2.
 この構成によれば、第1及び第2センサ71a,71bに加えて、第3及び第4センサ71c,71dが設けられる。第1及び第2センサ71a,71bと第3及び第4センサ71c,71dとは、走行機構2の走行方向における位置が異なる位置に設けられている。そのため、走行機構2の走行方向における位置が異なる2か所において、清掃機構3の配列方向位置を求めることができる。その結果、清掃機構3の配列方向位置を精度よく求めることができる。 According to this configuration, in addition to the first and second sensors 71a and 71b, the third and fourth sensors 71c and 71d are provided. The first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, the positions in the arrangement direction of the cleaning mechanism 3 can be obtained at two locations where the positions of the traveling mechanism 2 in the traveling direction are different. As a result, the position in the arrangement direction of the cleaning mechanism 3 can be accurately obtained.
 本体コントローラ9は、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて、配列方向における2本の管Pに対する清掃機構3の相対位置を求める。 The main body controller 9 obtains the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction based on the detection results by the first, second, third and fourth sensors 71a, 71b, 71c, 71d.
 この構成によれば、本体コントローラ9によって求められる清掃機構3の配列方向位置の精度が向上する。 According to this configuration, the accuracy of the arrangement direction position of the cleaning mechanism 3 required by the main body controller 9 is improved.
 さらに、本体コントローラ9は、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて、2本の管Pに対する走行機構2の走行方向の傾きを求める。 Further, the main body controller 9 obtains the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c and 71d.
 この構成によれば、本体コントローラ9は、清掃機構3の配列方向位置に加えて、走行機構2の傾きを求める。前述の如く、第1及び第2センサ71a,71bと第3及び第4センサ71c,71dとは、走行機構2の走行方向における位置が異なる位置に設けられている。そのため、第1及び第2センサ71a,71bによって求められる清掃機構3の配列方向位置と、第3及び第4センサ71c,71dによって求められる清掃機構3の配列方向位置とに基づいて、走行機構2の傾きを求めることができる。走行機構2の傾きがわかれば、清掃機構3の配列方向位置が適切な範囲から外れることを未然に防ぐことができる。 According to this configuration, the main body controller 9 obtains the inclination of the traveling mechanism 2 in addition to the position in the arrangement direction of the cleaning mechanism 3. As described above, the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, the traveling mechanism 2 is based on the arrangement direction position of the cleaning mechanism 3 obtained by the first and second sensors 71a and 71b and the arrangement direction position of the cleaning mechanism 3 obtained by the third and fourth sensors 71c and 71d. Can be calculated. If the inclination of the traveling mechanism 2 is known, it is possible to prevent the position of the cleaning mechanism 3 in the arrangement direction from deviating from an appropriate range.
 また、清掃装置100は、複数の管Pに載置された状態の走行機構2及び装置本体1の少なくも一方を撮像するビジョンセンサ8(撮像装置)をさらに備え、本体コントローラ9は、ビジョンセンサ8によって取得された画像に基づいて、2本の管Pに対する走行機構2の走行方向の傾きが所定の第1傾斜範囲に入っているか否かを判定すると共に、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて、2本の管Pに対する走行機構2の走行方向の傾きが第1傾斜範囲よりも小さい第2傾斜範囲に入っているか否かを判定する。 Further, the cleaning device 100 further includes a vision sensor 8 (imaging device) that captures at least one of the traveling mechanism 2 and the device main body 1 mounted on the plurality of tubes P, and the main body controller 9 is a vision sensor. Based on the image acquired by 8, it is determined whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the predetermined first inclination range, and the first, second, and third Based on the detection results of the fourth sensors 71a, 71b, 71c, and 71d, whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the second inclination range smaller than the first inclination range. To judge.
 この構成によれば、走行機構2の傾きは、2つの方法で判定される。比較的大きな走行機構2の傾きは、ビジョンセンサ8による取得画像に基づいて判定される。一方、比較的小さな走行機構2の傾きは、第1、第2、第3及び第4センサ71a,71b,71c,71dの検出距離に基づいて判定される。ビジョンセンサ8による取得画像に基づく判定は、2本の管Pと走行機構2又は装置本体1との全体的な画像に基づいて行われるため、概略的な走行機構2の傾きの判定に適している。一方、第1、第2、第3及び第4センサ71a,71b,71c,71dの検出距離に基づく判定は、局所的な2本の管Pに対する装置本体1の相対位置に基づいて行われるため、詳細な走行機構2の傾きの判定に適している。走行機構2の傾きの大きさに応じて、これらの判定を使い分けることによって、走行機構2の傾きを的確に判定することができる。 According to this configuration, the inclination of the traveling mechanism 2 is determined by two methods. The relatively large inclination of the traveling mechanism 2 is determined based on the image acquired by the vision sensor 8. On the other hand, the inclination of the relatively small traveling mechanism 2 is determined based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d. Since the determination based on the image acquired by the vision sensor 8 is made based on the overall image of the two pipes P and the traveling mechanism 2 or the device main body 1, it is suitable for roughly determining the inclination of the traveling mechanism 2. There is. On the other hand, since the determination based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d is performed based on the relative position of the apparatus main body 1 with respect to the two local tubes P. It is suitable for detailed determination of the inclination of the traveling mechanism 2. By properly using these determinations according to the magnitude of the inclination of the traveling mechanism 2, the inclination of the traveling mechanism 2 can be accurately determined.
 また、本体コントローラ9は、配列方向において清掃機構3が所定の位置範囲に入るように、第1及び第2センサ71a,71bの検出結果に基づいて走行機構2を制御する。 Further, the main body controller 9 controls the traveling mechanism 2 based on the detection results of the first and second sensors 71a and 71b so that the cleaning mechanism 3 falls within a predetermined position range in the arrangement direction.
 この構成によれば、本体コントローラ9は、第1及び第2センサ71a,71bによる検出距離に基づいて走行機構2を制御する。これにより、配列方向において清掃機構3が所定の範囲内に入るように、清掃機構3の配列方向位置が調整される。 According to this configuration, the main body controller 9 controls the traveling mechanism 2 based on the detection distances of the first and second sensors 71a and 71b. As a result, the position of the cleaning mechanism 3 in the arrangement direction is adjusted so that the cleaning mechanism 3 falls within a predetermined range in the arrangement direction.
 清掃装置100は、走行機構2の走行方向の位置が第1センサ71aと異なる位置において装置本体1に設けられ、第1管P1に対する配列方向の相対位置を検出する第3センサ71cと、走行機構2の走行方向の位置が第2センサ71bと異なる位置において装置本体1に設けられ、第2管P2に対する配列方向の相対位置を検出する第4センサ71dとをさらに備え、本体コントローラ9は、配列方向において清掃機構3が所定の位置範囲に入るように、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて走行機構2を制御する。 The cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a. The apparatus main body 1 is provided at a position where the position of 2 in the traveling direction is different from that of the second sensor 71b, and further includes a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the second tube P2, and the main body controller 9 is arranged. The traveling mechanism 2 is controlled based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c and 71d so that the cleaning mechanism 3 falls within a predetermined position range in the direction.
 この構成によれば、第1及び第2センサ71a,71bに加えて、第3及び第4センサ71c,71dが設けられる。第1及び第2センサ71a,71bと第3及び第4センサ71c,71dとは、走行機構2の走行方向における位置が異なる位置に設けられている。そのため、走行機構2の走行方向における異なる位置において、清掃機構3の配列方向位置を判断することができる。その結果、清掃機構3の配列方向位置が精度よく調整される。 According to this configuration, in addition to the first and second sensors 71a and 71b, the third and fourth sensors 71c and 71d are provided. The first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, it is possible to determine the arrangement direction position of the cleaning mechanism 3 at different positions in the traveling direction of the traveling mechanism 2. As a result, the arrangement direction position of the cleaning mechanism 3 is accurately adjusted.
 また、清掃装置100は、走行機構2の走行方向の位置が第1センサ71aと異なる位置において装置本体1に設けられ、第1管P1に対する配列方向の相対位置を検出する第3センサ71cと、走行機構2の走行方向の位置が第2センサ71bと異なる位置において装置本体1に設けられ、第2管P2に対する配列方向の相対位置を検出する第4センサ71dとをさらに備え、本体コントローラ9は、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて走行機構2を制御して、2本の管Pに対する走行機構2の走行方向の傾きを調整する。 Further, the cleaning device 100 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a, and the third sensor 71c for detecting the relative position in the arrangement direction with respect to the first tube P1. The main body 1 is provided with a position of the traveling mechanism 2 in the traveling direction different from that of the second sensor 71b, and further includes a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the second tube P2, and the main body controller 9 is provided. , The traveling mechanism 2 is controlled based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c, 71d to adjust the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction. do.
 この構成によれば、本体コントローラ9は、清掃機構3の配列方向位置に加えて、走行機構2の傾きを調整する。前述の如く、第1及び第2センサ71a,71bと第3及び第4センサ71c,71dとは、走行機構2の走行方向における位置が異なる位置に設けられている。そのため、第1及び第2センサ71a,71bによって求められる清掃機構3の配列方向位置と、第3及び第4センサ71c,71dによって求められる清掃機構3の配列方向位置とに基づいて、走行機構2の傾きを求めることができる。走行機構2の傾きがわかれば、清掃機構3の配列方向位置が適切な範囲から外れることを未然に防ぐことができる。 According to this configuration, the main body controller 9 adjusts the inclination of the traveling mechanism 2 in addition to the arrangement direction position of the cleaning mechanism 3. As described above, the first and second sensors 71a and 71b and the third and fourth sensors 71c and 71d are provided at different positions in the traveling direction of the traveling mechanism 2. Therefore, the traveling mechanism 2 is based on the arrangement direction position of the cleaning mechanism 3 obtained by the first and second sensors 71a and 71b and the arrangement direction position of the cleaning mechanism 3 obtained by the third and fourth sensors 71c and 71d. Can be calculated. If the inclination of the traveling mechanism 2 is known, it is possible to prevent the position of the cleaning mechanism 3 in the arrangement direction from deviating from an appropriate range.
