JP2010232016A - Insulator - Google Patents

Insulator Download PDF

Info

Publication number
JP2010232016A
JP2010232016A JP2009078368A JP2009078368A JP2010232016A JP 2010232016 A JP2010232016 A JP 2010232016A JP 2009078368 A JP2009078368 A JP 2009078368A JP 2009078368 A JP2009078368 A JP 2009078368A JP 2010232016 A JP2010232016 A JP 2010232016A
Authority
JP
Japan
Prior art keywords
insulator
high dielectric
contact surface
electric field
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078368A
Other languages
Japanese (ja)
Other versions
JP5405169B2 (en
Inventor
Nagatane Nakamura
永植 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009078368A priority Critical patent/JP5405169B2/en
Publication of JP2010232016A publication Critical patent/JP2010232016A/en
Application granted granted Critical
Publication of JP5405169B2 publication Critical patent/JP5405169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulating Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulator excellent in resistance to heat, an ultraviolet ray, chemicals, and the like, and having a high isolation voltage. <P>SOLUTION: The insulator 1 includes a dielectric part formed mainly of two ceramics with different dielectric constants, wherein a part of the dielectric part having a low dielectric constant lower than 15 is a low dielectric part 2, a part of the dielectric part having a high dielectric constant no less than 15 is a high dielectric part 3, and the low dielectric part 2 and the high dielectric part 3 are unified by sintering. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ガス絶縁機器の絶縁支持体やケーブル接続部の絶縁部材などとして使用される、セラミックスを主成分とする絶縁体に関する。   The present invention relates to an insulator mainly composed of ceramics, which is used as an insulating support of a gas insulating device, an insulating member of a cable connection portion, or the like.

近年強く求められている高電圧機器の小型化には、機器内部に電界の上昇が生じ、この高電圧機器に使用される絶縁体が高い電界に晒されるという問題がある。特に、トリプルジャンクションは、誘電率の異なる3つの物質、絶縁体−導体−絶縁媒体が交わる部位であり、形状的に鋭角な部位が形成されたとき、電界が集中する。この電界集中のために、高電圧機器では、耐電圧性能の著しい低下や、時には絶縁破壊などの機能的な障害をきたすおそれがある。   The downsizing of high-voltage equipment, which has been strongly demanded in recent years, has a problem that an electric field rises inside the equipment, and an insulator used in the high-voltage equipment is exposed to a high electric field. In particular, the triple junction is a portion where three substances having different dielectric constants, an insulator, a conductor, and an insulating medium intersect, and an electric field concentrates when a sharp portion is formed in shape. Due to this electric field concentration, the withstand voltage performance of a high-voltage device may be significantly reduced, and sometimes a functional failure such as dielectric breakdown may occur.

トリプルジャンクションなどでの電界集中を緩和させるため、従来から次に述べる3つのタイプの絶縁体又は絶縁装置が考えられている。   In order to alleviate electric field concentration at a triple junction or the like, conventionally, three types of insulators or insulation devices described below have been considered.

第1に、電界集中を緩和するために、電界緩和電極を配置する絶縁装置がある。電界緩和電極は、シールドあるいは埋込電極とも呼ばれている。電界緩和電極を配置する絶縁装置では、相間、及び対地間距離が広がり、この絶縁装置を用いる高電圧機器の大型化というデメリットがある。   First, there is an insulating device in which an electric field relaxation electrode is arranged in order to reduce electric field concentration. The electric field relaxation electrode is also called a shield or a buried electrode. In the insulating device in which the electric field relaxation electrode is arranged, the distance between the phases and the ground is widened, and there is a demerit that the high voltage device using this insulating device is enlarged.

第2に、低誘電率化した絶縁体がある。一般に、この低誘電率化した絶縁体は、特許文献1及び2に示すような、誘電率の低いエポキシ樹脂からなる有機絶縁材料が用いられている。この低誘電率化した絶縁体を設ける絶縁装置では、装置の大型化を回避できる。   Second, there is an insulator with a low dielectric constant. In general, an insulator having a low dielectric constant is made of an organic insulating material made of an epoxy resin having a low dielectric constant, as shown in Patent Documents 1 and 2. In the insulating device provided with the insulator having a low dielectric constant, the size of the device can be prevented from being increased.

