WO2022054154A1 - Gas-insulated device - Google Patents

Gas-insulated device Download PDF

Info

Publication number
WO2022054154A1
WO2022054154A1 PCT/JP2020/034054 JP2020034054W WO2022054154A1 WO 2022054154 A1 WO2022054154 A1 WO 2022054154A1 JP 2020034054 W JP2020034054 W JP 2020034054W WO 2022054154 A1 WO2022054154 A1 WO 2022054154A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
gas
dielectric constant
metal container
filler
Prior art date
Application number
PCT/JP2020/034054
Other languages
French (fr)
Japanese (ja)
Inventor
繁和 森
孝倫 安岡
好一 保科
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to PCT/JP2020/034054 priority Critical patent/WO2022054154A1/en
Priority to JP2022548284A priority patent/JP7400113B2/en
Publication of WO2022054154A1 publication Critical patent/WO2022054154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/045Details of casing, e.g. gas tightness

Definitions

  • the embodiment of the present invention relates to a gas insulating device.
  • gas insulation equipment gas insulation switchgear: GIS
  • SF 6 sulfur hexafluoride
  • GIS gas insulation switchgear
  • SF 6 gas insulating gas
  • a high voltage conductor for energization is inserted in the center of the metal container. It has a coaxial cylindrical structure.
  • an insulating spacer (insulation support) is attached between the inside of the metal container and the high voltage conductor, and an electric field is installed between the insulating spacer and the high voltage conductor.
  • a relaxation shield is formed.
  • the insulating spacer constituting the gas insulating device is manufactured by mold molding using a resin in which a filler such as alumina or silica is mixed with an epoxy resin.
  • the electric field distribution near the insulating spacer which is an important factor in determining the size of such a gas insulating bus, depends on the geometric shape of the high voltage conductor, the insulating spacer, and the electric field relaxation shield, and the dielectric constant of the insulating spacer and the insulating gas. It is determined.
  • the insulating spacer is manufactured by mold molding, a plurality of materials in which the blending amounts of the epoxy resin and the filler are changed stepwise are prepared, and these materials are sequentially injected into the mold to obtain an epoxy resin. And a method of heat-molding an insulating spacer by changing the ratio of the blending amount of the filler stepwise is known.
  • an insulating spacer capable of spatially changing the dielectric constant of the insulating spacer by using a non-linear dielectric constant material whose relative permittivity increases as the electric field becomes high as a constituent material of the insulating spacer.
  • the epoxy resin can be used in either the case where a high dielectric constant portion is locally formed as the insulating spacer constituting the gas insulating device or the case where the non-linear dielectric constant material is used as the constituent material of the insulating spacer. It has been proposed to fill with a filler having a high dielectric constant (relative permittivity of about 100 to several thousand) such as barium titanate and strontium titanate.
  • FIG. 4 shows the measurement results of the creepage fracture electric field of the epoxy composite material to which the metal foreign matter is attached.
  • the atmosphere gas is SF 6 gas.
  • a conventional material is an epoxy composite material in which an epoxy resin is filled with alumina having a particle size distribution in the range of several ⁇ m to several tens of ⁇ m at a filling rate of 44% by volume.
  • barium titanate is an epoxy composite material in which barium titanate having a particle size of 0.5 ⁇ m is filled in an epoxy resin at a ratio of 20 vol%.
  • the epoxy resin is made of a fluororesin-based material with a lower dielectric constant than the epoxy resin that is the constituent material of the insulating spacer.
  • a configuration that coats the surface is known.
  • Japanese Unexamined Patent Publication No. 2010-176969 Japanese Unexamined Patent Publication No. 2013-176275 Japanese Unexamined Patent Publication No. 2017-060209 Japanese Unexamined Patent Publication No. 06-153342
  • the problem to be solved by the present invention is to suppress deterioration of the creepage withstand voltage performance of the epoxy composite material when a filler having a high dielectric constant is used as a constituent material of the insulating support, thereby improving the miniaturization and insulation reliability. It is to provide gas insulation equipment which can be made.
  • the gas insulating device of the embodiment has a metal container, a high voltage conductor, and an insulating support.
  • the metal container has a cylindrical shape in which an insulating gas is sealed.
  • the high voltage conductor is housed inside the metal container so as to be separated from the inner surface of the metal container.
  • the insulating support is arranged between the metal container and the high voltage conductor and supports the high voltage conductor inside the metal container.
  • the insulating support has a substrate in which an epoxy resin is filled with a filler, and an insulating layer that covers the surface of the substrate.
  • the filler contains a high dielectric constant material composed of at least one of barium titanate, strontium titanate, and calcium titanate. As the insulating layer, an insulating material that does not contain the high dielectric constant material is used.
  • the cross-sectional schematic diagram which shows the gas insulation apparatus of 1st Embodiment.
  • the cross-sectional schematic diagram which shows the gas insulation apparatus of 2nd Embodiment.
  • the graph which shows the verification result of 1st Embodiment.
  • the graph which shows the result of having compared the creepage fracture electric field of the epoxy composite material which adhered the metal foreign matter.
  • the graph which shows the relationship between the epoxy coating thickness and the reduction rate of the maximum electric field.
  • FIG. 1 is a schematic cross-sectional view showing the gas insulating device of the first embodiment.
  • the gas insulating device (gas insulated switchgear) 10 of the first embodiment has a hollow cylindrical metal container 11, for example, a cylindrical metal container 11.
  • the metal container 11 is electrically grounded.
  • the inside of the metal container 11 has an airtight structure, and the insulating gas G is sealed inside.
  • As the insulating gas G a gas having high insulating property, inertness, and high thermal conductivity is used.
  • sulfur hexafluoride (SF 6 ) is used as the insulating gas G.
  • Sulfur hexafluoride is widely used as a typical insulating gas in the fields of electrical and electronic devices.
  • a high voltage conductor 12 is housed so as to be separated from the inner surface 11a of the metal container 11.
  • the high voltage conductor 12 is made of a metal having a high conductivity such as copper or aluminum, and extends along the central axis direction of the metal container 11.
  • the high voltage conductor 12 is supported inside the metal container 11 by the insulating support 13. That is, the insulating support 13 is arranged between the metal container 11 and the high voltage conductor 12, and supports the high voltage conductor 12 inside the metal container 11.
  • the insulating support 13 is a disk-shaped member having an opening 13a in the center.
  • the insulating support (insulating spacer) 13 has a disk-shaped substrate 14 having an opening 13a in the center, and an insulating layer 15 that covers one side and the other side of the surface of the substrate 14. .
  • the substrate 14 is mainly composed of an epoxy resin and is filled (dispersed) with a filler.
  • Examples of the epoxy resin used for the substrate 14 include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, and glycidylamine type epoxy resin.
  • the bisphenol A type epoxy resin which is a typical epoxy resin, is a copolymer of bisphenol A and epichlorohydrin, and various polyamines and acid anhydrides are used as the curing agent.
  • a high dielectric constant material (non-linear dielectric constant material) is used as the filler filled in the epoxy resin.
  • the high dielectric constant material has a relative permittivity of about 100 to several thousand, and has a characteristic that the relative permittivity increases as the electric field increases.
  • the filler is selected from at least one or a plurality of barium titanate, strontium titanate, and calcium titanate.
  • the substrate 14 is an epoxy composite material containing the above-mentioned filler in the epoxy resin in an amount of, for example, about 20% by volume to 30% by volume.
  • the ratio of the epoxy resin and the filler can be any ratio as long as appropriate non-linear dielectric properties can be obtained.
  • the insulating layer 15 constituting the insulating support 13 is made of an insulating material that does not contain a high dielectric constant material that is a filler filled in the epoxy resin.
  • the insulating layer 15 is formed in a range of more than 50 ⁇ m and 5 mm or less in thickness so as to cover the surface of the substrate 14.
  • the thickness of the insulating layer 15 is preferably 5 mm or less.
  • the thickness of the insulating layer 15 may be 100 ⁇ m or more, or 150 ⁇ m or more.
  • the constituent material of the insulating layer 15 is a resin material using epoxy as a base material.
  • the resin material using epoxy as a base material includes all thermosetting resins having a crosslinked structure with epoxy groups remaining in the polymer.
  • the insulating layer 15 is composed of, for example, only a bisphenol A type epoxy resin.
  • the substrate 14 can be further filled with alumina or silica as a filler.
  • alumina or silica as a filler, the mechanical properties, for example, strength of the epoxy composite material constituting the substrate 14 can be improved.
  • Electric field relaxation shields (electric field relaxation rings) 16 are formed on both side portions where the high voltage conductor 12 is in contact with the insulating support 13.
  • the electric field relaxation shield 16 includes, for example, a base material made of metal and an insulating portion provided on the surface of the base material.
  • the surface of 14 was covered with an insulating layer 15 made of an insulating material containing no high dielectric constant.
  • the gas insulating device 10 of the present embodiment if the insulating layer 15 constituting the insulating support 13 is formed of a resin material using epoxy as a base material, a filler which is a high dielectric constant material can be added to the epoxy resin. Since the bondability between the filled substrate 14 and the filled substrate 14 due to the epoxy-based material is enhanced, it is possible to prevent the insulating layer 15 from peeling off from the substrate 14. It is possible to prevent the insulating layer 15 from being peeled off due to aging and the filler of the substrate 14 to be exposed, and the creeping insulation performance from being deteriorated due to the adhesion of metal foreign matter.
  • the substrate 14 of the insulating support 13 is made of an epoxy composite material in which an epoxy resin is filled with a filler made of a high dielectric constant material (non-linear dielectric constant material), the ratio is such that the electric field of the insulating support 13 becomes high.
  • the dielectric constant increases. As a result, the maximum electric field value on the surface of the insulating support 13 can be reduced, and the gas insulating device 10 can be made compact.
  • the withstand voltage performance is prevented from being deteriorated due to metal foreign matter to improve the insulation reliability, and the maximum electric field value on the surface of the insulating support 13 is reduced. It is possible to make the gas insulation device 10 compact at the same time.
  • FIG. 2 is a schematic cross-sectional view showing the gas insulating device of the second embodiment.
  • the same number is assigned to the same configuration as in the first embodiment, and the description of the overlapping configuration will be omitted.
  • the gas insulating device (gas insulated switchgear) 20 of the second embodiment has an insulating support 23 that supports the high voltage conductor 12.
  • the surface of the substrate 24 in which the epoxy resin is filled with a filler made of a high dielectric constant material is covered with an insulating layer 25 made of an insulating material containing no high dielectric constant material.
  • the filler is selected from at least one or a plurality of barium titanate, strontium titanate, and calcium titanate.
  • a resin material having an epoxy as a base material can be mentioned as in the insulating layer 15 of the first embodiment.
  • the filling concentration of the high dielectric constant material for the epoxy resin is higher on the high voltage conductor 12 side (center side) than on the metal container 11 side (outer peripheral side) of the insulating support 23. It is distributed in an inclined manner. Such a change in the packing concentration of the high dielectric constant material may be stepwise or stepless.
  • the minimum filling concentration of the high dielectric constant material on the metal container 11 side (outer peripheral side) is preferably in the range of 0 to 10% by volume.
  • the maximum filling concentration of the high dielectric constant material on the high voltage conductor 12 side (center side) is preferably in the range of 25 to 30% by volume. Then, the filling concentration of the high dielectric constant material may be increased steplessly from the outer peripheral side to the inner peripheral side even if it is stepwise.
  • the substrate 24 in which the filling concentration of the high-dielectric-constant material with respect to the epoxy resin is changed for example, an epoxy resin pre-filled with the high-dielectric-constant material having a plurality of concentrations is prepared, and the high-voltage conductor 12 side (center side) is prepared.
  • the epoxy resin is injected into the mold and then cured.
  • the substrate 24 is filled with a filler made of a high dielectric constant material (non-linear dielectric constant material) in an epoxy resin.
  • the surface was covered with an insulating layer 25 made of an insulating material containing no high dielectric constant material.
  • the gas insulating device 20 of the present embodiment if the insulating layer 25 constituting the insulating support 23 is formed of a resin material using epoxy as a base material, a filler which is a high dielectric constant material can be added to the epoxy resin. Since the bondability between the filled substrate 24 and the filled substrate 24 due to the epoxy-based material is enhanced, it is possible to prevent the insulating layer 25 from peeling off from the substrate 24. It is possible to prevent the insulating layer 25 from being peeled off due to aging and the filler of the substrate 24 to be exposed, and the creeping insulation performance from being deteriorated due to the adhesion of metallic foreign matter.
  • the substrate 24 of the insulating support 23 uses an epoxy composite material in which a high dielectric constant material is filled in the epoxy resin so that the filling concentration decreases from the high voltage conductor 12 side toward the metal container 11 side. Therefore, the high dielectric constant material is filled with a filling concentration corresponding to the strength of the electric field strength of the insulating support 23, and the maximum electric field value on the surface of the insulating support 23 can be efficiently reduced. It can be made compact.
  • the withstand voltage performance is prevented from being deteriorated due to metal foreign matter to improve the insulation reliability, and the maximum electric field value on the surface of the insulating support 23 is reduced. It is possible to achieve both compactness of the gas insulating device 20.
  • the insulating support has a substrate in which an epoxy resin is filled with a filler and an insulating layer for covering the surface of the substrate, and the filler is a high dielectric constant material.
  • the insulating support It is possible to provide a gas insulating device capable of suppressing deterioration of the creepage withstand voltage performance of an epoxy composite material when a filler having a high dielectric constant is used as a constituent material, and improving miniaturization and insulation reliability.
  • the insulating support (insulating spacer) is formed in a disk shape, but in addition to this, for example, the insulating support may be formed in a cone shape or a post (pillar) shape. You can also.
  • the shape of the insulating support is not limited to the shape of each of the above-described embodiments.
  • the optimum range of the thickness of the insulating layer in the gas insulating device of the embodiment was verified.
  • Barium titanate (particle size 0.5 ⁇ m, packing concentration 20 vol%) was used as the high dielectric constant material (non-linear dielectric constant material) of the filler to be filled in the epoxy resin of the substrate.
  • Sulfur hexafluoride (SF 6 ) was used as the insulating gas to be sealed in the metal container.
  • An insulating support (insulating spacer) was formed by coating an insulating layer made of epoxy resin on the surface of a substrate made of an epoxy composite material in which barium titanate was filled in such an epoxy resin.
  • the film thickness of the insulating layer was 50 ⁇ m and 150 ⁇ m. Further, as a comparative example, an insulating support was formed in which the surface of the substrate was not covered with the insulating layer.
  • FIG. 3 shows the results of measuring the creepage fracture electric field when a metal foreign substance is attached to these three samples.
  • the coating thickness of the insulating layer is 150 ⁇ m
  • the creepage fracture electric field is improved to the same level as that of the conventional epoxy composite material using alumina as the filler (see the dotted line in FIG. 4).
  • the coating thickness of the insulating layer was 50 ⁇ m
  • no improvement in the creepage fracture electric field was observed.
  • a coating thickness of more than 50 ⁇ m, preferably 100 ⁇ m or more is required.
  • FIG. 5 shows an example of analyzing the relationship between the epoxy coating thickness (thickness of the insulating layer) on the surface of the nonlinear dielectric material and the rate of decrease in the maximum electric field at the epoxy / gas boundary portion (electric field relaxation effect). From FIG. 5, it can be seen that when the epoxy coating thickness is 20 mm or more, the reduction rate of the maximum electric field is 10% or less, and the electric field relaxation effect is weakened. If a non-linear dielectric material is used and the maximum electric field relaxation effect is expected, it is appropriate that the upper limit of the epoxy coating thickness is several mm or less, and 5 mm or less is recommended.