 さらに、清掃装置100は、複数の管Pに載置された状態の走行機構2及び装置本体1の少なくも一方を撮像するビジョンセンサ8をさらに備え、本体コントローラ9は、配列方向において清掃機構3が所定の位置範囲に入るように、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて走行機構2を制御し、2本の管Pに対する走行機構2の走行方向の傾きが所定の第1傾斜範囲に入るように、ビジョンセンサ8によって取得された画像に基づいて走行機構2を制御し、2本の管Pに対する走行機構2の走行方向の傾きが第1傾斜範囲よりも小さい第2傾斜範囲に入るように、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて走行機構2を制御する。 Further, the cleaning device 100 further includes a traveling mechanism 2 mounted on a plurality of tubes P and a vision sensor 8 for capturing at least one of the device main body 1, and the main body controller 9 is a cleaning mechanism 3 in the arrangement direction. Controls the traveling mechanism 2 based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c, 71d so that The traveling mechanism 2 is controlled based on the image acquired by the vision sensor 8 so that the inclination of the traveling direction of 2 falls within the predetermined first inclination range, and the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction. Controls the traveling mechanism 2 based on the detection results of the first, second, third and fourth sensors 71a, 71b, 71c and 71d so as to enter the second inclination range smaller than the first inclination range.
 この構成によれば、第1及び第2センサ71a,71bの検出距離に加えて、第3及び第4センサ71c,71dの検出距離に基づいて、配列方向において清掃機構3が所定の位置範囲に入るように走行機構2が制御される。つまり、走行機構2の走行方向の異なる位置における清掃機構3の配列方向位置に基づいて、走行機構2が制御される。その結果、清掃機構3の配列方向位置が精度よく調整される。それに加え、走行機構2の傾きが、2つの方法で調整される。比較的大きな走行機構2の傾きは、ビジョンセンサ8による取得画像に基づいて調整される。一方、比較的小さな走行機構2の傾きは、第1、第2、第3及び第4センサ71a,71b,71c,71dの検出距離に基づいて調整される。ビジョンセンサ8による取得画像に基づく調整は、2本の管Pと走行機構2又は装置本体1との全体的な画像に基づいて行われるため、概略的な走行機構2の傾きの調整に適している。一方、第1、第2、第3及び第4センサ71a,71b,71c,71dの検出距離に基づく調整は、局所的な2本の管Pに対する装置本体1の相対位置に基づいて行われるため、詳細な走行機構2の傾きの調整に適している。走行機構2の傾きの大きさに応じて、これらの調整を使い分けることによって、走行機構2の傾きを的確に調整することができる。 According to this configuration, in addition to the detection distances of the first and second sensors 71a and 71b, the cleaning mechanism 3 is set in a predetermined position range in the arrangement direction based on the detection distances of the third and fourth sensors 71c and 71d. The traveling mechanism 2 is controlled so as to enter. That is, the traveling mechanism 2 is controlled based on the arrangement direction position of the cleaning mechanism 3 at different positions in the traveling direction of the traveling mechanism 2. As a result, the arrangement direction position of the cleaning mechanism 3 is accurately adjusted. In addition, the tilt of the traveling mechanism 2 is adjusted in two ways. The relatively large inclination of the traveling mechanism 2 is adjusted based on the image acquired by the vision sensor 8. On the other hand, the inclination of the relatively small traveling mechanism 2 is adjusted based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d. Since the adjustment based on the image acquired by the vision sensor 8 is performed based on the overall image of the two pipes P and the traveling mechanism 2 or the device main body 1, it is suitable for roughly adjusting the inclination of the traveling mechanism 2. There is. On the other hand, the adjustment based on the detection distances of the first, second, third and fourth sensors 71a, 71b, 71c, 71d is performed based on the relative position of the apparatus main body 1 with respect to the two local tubes P. , Suitable for detailed tilt adjustment of the traveling mechanism 2. By properly using these adjustments according to the magnitude of the inclination of the traveling mechanism 2, the inclination of the traveling mechanism 2 can be accurately adjusted.
 また、第1、第2、第3及び第4センサ71a,71b,71c,71dは、管Pに発生する渦電流を検出する渦電流センサである。 Further, the first, second, third and fourth sensors 71a, 71b, 71c and 71d are eddy current sensors that detect the eddy current generated in the pipe P.
 この構成によれば、灰等の粉塵が舞う環境下であっても、管Pの表面が付着物で覆われた状況下であっても、管Pの表面までの距離を正確に検出することができる。 According to this configuration, the distance to the surface of the pipe P can be accurately detected even in an environment where dust such as ash flies, or in a situation where the surface of the pipe P is covered with deposits. Can be done.
 続いて、清掃装置100の変形例について説明する。 Next, a modified example of the cleaning device 100 will be described.
 〈変形例1〉
 例えば、処理部91は、記憶部92に記憶された走行モデルを用いて、2本のクローラ21の駆動力を求めてもよい。詳しくは、走行モデルは、ビジョンセンサ8の取得画像に基づいて求められる走行機構2の傾き、及び、第1~第4センサ71a~71dの検出距離が入力されると、第2条件を満たすような2本のクローラ21の駆動力を出力する。例えば、走行モデルは、予め機械学習等によって生成され、記憶部92に記憶されている。
<Modification example 1>
For example, the processing unit 91 may obtain the driving force of the two crawlers 21 by using the traveling model stored in the storage unit 92. Specifically, the traveling model satisfies the second condition when the inclination of the traveling mechanism 2 obtained based on the acquired image of the vision sensor 8 and the detection distances of the first to fourth sensors 71a to 71d are input. The driving force of the two crawlers 21 is output. For example, the traveling model is generated in advance by machine learning or the like and stored in the storage unit 92.
 図18は、変形例1に係る清掃制御のフローチャートである。変形例においては、図17のフローチャートのステップSt2~St5に代えて、ステップSt12において走行実行部96が走行制御を実行する。具体的には、第1傾き算出部93は、ビジョンセンサ8の取得画像に基づいて、走行機構2の傾きを算出する。走行実行部96は、記憶部92から走行モデルを読み出すと共に、第1~第4センサ71a~71dの検出距離及び第1傾き算出部93によって算出された走行機構2の傾きを走行モデルに入力することによって、2本のクローラ21の駆動力を求める。走行実行部96は、得られた駆動力を2本のクローラ21へ出力する。尚、第2条件が満たされている場合には、走行モデルは、2本のクローラ21の駆動力を出力しない。その場合、走行実行部96は、走行制御による清掃機構3の配列方向位置の調整及び走行機構2の傾きの調整を行わない。実質的に、走行モデルは、第2条件を満たすか否かを判定している。その他のステップは、図17のフローチャートと同じである。尚、位置算出部94及び第2傾き算出部95は、省略される。 FIG. 18 is a flowchart of cleaning control according to the first modification. In the modified example, the travel execution unit 96 executes travel control in step St12 instead of steps St2 to St5 in the flowchart of FIG. Specifically, the first inclination calculation unit 93 calculates the inclination of the traveling mechanism 2 based on the acquired image of the vision sensor 8. The travel execution unit 96 reads the travel model from the storage unit 92, and inputs the detection distances of the first to fourth sensors 71a to 71d and the inclination of the travel mechanism 2 calculated by the first inclination calculation unit 93 into the travel model. By doing so, the driving force of the two crawlers 21 is obtained. The traveling execution unit 96 outputs the obtained driving force to the two crawlers 21. When the second condition is satisfied, the traveling model does not output the driving force of the two crawlers 21. In that case, the traveling execution unit 96 does not adjust the position in the arrangement direction of the cleaning mechanism 3 and the inclination of the traveling mechanism 2 by the traveling control. Substantially, the traveling model determines whether or not the second condition is satisfied. Other steps are the same as the flowchart of FIG. The position calculation unit 94 and the second inclination calculation unit 95 are omitted.
 このような走行モデルを用いることによって、第1~第4センサ71a~71dの検出距離及び第1傾き算出部93によって算出された走行機構2の傾きから、2本のクローラ21の駆動力を直接求めることができる。 By using such a traveling model, the driving force of the two crawlers 21 can be directly obtained from the detection distances of the first to fourth sensors 71a to 71d and the inclination of the traveling mechanism 2 calculated by the first inclination calculation unit 93. Can be asked.
 尚、処理部91による2本のクローラ21の駆動力の導出は、走行モデルを用いる方法に限定されない。例えば、処理部91は、ファジィ制御(ファジィ推論)によって2本のクローラ21の駆動力を求めてもよい。記憶部92には、ファジィ制御に関するメンバシップ関数が記憶されている。メンバシップ関数は、ユーザにより調整可能であってもよい。例えば、処理部91は、ビジョンセンサ8の取得画像に基づいて求められる走行機構2の傾き、及び、第1~第4センサ71a~71dの検出距離を入力として、ファジィ推論によって2本のクローラ21の駆動力を出力する。尚、入力は、ビジョンセンサ8の取得画像に基づいて求められる走行機構2の傾き、第1距離差ΔS1、第2距離差ΔS2及び前後距離差ΔS3等であってもよい。 The derivation of the driving force of the two crawlers 21 by the processing unit 91 is not limited to the method using the traveling model. For example, the processing unit 91 may obtain the driving force of the two crawlers 21 by fuzzy control (fuzzy inference). The storage unit 92 stores a membership function related to fuzzy control. The membership function may be user adjustable. For example, the processing unit 91 inputs two crawlers 21 by fuzzy inference, using the inclination of the traveling mechanism 2 obtained based on the acquired image of the vision sensor 8 and the detection distances of the first to fourth sensors 71a to 71d as inputs. Outputs the driving force of. The input may be the inclination of the traveling mechanism 2 obtained based on the acquired image of the vision sensor 8, the first distance difference ΔS1, the second distance difference ΔS2, the front-rear distance difference ΔS3, and the like.
 〈変形例2〉
 走行機構2は、前述の2本のクローラ21に加えて、もう1組のクローラを有していてもよい。図19は、変形例2に係る清掃装置100の側面図である。
<Modification 2>
The traveling mechanism 2 may have another set of crawlers in addition to the above-mentioned two crawlers 21. FIG. 19 is a side view of the cleaning device 100 according to the modified example 2.
 変形例2に係る清掃装置100の走行機構2は、2本の第2クローラ22をさらに有する。以下、説明の便宜上、クローラ21を「第1クローラ21」と称する。 The traveling mechanism 2 of the cleaning device 100 according to the modification 2 further has two second crawlers 22. Hereinafter, for convenience of explanation, the crawler 21 will be referred to as a “first crawler 21”.
 第2クローラ22の走行方向は、第1クローラ21の走行方向と直交する。具体的には、第2クローラ22は、Y軸方向に進行するように構成されている。一方の第2クローラ22は、ベース11のうちX軸方向における一端部に配置されている。他方の第2クローラ22は、ベース11のうちX軸方向における他端部に配置されている。 The traveling direction of the second crawler 22 is orthogonal to the traveling direction of the first crawler 21. Specifically, the second crawler 22 is configured to travel in the Y-axis direction. One second crawler 22 is arranged at one end of the base 11 in the X-axis direction. The other second crawler 22 is arranged at the other end of the base 11 in the X-axis direction.