第3に、電界集中を緩和させるために、発生電界に応じて誘電率の異なる絶縁部材を適切な場所に配置し、これらを接合させた絶縁体がある。特許文献3には、高電圧充電部を支持する絶縁固定具において、埋金周囲に配置されたエポキシを主体とした高い誘電率の絶縁部と、この絶縁部の周囲の特定位置に配置形成されたエポキシを主体とした低い誘電率の絶縁部とからなる固体絶縁物が開示されている。特許文献4には、ガス絶縁機器に用いる絶縁スペーサーであって、その内部にガラス、カーボン、又はアラミド等の高誘電率部材を含むエポキシ樹脂が配置され、ガス等の絶縁媒体にさらされる部位にエポキシ樹脂からなる低い誘電率の絶縁部を配置するものが開示されている。これら絶縁固定具及び絶縁スペーサーでは、電界歪や不均衡による耐電圧低下を防止し、さらに絶縁体寸法を大型化すること無く、電界緩和の性能、及び耐電圧性能が良好に発揮される。   Thirdly, in order to alleviate electric field concentration, there is an insulator in which insulating members having different dielectric constants are arranged at appropriate locations according to the generated electric field and these are joined. In Patent Document 3, in an insulating fixture that supports a high-voltage charging unit, an insulating part having a high dielectric constant mainly composed of epoxy disposed around a buried metal and disposed at a specific position around the insulating part. Also disclosed is a solid insulator composed of an insulating portion mainly composed of epoxy and having a low dielectric constant. Patent Document 4 discloses an insulating spacer used for a gas insulating device, in which an epoxy resin including a high dielectric constant member such as glass, carbon, or aramid is disposed and exposed to an insulating medium such as a gas. An arrangement in which an insulating portion made of an epoxy resin and having a low dielectric constant is disposed. With these insulating fixtures and insulating spacers, the withstand voltage drop due to electric field distortion and imbalance is prevented, and the electric field relaxation performance and withstand voltage performance are satisfactorily exhibited without increasing the size of the insulator.

さらに、特許文献1〜4の絶縁体にも使用されている、エポキシ樹脂からなる絶縁部材は、成形性に優れ、無機フィラーとの混合などによる誘電率の調整も容易である。   Furthermore, the insulating member made of an epoxy resin, which is also used in the insulators of Patent Documents 1 to 4, is excellent in moldability and easy to adjust the dielectric constant by mixing with an inorganic filler.

特開平4−130126号公報Japanese Patent Laid-Open No. 4-130126 特開平5−198208号公報Japanese Patent Laid-Open No. 5-198208 特開平6−84419号公報JP-A-6-84419 特開平11−262143号公報JP-A-11-262143

しかしながら、特許文献1〜4にも開示されている、エポキシなどからなる有機絶縁材料は、熱、紫外線、又は薬品などによって、変性や変形が生じやすい点に難点がある。   However, the organic insulating materials made of epoxy or the like disclosed in Patent Documents 1 to 4 have a drawback in that they are likely to be modified or deformed by heat, ultraviolet rays, chemicals, or the like.

また、有機絶縁材料では、セラミックスなどの無機絶縁材料に比べ、理想的破壊電界強度が小さく絶縁耐圧が低いという難点がある。これらの理想的破壊電界強度や絶縁耐圧の難点から、有機絶縁材料では、特許文献3及び4に示すように異なる誘電率の絶縁部材を接合させて電界緩和を図る際にも、各絶縁部材についての誘電率や配置の選択範囲が狭くなってしまう。具体的に述べると、有機絶縁材料では、理想的破壊電界強度や絶縁耐圧の観点から、二つの絶縁部材間の誘電率の比を小さくするように制限されるため、大きな電界緩和効果、すなわち高い絶縁耐圧性能を得ることが難しい。   In addition, the organic insulating material has a disadvantage that the ideal breakdown electric field strength is small and the withstand voltage is low as compared with inorganic insulating materials such as ceramics. Because of these difficulties in the ideal breakdown electric field strength and dielectric strength, organic insulating materials are also used for each insulating member when the insulating members having different dielectric constants are joined to reduce the electric field as shown in Patent Documents 3 and 4. The selection range of the dielectric constant and the arrangement becomes narrow. Specifically, in organic insulating materials, from the viewpoint of ideal breakdown electric field strength and withstand voltage, since it is limited to reduce the dielectric constant ratio between the two insulating members, a large electric field relaxation effect, that is, high It is difficult to obtain withstand voltage performance.

