JP2008141809A - Resin mold insulated conductor - Google Patents

Resin mold insulated conductor Download PDF

Info

Publication number
JP2008141809A
JP2008141809A JP2006323012A JP2006323012A JP2008141809A JP 2008141809 A JP2008141809 A JP 2008141809A JP 2006323012 A JP2006323012 A JP 2006323012A JP 2006323012 A JP2006323012 A JP 2006323012A JP 2008141809 A JP2008141809 A JP 2008141809A
Authority
JP
Japan
Prior art keywords
conductor
resin
insulating layer
insulation
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006323012A
Other languages
Japanese (ja)
Inventor
Yukio Ozaki
幸夫 尾崎
Hitoshi Sadakuni
仁志 貞国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006323012A priority Critical patent/JP2008141809A/en
Publication of JP2008141809A publication Critical patent/JP2008141809A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/10Cooling

Landscapes

  • Installation Of Bus-Bars (AREA)
  • Organic Insulating Materials (AREA)
  • Insulators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a cast article for electric insulation, used in a high pressure gas insulated device and having its metal bare conductor mold insulated, stores the heat generated by conduction-heating in the conductor, to promote a temperature rise in the device, influencing the heat resistance strength of other insulation materials or the like and shortening the insulation distance between the tank inner wall and the mold part surface of the cast article for electric insulation to cause the mold part surface to be a high electric field, with an increased possibility of causing insulation breakage. <P>SOLUTION: The resin mold insulated conductor is configured to have a metal conductor 11, and an insulation layer 12, which is arranged so as to surround the periphery of the metal conductor and has uneven parts 12a for heat dissipation on the surface cast by a mold material prepared by blending an epoxy resin, an acid anhydride hardening agent and an alumina. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えばSFガス絶縁機器などの高電圧用機器に好ましく用いることが出来る樹脂モールド絶縁導体に関する。 The present invention relates to a resin-molded insulated conductor that can be preferably used for high voltage equipment such as SF 6 gas insulation equipment.

高電圧用ガス絶縁機器は環境保護及び省スペースのために、機器のコンパクト化が必要不可欠である。機器の小型化、信頼性の向上を図る従来技術として、エポキシ化合物と、このエポキシ化合物を硬化させるエポキシ樹脂用硬化剤と、樹脂の絶縁性を保持するシリカ充填剤と、樹脂強度を高めるゴム粒子とを配合して調整した樹脂組成物を金型に注入した後、硬化反応による樹脂の収縮がマトリックス樹脂およびゴム粒子の体積膨張によって相殺される硬化条件下で硬化して成形するSFガス絶縁高電圧機器用注形品の製造方法がある(例えば特許文献1参照。)。また、絶縁性ガスが充填された容器内に配設された導体を絶縁支持する絶縁スペーサがシリカを含有するエポキシ樹脂組成物で形成され、この表面を被覆するコーティング層からなる絶縁スペーサにおいて、シリカを含有するエポキシ樹脂組成物とコーティング層は同一の多官能エポキシ樹脂であり、多官能エポキシ樹脂のエポキシ当量は150〜250であり、コーティング層に耐SF6 分解ガス性に優れた充填剤を含有することを特徴とする絶縁スペーサがある(例えば特許文献2参照。)。 In order to protect the environment and save space, high-voltage gas insulation equipment is indispensable. As conventional technologies for downsizing equipment and improving reliability, epoxy compounds, curing agents for epoxy resins that cure the epoxy compounds, silica fillers that retain the insulation of the resins, and rubber particles that increase the strength of the resin SF 6 gas insulation which is molded by curing under a curing condition in which the resin shrinkage due to the curing reaction is offset by the volume expansion of the matrix resin and the rubber particles. There is a manufacturing method of cast products for high voltage devices (for example, see Patent Document 1). In addition, an insulating spacer that insulates and supports a conductor disposed in a container filled with an insulating gas is formed of an epoxy resin composition containing silica, and the insulating spacer includes a coating layer that covers the surface. The epoxy resin composition containing coating and the coating layer are the same multifunctional epoxy resin, the epoxy equivalent of the multifunctional epoxy resin is 150 to 250, and the coating layer contains a filler excellent in SF 6 decomposition gas resistance There is an insulating spacer characterized in that (see, for example, Patent Document 2).