 第2クローラ22は、ベース11に対して昇降可能に構成されている。具体的には、第2クローラ22は、第1クローラ21よりも上方の退避位置(図19の二点鎖線)と、第1クローラ21よりも下方の走行位置(図19の実線)との間で昇降可能に構成されている。つまり、装置本体1がX軸方向へ移動する(即ち、管Pに沿って移動する)際には、第2クローラ22は、退避位置に位置して管Pと接触しておらず、第1クローラ21が管Pと接している。走行機構2は、第1クローラ21によってX軸方向へ走行する。一方、装置本体1がY軸方向へ移動する(即ち、管Pを横断する)際には、第2クローラ22は、走行位置に位置して管Pと接し、第1クローラ21は管Pと接触していない。走行機構2は、第2クローラ22によってY軸方向へ走行する。 The second crawler 22 is configured to be able to move up and down with respect to the base 11. Specifically, the second crawler 22 is between the retracted position above the first crawler 21 (two-dot chain line in FIG. 19) and the traveling position below the first crawler 21 (solid line in FIG. 19). It is configured to be able to move up and down. That is, when the device main body 1 moves in the X-axis direction (that is, moves along the tube P), the second crawler 22 is located at the retracted position and is not in contact with the tube P, and the first crawler 22 is not in contact with the tube P. The crawler 21 is in contact with the pipe P. The traveling mechanism 2 travels in the X-axis direction by the first crawler 21. On the other hand, when the apparatus main body 1 moves in the Y-axis direction (that is, crosses the pipe P), the second crawler 22 is located at the traveling position and is in contact with the pipe P, and the first crawler 21 is in contact with the pipe P. Not in contact. The traveling mechanism 2 travels in the Y-axis direction by the second crawler 22.
 この構成によれば、第2クローラ22を介して装置本体1が管Pを横断する際にも、第1及び第2センサ71a,71bは、管Pの配列方向の位置が互いに異なるように配置される。つまり、装置本体1が管Pを横断する際に、清掃機構3が配列方向において新たな管Pの隙間に入った否かを第1及び第2センサ71a,71bの検出距離に基づいて判定することができる。 According to this configuration, even when the apparatus main body 1 crosses the tube P via the second crawler 22, the first and second sensors 71a and 71b are arranged so that the positions of the tubes P in the arrangement direction are different from each other. Will be done. That is, when the apparatus main body 1 crosses the pipe P, it is determined whether or not the cleaning mechanism 3 has entered the gap of the new pipe P in the arrangement direction based on the detection distances of the first and second sensors 71a and 71b. be able to.
 《実施形態2》
 続いて、実施形態2に係る清掃装置200について説明する。図20は、清掃装置200の側面図である。
<< Embodiment 2 >>
Subsequently, the cleaning device 200 according to the second embodiment will be described. FIG. 20 is a side view of the cleaning device 200.
 清掃装置200は、主に清掃機構203及び昇降機構214の構成が清掃装置100の清掃機構3及び昇降機構14と異なる。以下、清掃装置200のうち清掃装置100と異なる構成を中心に説明する。清掃装置200のうち清掃装置100と同様の構成については同様の符号を付して、説明を省略する。 The cleaning device 200 mainly differs from the cleaning mechanism 3 and the elevating mechanism 14 of the cleaning device 100 in the configurations of the cleaning mechanism 203 and the elevating mechanism 214. Hereinafter, the configuration of the cleaning device 200 different from that of the cleaning device 100 will be mainly described. Of the cleaning devices 200, the same configurations as those of the cleaning device 100 are designated by the same reference numerals, and the description thereof will be omitted.
 清掃装置200は、水平方向の所定の配列方向に並ぶ複数の管Pの上に載置される。清掃装置200は、装置本体201と、装置本体201に設けられ、管群Qに含まれる管Pの上を走行する走行機構2と、装置本体201から降下して、水平方向に配列された複数の管Pに含まれる2本の管Pの隙間から管群Q内に進入して、管Pの表面の付着物を清掃する清掃機構203と、装置本体201に設けられ、2本の管Pの一方の管Pに対する配列方向の相対位置を検出する第1センサ71aと、装置本体1に設けられ、2本の管Pの他方の管Pに対する配列方向の相対位置を検出する第2センサ71bとを備えている。清掃装置200は、清掃装置200を制御する本体コントローラ9をさらに備えていてもよい。清掃装置200は、走行機構2の走行方向の位置が第1センサ71aと異なる位置において装置本体1に設けられ、一方の管Pに対する配列方向の相対位置を検出する第3センサ71cと、走行機構2の走行方向の位置が第2センサ71bと異なる位置において装置本体1に設けられ、他方の管Pに対する配列方向の相対位置を検出する第4センサ71dとをさらに備えていてもよい。清掃装置200は、複数の管Pに載置された状態の装置本体201及び走行機構2の少なくも一方を撮像するビジョンセンサ8をさらに備えていてもよい。尚、図20においては、第2センサ71b及び第4センサ71dの図示を省略している。 The cleaning device 200 is placed on a plurality of pipes P arranged in a predetermined arrangement direction in the horizontal direction. The cleaning device 200 includes a device main body 201, a traveling mechanism 2 provided on the device main body 201 and traveling on the pipe P included in the pipe group Q, and a plurality of cleaning devices 200 descending from the device main body 201 and arranged in the horizontal direction. The cleaning mechanism 203 that enters the pipe group Q through the gap between the two pipes P included in the pipe P and cleans the deposits on the surface of the pipe P, and the two pipes P provided in the apparatus main body 201. The first sensor 71a for detecting the relative position in the arrangement direction with respect to one tube P and the second sensor 71b provided in the apparatus main body 1 for detecting the relative position in the arrangement direction with respect to the other tube P of the two tubes P. And have. The cleaning device 200 may further include a main body controller 9 that controls the cleaning device 200. The cleaning device 200 is provided on the device main body 1 at a position where the position of the traveling mechanism 2 in the traveling direction is different from that of the first sensor 71a, and the traveling mechanism is provided with a third sensor 71c for detecting a relative position in the arrangement direction with respect to one of the pipes P. The apparatus main body 1 may be provided at a position where the position of 2 in the traveling direction is different from that of the second sensor 71b, and may further include a fourth sensor 71d for detecting a relative position in the arrangement direction with respect to the other tube P. The cleaning device 200 may further include a vision sensor 8 that captures at least one of the device main body 201 and the traveling mechanism 2 mounted on a plurality of pipes P. In FIG. 20, the second sensor 71b and the fourth sensor 71d are not shown.
 清掃装置200は、走行機構2が載置された複数の管Pのうちの2本の管Pの隙間に清掃機構203を昇降機構214によって降下及び上昇させ、2本の管P及びそれらの下方に並ぶ管Pに付着した付着物を清掃する。 The cleaning device 200 lowers and raises the cleaning mechanism 203 in the gap between two pipes P among the plurality of pipes P on which the traveling mechanism 2 is mounted by the elevating mechanism 214, and lowers and raises the two pipes P and below them. Clean the deposits adhering to the pipes P lined up in.
 尚、清掃装置100の場合と同様に、説明の便宜上、清掃装置200を基準に互いに直交するX軸、Y軸及びZ軸を規定する。具体的には、清掃装置200の走行方向(即ち、走行機構2の走行方向)にX軸を設定し、清掃装置200の上下方向(即ち、昇降機構214の昇降方向)にZ軸を設定し、清掃装置200の幅方向(即ち、走行方向及び上下方向の両方に直交する方向)にY軸を設定する。 As in the case of the cleaning device 100, for convenience of explanation, the X-axis, the Y-axis, and the Z-axis that are orthogonal to each other with respect to the cleaning device 200 are defined. Specifically, the X-axis is set in the traveling direction of the cleaning device 200 (that is, the traveling direction of the traveling mechanism 2), and the Z-axis is set in the vertical direction of the cleaning device 200 (that is, the elevating direction of the elevating mechanism 214). , The Y-axis is set in the width direction of the cleaning device 200 (that is, the direction orthogonal to both the traveling direction and the vertical direction).
 装置本体201は、XY平面上に拡がる平板状のベース211と、ベース211に設けられ、昇降機構214を支持するフレーム212とを有している。ベース211の略中央には、ベース211を貫通する開口(図示省略)が形成されている。 The device main body 201 has a flat plate-shaped base 211 extending on an XY plane, and a frame 212 provided on the base 211 and supporting the elevating mechanism 214. An opening (not shown) penetrating the base 211 is formed substantially in the center of the base 211.
 走行機構2は、ベース211の下面に取り付けられている。清掃装置200の走行機構2の構成は、清掃装置100の走行機構2の構成と概ね同じである。 The traveling mechanism 2 is attached to the lower surface of the base 211. The configuration of the traveling mechanism 2 of the cleaning device 200 is substantially the same as the configuration of the traveling mechanism 2 of the cleaning device 100.
 清掃機構203は、液体を噴射するノズル204と、ノズルに液体を供給する供給部とを有している。ノズル204は、流体を噴射することによって管Pの表面の付着物を除去するように構成されている。この例では、噴射される液体は、水である。 The cleaning mechanism 203 has a nozzle 204 for injecting a liquid and a supply unit for supplying the liquid to the nozzle. The nozzle 204 is configured to remove deposits on the surface of the tube P by injecting a fluid. In this example, the liquid to be sprayed is water.
 ノズル204は、ノズル本体241と、複数の噴口242とを有している。ノズル本体241は、Z軸方向に延びる軸心Hを有する円柱状に形成されている。複数の噴口242は、ZX平面に対して対称に配置されている。より詳しくは、複数の噴口242は、ノズル本体241において軸心Hを中心とする周方向に等間隔で配置されている。噴口242からは、軸心Hを中心とする半径方向に液体が噴射される。つまり、ノズル204からは、軸心Hを中心に放射状に液体が噴射される。また、Z軸方向(即ち、ノズル204の昇降方向)に見た場合のノズル204の形状は、清掃装置200が載置される2本の管PのV軸方向の間隔G(図2,3参照)を直径とする円内に収まっている。ノズル204は、清掃部の一例である。 The nozzle 204 has a nozzle body 241 and a plurality of nozzles 242. The nozzle body 241 is formed in a columnar shape having an axial center H extending in the Z-axis direction. The plurality of nozzles 242 are arranged symmetrically with respect to the ZX plane. More specifically, the plurality of nozzles 242 are arranged at equal intervals in the circumferential direction about the axis H in the nozzle body 241. From the nozzle 242, the liquid is ejected in the radial direction about the axis H. That is, the liquid is ejected radially from the nozzle 204 around the axis H. Further, the shape of the nozzle 204 when viewed in the Z-axis direction (that is, the elevating direction of the nozzle 204) is the distance GV in the V -axis direction of the two pipes P on which the cleaning device 200 is placed (FIGS. 2 and 2). 3) is within the circle whose diameter is. The nozzle 204 is an example of a cleaning unit.
 供給部は、清掃装置200の外部に設けられた、液体の供給源と、供給源とノズル204とを接続するホース251とを有している。 The supply unit has a liquid supply source provided outside the cleaning device 200, and a hose 251 connecting the supply source and the nozzle 204.
 昇降機構214は、いわゆるパンタグラフである。昇降機構214は、パンタグラフを構成する複数のリンク215を有している。具体的には、交差する状態で長手方向中央部が回転自在に連結された2つのリンク215を1組として、一の組の2つのリンク215の長手方向端部が別の組の2つのリンク215の長手方向端部とそれぞれ回転自在に連結されている。最下位の組の2つのリンク215の長手方向一端部(別の組のリンクが連結されていない端部)にはそれぞれ、比較的短いリンク215が回転自在に連結されている。これらの短いリンク215には、ノズル204(詳しくは、ノズル本体241)が連結されている。昇降機構214は、清掃機構203においてノズル204を支持する支持部としても機能する。 The elevating mechanism 214 is a so-called pantograph. The elevating mechanism 214 has a plurality of links 215 constituting the pantograph. Specifically, two links 215 in which the central portions in the longitudinal direction are rotatably connected in an intersecting state are set as one set, and the two links in the longitudinal direction end of one set of two links 215 are two links in another set. It is rotatably connected to each of the longitudinal ends of the 215. A relatively short link 215 is rotatably connected to each of the lowermost set of two links 215 at one end in the longitudinal direction (the end to which another set of links is not connected). A nozzle 204 (specifically, a nozzle body 241) is connected to these short links 215. The elevating mechanism 214 also functions as a support portion for supporting the nozzle 204 in the cleaning mechanism 203.