上記の問題に鑑みて、本発明の課題は、単純形状で、かつ寸法の大型化を図ること無しに絶縁耐圧が高い絶縁体を提供すること、さらに、熱、紫外線、及び薬品などへの耐性に優れた絶縁体を提供することにある。   In view of the above problems, an object of the present invention is to provide an insulator having a simple shape and a high withstand voltage without increasing the size, and further, resistance to heat, ultraviolet rays, chemicals, and the like. It is to provide an excellent insulator.

上記課題を解決するため、本発明者等は、種々の絶縁体の材料について鋭意検討した結果、異なる誘電率を有したセラミックスを主成分とする2以上の部材が焼結により一体化されている絶縁体を見出し、本発明を完成するに至った。すなわち、本発明によれば、以下に示す絶縁体が提供される。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on various insulator materials, and as a result, two or more members mainly composed of ceramics having different dielectric constants are integrated by sintering. An insulator was found and the present invention was completed. That is, according to the present invention, the following insulator is provided.

[1] 誘電率の異なる2つのセラミックスを主成分とする誘電部を有し、前記誘電部のうち、誘電率15未満の低い誘電率を有するものが低誘電部とされ、誘電率15以上の高い誘電率を有するものが高誘電部とされ、前記低誘電部及び前記高誘電部が、焼結によって一体化している絶縁体。 [1] A dielectric part mainly composed of two ceramics having different dielectric constants, and among the dielectric parts, those having a low dielectric constant less than a dielectric constant of 15 are defined as low dielectric parts, and have a dielectric constant of 15 or more. An insulator having a high dielectric constant as a high dielectric portion, wherein the low dielectric portion and the high dielectric portion are integrated by sintering.

[2] 前記高誘電部の誘電率が、前記低誘電部の誘電率に対して、3〜20倍である前記[1]に記載の絶縁体。 [2] The insulator according to [1], wherein a dielectric constant of the high dielectric portion is 3 to 20 times that of the low dielectric portion.

[3] 前記高誘電部は、チタン酸バリウム、チタン酸鉛、酸化銅、酸化スズ、炭化珪素、ニオブ酸リチウム、及びニオブ酸鉛よりなる群から選ばれる少なくとも1種を含む前記[1]又は[2]に記載の絶縁体。 [3] The [1] or [1], wherein the high dielectric portion includes at least one selected from the group consisting of barium titanate, lead titanate, copper oxide, tin oxide, silicon carbide, lithium niobate, and lead niobate. The insulator according to [2].

[4] 高電圧が印加される導体と接触する導体接触面と、接地部と接触する接地接触面と、絶縁媒体と接触する絶縁媒体接触面と、を有し、前記低誘電部は、前記絶縁媒体接触面を形成し、前記高誘電部は、前記高誘電部と前記低誘電部との境界が前記絶縁媒体接触面に沿うように配置されている前記[1]〜[3]のいずれかに記載の絶縁体。 [4] A conductor contact surface that contacts a conductor to which a high voltage is applied, a ground contact surface that contacts a ground portion, and an insulating medium contact surface that contacts an insulating medium, and the low dielectric portion includes: An insulating medium contact surface is formed, and the high dielectric portion is arranged such that a boundary between the high dielectric portion and the low dielectric portion is along the insulating medium contact surface. The insulator according to crab.

本発明の絶縁体では、二つの異なる絶縁材料にセラミクッスなどの無機絶縁材料を採用することにより、有機絶縁材料では難しかった大きな誘電率比をとることが可能になる。さらに、本発明の絶縁体では、低誘電率部材からなる絶縁物の内側に高誘電率部材を配置できる尤度が広がったことにより、電界の集中を緩和し、トリプルジャンクションにおける電界強度の低減を図れ、耐電圧性能の向上、或いは本絶縁物を含む機器の小型化を実現できる。また、本発明の絶縁体では、無機絶縁材料であるため、熱、紫外線、及び薬品などへの優れた耐性も合わせて具備させることが出来る。   In the insulator of the present invention, by using an inorganic insulating material such as ceramics for two different insulating materials, it is possible to obtain a large dielectric constant ratio which has been difficult with an organic insulating material. Furthermore, in the insulator of the present invention, the likelihood that a high-dielectric constant member can be placed inside an insulator made of a low-dielectric constant member has been expanded, thereby reducing the concentration of the electric field and reducing the electric field strength at the triple junction. Therefore, the withstand voltage performance can be improved, or the device including the insulator can be downsized. In addition, since the insulator of the present invention is an inorganic insulating material, it can be provided with excellent resistance to heat, ultraviolet rays, chemicals, and the like.