特開2001−135144号公報(第1頁、図2)JP 2001-135144 A (first page, FIG. 2) 特開平11−29727号公報(第1頁、図1)JP-A-11-29727 (first page, FIG. 1)

上記特許文献1に示されるような従来技術では、耐SF6 分解ガス性に優れ、低誘電率であるので、ガス絶縁機器の絶縁設計が容易になり、機器の小型化と信頼性の向上を図ることができるとはいうものの、発生電界強度の上昇が伴うため電気絶縁用注型品の絶縁性能に制限を受け、小型化には限界があるという課題があった。また、上記特許文献2に示されるような従来技術では、SF6 ガス絶縁開閉装置及びSF6 ガス絶縁管路気中送電線の小型化,大容量化,高信頼化を実現できるものの、同様の理由で小型化には限界があるという課題があった。一方、これらの課題に対して、固体絶縁とガス絶縁を複合して適用したハイブリッド絶縁技術が検討されている。ここでいうハイブリッド絶縁に使用する電気絶縁用注型品とは、従来高圧ガス中を金属裸導体を通電導体として使用していたものの外周にモールド絶縁を施したものである。 In the prior art as shown in the above-mentioned Patent Document 1, since it has excellent SF 6 decomposition gas resistance and a low dielectric constant, the insulation design of the gas insulation device becomes easy, and the device is downsized and improved in reliability. Although it can be achieved, since the generated electric field strength is increased, the insulation performance of the cast product for electrical insulation is limited, and there is a problem that downsizing is limited. Further, in the prior art as shown in Patent Document 2, the SF 6 gas insulated switchgear and the SF 6 gas insulated conduit air transmission line can be reduced in size, increased in capacity, and improved in reliability. For this reason, there was a problem that miniaturization had a limit. On the other hand, a hybrid insulation technique in which solid insulation and gas insulation are combined and applied to these problems has been studied. The cast product for electrical insulation used here for hybrid insulation is a product obtained by applying mold insulation to the outer periphery of a conventional high-pressure gas that uses a bare metal conductor as a conducting conductor.

しかし、金属裸導体をモールド絶縁した電気絶縁用注型品には、モールド絶縁部が断熱材となって、通電によって発生した熱が導体に蓄熱され、機器の温度上昇が促進されその他の絶縁部材等耐熱強度に影響を及ぼすことになるという問題、また、コンパクト設計された機器においては、タンク内壁と電気絶縁用注型品のモールド部表面の絶縁距離が短くなり、モールド部表面が高電界となり、絶縁破壊の起点となる可能性が高くなるという問題があった。さらに、長尺の導体にモールドした場合、熱膨張係数の差から生じる、熱応力によって、金属裸導体とモールド部材との界面で剥離が発生したり、モールド部材にクラックが発生したりする惧れがあった。   However, in a cast product for electrical insulation in which a bare metal conductor is molded and insulated, the mold insulation serves as a heat insulating material, and the heat generated by energization is stored in the conductor, which promotes the temperature rise of the equipment and other insulating members In the case of compactly designed equipment, the insulation distance between the inner wall of the tank and the mold surface of the cast product for electrical insulation is shortened, and the mold surface becomes a high electric field. There is a problem that the possibility of becoming a starting point of dielectric breakdown increases. In addition, when molded into a long conductor, there is a risk that peeling will occur at the interface between the bare metal conductor and the mold member, or cracks may occur in the mold member due to the thermal stress resulting from the difference in thermal expansion coefficient. was there.

この発明は上記のような従来技術の課題を解消するためになされたもので、金属導体から発生する熱の放熱効果が高く、機器の一層の小型化が可能な信頼性の高い樹脂モールド絶縁導体を得ることを目的としている。   The present invention has been made to solve the above-described problems of the prior art, and has a high heat radiation effect of heat generated from a metal conductor, and a highly reliable resin-molded insulated conductor that can further reduce the size of the device. The purpose is to obtain.

この発明に係る樹脂モールド絶縁導体は、金属導体と、この金属導体の周りを包囲するように配設され、エポキシ樹脂、酸無水物硬化剤、及びアルミナを配合したモールド材によって注型された表面に放熱を助ける凹凸を有する絶縁層とを備えるようにしたものである。   The resin-molded insulated conductor according to the present invention is disposed so as to surround the metal conductor and the metal conductor, and is a surface cast by a molding material containing an epoxy resin, an acid anhydride curing agent, and alumina. And an insulating layer having irregularities that help dissipate heat.