 最上位の組の2つのリンク215の長手方向一端部(別の組のリンクが連結されていない端部)は、フレーム212に連結されている。フレーム212は、ベース211からZ軸方向に延びる一対の縦フレーム212aと、一対の縦フレーム212aの上端部に接続され、X軸方向に延びる横フレーム212bとを有している。最上位の組の一方のリンク215(以下、「第1リンク215A」と称する)は、回転自在且つX軸方向に摺動不能な状態で横フレーム212bに連結されている。最上位の組の他方のリンク215(以下、「第2リンク215B」と称する)は、回転自在且つX軸方向に摺動可能な状態で横フレーム212bに連結されている(図20の矢印参照)。 One end in the longitudinal direction of the two links 215 of the top set (the end to which another set of links is not connected) is connected to the frame 212. The frame 212 has a pair of vertical frames 212a extending in the Z-axis direction from the base 211, and a horizontal frame 212b connected to the upper ends of the pair of vertical frames 212a and extending in the X-axis direction. One of the uppermost sets of links 215 (hereinafter referred to as "first link 215A") is connected to the horizontal frame 212b in a state of being rotatable and non-sliding in the X-axis direction. The other link 215 of the uppermost set (hereinafter referred to as "second link 215B") is connected to the horizontal frame 212b in a state of being rotatable and slidable in the X-axis direction (see the arrow in FIG. 20). ).
 第2リンク215Bは、駆動部(図示省略)によって、横フレーム212bに沿ってX軸方向へ移動させられる。第2リンク215Bの長手方向一端部が第1リンク215Aの長手方向一端部から離れる方向へ移動させられると、パンタグラフ全体のZ軸方向寸法が縮まり、その結果、ノズル204が上昇する。一方、第2リンク215Bの長手方向一端部が第1リンク215Aの長手方向一端部へ近づく方向へ移動させられると、パンタグラフ全体のZ軸方向寸法が大きくなり、その結果、ノズル204が降下する。 The second link 215B is moved in the X-axis direction along the horizontal frame 212b by the drive unit (not shown). When the longitudinal end of the second link 215B is moved away from the longitudinal end of the first link 215A, the Z-axis dimension of the entire pantograph shrinks, resulting in the nozzle 204 rising. On the other hand, when the one end portion in the longitudinal direction of the second link 215B is moved toward the one end portion in the longitudinal direction of the first link 215A, the Z-axis direction dimension of the entire pantograph becomes large, and as a result, the nozzle 204 is lowered.
 昇降機構214のY軸方向の寸法は、2本の管Pの間隔Gよりも小さい一方、昇降機構214のX軸方向の寸法は、2本の管Pの間隔Gよりも大きい。清掃装置200のX軸方向と管群QのU軸方向とが一致する場合には、昇降機構214は、2本の管Pの間に進入することができる。 The dimension of the elevating mechanism 214 in the Y -axis direction is smaller than the distance GV of the two pipes P , while the dimension of the elevating mechanism 214 in the X-axis direction is larger than the distance GV of the two pipes P. When the X-axis direction of the cleaning device 200 and the U-axis direction of the pipe group Q coincide with each other, the elevating mechanism 214 can enter between the two pipes P.
 続いて、清掃装置200の動作について説明する。図21は、清掃機構203が管Pを清掃している状態をY軸方向を向いて見た図である。 Next, the operation of the cleaning device 200 will be described. FIG. 21 is a view of the state in which the cleaning mechanism 203 is cleaning the pipe P as viewed in the Y-axis direction.
 清掃装置200は、2本の管Pの間に清掃機構203を降下及び上昇させることによって、2本の管P及び2本の管Pの下方に配列された管Pを清掃する。2本のクローラ21が2本の管P上に管Pと平行な状態で載り、且つ、ノズル204がV軸方向において2本の管Pの間に位置する状態から清掃が開始される。 The cleaning device 200 cleans the two pipes P and the pipes P arranged below the two pipes P by lowering and raising the cleaning mechanism 203 between the two pipes P. Cleaning is started from a state in which the two crawlers 21 are placed on the two pipes P in a state parallel to the pipes P and the nozzle 204 is located between the two pipes P in the V-axis direction.
 ノズル204が昇降機構214によって2本の管Pの間に降下させられる。このとき、ノズル204からは液体が噴射されている。噴射された液体は、管Pの表面の付着物を除去する。ノズル204は、Z軸と交差する方向に液体を噴射しているので、ノズル204の進行方向に沿って配列された(即ち、W軸方向に配列された)複数の管Pの間に液体を噴射して、該複数の管Pの間に存在する付着物を除去すると共に該複数の管Pの表面の付着物を除去する。その結果、ノズル204は、管Pの表面のうち、ノズル204が通過するスペースに面している部分だけでなく、該スペースからノズル204の進行方向と交差する方向(例えば、V軸方向)に離れた部分(即ち、奥まった部分)に付着した付着物も除去する。ノズル204は、軸心Hを中心に放射状に液体を噴射するので、V軸方向においてノズル204の両側の管Pの付着物を除去する。 The nozzle 204 is lowered between the two pipes P by the elevating mechanism 214. At this time, the liquid is ejected from the nozzle 204. The sprayed liquid removes deposits on the surface of the tube P. Since the nozzle 204 injects the liquid in the direction intersecting the Z axis, the liquid is ejected between the plurality of tubes P arranged along the traveling direction of the nozzle 204 (that is, arranged in the W axis direction). By spraying, the deposits existing between the plurality of tubes P are removed, and the deposits on the surface of the plurality of tubes P are removed. As a result, the nozzle 204 is not only in the portion of the surface of the tube P facing the space through which the nozzle 204 passes, but also in the direction intersecting the traveling direction of the nozzle 204 (for example, the V-axis direction) from the space. It also removes deposits attached to distant parts (that is, deep parts). Since the nozzle 204 injects the liquid radially around the axis H, the deposits on the tubes P on both sides of the nozzle 204 are removed in the V-axis direction.
 こうして、ノズル204は、管Pの側方をW軸方向に通過することによって、管Pの表面のうち概ね半周部分の付着物を除去していく。 In this way, the nozzle 204 passes by the side of the tube P in the W-axis direction to remove the deposits on the substantially half circumference of the surface of the tube P.
 ノズル204は、清掃対象の管Pのうち最も下方の管Pを通過するまで降下すると、昇降機構214によって上昇させられる。ノズル204が上昇する際にも、ノズル204は、管Pに液体を噴射して、管Pの付着物を削り落としていく。つまり、ノズル204は、降下時と上昇時との両方で管Pの表面を清掃する。 When the nozzle 204 descends until it passes through the lowermost pipe P among the pipes P to be cleaned, it is raised by the elevating mechanism 214. Even when the nozzle 204 rises, the nozzle 204 injects a liquid into the pipe P to scrape off the deposits on the pipe P. That is, the nozzle 204 cleans the surface of the tube P both when descending and when ascending.
 ノズル204の上下の往復が終了すると、清掃装置200は、2本の管Pに沿ってU軸方向へ所定量だけ移動する。その後、ノズル204は、再度、降下及び上昇を実行する。つまり、ノズル204は、管Pのうち、先のノズル204の降下及び上昇時とはU軸方向位置が異なる部分を清掃する。 When the vertical reciprocation of the nozzle 204 is completed, the cleaning device 200 moves along the two pipes P in the U-axis direction by a predetermined amount. After that, the nozzle 204 again performs descent and ascent. That is, the nozzle 204 cleans the portion of the pipe P whose U-axis direction position is different from that of the previous nozzle 204 when the nozzle 204 is lowered and raised.
 清掃装置200は、清掃装置100と同様に、U軸方向の位置を変更しながらノズル204の降下及び上昇を繰り返していき、清掃装置200が載置された2本の管PのU軸方向の一端部から他端部までの移動を終了する。続いて、清掃装置200は、V軸方向へ移動し、ノズル204を異なる2本の管Pの間に配置させ、新たな2本の管P及びその下方の管Pに対して前述と同様の清掃を行う。こうして、清掃装置200は、清掃装置200が載置される2本の管Pを変更しながら前述の清掃を繰り返すことによって、管群Qに含まれる管Pの清掃を行う。 Similar to the cleaning device 100, the cleaning device 200 repeatedly lowers and raises the nozzle 204 while changing the position in the U-axis direction, and the cleaning device 200 is mounted on the two pipes P in the U-axis direction. The movement from one end to the other end is completed. Subsequently, the cleaning device 200 moves in the V-axis direction, arranges the nozzle 204 between two different pipes P, and applies the same to the new two pipes P and the pipe P below the new pipe P as described above. Clean it. In this way, the cleaning device 200 cleans the pipes P included in the pipe group Q by repeating the above-mentioned cleaning while changing the two pipes P on which the cleaning device 200 is placed.
 このように構成された清掃装置200において、第1~第4センサ71a~71dは、清掃装置100と同様に配置されている。清掃装置200は、第1管P1との相対距離を検出する第1センサ71aと第2管P2との相対距離を検出する第2センサ71bとを設けることによって、1つの管Pに対する清掃機構203の相対位置ではなく、第1管P1及び第2管P2に対する清掃機構203の相対位置を求めることができる。その結果、清掃機構203を、配列方向において第1管P1と第2管P2との間に適切に配置することができる。ひいては、清掃機構203を第1管P1と第2管P2との隙間に適切に進入させることができる。その他、配列方向における第1管P1及び第2管P2に対する清掃機構203の相対位置、及び、2本の管Pに対する走行機構2の走行方向の傾きに関し、清掃装置200は、清掃装置100と同様の作用効果を奏する。 In the cleaning device 200 configured as described above, the first to fourth sensors 71a to 71d are arranged in the same manner as the cleaning device 100. The cleaning device 200 is provided with a first sensor 71a for detecting the relative distance to the first pipe P1 and a second sensor 71b for detecting the relative distance to the second pipe P2, whereby the cleaning mechanism 203 for one pipe P is provided. The relative position of the cleaning mechanism 203 with respect to the first pipe P1 and the second pipe P2 can be obtained instead of the relative position of. As a result, the cleaning mechanism 203 can be appropriately arranged between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the cleaning mechanism 203 can be appropriately entered into the gap between the first pipe P1 and the second pipe P2. In addition, the cleaning device 200 is the same as the cleaning device 100 with respect to the relative position of the cleaning mechanism 203 with respect to the first pipe P1 and the second pipe P2 in the arrangement direction and the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction. It plays the action effect of.