Abstract

Provided is a gas-insulated device in which size reduction and insulation reliability can be improved by suppressing the degradation of surface withstand voltage performance of an epoxy composite when using a filler having a high dielectric constant as a constituent material of an insulation support body. The gas-insulated device according to an embodiment has a metal container, a high voltage conductor, and an insulation support body. The metal container is a cylindrical container in which an insulation gas is sealed. The high voltage conductor is housed inside the metal container so as to be separated from the inner surface of the metal container. The insulation support body is disposed between the metal container and the high voltage conductor and supports the high voltage conductor inside the metal container. The insulation support body has: a base substance formed by filling an epoxy resin with a filler; and an insulation layer for covering the surface of the base substance. The filler includes a high dielectric constant material consisting of at least one kind of barium titanate, strontium titanate, and calcium titanate. The insulation layer uses an insulation material not including the high dielectric constant material.

Description

ガス絶縁機器Gas insulation equipment
 本発明の実施形態は、ガス絶縁機器に関する。 The embodiment of the present invention relates to a gas insulating device.
 現在、高電圧大容量の電力系統では、絶縁およびアーク放電の消孤媒体として、SF(六フッ化硫黄)ガスを用いたガス絶縁機器(ガス絶縁開閉装置:GIS)が広く使用されている。こうしたガス絶縁機器を構成するガス絶縁母線(GIB)は、例えば円筒形の金属容器の内部にSFガス(絶縁ガス)が封入され、この金属容器の中心に通電用の高電圧導体が挿通された同軸円筒構造を成している。金属容器内で高電圧導体を絶縁支持するために、金属容器内と高電圧導体との間に絶縁スペーサ(絶縁支持体)が取付けられ、この絶縁スペーサと高電圧導体との間には、電界緩和シールドが形成されている。 Currently, in high-voltage and large-capacity power systems, gas insulation equipment (gas insulation switchgear: GIS) using SF 6 (sulfur hexafluoride) gas is widely used as an isolation medium for insulation and arc discharge. .. In the gas insulating bus (GIB) constituting such a gas insulating device, for example, SF 6 gas (insulating gas) is sealed inside a cylindrical metal container, and a high voltage conductor for energization is inserted in the center of the metal container. It has a coaxial cylindrical structure. In order to insulate and support the high voltage conductor in the metal container, an insulating spacer (insulation support) is attached between the inside of the metal container and the high voltage conductor, and an electric field is installed between the insulating spacer and the high voltage conductor. A relaxation shield is formed.
 一般的に、ガス絶縁機器を構成する絶縁スペーサは、エポキシ樹脂にアルミナもしくはシリカ等の充填材を配合した樹脂を用いて、金型成形によって製造されている。こうしたガス絶縁母線のサイズを定める上で重要な要因となる絶縁スペーサ付近の電界分布は、高電圧導体、絶縁スペーサ、および電界緩和シールドの幾何学的形状と、絶縁スペーサおよび絶縁ガスの誘電率により決定される。 Generally, the insulating spacer constituting the gas insulating device is manufactured by mold molding using a resin in which a filler such as alumina or silica is mixed with an epoxy resin. The electric field distribution near the insulating spacer, which is an important factor in determining the size of such a gas insulating bus, depends on the geometric shape of the high voltage conductor, the insulating spacer, and the electric field relaxation shield, and the dielectric constant of the insulating spacer and the insulating gas. It is determined.
 ガス絶縁母線においては、絶縁スペーサ表面の最大電界値を低減することが、ガス絶縁機器の性能向上およびコンパクト化にとって最も重要である。そのため、従来から、絶縁スペーサの形状の最適化や絶縁スペーサの低誘電率化の試みがなされてきた。絶縁スペーサの誘電率を空間的に変化させることが可能であれば電界を低減できるので、ガス絶縁機器のコンパクト化、およびコンパクト化に伴うガス絶縁機器の製造コストを低減できる。 For gas-insulated buses, reducing the maximum electric field value on the surface of the insulating spacer is the most important for improving the performance and making the gas-insulated equipment compact. Therefore, conventionally, attempts have been made to optimize the shape of the insulating spacer and to reduce the dielectric constant of the insulating spacer. If the dielectric constant of the insulating spacer can be spatially changed, the electric field can be reduced, so that the gas insulating equipment can be made compact and the manufacturing cost of the gas insulating equipment due to the compactification can be reduced.
 従来、絶縁スペーサを金型成形で製作する際、エポキシ樹脂および充填材の配合量を段階的に変化させた複数の材料を用意し、これらの材料を順次金型に注入することで、エポキシ樹脂および充填材の配合量の割合を段階的に変化させて絶縁スペーサを加熱成型する方法が知られている。 Conventionally, when the insulating spacer is manufactured by mold molding, a plurality of materials in which the blending amounts of the epoxy resin and the filler are changed stepwise are prepared, and these materials are sequentially injected into the mold to obtain an epoxy resin. And a method of heat-molding an insulating spacer by changing the ratio of the blending amount of the filler stepwise is known.
 また、電界が高くなると比誘電率が上昇する非線形誘電率材料を絶縁スペーサの構成材料に用いることにより、絶縁スペーサの誘電率を空間的に変化させることが可能な絶縁スペーサも知られている。 Further, there is also known an insulating spacer capable of spatially changing the dielectric constant of the insulating spacer by using a non-linear dielectric constant material whose relative permittivity increases as the electric field becomes high as a constituent material of the insulating spacer.
 このように、ガス絶縁機器を構成する絶縁スペーサとして、局所的に高誘電率部位を形成する場合、または、絶縁スペーサの構成材料として非線形誘電率材料を用いる場合の何れにおいても、エポキシ樹脂に、チタン酸バリウムやチタン酸ストロンチウム等の高誘電率(比誘電率100~数1000程度)のフィラーを充填することが提案されている。 As described above, the epoxy resin can be used in either the case where a high dielectric constant portion is locally formed as the insulating spacer constituting the gas insulating device or the case where the non-linear dielectric constant material is used as the constituent material of the insulating spacer. It has been proposed to fill with a filler having a high dielectric constant (relative permittivity of about 100 to several thousand) such as barium titanate and strontium titanate.
 しかしながら、上述したように、絶縁スペーサとしてエポキシ樹脂にチタン酸バリウムやチタン酸ストロンチウム等の高誘電率のフィラーを充填した構成では、その表面に金属異物が付着した場合に、従来のエポキシ複合材に比べて沿面絶縁性能が大きく低下することが分かった。 However, as described above, in the configuration in which an epoxy resin is filled with a filler having a high dielectric constant such as barium titanate or strontium titanate as an insulating spacer, when a metallic foreign substance adheres to the surface thereof, the conventional epoxy composite material is used. It was found that the creepage insulation performance was significantly reduced in comparison.
 一例として、絶縁スペーサに金属異物が付着した場合の模擬実験について説明する。図4に、金属異物を付着させたエポキシ複合材の沿面破壊電界の測定結果を示す。なお、雰囲気ガスはSFガスである。図4において、従来材と表記したものは、その粒径分布が数μm~数十μmの範囲で分布するアルミナをエポキシ樹脂に充填率44体積%で充填したエポキシ複合材である。また、チタン酸バリウムと表記したものは、エポキシ樹脂に粒径0.5μmのチタン酸バリウムを20vol%の割合で充填したエポキシ複合材である。図4の縦軸は、エポキシ複合材の表面に金属異物を付着させた場合の沿面破壊電界である。図4に示す結果によれば、チタン酸バリウムを含むエポキシ複合材の沿面破壊電界は、アルミナを含むエポキシ複合材(従来材)に比べて20%以上低下していることがわかる。 As an example, a simulated experiment when a metal foreign substance adheres to the insulating spacer will be described. FIG. 4 shows the measurement results of the creepage fracture electric field of the epoxy composite material to which the metal foreign matter is attached. The atmosphere gas is SF 6 gas. In FIG. 4, what is described as a conventional material is an epoxy composite material in which an epoxy resin is filled with alumina having a particle size distribution in the range of several μm to several tens of μm at a filling rate of 44% by volume. Further, what is described as barium titanate is an epoxy composite material in which barium titanate having a particle size of 0.5 μm is filled in an epoxy resin at a ratio of 20 vol%. The vertical axis of FIG. 4 is a creeping fracture electric field when a metal foreign substance is attached to the surface of the epoxy composite material. According to the results shown in FIG. 4, it can be seen that the creepage fracture electric field of the epoxy composite material containing barium titanate is reduced by 20% or more as compared with the epoxy composite material containing alumina (conventional material).