この発明においては、金属導体の周りをエポキシ樹脂、酸無水物硬化剤、及びアルミナを配合したモールド材によって注型された表面に凹凸を有する絶縁層によって包囲するようにしたことにより、絶縁層の熱伝導率が高く、また絶縁層の表面からの熱放散がし易いため、通電による金属導体の発熱が蓄熱され難く、機器の温度上昇を抑制できる。また、絶縁層の熱膨張係数がアルミニウムと同等程度であるため、熱応力の発生が軽減できるので、モールド部材との界面で剥離等が防止でき、信頼性を向上できる。   In this invention, the metal conductor is surrounded by an insulating layer having irregularities on the surface cast by a molding material containing an epoxy resin, an acid anhydride curing agent, and alumina. Since the heat conductivity is high and heat is easily dissipated from the surface of the insulating layer, the heat generation of the metal conductor due to energization is hardly stored, and the temperature rise of the device can be suppressed. In addition, since the thermal expansion coefficient of the insulating layer is about the same as that of aluminum, the generation of thermal stress can be reduced, so that peeling or the like can be prevented at the interface with the mold member, and reliability can be improved.

実施の形態1.
図1は、この発明を実施するための実施の形態1に係る樹脂モールド絶縁導体をSFガスを絶縁媒体として用いるガス開閉機器(GIS、GCB等)、ガス絶縁変圧器等のガス絶縁母線として用いた例を模式的に示す断面図である。図において、樹脂モールド絶縁導体1は、金属導体11と、この金属導体11のまわりを包囲するように注型によって形成された表面に襞状の凹凸12aを有する絶縁層12とからなっている。なお、樹脂モールド絶縁導体1はこの例では、金属製の円筒状のタンク2内の中心部に図示省略しているコーン形スペーサ等によって保持され、SFガス3と共に密封収容されている。上記絶縁層12は、エポキシ樹脂及び酸無水物硬化剤からなる基材に、アルミナを充填材として配合したモールド材を注型によって形成したもので、外表面に放熱を助けるための襞状の多数の凹凸12aが形成されている。
Embodiment 1 FIG.
FIG. 1 shows a gas insulated bus such as a gas switchgear (GIS, GCB, etc.), a gas insulated transformer, etc. using SF 6 gas as an insulating medium for the resin molded insulated conductor according to the first embodiment for carrying out the present invention. It is sectional drawing which shows the used example typically. In the figure, a resin-molded insulated conductor 1 includes a metal conductor 11 and an insulating layer 12 having a bowl-shaped unevenness 12a on the surface formed by casting so as to surround the metal conductor 11. In this example, the resin-molded insulated conductor 1 is held by a cone-shaped spacer (not shown) in the center of a metal cylindrical tank 2 and hermetically accommodated together with the SF 6 gas 3. The insulating layer 12 is formed by casting a mold material in which alumina is used as a filler on a base material made of an epoxy resin and an acid anhydride curing agent. The unevenness 12a is formed.

なお、図1では金属導体11の両端部が露出されているが金属導体11端部の構成は特に限定されるものではない。例えば、コーン形スペーサによって区分された隣接するガス区画を通過させる場合などにおいては、ジョイントのためのシールド(図示省略)などが取付けられる。また、露出部を設けないようにすることも出来る。一方、上記エポキシ樹脂の種類は特に限定されるものではないが、得られるモールド絶縁体の特性や入手性、取扱い性などの点でビスフェノール型エポキシ樹脂は好ましく用いることが出来る。用いるモールド材は、ビスフェノール型エポキシ樹脂及び酸無水物硬化剤の合計量80〜120重量部に対し、アルミナ(Al)を400〜500重量部を配合することで得られる。 In FIG. 1, both ends of the metal conductor 11 are exposed, but the configuration of the end of the metal conductor 11 is not particularly limited. For example, when passing through adjacent gas compartments separated by a cone-shaped spacer, a shield (not shown) for the joint is attached. It is also possible not to provide the exposed portion. On the other hand, the type of the epoxy resin is not particularly limited, but a bisphenol type epoxy resin can be preferably used from the viewpoint of the characteristics, availability, and handleability of the obtained mold insulator. The molding material to be used is obtained by blending 400 to 500 parts by weight of alumina (Al 2 O 3 ) with respect to a total amount of 80 to 120 parts by weight of the bisphenol type epoxy resin and the acid anhydride curing agent.