 以上のように、清掃装置200は、装置本体201と、装置本体201に設けられ、管群Qに含まれる、所定の配列方向に配列された複数の管Pの上を走行する走行機構2と、装置本体1から降下して、複数の管Pに含まれる2本の管Pの隙間から管群Q内に進入して、管Pの表面の付着物を清掃する清掃機構203と、装置本体201に設けられ、2本の管Pの一方の管Pである第1管P1に対する配列方向の相対位置を検出する第1センサ71aと、装置本体201に設けられ、2本の管Pの他方の管Pである第2管P2に対する配列方向の相対位置を検出する第2センサ71bとを備える。 As described above, the cleaning device 200 includes the device main body 201 and the traveling mechanism 2 provided in the device main body 201 and traveling on a plurality of pipes P included in the pipe group Q and arranged in a predetermined arrangement direction. , The cleaning mechanism 203 that descends from the device main body 1 and enters the tube group Q through the gaps between the two pipes P included in the plurality of pipes P to clean the deposits on the surface of the pipes P, and the device main body. The first sensor 71a provided in 201 to detect the relative position in the arrangement direction with respect to the first tube P1 which is one tube P of the two tubes P, and the other of the two tubes P provided in the apparatus main body 201. It is provided with a second sensor 71b for detecting a relative position in the arrangement direction with respect to the second tube P2 which is the tube P of the above.
 この構成によれば、第1センサ71aにより検出される相対位置と第2センサ71bにより検出される相対位置に基づいて、配列方向における第1及び第2管P1,P2に対する装置本体201の相対位置を求めることができる。清掃機構203は装置本体201に設けられているので、結果として、配列方向における第1及び第2管P1,P2に対する清掃機構203の相対位置が求められる。このように、第1センサ71aと第2センサ71bの2つのセンサを設けることによって、1つの管Pに対する清掃機構203の相対位置ではなく、第1及び第2管P1,P2に対する清掃機構203の相対位置が求められる。これにより、清掃機構203を配列方向において第1管P1と第2管P2との間の適切な位置に配置することができる。その結果、管P上を走行する走行機構2の移動精度を向上させることができる。 According to this configuration, the relative position of the apparatus main body 201 with respect to the first and second tubes P1 and P2 in the arrangement direction is based on the relative position detected by the first sensor 71a and the relative position detected by the second sensor 71b. Can be asked. Since the cleaning mechanism 203 is provided in the apparatus main body 201, as a result, the relative positions of the cleaning mechanism 203 with respect to the first and second pipes P1 and P2 in the arrangement direction are obtained. In this way, by providing the two sensors of the first sensor 71a and the second sensor 71b, the cleaning mechanism 203 with respect to the first and second pipes P1 and P2 is not the relative position of the cleaning mechanism 203 with respect to one pipe P. The relative position is calculated. Thereby, the cleaning mechanism 203 can be arranged at an appropriate position between the first pipe P1 and the second pipe P2 in the arrangement direction. As a result, the moving accuracy of the traveling mechanism 2 traveling on the pipe P can be improved.
 《その他の実施形態》
 以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
<< Other Embodiments >>
As described above, the above-described embodiment has been described as an example of the technology disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. are made as appropriate. It is also possible to combine the components described in the above embodiment to form a new embodiment. In addition, among the components described in the attached drawings and detailed explanations, not only the components essential for problem solving but also the components not essential for problem solving in order to exemplify the above-mentioned technology. Can also be included. Therefore, the fact that those non-essential components are described in the accompanying drawings or detailed description should not immediately determine that those non-essential components are essential.
 例えば、走行機構2又は昇降機構14,214の構成は、前述の構成に限られるものではない。例えば、走行機構2は、クローラではなく、車輪であってもよい。昇降機構14は、ウインチではなく、ラックアンドピニオンやパンタグラフであってもよい。昇降機構214は、パンタグラフではなく、ウインチやラックアンドピニオンであってもよい。 For example, the configuration of the traveling mechanism 2 or the elevating mechanism 14, 214 is not limited to the above-mentioned configuration. For example, the traveling mechanism 2 may be a wheel instead of a crawler. The elevating mechanism 14 may be a rack and pinion or a pantograph instead of a winch. The elevating mechanism 214 may be a winch or a rack and pinion instead of a pantograph.
 清掃機構3が備える清掃ユニット4の個数は、3個に限られるものではない。清掃ユニット4は、1個、2個又は4個以上であってもよい。清掃機構3の昇降方向、即ち、Z軸方向における各清掃ユニット4の位置は、前述の位置に限られるものではない。例えば、3個の清掃ユニット4のZ軸方向の位置は、同じであってもよい。あるいは、3個の清掃ユニット4のZ軸方向の位置は、全て異なっていてもよい。 The number of cleaning units 4 provided in the cleaning mechanism 3 is not limited to three. The number of cleaning units 4 may be one, two, or four or more. The position of each cleaning unit 4 in the elevating direction of the cleaning mechanism 3, that is, in the Z-axis direction is not limited to the above-mentioned position. For example, the positions of the three cleaning units 4 in the Z-axis direction may be the same. Alternatively, the positions of the three cleaning units 4 in the Z-axis direction may all be different.
 清掃ユニット4の構成は、前述の構成に限られるものではない。例えば、清掃ユニット4が有するスクレーパ34の個数は、3個に限られず、1個、2個又は4個以上であってもよい。清掃ユニット4は、円板35又は掘削部36を有していなくてもよい。前述の清掃ユニット4は、4枚の円板35によって形成される3つの隙間のそれぞれに複数のスクレーパ34が設けられている。つまり、3組のスクレーパ34が設けられている。しかし、スクレーパ34の組数は、1組、2組又は4組以上であってもよい。 The configuration of the cleaning unit 4 is not limited to the above configuration. For example, the number of scrapers 34 included in the cleaning unit 4 is not limited to three, and may be one, two, or four or more. The cleaning unit 4 may not have the disk 35 or the excavation section 36. The cleaning unit 4 described above is provided with a plurality of scrapers 34 in each of the three gaps formed by the four discs 35. That is, three sets of scrapers 34 are provided. However, the number of sets of the scraper 34 may be one set, two sets, or four sets or more.
 スクレーパ34の形状は、円弧状でなく、例えば直線状であってもよい。スクレーパ34は、揺動する構成ではなく、摺動する構成であってもよい。例えば、スクレーパ34に長孔が形成され、2つの円板35の間に設けられたピンが長孔に挿通されるようにスクレーパ34がピンに連結される構成であってもよい。この構成の場合、スクレーパ34は、長孔内をピンが相対的に移動するようにピンに対して摺動可能である。スクレーパ34が摺動可能な構成であれば、回転シャフト32の遠心力がスクレーパ34に作用すると、スクレーパ34は遠心力に従って摺動し、半径方向外側へ拡がる。 The shape of the scraper 34 may be, for example, a straight line instead of an arc shape. The scraper 34 may have a sliding configuration instead of a swinging configuration. For example, the scraper 34 may have an elongated hole formed therein, and the scraper 34 may be connected to the pin so that the pin provided between the two discs 35 is inserted into the elongated hole. In this configuration, the scraper 34 is slidable with respect to the pin so that the pin moves relatively in the elongated hole. If the scraper 34 is slidable, when the centrifugal force of the rotating shaft 32 acts on the scraper 34, the scraper 34 slides according to the centrifugal force and expands outward in the radial direction.
 清掃機構3は、ガイド5を備えているが、ガイド5を備えていなくてもよい。ガイド5の構成は、前述の構成に限られるものではない。ガイド5は、リンク6を有していなくてもよい。例えば、ブレード51は、フレーム31に対して摺動可能に連結され、且つ、バネ等でY軸方向外側へ付勢された構成であってもよい。 The cleaning mechanism 3 is provided with the guide 5, but the guide 5 may not be provided. The configuration of the guide 5 is not limited to the above-mentioned configuration. The guide 5 does not have to have the link 6. For example, the blade 51 may be slidably connected to the frame 31 and may be urged outward in the Y-axis direction by a spring or the like.
 ノズル204の構成は、前述の構成に限られるものではない。噴口242の個数及び配置は、任意に設定することができる。また、清掃機構203は、ノズル204を複数有していてもよい。複数のノズル204が設けられている場合、複数のノズル204のZ軸方向位置は、一致していなくてもよい。その場合、清掃装置100と同様に、走行機構2が2本の管Pに沿って走行する際には複数のノズル204が2本の管Pの間に進入しており、走行機構2が旋回する際には最も下方に位置するノズル204だけが2本の管Pの間に進入していてもよい。 The configuration of the nozzle 204 is not limited to the above configuration. The number and arrangement of the nozzles 242 can be arbitrarily set. Further, the cleaning mechanism 203 may have a plurality of nozzles 204. When a plurality of nozzles 204 are provided, the positions of the plurality of nozzles 204 in the Z-axis direction do not have to match. In that case, similarly to the cleaning device 100, when the traveling mechanism 2 travels along the two pipes P, a plurality of nozzles 204 have entered between the two pipes P, and the traveling mechanism 2 turns. At this time, only the nozzle 204 located at the lowermost position may enter between the two pipes P.
 また、清掃機構203のノズル204から噴射する物質は、液体に限られない。例えば、ノズル204は、空気等の気体や、管Pの清掃に適した粒体を噴射してもよい。ここで、「粒体」とは、粉のような微粒子も含む。例えば、「粒体」は、金属又はセラミック等の微小な球体である。 Further, the substance sprayed from the nozzle 204 of the cleaning mechanism 203 is not limited to the liquid. For example, the nozzle 204 may inject a gas such as air or particles suitable for cleaning the tube P. Here, the "grain" also includes fine particles such as powder. For example, a "granular material" is a tiny sphere such as metal or ceramic.
 センサ71の個数は、4個に限定されない。例えば、第3及び第4センサ71c,71dが省略されてもよい。あるいは、さらにもう2つのセンサ71が設けられてもよい。 The number of sensors 71 is not limited to four. For example, the third and fourth sensors 71c, 71d may be omitted. Alternatively, two more sensors 71 may be provided.
 センサ71は、渦電流センサに限定されない。レーザ等を用いた光学式センサ又は超音波を用いた超音波センサであってもよい。 The sensor 71 is not limited to the eddy current sensor. It may be an optical sensor using a laser or the like or an ultrasonic sensor using ultrasonic waves.
 配列方向の位置が異なる2つのセンサ71(第1及び第2センサ71a,71b又は第3及び第4センサ71c,71d)の配置は、前述の配置に限定されない。例えば、2つのセンサ71の配列方向のピッチMは、2本の管Pの配列方向のピッチNよりも大きくてもよい。このような構成であっても、配列方向における第1及び第2センサ71a,71bと第1及び第2管P1,P2との相対位置の変化に応じて、第1センサ71aの検出距離S1と第2センサ71bの検出距離S2との相対関係、例えば、第1距離差ΔS1が変化する。 The arrangement of the two sensors 71 (first and second sensors 71a, 71b or the third and fourth sensors 71c, 71d) having different positions in the arrangement direction is not limited to the above-mentioned arrangement. For example, the pitch M in the arrangement direction of the two sensors 71 may be larger than the pitch N in the arrangement direction of the two tubes P. Even with such a configuration, the detection distance S1 of the first sensor 71a and the detection distance S1 according to the change in the relative position between the first and second sensors 71a and 71b and the first and second tubes P1 and P2 in the arrangement direction. The relative relationship of the second sensor 71b with the detection distance S2, for example, the first distance difference ΔS1 changes.
 センサ71の向きは、鉛直下方に限定されない。センサ71は、斜め下方を向くように配置されていてもよい。 The orientation of the sensor 71 is not limited to vertically downward. The sensor 71 may be arranged so as to face diagonally downward.
 配列方向の位置が異なる2つのセンサ71は、走行方向における位置がそれぞれ異なっていてもよい。 The two sensors 71 having different positions in the arrangement direction may have different positions in the traveling direction.