 ガス絶縁機器は、製造工程の特性上、微小な金属異物の混入を避けることが困難である。この金属異物は、絶縁スペーサに付着しスペーサの沿面絶縁性能を低下させる。そのため、絶縁スペーサに金属異物が付着した場合の沿面絶縁性能の低下は、可能な限り小さくすることが求められる。 Due to the characteristics of the manufacturing process, it is difficult for gas insulating equipment to avoid the entry of minute metallic foreign substances. This metallic foreign matter adheres to the insulating spacer and deteriorates the creeping insulation performance of the spacer. Therefore, it is required to minimize the deterioration of creepage insulation performance when metal foreign matter adheres to the insulating spacer.
 エポキシ樹脂を使用した絶縁スペーサに金属異物が付着しても沿面絶縁性能の低下を防止できる構成として、絶縁スペーサの構成材料であるエポキシ樹脂よりも低誘電率のフッ素樹脂系材料によって、エポキシ樹脂の表面をコーティングする構成が知られている。 As a configuration that can prevent deterioration of creeping insulation performance even if metallic foreign matter adheres to the insulating spacer using epoxy resin, the epoxy resin is made of a fluororesin-based material with a lower dielectric constant than the epoxy resin that is the constituent material of the insulating spacer. A configuration that coats the surface is known.
 しかしながら、エポキシ樹脂とともにフッ素樹脂系材料を絶縁スペーサの構成材料の一部として用いる場合、フッ素樹脂系材料からなるコーティングがエポキシ樹脂との熱膨張係数の違いなどにより剥離して絶縁性が低下する場合がある。 However, when a fluororesin-based material is used together with the epoxy resin as a part of the constituent material of the insulating spacer, the coating made of the fluororesin-based material is peeled off due to a difference in thermal expansion coefficient from the epoxy resin, and the insulating property is deteriorated. There is.
特開2010-176969号公報Japanese Unexamined Patent Publication No. 2010-176969 特開2013-176275号公報Japanese Unexamined Patent Publication No. 2013-176275 特開2017-060209号公報Japanese Unexamined Patent Publication No. 2017-060209 特開平06-153342号公報Japanese Unexamined Patent Publication No. 06-153342
 本発明が解決しようとする課題は、絶縁支持体の構成材料として高誘電率のフィラーを用いた際のエポキシ複合材の沿面耐電圧性能の低下を抑制して、小型化と絶縁信頼性を向上させることが可能なガス絶縁機器を提供することである。 The problem to be solved by the present invention is to suppress deterioration of the creepage withstand voltage performance of the epoxy composite material when a filler having a high dielectric constant is used as a constituent material of the insulating support, thereby improving the miniaturization and insulation reliability. It is to provide gas insulation equipment which can be made.
 実施形態のガス絶縁機器は、金属容器と、高電圧導体と、絶縁支持体とを持つ。金属容器は、絶縁ガスが封入された筒状である。高電圧導体は、前記金属容器の内面に対して離間するように前記金属容器の内部に収容されている。絶縁支持体は、前記金属容器と前記高電圧導体との間に配され前記金属容器の内部で前記高電圧導体を支持する。前記絶縁支持体は、エポキシ樹脂にフィラーを充填した基体と、前記基体の表面を被覆する絶縁層と、を有する。前記フィラーは、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種からなる高誘電率材を含む。前記絶縁層は、前記高誘電率材を含まない絶縁材料を用いる。 The gas insulating device of the embodiment has a metal container, a high voltage conductor, and an insulating support. The metal container has a cylindrical shape in which an insulating gas is sealed. The high voltage conductor is housed inside the metal container so as to be separated from the inner surface of the metal container. The insulating support is arranged between the metal container and the high voltage conductor and supports the high voltage conductor inside the metal container. The insulating support has a substrate in which an epoxy resin is filled with a filler, and an insulating layer that covers the surface of the substrate. The filler contains a high dielectric constant material composed of at least one of barium titanate, strontium titanate, and calcium titanate. As the insulating layer, an insulating material that does not contain the high dielectric constant material is used.
第1実施形態のガス絶縁機器を示す断面模式図。The cross-sectional schematic diagram which shows the gas insulation apparatus of 1st Embodiment. 第2実施形態のガス絶縁機器を示す断面模式図。The cross-sectional schematic diagram which shows the gas insulation apparatus of 2nd Embodiment. 第1実施形態の検証結果を示すグラフ。The graph which shows the verification result of 1st Embodiment. 金属異物を付着させたエポキシ複合材の沿面破壊電界を比較した結果を示すグラフ。The graph which shows the result of having compared the creepage fracture electric field of the epoxy composite material which adhered the metal foreign matter. エポキシ被覆厚と最大電界の低下割合の関係を示すグラフ。The graph which shows the relationship between the epoxy coating thickness and the reduction rate of the maximum electric field.
 以下、図面を参照して、実施形態のガス絶縁機器について説明する。以下の説明で用いる図面は、実施形態の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, the gas insulating device of the embodiment will be described with reference to the drawings. In the drawings used in the following description, in order to make the features of the embodiment easy to understand, the main parts may be enlarged and shown, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
(第1実施形態)
 図1は、第1実施形態のガス絶縁機器を示す断面模式図である。
 第1実施形態のガス絶縁機器(ガス絶縁開閉装置)10は、中空筒状、例えば円筒形の金属容器11を有する。金属容器11は、電気的に接地されている。金属容器11は、内部が気密構造であり、内部に絶縁ガスGが封入される。絶縁ガスGは、絶縁性が高く、不活性で、かつ熱伝導性の高いガスを用いる。本実施形態では、絶縁ガスGとして六フッ化硫黄(SF)を用いている。六フッ化硫黄は、電気および電子機器の分野で代表的な絶縁ガスとして広く使用されている。
(First Embodiment)
FIG. 1 is a schematic cross-sectional view showing the gas insulating device of the first embodiment.
The gas insulating device (gas insulated switchgear) 10 of the first embodiment has a hollow cylindrical metal container 11, for example, a cylindrical metal container 11. The metal container 11 is electrically grounded. The inside of the metal container 11 has an airtight structure, and the insulating gas G is sealed inside. As the insulating gas G, a gas having high insulating property, inertness, and high thermal conductivity is used. In this embodiment, sulfur hexafluoride (SF 6 ) is used as the insulating gas G. Sulfur hexafluoride is widely used as a typical insulating gas in the fields of electrical and electronic devices.
 金属容器11の内部には、この金属容器11の内面11aに対して離間するように、高電圧導体12が収容されている。高電圧導体12は、例えば、銅あるいはアルミニウムなどの高伝導率の金属からなり、金属容器11の中心軸方向に沿って延びている。 Inside the metal container 11, a high voltage conductor 12 is housed so as to be separated from the inner surface 11a of the metal container 11. The high voltage conductor 12 is made of a metal having a high conductivity such as copper or aluminum, and extends along the central axis direction of the metal container 11.
 高電圧導体12は、絶縁支持体13によって金属容器11の内部に支持されている。即ち、絶縁支持体13は、金属容器11と高電圧導体12との間に配されて、金属容器11の内部で高電圧導体12を支持する。本実施形態では、絶縁支持体13は、中心に開孔13aを有する円板状を成す部材である。 The high voltage conductor 12 is supported inside the metal container 11 by the insulating support 13. That is, the insulating support 13 is arranged between the metal container 11 and the high voltage conductor 12, and supports the high voltage conductor 12 inside the metal container 11. In the present embodiment, the insulating support 13 is a disk-shaped member having an opening 13a in the center.