充填材であるアルミナの配合割合は必ずしも限定されるものではないが、上記基材であるビスフェノール型エポキシ樹脂及び酸無水物硬化剤80〜120重量部に対して約400重量部未満では、混合したモールド材の粘度が低すぎて、配合したアルミナが沈降するようになり、得られる樹脂モールド体の膨張係数や硬化収縮が大きく、クラック性も悪くなる。一方、アルミナの配合割合が約500重量部を超えると混合したモールド材の粘度が高すぎて、作業時にボイドが発生し易くなる。従って上記基材80〜120重量部に対するアルミナの配合割合は、400〜500重量部の範囲内とすることが望ましい。   The mixing ratio of alumina as a filler is not necessarily limited, but it is less than about 400 parts by weight with respect to 80 to 120 parts by weight of the bisphenol-type epoxy resin and acid anhydride curing agent as the base material. Since the viscosity of the molding material is too low, the blended alumina begins to settle, the expansion coefficient and curing shrinkage of the resulting resin mold body are large, and the cracking property is also deteriorated. On the other hand, when the blending ratio of alumina exceeds about 500 parts by weight, the viscosity of the mixed molding material is too high, and voids are easily generated during operation. Therefore, it is desirable that the mixing ratio of alumina with respect to 80 to 120 parts by weight of the base material is within a range of 400 to 500 parts by weight.

以下、製造例について更に具体的に説明する。ビスフェノール型エポキシ樹脂(CY179、HANTSMSN社製)66g、ビスフェノール型エポキシ樹脂(CY184、HANTSMSN社製)44g、酸無水物硬化剤(MH700、新日本理科社製)110g、及び充填材として、アルミナ(M2、フジミインコーポレーテッド製)1000gからなる混合物をモールド材として用いた。図示省略している注型金型に、予め金属導体11を組み込み、130℃にて予熱する。次に予熱された注型金型に上記モールド材を流し込み、所定の条件(この例では約130℃、20〜24時間)で硬化させた後、注型金型から取り出すことにより図1に模式的に示すような金属導体11が絶縁層12に一体にモールドされた樹脂モールド絶縁導体1が得られる。   Hereinafter, production examples will be described more specifically. 66 g of bisphenol type epoxy resin (CY179, manufactured by HANTSMSN), 44 g of bisphenol type epoxy resin (CY184, manufactured by HANTSMSN), 110 g of acid anhydride curing agent (MH700, manufactured by Shin Nippon Science Co., Ltd.), and alumina (M2) as a filler A mixture of 1000 g (manufactured by Fujimi Incorporated) was used as a molding material. A metal conductor 11 is previously incorporated in a casting mold (not shown) and preheated at 130 ° C. Next, the mold material is poured into a preheated casting mold, cured under a predetermined condition (in this example, about 130 ° C., 20 to 24 hours), and then taken out from the casting mold. A resin-molded insulated conductor 1 in which a metal conductor 11 as shown in FIG.

上記絶縁層12の厚さは特に限定されるものではないが、該厚さが5mm以下では効果の発現が小さく、10mm以上では表面電界が高すぎて絶縁耐力が低下するようになるので、約5〜10mm程度の範囲内に選ぶことは好ましい。また、凹凸12aは金属導体11の径方向ないしは放射方向に形成された断面半円形の山が金属導体11の軸方向に多数連なるような襞状に形成されているが、該凹凸12aの形状は図1に例示したものに限定されるものではない。例えば凹凸を形成する山及び谷が金属導体11の軸方向に平行に伸びる形状、該軸方向に螺旋を描くスパイラル形の形状、あるいはその他の形状に設けても差し支えない。   The thickness of the insulating layer 12 is not particularly limited, but if the thickness is 5 mm or less, the effect is small, and if it is 10 mm or more, the surface electric field is too high and the dielectric strength decreases. It is preferable to select within a range of about 5 to 10 mm. The unevenness 12a is formed in a bowl shape in which a plurality of semicircular peaks formed in the radial direction or radial direction of the metal conductor 11 are continuous in the axial direction of the metal conductor 11, and the shape of the unevenness 12a is as follows. It is not limited to what was illustrated in FIG. For example, peaks and valleys forming irregularities may be provided in a shape extending in parallel to the axial direction of the metal conductor 11, a spiral shape drawing a spiral in the axial direction, or other shapes.