 ビジョンセンサ8は、省略されてもよい。清掃装置100,200は、走行機構2の傾きを調整しなくてもよい。清掃機構3の配列方向位置が位置範囲から外れてしまうことを未然に防止することができなくなるものの、第1及び第2センサ71a,71bの検出距離に基づいて清掃機構3の配列方向位置を調整することによって、清掃機構3を2つの管Pの隙間に適切に進入させることができる。ただし、配列方向の位置が異なる2つのセンサ71を、走行方向の位置が異なる複数個所に設けることによって、それらのセンサ71の検出距離に基づいて走行機構2の傾きを求めることができる。その場合には、清掃装置100,200は、走行機構2の傾きを調整する。 The vision sensor 8 may be omitted. The cleaning devices 100 and 200 do not have to adjust the inclination of the traveling mechanism 2. Although it is not possible to prevent the cleaning mechanism 3 from being out of the position range, the arrangement direction position of the cleaning mechanism 3 is adjusted based on the detection distances of the first and second sensors 71a and 71b. By doing so, the cleaning mechanism 3 can be appropriately entered into the gap between the two pipes P. However, by providing the two sensors 71 having different positions in the arrangement direction at a plurality of locations having different positions in the traveling direction, the inclination of the traveling mechanism 2 can be obtained based on the detection distance of the sensors 71. In that case, the cleaning devices 100 and 200 adjust the inclination of the traveling mechanism 2.
 また、4個のセンサ71とビジョンセンサ8との組み合わせではなく、2個のセンサ71(例えば、第1及び第2センサ71a,71b)とビジョンセンサ8との組み合わせであってもよい。この場合、2個のセンサ71の検出距離に基づいて清掃機構3の配列方向位置が判定され、ビジョンセンサ8の取得画像に基づいて走行機構2の傾きが判定される。 Further, instead of the combination of the four sensors 71 and the vision sensor 8, the combination of the two sensors 71 (for example, the first and second sensors 71a and 71b) and the vision sensor 8 may be used. In this case, the arrangement direction position of the cleaning mechanism 3 is determined based on the detection distances of the two sensors 71, and the inclination of the traveling mechanism 2 is determined based on the acquired image of the vision sensor 8.
 また、第1条件及び第2条件は、任意に設定し得る。例えば、第1条件及び第2条件は、段階的に設定された条件であり、第2条件の方が第1条件よりも厳しい条件である。あるいは、第1条件は、ビジョンセンサ8の検出結果に基づいて判定される条件であり、第2条件は、第1~第4センサ71a~71dの検出結果に基づいて判定される条件である。 Further, the first condition and the second condition can be set arbitrarily. For example, the first condition and the second condition are conditions set in stages, and the second condition is a stricter condition than the first condition. Alternatively, the first condition is a condition determined based on the detection result of the vision sensor 8, and the second condition is a condition determined based on the detection results of the first to fourth sensors 71a to 71d.
 第2条件を判定する前に、第1~第4センサ71a~71dの全てが管Pまでの距離を検出できるか否かが判定されてもよい。第1~第4センサ71a~71dのうちいずれかのセンサが管Pまでの距離を検出できない場合、第2条件が満たされているか否かを判定することができない。第1~第4センサ71a~71dの全てが管Pまでの距離を検出しているか否かは、第1~第4センサ71a~71dのそれぞれの検出結果が適切な範囲(即ち、センサ71が管Pまでの距離を検出できている場合の出力範囲)に入っているか、あるいは、ビジョンセンサ8の取得画像に基づいて判定された走行機構2又は清掃機構3の位置が2本の管Pに対して適切な位置範囲(即ち、第1~第4センサ71a~71dが管Pまでの距離を検出できる位置範囲)に入っているかによって判定され得る。第1~第4センサ71a~71dのうちいずれかのセンサが管Pまでの距離を検出できない場合には、処理部91は、ビジョンセンサ8の取得画像に基づいて判定された走行機構2又は清掃機構3の位置が2本の管Pに対して適切な位置範囲に入るように2本のクローラ21の駆動力を算出して、清掃機構3の位置を調整してもよい。あるいは、本体コントローラ9は、警報を発して、ユーザへ手動による清掃機構3の位置の調整を促してもよい。 Before determining the second condition, it may be determined whether or not all of the first to fourth sensors 71a to 71d can detect the distance to the pipe P. If any of the first to fourth sensors 71a to 71d cannot detect the distance to the pipe P, it cannot be determined whether or not the second condition is satisfied. Whether or not all of the first to fourth sensors 71a to 71d detect the distance to the pipe P is determined by the appropriate range of the detection results of the first to fourth sensors 71a to 71d (that is, the sensor 71). The position of the traveling mechanism 2 or the cleaning mechanism 3 that is within the output range when the distance to the pipe P can be detected) or is determined based on the acquired image of the vision sensor 8 is located on the two pipes P. On the other hand, it can be determined by whether or not it is within an appropriate position range (that is, a position range in which the first to fourth sensors 71a to 71d can detect the distance to the pipe P). When any of the first to fourth sensors 71a to 71d cannot detect the distance to the pipe P, the processing unit 91 determines the traveling mechanism 2 or cleaning based on the acquired image of the vision sensor 8. The position of the cleaning mechanism 3 may be adjusted by calculating the driving force of the two crawlers 21 so that the position of the mechanism 3 falls within an appropriate position range with respect to the two pipes P. Alternatively, the main body controller 9 may issue an alarm to urge the user to manually adjust the position of the cleaning mechanism 3.
 第1条件及び第2条件が満たされるように走行機構2の駆動力の調整を行うタイミングは、2本の管Pに沿った所定量の移動が所定回数行われたとき(即ち、ステップSt8の判定)に限定されない。例えば、走行機構2の移動時に並行して、第1条件及び第2条件が満たされているかを監視して、第1条件及び第2条件が満たされるように走行機構2の駆動力を調整してもよい。 The timing for adjusting the driving force of the traveling mechanism 2 so that the first condition and the second condition are satisfied is when a predetermined amount of movement along the two pipes P is performed a predetermined number of times (that is, in step St8). Judgment) is not limited. For example, in parallel with the movement of the traveling mechanism 2, it is monitored whether the first condition and the second condition are satisfied, and the driving force of the traveling mechanism 2 is adjusted so that the first condition and the second condition are satisfied. You may.
 本体コントローラ9は、第1条件及び第2条件が満たされるように走行機構2を制御しているが、これに限定されない。本体コントローラ9は、配列方向における2本の管Pに対する清掃機構3の相対位置等を求めるだけで、走行機構2を制御しなくてもよい。例えば、本体コントローラ9は、第1及び第2センサ71a,71bによる検出距離、若しくは、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出距離に基づいて配列方向における2本の管Pに対する清掃機構3の相対位置を求め、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて2本の管Pに対する走行機構2の走行方向の傾きを求め、又は、ビジョンセンサ8によって取得された画像に基づいて2本の管Pに対する走行機構2の走行方向の傾きを求め、求めた結果を出力(例えば、表示)してもよい。あるいは、本体コントローラ9は、ビジョンセンサ8によって取得された画像に基づいて2本の管Pに対する走行機構2の走行方向の傾きが第1傾斜範囲に入っているか否かを判定すると共に、第1、第2、第3及び第4センサ71a,71b,71c,71dによる検出結果に基づいて2本の管Pに対する走行機構2の走行方向の傾きが第2傾斜範囲に入っているか否かを判定してもよい。オペレータは、本体コントローラ9によって求められた結果又は判定され結果に基づいて、外部コントローラ98を操作して走行機構2を操縦してもよい。 The main body controller 9 controls the traveling mechanism 2 so that the first condition and the second condition are satisfied, but the present invention is not limited to this. The main body controller 9 does not have to control the traveling mechanism 2 only by obtaining the relative position of the cleaning mechanism 3 with respect to the two pipes P in the arrangement direction. For example, the main body controller 9 is in the arrangement direction based on the detection distance by the first and second sensors 71a, 71b or the detection distance by the first, second, third and fourth sensors 71a, 71b, 71c, 71d. The relative position of the cleaning mechanism 3 with respect to the two pipes P is obtained, and the traveling mechanism 2 with respect to the two pipes P is based on the detection results by the first, second, third and fourth sensors 71a, 71b, 71c, 71d. Even if the inclination of the traveling direction is obtained, or the inclination of the traveling mechanism 2 with respect to the two pipes P is obtained based on the image acquired by the vision sensor 8, and the obtained result is output (for example, displayed). good. Alternatively, the main body controller 9 determines whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the first inclination range based on the image acquired by the vision sensor 8, and also determines whether or not the inclination is within the first inclination range. , It is determined whether or not the inclination of the traveling mechanism 2 with respect to the two pipes P in the traveling direction is within the second inclination range based on the detection results of the second, third and fourth sensors 71a, 71b, 71c, 71d. You may. The operator may operate the external controller 98 to control the traveling mechanism 2 based on the result obtained by the main body controller 9 or the determined result.
 管Pは、円管に限定されない。センサ71が渦電流センサである場合には、角管であっても、配列方向におけるセンサ71と管Pとの相対位置に応じて、管Pのうちセンサ71の検出範囲に存在する部分の大きさが変化するので、センサ71によって管Pに対する配列方向の相対位置を検出することができる。センサ71が渦電流センサでない場合であっても、(すなわち、センサ71が光学式センサ等であっても)、管の表面から走行機構2の走行面までの距離が配列方向の位置に応じて変化する形状の管であれば、配列方向におけるセンサ71と管Pとの相対位置に応じてセンサ71から管Pの表面までの距離が変化する。そのため、センサ71によって管Pに対する配列方向の相対位置を検出することができる。 The tube P is not limited to a circular tube. When the sensor 71 is a vortex current sensor, even if it is a square tube, the size of the portion of the tube P that exists in the detection range of the sensor 71 according to the relative position between the sensor 71 and the tube P in the arrangement direction. Since the current changes, the sensor 71 can detect the relative position in the arrangement direction with respect to the tube P. Even if the sensor 71 is not a vortex current sensor (that is, even if the sensor 71 is an optical sensor or the like), the distance from the surface of the tube to the traveling surface of the traveling mechanism 2 depends on the position in the arrangement direction. In the case of a tube having a changing shape, the distance from the sensor 71 to the surface of the tube P changes according to the relative position between the sensor 71 and the tube P in the arrangement direction. Therefore, the sensor 71 can detect the relative position in the arrangement direction with respect to the tube P.
100,200 清掃装置
1,201   装置本体
2       走行機構
3,203   清掃機構
71a     第1センサ
71b     第2センサ
71c     第3センサ
71d     第4センサ
9       本体コントローラ(制御部)
P       管
Q       管群
100,200 Cleaning device 1,201 Device main body 2 Traveling mechanism 3,203 Cleaning mechanism 71a 1st sensor 71b 2nd sensor 71c 3rd sensor 71d 4th sensor 9 Main body controller (control unit)
P tube Q tube group