 絶縁支持体(絶縁スペーサ)13は、中心に開孔13aを有する円板状に成形された基体14と、この基体14の表面である一面側および他面側を被覆する絶縁層15とを有する。基体14は、エポキシ樹脂を主体として、フィラーを充填(分散)させたものからなる。 The insulating support (insulating spacer) 13 has a disk-shaped substrate 14 having an opening 13a in the center, and an insulating layer 15 that covers one side and the other side of the surface of the substrate 14. .. The substrate 14 is mainly composed of an epoxy resin and is filled (dispersed) with a filler.
 基体14に用いるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などが挙げられる。代表的なエポキシ樹脂であるビスフェノールA型エポキシ樹脂は、ビスフェノールAとエピクロルヒドリンの共重合体であり、硬化剤としては各種のポリアミンおよび酸無水物が用いられる。 Examples of the epoxy resin used for the substrate 14 include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, and glycidylamine type epoxy resin. The bisphenol A type epoxy resin, which is a typical epoxy resin, is a copolymer of bisphenol A and epichlorohydrin, and various polyamines and acid anhydrides are used as the curing agent.
 エポキシ樹脂に充填されるフィラーには高誘電率材(非線形誘電率材)が用いられる。高誘電率材(非線形誘電率材)は、比誘電率が100~数1000程度のものであり、電界が高くなると比誘電率が上昇する特性を備えている。フィラーとしては、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種または複数種から選択される。 A high dielectric constant material (non-linear dielectric constant material) is used as the filler filled in the epoxy resin. The high dielectric constant material (non-linear dielectric constant material) has a relative permittivity of about 100 to several thousand, and has a characteristic that the relative permittivity increases as the electric field increases. The filler is selected from at least one or a plurality of barium titanate, strontium titanate, and calcium titanate.
 このように、基体14は、エポキシ樹脂に対して、上述したフィラーを全量の例えば20体積%ないし30体積%程度含有させたエポキシ複合材料である。なお、エポキシ樹脂およびフィラーの割合は、適切な非線形誘電特性を得られる範囲で任意の割合にすることができる。 As described above, the substrate 14 is an epoxy composite material containing the above-mentioned filler in the epoxy resin in an amount of, for example, about 20% by volume to 30% by volume. The ratio of the epoxy resin and the filler can be any ratio as long as appropriate non-linear dielectric properties can be obtained.
 絶縁支持体13を構成する絶縁層15は、エポキシ樹脂に充填されるフィラーである高誘電率材を含まない絶縁材料から構成されている。例えば、絶縁層15は、基体14の表面を被覆するように、厚みが50μm超、5mm以下の範囲で形成されている。絶縁層15の厚みが50μm超とすることにより、絶縁支持体13に金属異物が付着したとしても、絶縁性能が大幅に低下するおそれがない。また、絶縁層15の厚みが5mm超になると、絶縁支持体13が大型化してしまい、ガス絶縁機器10のコンパクト化の要請を満足できなくなるので、絶縁層15の厚みは5mm以下がよい。絶縁層15の厚みは、100μm以上であってもよく、150μm以上であってもよい。 The insulating layer 15 constituting the insulating support 13 is made of an insulating material that does not contain a high dielectric constant material that is a filler filled in the epoxy resin. For example, the insulating layer 15 is formed in a range of more than 50 μm and 5 mm or less in thickness so as to cover the surface of the substrate 14. By setting the thickness of the insulating layer 15 to more than 50 μm, even if metal foreign matter adheres to the insulating support 13, there is no possibility that the insulating performance is significantly deteriorated. Further, if the thickness of the insulating layer 15 exceeds 5 mm, the size of the insulating support 13 becomes large and the request for compactification of the gas insulating device 10 cannot be satisfied. Therefore, the thickness of the insulating layer 15 is preferably 5 mm or less. The thickness of the insulating layer 15 may be 100 μm or more, or 150 μm or more.
 絶縁層15の構成材料の一例としては、エポキシを母材とする樹脂材料が挙げられる。なお、ここでいうエポキシを母材とする樹脂材料とは、高分子内に残存させたエポキシ基で架橋構造を成す熱硬化性樹脂を全て含んでいる。本実施形態では、絶縁層15は、例えばビスフェノールA型エポキシ樹脂だけで構成されている。 An example of the constituent material of the insulating layer 15 is a resin material using epoxy as a base material. The resin material using epoxy as a base material here includes all thermosetting resins having a crosslinked structure with epoxy groups remaining in the polymer. In the present embodiment, the insulating layer 15 is composed of, for example, only a bisphenol A type epoxy resin.
 また、基体14には、上述したエポキシ樹脂および高誘電率材であるフィラーに加えて、更にアルミナやシリカを充填材として充填させることもできる。アルミナやシリカを充填材として加えることで、基体14を構成するエポキシ複合材料の機械特性、例えば強度を向上させることができる。 Further, in addition to the above-mentioned epoxy resin and filler which is a high dielectric constant material, the substrate 14 can be further filled with alumina or silica as a filler. By adding alumina or silica as a filler, the mechanical properties, for example, strength of the epoxy composite material constituting the substrate 14 can be improved.
 高電圧導体12が絶縁支持体13に接する両側部分には、電界緩和シールド(電界緩和リング)16が形成されている。電界緩和シールド16は、例えば、金属からなる基材と、この基材の表面に設けられた絶縁部とを含む。 Electric field relaxation shields (electric field relaxation rings) 16 are formed on both side portions where the high voltage conductor 12 is in contact with the insulating support 13. The electric field relaxation shield 16 includes, for example, a base material made of metal and an insulating portion provided on the surface of the base material.
 以上のような構成のガス絶縁機器10によれば、高電圧導体12を支持する絶縁支持体13として、エポキシ樹脂に対して高誘電率材(非線形誘電率材)からなるフィラーを充填させた基体14の表面を、高誘電率材を含まない絶縁材料からなる絶縁層15で被覆した。これによって、ガス絶縁機器10の製造上、発生することが避けられない金属異物が絶縁支持体13に付着したとしても、基体14の表面が高誘電率材を含まない絶縁層15で被覆されていることで、基体14に含まれる高誘電率材に金属異物が接触することがない。 According to the gas insulating device 10 having the above configuration, the substrate in which the epoxy resin is filled with a filler made of a high dielectric constant material (non-linear dielectric constant material) as the insulating support 13 for supporting the high voltage conductor 12. The surface of 14 was covered with an insulating layer 15 made of an insulating material containing no high dielectric constant. As a result, even if metallic foreign matter that is inevitably generated in the manufacture of the gas insulating device 10 adheres to the insulating support 13, the surface of the substrate 14 is covered with the insulating layer 15 that does not contain the high dielectric constant material. Therefore, the metal foreign matter does not come into contact with the high dielectric constant material contained in the substrate 14.
 従って、高誘電率材に金属異物が接触することによって生じる沿面耐電圧性能の低下を防止することができ、ガス絶縁機器10をガス絶縁開閉装置に適用した場合にも、十分な耐電圧性能を維持することができる。 Therefore, it is possible to prevent the creepage withstand voltage performance from being deteriorated due to the contact of the metal foreign matter with the high dielectric constant material, and even when the gas insulation device 10 is applied to the gas insulation switchgear, sufficient withstand voltage performance can be obtained. Can be maintained.
 また、本実施形態のガス絶縁機器10によれば、絶縁支持体13を構成する絶縁層15を、エポキシを母材とする樹脂材料によって形成すれば、エポキシ樹脂に高誘電率材であるフィラーを充填した基体14との間で、互いにエポキシ系材料による接合性が高まるので、基体14から絶縁層15が剥離することを防止できる。経年変化によって絶縁層15が剥離して基体14のフィラーが露出し、金属異物の付着により沿面絶縁性能が低下することを防止できる。 Further, according to the gas insulating device 10 of the present embodiment, if the insulating layer 15 constituting the insulating support 13 is formed of a resin material using epoxy as a base material, a filler which is a high dielectric constant material can be added to the epoxy resin. Since the bondability between the filled substrate 14 and the filled substrate 14 due to the epoxy-based material is enhanced, it is possible to prevent the insulating layer 15 from peeling off from the substrate 14. It is possible to prevent the insulating layer 15 from being peeled off due to aging and the filler of the substrate 14 to be exposed, and the creeping insulation performance from being deteriorated due to the adhesion of metal foreign matter.