上記のようにして得られた樹脂モールド絶縁導体1は、金属導体11の表面を被覆している絶縁層12の熱伝導率が高く、しかも絶縁層12の表面が襞状の凹凸12aによって形成されていることで表面からの熱放散がし易いため、通電による金属導体11の発熱が蓄熱され難く、機器の温度上昇を抑制でき、絶縁層12が設けられていることで機器の小型化、低コスト化ができる。また、絶縁層12の熱膨張係数がアルミニウムと同等程度であるため、熱応力の発生が軽減できるので、モールド部材との界面で剥離等が防止でき、信頼性を高めることが出来る。また、金属裸電極では、面積効果により最低破壊電界強度が理論破壊電界強度から低下する傾向があり、特に高ガス圧領域で顕著となるが、図1のようなハイブリッド絶縁では最低破壊電界強度が理論破壊電界強度の90%以上を保持しており、GISのような高電圧用ガス絶縁機器に適していることが確認された。   The resin-molded insulated conductor 1 obtained as described above has a high thermal conductivity of the insulating layer 12 covering the surface of the metal conductor 11, and the surface of the insulating layer 12 is formed by bowl-shaped irregularities 12a. Since the heat from the surface is easily dissipated, the heat generation of the metal conductor 11 due to energization is difficult to store, the temperature rise of the device can be suppressed, and the provision of the insulating layer 12 reduces the size and the size of the device. Cost can be reduced. Moreover, since the thermal expansion coefficient of the insulating layer 12 is approximately the same as that of aluminum, the generation of thermal stress can be reduced, so that peeling or the like can be prevented at the interface with the mold member, and the reliability can be improved. In the case of a bare metal electrode, the minimum breakdown electric field strength tends to decrease from the theoretical breakdown electric field strength due to the area effect, and is particularly noticeable in a high gas pressure region. However, in the hybrid insulation as shown in FIG. It retained 90% or more of the theoretical breakdown electric field strength, and was confirmed to be suitable for high voltage gas insulation equipment such as GIS.

実施の形態2.
図2は、この発明を実施するための実施の形態2に係る樹脂モールド絶縁導体を実施の形態1と同様のガス絶縁母線として用いた例を模式的に示す断面図である。図において、樹脂モールド絶縁導体1Aを構成する金属導体11の周りには上記実施の形態1と同様のエポキシ樹脂、酸無水物硬化剤、及びアルミナを配合したモールド材によって注型された第1の絶縁層12Aと、この第1の絶縁層12Aを包囲するように設けられ、誘電率が該第1の絶縁層12Aよりも小さく、表面に凹凸13aを有する第2の絶縁層13が注型により設けられている。上記第2の絶縁層13はビスフェノール型エポキシ樹脂及び酸無水物硬化剤の合計量80〜120重量部に対し、フォレステライト(MgSiO)を390〜440重量部の配合割合で混合したモールド材により形成される。
Embodiment 2. FIG.
FIG. 2 is a cross-sectional view schematically showing an example in which the resin-molded insulated conductor according to the second embodiment for carrying out the present invention is used as the same gas-insulated bus as in the first embodiment. In the figure, the first metal material is cast around the metal conductor 11 constituting the resin-molded insulated conductor 1A by a molding material containing the same epoxy resin, acid anhydride curing agent, and alumina as in the first embodiment. An insulating layer 12A and a second insulating layer 13 which is provided so as to surround the first insulating layer 12A, has a dielectric constant smaller than that of the first insulating layer 12A and has irregularities 13a on the surface thereof are cast. Is provided. The second insulating layer 13 is a mold in which forsterite (Mg 2 SiO 4 ) is mixed at a blending ratio of 390 to 440 parts by weight with respect to a total amount of 80 to 120 parts by weight of the bisphenol type epoxy resin and the acid anhydride curing agent. It is made of material.

上記充填材であるフォレステライトの配合割合は必ずしも限定されるものではないが、上記基材であるビスフェノール型エポキシ樹脂及び酸無水物硬化剤80〜120重量部に対して約390重量部未満では、混合したモールド材の粘度が低すぎて、配合したフォレステライトが沈降するようになり、得られる樹脂モールド体の膨張係数や硬化収縮が大きく、クラック性も悪くなる。一方、フォレステライトの配合割合が約440重量部を超えると混合したモールド材の粘度が高すぎて、作業時にボイドが発生し易くなる。従って上記基材80〜120重量部に対するフォレステライトの配合割合は、390〜440重量部の範囲内とすることが望ましい。   The blending ratio of the foresterite as the filler is not necessarily limited, but less than about 390 parts by weight with respect to 80 to 120 parts by weight of the bisphenol type epoxy resin and the acid anhydride curing agent as the base material, The viscosity of the mixed mold material is too low, and the blended forsterite will settle, the expansion coefficient and cure shrinkage of the resulting resin mold body will be large, and the cracking property will also deteriorate. On the other hand, when the blending ratio of foresterite exceeds about 440 parts by weight, the viscosity of the mixed molding material is too high, and voids are likely to occur during the operation. Therefore, the blending ratio of foresterite with respect to 80 to 120 parts by weight of the base material is desirably within the range of 390 to 440 parts by weight.