Claims (13)

  1.  装置本体と、
     前記装置本体に設けられ、所定の配列方向に配列された複数の管の上を走行する走行機構と、
     前記装置本体から降下して、前記複数の管に含まれる2本の管の間に進入して、管の表面の付着物を清掃する清掃機構と、
     前記装置本体に設けられ、前記2本の管の一方の管に対する前記配列方向の相対位置を検出する第1センサと、
     前記装置本体に設けられ、前記2本の管の他方の管に対する前記配列方向の相対位置を検出する第2センサとを備える清掃装置。
    With the main body of the device
    A traveling mechanism provided on the main body of the device and traveling on a plurality of pipes arranged in a predetermined arrangement direction,
    A cleaning mechanism that descends from the main body of the device and enters between the two pipes contained in the plurality of pipes to clean the deposits on the surface of the pipes.
    A first sensor provided in the main body of the apparatus and detecting a relative position in the arrangement direction with respect to one of the two tubes,
    A cleaning device provided in the main body of the device and provided with a second sensor for detecting a relative position in the arrangement direction of the two pipes with respect to the other pipe.
  2.  請求項1に記載の清掃装置において、
     前記第1センサは、前記一方の管に対する前記配列方向の相対位置として、前記一方の管の表面までの距離を検出し、
     前記第2センサは、前記他方の管に対する前記配列方向の相対位置として、前記他方の管の表面までの距離を検出する清掃装置。
    In the cleaning device according to claim 1,
    The first sensor detects the distance to the surface of the one tube as a relative position in the arrangement direction with respect to the one tube.
    The second sensor is a cleaning device that detects the distance to the surface of the other tube as a relative position in the arrangement direction with respect to the other tube.
  3.  請求項1又は2に記載の清掃装置において、
     前記第1及び第2センサによる検出結果に基づいて、前記配列方向における前記2本の管に対する前記清掃機構の相対位置を求める制御部をさらに備える清掃装置。
    In the cleaning device according to claim 1 or 2.
    A cleaning device further comprising a control unit for determining the relative position of the cleaning mechanism with respect to the two pipes in the arrangement direction based on the detection results by the first and second sensors.
  4.  請求項3に記載の清掃装置において、
     前記走行機構の走行方向の位置が前記第1センサと異なる位置において前記装置本体に設けられ、前記一方の管に対する前記配列方向の相対位置を検出する第3センサと、
     前記走行機構の走行方向の位置が前記第2センサと異なる位置において前記装置本体に設けられ、前記他方の管に対する前記配列方向の相対位置を検出する第4センサとをさらに備える清掃装置。
    In the cleaning device according to claim 3,
    A third sensor, which is provided on the main body of the apparatus at a position different from that of the first sensor in the traveling direction of the traveling mechanism and detects a relative position in the arrangement direction with respect to the one tube.
    A cleaning device further provided with a fourth sensor provided on the main body of the apparatus at a position different from the second sensor in the traveling direction of the traveling mechanism and detecting a relative position in the arrangement direction with respect to the other pipe.
  5.  請求項4に記載の清掃装置において、
     前記制御部は、前記第1、第2、第3及び第4センサによる検出結果に基づいて、前記配列方向における前記2本の管に対する前記清掃機構の相対位置を求める清掃装置。
    In the cleaning device according to claim 4,
    The control unit is a cleaning device that determines the relative position of the cleaning mechanism with respect to the two pipes in the arrangement direction based on the detection results of the first, second, third, and fourth sensors.
  6.  請求項4又は5に記載の清掃装置において、
     前記制御部は、前記第1、第2、第3及び第4センサによる検出結果に基づいて、前記2本の管に対する前記走行機構の走行方向の傾きを求める清掃装置。
    In the cleaning device according to claim 4 or 5.
    The control unit is a cleaning device that obtains the inclination of the traveling mechanism in the traveling direction with respect to the two pipes based on the detection results of the first, second, third, and fourth sensors.
  7.  請求項6に記載の清掃装置において、
     前記複数の管に載置された状態の前記走行機構及び前記装置本体の少なくも一方を撮像する撮像装置をさらに備え、
     前記制御部は、前記撮像装置によって取得された画像に基づいて、前記2本の管に対する前記走行機構の走行方向の傾きが所定の第1傾斜範囲に入っているか否かを判定すると共に、前記第1、第2、第3及び第4センサによる検出結果に基づいて、前記2本の管に対する前記走行機構の走行方向の傾きが前記第1傾斜範囲よりも小さい第2傾斜範囲に入っているか否かを判定する清掃装置。
    In the cleaning device according to claim 6,
    Further provided with an image pickup device that captures at least one of the traveling mechanism and the device body in a state of being mounted on the plurality of tubes.
    Based on the image acquired by the image pickup apparatus, the control unit determines whether or not the inclination of the traveling mechanism with respect to the two tubes in the traveling direction is within a predetermined first inclination range, and the control unit determines whether or not the inclination is within a predetermined first inclination range. Whether the inclination of the traveling mechanism with respect to the two pipes in the traveling direction is within the second inclination range smaller than the first inclination range based on the detection results by the first, second, third and fourth sensors. A cleaning device that determines whether or not.
  8.  請求項3に記載の清掃装置において、
     前記制御部は、前記配列方向において前記清掃機構が所定の位置範囲に入るように、前記第1及び第2センサの検出結果に基づいて前記走行機構を制御する清掃装置。
    In the cleaning device according to claim 3,
    The control unit is a cleaning device that controls the traveling mechanism based on the detection results of the first and second sensors so that the cleaning mechanism falls within a predetermined position range in the arrangement direction.
  9.  請求項8に記載の清掃装置において、
     前記走行機構の走行方向の位置が前記第1センサと異なる位置において前記装置本体に設けられ、前記一方の管に対する前記配列方向の相対位置を検出する第3センサと、
     前記走行機構の走行方向の位置が前記第2センサと異なる位置において前記装置本体に設けられ、前記他方の管に対する前記配列方向の相対位置を検出する第4センサとをさらに備え、
     前記制御部は、前記配列方向において前記清掃機構が所定の位置範囲に入るように、前記第1、第2、第3及び第4センサによる検出結果に基づいて前記走行機構を制御する清掃装置。
    In the cleaning device according to claim 8,
    A third sensor, which is provided on the main body of the apparatus at a position different from that of the first sensor in the traveling direction of the traveling mechanism and detects a relative position in the arrangement direction with respect to the one tube.
    The apparatus main body is provided with a position of the traveling mechanism in the traveling direction different from that of the second sensor, and further includes a fourth sensor for detecting a relative position in the arrangement direction with respect to the other tube.
    The control unit is a cleaning device that controls the traveling mechanism based on the detection results of the first, second, third, and fourth sensors so that the cleaning mechanism falls within a predetermined position range in the arrangement direction.
  10.  請求項8に記載の清掃装置において、
     前記走行機構の走行方向の位置が前記第1センサと異なる位置において前記装置本体に設けられ、前記一方の管に対する前記配列方向の相対位置を検出する第3センサと、
     前記走行機構の走行方向の位置が前記第2センサと異なる位置において前記装置本体に設けられ、前記他方の管に対する前記配列方向の相対位置を検出する第4センサとをさらに備え、
     前記制御部は、前記第1、第2、第3及び第4センサによる検出結果に基づいて前記走行機構を制御して、前記2本の管に対する前記走行機構の走行方向の傾きを調整する清掃装置。
    In the cleaning device according to claim 8,
    A third sensor, which is provided on the main body of the apparatus at a position different from that of the first sensor in the traveling direction of the traveling mechanism and detects a relative position in the arrangement direction with respect to the one tube.
    The apparatus main body is provided with a position of the traveling mechanism in the traveling direction different from that of the second sensor, and further includes a fourth sensor for detecting a relative position in the arrangement direction with respect to the other tube.
    The control unit controls the traveling mechanism based on the detection results of the first, second, third and fourth sensors, and adjusts the inclination of the traveling mechanism with respect to the two pipes in the traveling direction. Device.
  11.  請求項10に記載の清掃装置において、
     前記複数の管に載置された状態の前記走行機構及び前記装置本体の少なくも一方を撮像する撮像装置をさらに備え、
     前記制御部は、
      前記配列方向において前記清掃機構が所定の位置範囲に入るように、前記第1、第2、第3及び第4センサによる検出結果に基づいて前記走行機構を制御し、
      前記2本の管に対する前記走行機構の走行方向の傾きが所定の第1傾斜範囲に入るように、前記撮像装置によって取得された画像に基づいて前記走行機構を制御し、
      前記2本の管に対する前記走行機構の走行方向の傾きが前記第1傾斜範囲よりも小さい第2傾斜範囲に入るように、前記第1、第2、第3及び第4センサによる検出結果に基づいて前記走行機構を制御する清掃装置。
    In the cleaning device according to claim 10,
    Further provided with an image pickup device that captures at least one of the traveling mechanism and the device body in a state of being mounted on the plurality of tubes.
    The control unit
    The traveling mechanism is controlled based on the detection results of the first, second, third and fourth sensors so that the cleaning mechanism falls within a predetermined position range in the arrangement direction.
    The traveling mechanism is controlled based on the image acquired by the imaging device so that the inclination of the traveling mechanism with respect to the two tubes in the traveling direction falls within a predetermined first inclination range.
    Based on the detection results by the first, second, third and fourth sensors so that the inclination of the traveling mechanism with respect to the two pipes in the traveling direction falls within the second inclination range smaller than the first inclination range. A cleaning device that controls the traveling mechanism.
  12.  請求項1~3,8の何れか1つに記載の清掃装置において、
     前記第1及び第2センサは、前記管に発生する渦電流を検出する渦電流センサである清掃装置。
    In the cleaning device according to any one of claims 1 to 3 and 8.
    The first and second sensors are cleaning devices that are eddy current sensors that detect eddy currents generated in the pipe.
  13.  請求項4~7,9~11の何れか1つに記載の清掃装置において、
     前記第1、第2、第3及び第4センサは、前記管に発生する渦電流を検出する渦電流センサである清掃装置。