 そして、エポキシ樹脂に対して高誘電率材(非線形誘電率材)からなるフィラーを充填させたエポキシ複合材によって絶縁支持体13の基体14を構成したので、絶縁支持体13の電界が高くなると比誘電率が上昇する。これにより、絶縁支持体13の表面の最大電界値を低減することができ、ガス絶縁機器10のコンパクト化を実現できる。 Then, since the substrate 14 of the insulating support 13 is made of an epoxy composite material in which an epoxy resin is filled with a filler made of a high dielectric constant material (non-linear dielectric constant material), the ratio is such that the electric field of the insulating support 13 becomes high. The dielectric constant increases. As a result, the maximum electric field value on the surface of the insulating support 13 can be reduced, and the gas insulating device 10 can be made compact.
 以上のように、本実施形態のガス絶縁機器10によれば、金属異物による耐電圧性能の低下を防止して絶縁信頼性を高めること、および絶縁支持体13の表面の最大電界値を低減してガス絶縁機器10のコンパクト化を図ることを両立できる。 As described above, according to the gas insulating device 10 of the present embodiment, the withstand voltage performance is prevented from being deteriorated due to metal foreign matter to improve the insulation reliability, and the maximum electric field value on the surface of the insulating support 13 is reduced. It is possible to make the gas insulation device 10 compact at the same time.
(第2実施形態)
 図2は、第2実施形態のガス絶縁機器を示す断面模式図である。
 なお、第1実施形態と同様の構成には同一の番号を付し、重複する構成の説明を省略する。
 第2実施形態のガス絶縁機器(ガス絶縁開閉装置)20は、高電圧導体12を支持する絶縁支持体23を有する。絶縁支持体23は、エポキシ樹脂に対して高誘電率材からなるフィラーを充填させた基体24の表面を、高誘電率材を含まない絶縁材料からなる絶縁層25で被覆している。フィラーとしては、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種または複数種から選択される。絶縁層25の構成材料の一例としては、第1実施形態の絶縁層15と同様に、エポキシを母材とする樹脂材料が挙げられる。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view showing the gas insulating device of the second embodiment.
The same number is assigned to the same configuration as in the first embodiment, and the description of the overlapping configuration will be omitted.
The gas insulating device (gas insulated switchgear) 20 of the second embodiment has an insulating support 23 that supports the high voltage conductor 12. In the insulating support 23, the surface of the substrate 24 in which the epoxy resin is filled with a filler made of a high dielectric constant material is covered with an insulating layer 25 made of an insulating material containing no high dielectric constant material. The filler is selected from at least one or a plurality of barium titanate, strontium titanate, and calcium titanate. As an example of the constituent material of the insulating layer 25, a resin material having an epoxy as a base material can be mentioned as in the insulating layer 15 of the first embodiment.
 本実施形態の基体24は、高誘電率材のエポキシ樹脂に対する充填濃度を、絶縁支持体23における金属容器11側(外周側)よりも高電圧導体12側(中心側)の方が高くなるように傾斜分布させている。こうした高誘電率材の充填濃度の変化は、段階的であっても無段階であってもよい。金属容器11側(外周側)での高誘電率材の最小の充填濃度は0~10体積%の範囲とすることが好ましい。一方、高電圧導体12側(中心側)での高誘電率材の最大の充填濃度は25~30体積%の範囲とすることが好ましい。そして、高誘電率材の充填濃度は外周側から内周側に向けて、段階的であっても無段階的に高まるようにするとよい。 In the substrate 24 of the present embodiment, the filling concentration of the high dielectric constant material for the epoxy resin is higher on the high voltage conductor 12 side (center side) than on the metal container 11 side (outer peripheral side) of the insulating support 23. It is distributed in an inclined manner. Such a change in the packing concentration of the high dielectric constant material may be stepwise or stepless. The minimum filling concentration of the high dielectric constant material on the metal container 11 side (outer peripheral side) is preferably in the range of 0 to 10% by volume. On the other hand, the maximum filling concentration of the high dielectric constant material on the high voltage conductor 12 side (center side) is preferably in the range of 25 to 30% by volume. Then, the filling concentration of the high dielectric constant material may be increased steplessly from the outer peripheral side to the inner peripheral side even if it is stepwise.
 このような高誘電率材のエポキシ樹脂に対する充填濃度を変化させた基体24は、例えば、予め複数濃度の高誘電率材を充填させたエポキシ樹脂を用意して、高電圧導体12側(中心側)から金属容器11側(外周側)に向かって高誘電率材の充填濃度が低くなるように、金型にエポキシ樹脂を注入してから硬化させることによって得られる。 For the substrate 24 in which the filling concentration of the high-dielectric-constant material with respect to the epoxy resin is changed, for example, an epoxy resin pre-filled with the high-dielectric-constant material having a plurality of concentrations is prepared, and the high-voltage conductor 12 side (center side) is prepared. ) To the metal container 11 side (outer peripheral side) so that the filling concentration of the high dielectric constant material decreases, the epoxy resin is injected into the mold and then cured.
 本実施形態のガス絶縁機器20によれば、高電圧導体12を支持する絶縁支持体23として、エポキシ樹脂に対して高誘電率材(非線形誘電率材)からなるフィラーを充填させた基体24の表面を、高誘電率材を含まない絶縁材料からなる絶縁層25で被覆した。これによって、ガス絶縁機器20の製造上、発生することが避けられない金属異物が絶縁支持体23に付着したとしても、基体24の表面が高誘電率材を含まない絶縁層25で被覆されていることで、基体24に含まれる高誘電率材に金属異物が接触することがない。 According to the gas insulating device 20 of the present embodiment, as the insulating support 23 for supporting the high voltage conductor 12, the substrate 24 is filled with a filler made of a high dielectric constant material (non-linear dielectric constant material) in an epoxy resin. The surface was covered with an insulating layer 25 made of an insulating material containing no high dielectric constant material. As a result, even if metallic foreign matter that is inevitably generated in the manufacture of the gas insulating device 20 adheres to the insulating support 23, the surface of the substrate 24 is covered with the insulating layer 25 that does not contain the high dielectric constant material. Therefore, the metal foreign matter does not come into contact with the high dielectric constant material contained in the substrate 24.
 従って、高誘電率材に金属異物が接触することによって生じる沿面耐電圧性能の低下を防止することができ、ガス絶縁機器20をガス絶縁開閉装置に適用した場合にも、十分な耐電圧性能を維持することができる。 Therefore, it is possible to prevent the creepage withstand voltage performance from being deteriorated due to the contact of the metal foreign matter with the high dielectric constant material, and even when the gas insulation device 20 is applied to the gas insulation switchgear, sufficient withstand voltage performance can be obtained. Can be maintained.
 また、本実施形態のガス絶縁機器20によれば、絶縁支持体23を構成する絶縁層25を、エポキシを母材とする樹脂材料によって形成すれば、エポキシ樹脂に高誘電率材であるフィラーを充填した基体24との間で、互いにエポキシ系材料による接合性が高まるので、基体24から絶縁層25が剥離することを防止できる。経年変化によって絶縁層25が剥離して基体24のフィラーが露出し、金属異物の付着により沿面絶縁性能が低下することを防止できる。 Further, according to the gas insulating device 20 of the present embodiment, if the insulating layer 25 constituting the insulating support 23 is formed of a resin material using epoxy as a base material, a filler which is a high dielectric constant material can be added to the epoxy resin. Since the bondability between the filled substrate 24 and the filled substrate 24 due to the epoxy-based material is enhanced, it is possible to prevent the insulating layer 25 from peeling off from the substrate 24. It is possible to prevent the insulating layer 25 from being peeled off due to aging and the filler of the substrate 24 to be exposed, and the creeping insulation performance from being deteriorated due to the adhesion of metallic foreign matter.