具体的には、先ず上記実施の形態1と同様のビスフェノール型エポキシ樹脂及び酸無水物硬化剤の80〜120重量部に対し、フォレステライトを390〜440重量部を混合したモールド材を図示省略している予備金型に注入して加熱硬化させ、外周面に襞状の凹凸13aを有する円筒状の第2の絶縁層13を注型する。次に、図示省略している別の金型に該円筒状の第2の絶縁層13と、その中心部に金属導体11を組み込み、130℃にて予熱する。次に、第2の絶縁層13の内周部と金属導体11の外周部の間の空間部に上記実施の形態1と同様のビスフェノール型エポキシ樹脂及び酸無水物硬化剤80〜120重量部に対し、アルミナを400〜500重量部を配合したモールド材を流し込み、所定の条件で硬化させることにより、金属導体11と第1の絶縁層12A、及び第2の絶縁層13が一体モールドされたハイブリッド形の図2に模式的に示す樹脂モールド絶縁導体1Aが得られる。   Specifically, first, a molding material in which 390 to 440 parts by weight of foresterite is mixed with 80 to 120 parts by weight of the same bisphenol type epoxy resin and acid anhydride curing agent as in the first embodiment is not shown. A cylindrical second insulating layer 13 having a bowl-shaped unevenness 13a on the outer peripheral surface is cast by being poured into a preliminary mold and heat-cured. Next, the cylindrical second insulating layer 13 and a metal conductor 11 are incorporated in the center of the second insulating layer 13 (not shown) and preheated at 130 ° C. Next, in the space between the inner peripheral part of the second insulating layer 13 and the outer peripheral part of the metal conductor 11, the same bisphenol type epoxy resin and acid anhydride curing agent as in the first embodiment are added in an amount of 80 to 120 parts by weight. On the other hand, a hybrid in which the metal conductor 11, the first insulating layer 12A, and the second insulating layer 13 are integrally molded by pouring a molding material containing 400 to 500 parts by weight of alumina and curing it under a predetermined condition. A resin molded insulated conductor 1A schematically shown in FIG. 2 is obtained.

上記のように構成された実施の形態2による樹脂モールド絶縁導体1Aは、実施の形態1と同様に、例えばSFガス絶縁機器のガス絶縁母線として用いた場合に、第1の絶縁層12Aの外周に誘電率が第1の絶縁層12Aよりも小さい第2の絶縁層13からなるモールド部材を配置し、しかも該第2の絶縁層13の表面に襞状の頂部が滑らかな曲線からなる凹凸13aが形成されていることにより、実施の形態1と同様の効果に加え、モールド絶縁部表面の電解集中が更に軽減でき、機器を一層小型化できる。 The resin-molded insulated conductor 1A according to the second embodiment configured as described above is similar to the first embodiment when the first insulating layer 12A of the first insulating layer 12A is used, for example, when used as a gas insulated bus of an SF 6 gas insulated device. A mold member made of the second insulating layer 13 having a dielectric constant smaller than that of the first insulating layer 12A is arranged on the outer periphery, and the ridge-like top portion has a smooth curve on the surface of the second insulating layer 13 By forming 13a, in addition to the same effects as in the first embodiment, the concentration of electrolysis on the surface of the mold insulating portion can be further reduced, and the device can be further miniaturized.

ところで上記実施の形態1及び2の説明では、この発明をSFガス絶縁機器のガス絶縁母線として用いた場合について例示したが、ガス絶縁方式の高電圧用機器あるいはガス絶縁母線に限定されるものではなく、各種高電圧用機器及びその付属機器等の絶縁導体、絶縁支持部材等のハイブリッド絶縁方式として広く用いることが出来る。例えばSFガス絶縁機器のコーン形の絶縁スペーサ、開閉装置の構成部材、SFガス絶縁機器の水分測定装置などに用いることもできる。また、注型方法は上記例示したものに限定されるものではない。 By the way, in the description of the first and second embodiments, the case where the present invention is used as the gas insulated bus of the SF 6 gas insulated device is exemplified. However, the present invention is limited to the gas insulated high voltage device or the gas insulated bus. Instead, it can be widely used as a hybrid insulation system for various high-voltage devices and their attached devices, such as insulated conductors and insulation support members. For example SF 6 gas insulated apparatus cone of the insulating spacer, the components of the switchgear, can also be used for moisture measuring apparatus of SF 6 gas-insulated equipment. Further, the casting method is not limited to the above-described examples.

この発明の実施の形態1に係る樹脂モールド絶縁導体をSFガス絶縁機器のガス絶縁母線として用いた例を模式的に示す断面図である。An example using a resin mold insulated conductor according to the first embodiment of the present invention as a gas insulated bus of SF 6 gas insulated apparatus is a sectional view schematically showing. この発明の実施の形態2に係る樹脂モールド絶縁導体をSFガス絶縁機器のガス絶縁母線として用いた例を模式的に示す断面図である。An example using a resin mold insulated conductor according to the second embodiment of the present invention as a gas insulated bus of SF 6 gas insulated apparatus is a sectional view schematically showing.