     
    In the cleaning device according to any one of claims 4 to 7, 9 to 11.
    The first, second, third, and fourth sensors are cleaning devices that are eddy current sensors that detect eddy currents generated in the pipe.

PCT/JP2021/030374 2020-09-11 2021-08-19 Cleaning device WO2022054525A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-152963 2020-09-11
JP2020152963A JP7433174B2 (en) 2020-09-11 2020-09-11 cleaning equipment

Publications (1)

Publication Number Publication Date
WO2022054525A1 true WO2022054525A1 (en) 2022-03-17

Family

ID=80631571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030374 WO2022054525A1 (en) 2020-09-11 2021-08-19 Cleaning device

Country Status (2)

Country Link
JP (1) JP7433174B2 (en)
WO (1) WO2022054525A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1594518A (en) * 1926-01-08 1926-08-03 Hathaway Erving Boiler-tube-cleaning apparatus
JPS63243603A (en) * 1987-03-30 1988-10-11 バブコツク日立株式会社 Shifter among heat transfer tube group
JPH01239393A (en) * 1988-03-17 1989-09-25 Kansai Electric Power Co Inc:The Cleaning device for horizontal type tube
JPH0355495A (en) * 1989-07-21 1991-03-11 Chubu Electric Power Co Inc Method and device for removing ash adhering to heat transfer pipe of boiler
JP2003176996A (en) * 2001-12-07 2003-06-27 Kawasaki Heavy Ind Ltd Pipe cleaning device
JP2004251476A (en) * 2003-02-18 2004-09-09 Jfe Engineering Kk Cleaning method and cleaning device
JP2019074228A (en) * 2017-10-12 2019-05-16 日立造船株式会社 Cleaner
JP2019074227A (en) * 2017-10-12 2019-05-16 日立造船株式会社 Cleaning mechanism

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1594518A (en) * 1926-01-08 1926-08-03 Hathaway Erving Boiler-tube-cleaning apparatus
JPS63243603A (en) * 1987-03-30 1988-10-11 バブコツク日立株式会社 Shifter among heat transfer tube group
JPH01239393A (en) * 1988-03-17 1989-09-25 Kansai Electric Power Co Inc:The Cleaning device for horizontal type tube
JPH0355495A (en) * 1989-07-21 1991-03-11 Chubu Electric Power Co Inc Method and device for removing ash adhering to heat transfer pipe of boiler
JP2003176996A (en) * 2001-12-07 2003-06-27 Kawasaki Heavy Ind Ltd Pipe cleaning device
JP2004251476A (en) * 2003-02-18 2004-09-09 Jfe Engineering Kk Cleaning method and cleaning device
JP2019074228A (en) * 2017-10-12 2019-05-16 日立造船株式会社 Cleaner
JP2019074227A (en) * 2017-10-12 2019-05-16 日立造船株式会社 Cleaning mechanism

Also Published As

Publication number Publication date
JP2022047189A (en) 2022-03-24
JP7433174B2 (en) 2024-02-19

Similar Documents

Publication Publication Date Title
TWI326457B (en)
EP3398747B1 (en) Vent hole cleaning apparatus and vent hole cleaning method
JP6869162B2 (en) Cleaning mechanism
NL2005095C2 (en) Device for dredging soil material under water.
WO2022054525A1 (en) Cleaning device
US11926481B2 (en) Robot device, and method for inspection of components of a belt conveyor
JP6339460B2 (en) Cable inspection device
JP6474070B2 (en) Checking method for cable stayed bridges
JP6837951B2 (en) Cleaning device
JP2005181140A (en) Pipe inspection truck and pipe inspection device
JP2019085064A (en) Travel device
JP6797052B2 (en) Groove filler spraying equipment and submerged arc welding equipment
JP2006245439A (en) Electrode processing device for semiconductor wafer
JP2012187599A (en) Remote laser processing device
KR100543316B1 (en) The SAW Narrow Gap Automatic Welding System Using Laser Vision Sensor
NL8801989A (en) METHOD AND APPARATUS FOR DETERMINING THE ESTABLISHABILITY OF SOIL, IN PARTICULAR SOUND UNDERWATER SOIL
JP2004526146A (en) Electrode inspection system
JP6308529B2 (en) Cable stay inspection device and method for cable stay inspection of cable stayed bridge
KR101330298B1 (en) Skimmer for discharging slag from ladle
JP2005030773A (en) Equipment and method for inspecting the inside of reactor
JP2018184045A (en) Investigation machine for inside of channel
EP4163021A1 (en) Powder removal assembliy and method of removing unbound particles using a powder removal assembliy
KR102418042B1 (en) Dummy bar head replacement device
JP7398254B2 (en) Sample surface cutting method, test section preparation method, and sample surface cutting device
CN116652427A (en) Laser automatic cutout machine of aluminum plate processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866485

Country of ref document: EP

Kind code of ref document: A1