 一方、絶縁支持体23の基体24は、エポキシ樹脂に対して、高電圧導体12側から金属容器11側に向かうほど充填濃度が低くなるように高誘電率材を充填させたエポキシ複合材を用いたので、絶縁支持体23の電界強度の強弱に対応した充填濃度で高誘電率材が充填され、絶縁支持体23の表面の最大電界値を効率よく低減することができ、ガス絶縁機器20のコンパクト化を実現できる。 On the other hand, the substrate 24 of the insulating support 23 uses an epoxy composite material in which a high dielectric constant material is filled in the epoxy resin so that the filling concentration decreases from the high voltage conductor 12 side toward the metal container 11 side. Therefore, the high dielectric constant material is filled with a filling concentration corresponding to the strength of the electric field strength of the insulating support 23, and the maximum electric field value on the surface of the insulating support 23 can be efficiently reduced. It can be made compact.
 以上のように、本実施形態のガス絶縁機器20によれば、金属異物による耐電圧性能の低下を防止して絶縁信頼性を高めること、および絶縁支持体23の表面の最大電界値を低減してガス絶縁機器20のコンパクト化を図ることを両立できる。 As described above, according to the gas insulating device 20 of the present embodiment, the withstand voltage performance is prevented from being deteriorated due to metal foreign matter to improve the insulation reliability, and the maximum electric field value on the surface of the insulating support 23 is reduced. It is possible to achieve both compactness of the gas insulating device 20.
 以上説明した少なくともひとつの実施形態によれば、絶縁支持体が、エポキシ樹脂にフィラーが充填された基体と、基体の表面を被覆する絶縁層とを有しており、フィラーには高誘電率材を含み、絶縁層は高誘電率材を含まない絶縁材料を用いることにより、ガス絶縁機器の製造上、発生することが避けられない金属異物が絶縁支持体に付着したとしても、絶縁支持体の構成材料として高誘電率のフィラーを用いた際のエポキシ複合材の沿面耐電圧性能の低下を抑制して、小型化と絶縁信頼性を向上させることが可能なガス絶縁機器を提供できる。 According to at least one embodiment described above, the insulating support has a substrate in which an epoxy resin is filled with a filler and an insulating layer for covering the surface of the substrate, and the filler is a high dielectric constant material. By using an insulating material that does not contain a high dielectric constant as the insulating layer, even if metal foreign matter that is inevitably generated in the manufacture of gas insulating equipment adheres to the insulating support, the insulating support It is possible to provide a gas insulating device capable of suppressing deterioration of the creepage withstand voltage performance of an epoxy composite material when a filler having a high dielectric constant is used as a constituent material, and improving miniaturization and insulation reliability.
 なお、上述した各実施形態では、絶縁支持体(絶縁スペーサ)を円板状に形成しているが、これ以外にも、例えば、絶縁支持体をコーン状やポスト(柱)状に形成することもできる。絶縁支持体の形状は、上述した各実施形態の形状に限定されるものではない。 In each of the above-described embodiments, the insulating support (insulating spacer) is formed in a disk shape, but in addition to this, for example, the insulating support may be formed in a cone shape or a post (pillar) shape. You can also. The shape of the insulating support is not limited to the shape of each of the above-described embodiments.
 実施形態のガス絶縁機器における絶縁層の厚みの最適範囲を検証した。基体のエポキシ樹脂に充填するフィラーの高誘電率材(非線形誘電率材)としては、チタン酸バリウム(粒径0.5μm、充填濃度20vol%)を用いた。金属容器に密封する絶縁ガスは六フッ化硫黄(SF)を用いた。こうしたエポキシ樹脂にチタン酸バリウムを充填したエポキシ複合材からなる基体の表面に、エポキシ樹脂からなる絶縁層を被覆して絶縁支持体(絶縁スペーサ)を形成した。絶縁層の被膜厚みは50μmおよび150μmとした。また、比較例として基体の表面を絶縁層で覆わない絶縁支持体を形成した。これら3つのサンプルに金属異物を付着させた時の沿面破壊電界を測定した結果を図3に示す。 The optimum range of the thickness of the insulating layer in the gas insulating device of the embodiment was verified. Barium titanate (particle size 0.5 μm, packing concentration 20 vol%) was used as the high dielectric constant material (non-linear dielectric constant material) of the filler to be filled in the epoxy resin of the substrate. Sulfur hexafluoride (SF 6 ) was used as the insulating gas to be sealed in the metal container. An insulating support (insulating spacer) was formed by coating an insulating layer made of epoxy resin on the surface of a substrate made of an epoxy composite material in which barium titanate was filled in such an epoxy resin. The film thickness of the insulating layer was 50 μm and 150 μm. Further, as a comparative example, an insulating support was formed in which the surface of the substrate was not covered with the insulating layer. FIG. 3 shows the results of measuring the creepage fracture electric field when a metal foreign substance is attached to these three samples.
 図3に示す検証結果によれば、絶縁層の被覆厚みが150μmでは、従来のエポキシ複合材である充填材としてアルミナを用いたもの(図4の点線参照)と同等レベルまで沿面破壊電界が向上する結果が得られた。一方、絶縁層の被覆厚みが50μmでは、沿面破壊電界の向上は認められなかった。少なくとも、沿面破壊電界を向上させるには、50μm超、好ましくは100μm以上の被覆厚が必要であると考えられる。 According to the verification results shown in FIG. 3, when the coating thickness of the insulating layer is 150 μm, the creepage fracture electric field is improved to the same level as that of the conventional epoxy composite material using alumina as the filler (see the dotted line in FIG. 4). The result was obtained. On the other hand, when the coating thickness of the insulating layer was 50 μm, no improvement in the creepage fracture electric field was observed. At least, in order to improve the creepage fracture electric field, it is considered that a coating thickness of more than 50 μm, preferably 100 μm or more is required.
 絶縁層の被覆厚みの上限について述べる。エポキシ被覆厚が大きすぎると非線形誘電材が固体/ガス境界部分から離れてしまう。この場合、同境界部分での電界緩和効果が弱くなるため、被覆厚の上限を設定する必要がある。図5に、非線形誘電材表面のエポキシ被覆厚(絶縁層の厚み)と、エポキシ/ガス境界部分の最大電界の低下割合(電界緩和効果)の関係を解析した例を示す。図5より、エポキシ被覆厚が20mm以上となると最大電界の低下率が10%以下となり電界緩和効果が弱まることが分かる。非線形誘電材を使用して最大電界の緩和効果を期待するのであれば、エポキシ被覆厚の上限は数mm以下とするのが妥当であり、5mm以下が推奨される。 The upper limit of the coating thickness of the insulating layer is described. If the epoxy coating is too thick, the nonlinear dielectric will move away from the solid / gas interface. In this case, since the electric field relaxation effect at the boundary portion is weakened, it is necessary to set an upper limit of the coating thickness. FIG. 5 shows an example of analyzing the relationship between the epoxy coating thickness (thickness of the insulating layer) on the surface of the nonlinear dielectric material and the rate of decrease in the maximum electric field at the epoxy / gas boundary portion (electric field relaxation effect). From FIG. 5, it can be seen that when the epoxy coating thickness is 20 mm or more, the reduction rate of the maximum electric field is 10% or less, and the electric field relaxation effect is weakened. If a non-linear dielectric material is used and the maximum electric field relaxation effect is expected, it is appropriate that the upper limit of the epoxy coating thickness is several mm or less, and 5 mm or less is recommended.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.
10,20…ガス絶縁機器(ガス絶縁開閉装置)、11…金属容器、12…高電圧導体、13,23…絶縁支持体、14,24…基体、15,25…絶縁層、16…電界緩和シールド。 10, 20 ... Gas insulation equipment (gas insulation switchgear), 11 ... Metal container, 12 ... High voltage conductor, 13, 23 ... Insulation support, 14, 24 ... Base, 15, 25 ... Insulation layer, 16 ... Electricity relaxation shield.