符号の説明Explanation of symbols

1、1A 樹脂モールド絶縁導体、 11 金属導体、 12 絶縁層、 12a 凹凸、 12A 第1の絶縁層、 13 第2の絶縁層、 13a 凹凸、 2 タンク、 3 SFガス。 1, 1A resin-molded insulated conductor, 11 metal conductor, 12 insulating layer, 12a unevenness, 12A first insulating layer, 13 second insulating layer, 13a unevenness, 2 tank, 3 SF 6 gas.

Claims (6)

金属導体と、この金属導体の周りを包囲するように配設され、エポキシ樹脂、酸無水物硬化剤、及びアルミナを配合したモールド材によって注型された表面に放熱を助ける凹凸を有する絶縁層とを備えてなることを特徴とする樹脂モールド絶縁導体。   A metal conductor, and an insulating layer that is arranged so as to surround the metal conductor, and has an unevenness that assists heat dissipation on a surface cast by a molding material containing an epoxy resin, an acid anhydride curing agent, and alumina. A resin-molded insulated conductor comprising: 上記モールド材は、ビスフェノール型エポキシ樹脂及び酸無水物硬化剤80〜120重量部に対し、アルミナ(Al)400〜500重量部が配合されたものであることを特徴とする請求項1記載の樹脂モールド絶縁導体。 2. The molding material according to claim 1, wherein 400 to 500 parts by weight of alumina (Al 2 O 3 ) is blended with 80 to 120 parts by weight of a bisphenol type epoxy resin and an acid anhydride curing agent. The resin mold insulated conductor of description. 金属導体と、この金属導体の周りを包囲するように配設され、エポキシ樹脂、酸無水物硬化剤、及びアルミナを配合したモールド材によって注型された第1の絶縁層と、この第1の絶縁層を包囲するように設けられ誘電率が該第1の絶縁層よりも小さい表面に凹凸を有する第2の絶縁層とを備えてなることを特徴とする樹脂モールド絶縁導体。   A first insulating layer which is disposed so as to surround the metal conductor and is cast by a molding material containing an epoxy resin, an acid anhydride curing agent, and alumina; and the first conductor layer. A resin-molded insulated conductor comprising: a second insulating layer provided so as to surround the insulating layer and having irregularities on a surface having a dielectric constant smaller than that of the first insulating layer. 上記モールド材は、ビスフェノール型エポキシ樹脂及び酸無水物硬化剤80〜120重量部に対し、アルミナ(Al)400〜500重量部が配合されたものであることを特徴とする請求項3記載の樹脂モールド絶縁導体。 4. The molding material according to claim 3, wherein 400 to 500 parts by weight of alumina (Al 2 O 3 ) is blended with 80 to 120 parts by weight of a bisphenol type epoxy resin and an acid anhydride curing agent. The resin molded insulated conductor as described. 上記第2の絶縁層は、ビスフェノール型エポキシ樹脂及び酸無水物硬化剤80〜120重量部に対し、フォレステライト390〜440重量部を含むモールド材によって注型されたものであることを特徴とする請求項3または請求項4記載の樹脂モールド絶縁導体。   The second insulating layer is cast by a molding material containing 390 to 440 parts by weight of forsterite with respect to 80 to 120 parts by weight of a bisphenol type epoxy resin and an acid anhydride curing agent. The resin-molded insulated conductor according to claim 3 or 4. 上記凹凸は、襞状に形成されたものであることを特徴とする請求項3ないし請求項5の何れかに記載の樹脂モールド絶縁導体。   6. The resin molded insulated conductor according to claim 3, wherein the unevenness is formed in a bowl shape.
JP2006323012A 2006-11-30 2006-11-30 Resin mold insulated conductor Pending JP2008141809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323012A JP2008141809A (en) 2006-11-30 2006-11-30 Resin mold insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323012A JP2008141809A (en) 2006-11-30 2006-11-30 Resin mold insulated conductor

Publications (1)

Publication Number Publication Date
JP2008141809A true JP2008141809A (en) 2008-06-19

Family

ID=39602721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323012A Pending JP2008141809A (en) 2006-11-30 2006-11-30 Resin mold insulated conductor

Country Status (1)

Country Link
JP (1) JP2008141809A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018861A1 (en) * 2008-08-11 2010-02-18 Jfeケミカル株式会社 Fibre production device and fibre production method
WO2016108592A1 (en) * 2014-12-31 2016-07-07 주식회사 효성 Electrode device for gas insulated switchgear
CN106300187A (en) * 2016-09-30 2017-01-04 广州雄兴电气有限公司 A kind of casting type water proof bus bar slot
KR101860439B1 (en) * 2017-03-10 2018-05-23 주식회사 효성 Electrode device for gas-insulated switchgear
WO2018124515A1 (en) * 2016-12-26 2018-07-05 주식회사 효성 Conductor for gas insulated switch and method for manufacturing same
CN108963926A (en) * 2018-06-06 2018-12-07 荣马电器有限公司 A kind of high-strength bus duct and preparation method thereof
CN110323673A (en) * 2019-06-28 2019-10-11 广西玉柴机器股份有限公司 A kind of combustion gas low clearance, high-reliability high conducting wire and preparation method thereof
CN112751298A (en) * 2019-10-31 2021-05-04 罗克韦尔自动化技术公司 Heat dissipation cladding
CN113686965A (en) * 2021-09-16 2021-11-23 南方电网科学研究院有限责任公司 GIS basin-type insulator subsurface thermal stress ultrasonic detection method and system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018861A1 (en) * 2008-08-11 2010-02-18 Jfeケミカル株式会社 Fibre production device and fibre production method
WO2016108592A1 (en) * 2014-12-31 2016-07-07 주식회사 효성 Electrode device for gas insulated switchgear
CN106300187A (en) * 2016-09-30 2017-01-04 广州雄兴电气有限公司 A kind of casting type water proof bus bar slot
WO2018124515A1 (en) * 2016-12-26 2018-07-05 주식회사 효성 Conductor for gas insulated switch and method for manufacturing same
KR101860439B1 (en) * 2017-03-10 2018-05-23 주식회사 효성 Electrode device for gas-insulated switchgear
CN108963926A (en) * 2018-06-06 2018-12-07 荣马电器有限公司 A kind of high-strength bus duct and preparation method thereof
CN108963926B (en) * 2018-06-06 2020-10-09 荣马电器有限公司 High-strength bus duct and preparation method thereof
CN110323673A (en) * 2019-06-28 2019-10-11 广西玉柴机器股份有限公司 A kind of combustion gas low clearance, high-reliability high conducting wire and preparation method thereof
CN110323673B (en) * 2019-06-28 2023-04-28 广西玉柴机器股份有限公司 Low-height high-reliability high-voltage wire for fuel gas and preparation method thereof
CN112751298A (en) * 2019-10-31 2021-05-04 罗克韦尔自动化技术公司 Heat dissipation cladding
CN113686965A (en) * 2021-09-16 2021-11-23 南方电网科学研究院有限责任公司 GIS basin-type insulator subsurface thermal stress ultrasonic detection method and system
CN113686965B (en) * 2021-09-16 2023-12-19 南方电网科学研究院有限责任公司 Ultrasonic detection method and system for subsurface thermal stress of GIS basin-type insulator

Similar Documents

Publication Publication Date Title
JP2008141809A (en) Resin mold insulated conductor
RU2681643C1 (en) Cable fittings for connecting a high-voltage cable with a high-voltage component
JP2011087447A (en) Overhead line engagement bushing
JP5718471B2 (en) Compact vacuum circuit breaker with selective encapsulation
EP2800112A1 (en) HV instrument transformer
JP2006210619A (en) High heat resistant power static device
CA2633580A1 (en) High voltage bushing and high voltage device comprising such bushing
JP2010232051A (en) Vacuum insulation switchgear
KR20100104032A (en) Structure of low temperature rise way and method thereof
CN106941032A (en) Insulator and its manufacture method
JP7248381B2 (en) Static induction device
JP4165326B2 (en) Ignition coil
JP5595317B2 (en) Bushing and manufacturing method thereof
JP2005327580A (en) Insulating spacer and gas-insulation equipment
CN107644731B (en) Power transformer comprising insulating material and method of manufacturing such a transformer
JPH05146035A (en) Gas insulation equipment
WO2015136932A1 (en) Electrical insulation material and mold electric apparatus
JP6429917B2 (en) Coil parts
JPH05196174A (en) Insulated vacuum valve
JP2001135144A (en) Cast molding for sf6 gas insulated equipment and its production
US20160118175A1 (en) Converter unit, particularly a combination converter
JP4522318B2 (en) Gas insulated switchgear
JP2009259737A (en) Parts for electric insulation
JP2010220300A (en) Molding insulator for electrical insulation
JP2010232016A (en) Insulator