Claims (5)

  1.  絶縁ガスが封入された筒状の金属容器と、前記金属容器の内面に対して離間するように前記金属容器の内部に収容された高電圧導体と、および前記金属容器と前記高電圧導体との間に配され前記金属容器の内部で前記高電圧導体を支持する絶縁支持体とを備え、
     前記絶縁支持体は、エポキシ樹脂にフィラーが充填された基体と、前記基体の表面を被覆する絶縁層と、を有し、
     前記フィラーは、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウムのうち、少なくとも1種からなる高誘電率材を含み、
     前記絶縁層は、前記高誘電率材を含まない絶縁材料を用いる、ガス絶縁機器。
    A tubular metal container filled with an insulating gas, a high-voltage conductor housed inside the metal container so as to be separated from the inner surface of the metal container, and the metal container and the high-voltage conductor. It is provided with an insulating support arranged between the metal containers to support the high voltage conductor inside the metal container.
    The insulating support has a substrate in which an epoxy resin is filled with a filler, and an insulating layer that covers the surface of the substrate.
    The filler contains a high dielectric constant material composed of at least one of barium titanate, strontium titanate, and calcium titanate.
    The insulating layer is a gas insulating device using an insulating material that does not contain the high dielectric constant material.
  2.  前記高誘電率材の前記エポキシ樹脂に対する充填濃度を、前記絶縁支持体における前記金属容器側よりも前記高電圧導体側の方が高くなるように変化させた、請求項1に記載のガス絶縁機器。 The gas insulating device according to claim 1, wherein the filling concentration of the high dielectric constant material with respect to the epoxy resin is changed so as to be higher on the high voltage conductor side than on the metal container side in the insulating support. ..
  3.  前記絶縁層の厚みは、50μm超、5mm以下の範囲である、請求項1または請求項2に記載のガス絶縁機器。 The gas insulating device according to claim 1 or 2, wherein the thickness of the insulating layer is in the range of more than 50 μm and 5 mm or less.
  4.  前記絶縁層は、エポキシ樹脂を母材とする樹脂材料で構成されている、請求項1ないし請求項3のいずれか一項に記載のガス絶縁機器。 The gas insulating device according to any one of claims 1 to 3, wherein the insulating layer is made of a resin material having an epoxy resin as a base material.
  5.  前記フィラーは、アルミナまたはシリカを更に含む、請求項1ないし請求項4のいずれか一項に記載のガス絶縁機器。 The gas insulating device according to any one of claims 1 to 4, wherein the filler further contains alumina or silica.
PCT/JP2020/034054 2020-09-09 2020-09-09 Gas-insulated device WO2022054154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/034054 WO2022054154A1 (en) 2020-09-09 2020-09-09 Gas-insulated device
JP2022548284A JP7400113B2 (en) 2020-09-09 2020-09-09 gas insulated equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034054 WO2022054154A1 (en) 2020-09-09 2020-09-09 Gas-insulated device

Publications (1)

Publication Number Publication Date
WO2022054154A1 true WO2022054154A1 (en) 2022-03-17

Family

ID=80631382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034054 WO2022054154A1 (en) 2020-09-09 2020-09-09 Gas-insulated device

Country Status (2)

Country Link
JP (1) JP7400113B2 (en)
WO (1) WO2022054154A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153342A (en) * 1992-09-18 1994-05-31 Mitsubishi Electric Corp Gas-insulated apparatus
JP2019087428A (en) * 2017-11-08 2019-06-06 株式会社明電舎 Insulating spacer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153342A (en) * 1992-09-18 1994-05-31 Mitsubishi Electric Corp Gas-insulated apparatus
JP2019087428A (en) * 2017-11-08 2019-06-06 株式会社明電舎 Insulating spacer

Also Published As

Publication number Publication date
JPWO2022054154A1 (en) 2022-03-17
JP7400113B2 (en) 2023-12-18

Similar Documents

Publication Publication Date Title
Kato et al. Application of functionally graded material for solid insulator in gaseous insulation system
US7262367B2 (en) High voltage bushing with field control material
EP2053616A1 (en) High-voltage outdoor bushing
EP2982721B1 (en) Coating material for electrical equipment, method for manufacturing coating material for electrical equipment, and encapsulated type insulating device
JP6009839B2 (en) Non-linear resistance material
RU2470396C2 (en) Insulating material and method of producing said material
JP4218678B2 (en) Insulator with shield electrode embedded, and high-voltage equipment using this insulator
US20170301429A1 (en) Insulation System
JP2008141809A (en) Resin mold insulated conductor
WO2022054154A1 (en) Gas-insulated device
US8278557B2 (en) High-voltage insulator
JP2005327580A (en) Insulating spacer and gas-insulation equipment
WO2019111891A1 (en) Insulation spacer
JP6071209B2 (en) Gas insulated switchgear and gas insulated bus
WO2022123924A1 (en) Insulating resin composition, insulating member formed of cured product of same, and electrical device
JP6352782B2 (en) Insulating spacer
US4537803A (en) Resins containing a low viscosity organopolysiloxane liquid dielectric and a method of insulating a conductor therewith
JP6807276B2 (en) Insulation spacer and gas insulation switchgear using it
JP4522318B2 (en) Gas insulated switchgear
US3617606A (en) Shielded bushing construction
JP3760870B2 (en) Insulator with shield electrode embedded, and high-voltage equipment using this insulator
WO2020152952A1 (en) Gas insulated switchgear and manufacturing method thereof
EP3648117A1 (en) Electrical insulation, use of an electrical insulation, and method of producing an electrical insulation
Minkner et al. Insulation for High Voltage Equipment
JP2019121487A (en) Solid insulation switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548284

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953220

Country of ref document: EP

Kind code of ref document: A1