本発明の一実施形態である絶縁体の斜視図であり、低誘電部と高誘電部との境界は透視して破線にて示している図である。It is a perspective view of the insulator which is one Embodiment of this invention, and is a figure which showed the boundary of the low dielectric part and the high dielectric part transparently, and showed with the broken line. 図1の絶縁体が導体と接地部との間に設けられている様子を模式的に表す斜視図である。FIG. 2 is a perspective view schematically illustrating a state in which the insulator of FIG. 1 is provided between a conductor and a grounding portion. 図2中に示すA−A’断面の一部断面図であり、導体接触面及び接地接触面それぞれに導体及び接地部が接続された状態にて表されている図である。FIG. 3 is a partial cross-sectional view of the A-A ′ cross section shown in FIG. 2, and is a view showing a state in which a conductor and a grounding portion are connected to a conductor contact surface and a ground contact surface, respectively. 導体から接地部への方向に沿った高誘電部の厚みZと、トリプルジャンクション部での電界強度との関係を説明するための図である。It is a figure for demonstrating the relationship between the thickness Z of the high dielectric part along the direction from a conductor to a grounding part, and the electric field strength in a triple junction part. トリプルジャンクション部と高誘電部との距離rと、トリプルジャンクション部での電界強度との関係を説明するための図である。It is a figure for demonstrating the relationship between the distance r of a triple junction part and a high dielectric part, and the electric field strength in a triple junction part. 導体接触面と平行な方向での高誘電部の幅Dと、トリプルジャンクション部での電界強度との関係を説明するための図である。It is a figure for demonstrating the relationship between the width | variety D of the high dielectric part in the direction parallel to a conductor contact surface, and the electric field strength in a triple junction part. 本発明の一実施形態である絶縁体の斜視図であり、低誘電部と高誘電部との境界は透視して破線にて示している図である。It is a perspective view of the insulator which is one Embodiment of this invention, and is a figure which showed the boundary of the low dielectric part and the high dielectric part transparently, and showed with the broken line. 図7中に示すA−A’断面の一部断面図であり、導体接触面及び接地接触面それぞれに導体及び接地部が接続された状態にて表されている図である。FIG. 8 is a partial cross-sectional view of the A-A ′ cross section shown in FIG. 7, showing the conductor contact surface and the ground contact surface connected to the conductor and the ground portion, respectively. 比較例1の一様な誘電率の絶縁体の斜視図である。5 is a perspective view of an insulator having a uniform dielectric constant in Comparative Example 1. FIG. 図9中に示すA−A’断面の一部断面図であり、導体接触面及び接地接触面それぞれに導体及び接地部が接続された状態にて表されている図である。FIG. 10 is a partial cross-sectional view of the A-A ′ cross section shown in FIG. 9, showing the conductor contact surface and the ground contact surface connected to the conductor and the ground portion, respectively. 実施例1の絶縁体における電位分布を表す図である。6 is a diagram illustrating a potential distribution in an insulator according to Example 1. FIG. 実施例1の絶縁体における電界分布を表す図である。6 is a diagram illustrating an electric field distribution in the insulator of Example 1. FIG. 比較例1の絶縁体における電位分布を表す図である。6 is a diagram illustrating a potential distribution in an insulator of Comparative Example 1. FIG. 比較例1の絶縁体における電界分布を表す図である。6 is a diagram illustrating an electric field distribution in an insulator of Comparative Example 1. FIG. 比較例2の絶縁体における電位分布を表す図である。6 is a diagram illustrating a potential distribution in an insulator of Comparative Example 2. FIG. 比較例2の絶縁体における電界分布を表す図である。6 is a diagram illustrating an electric field distribution in an insulator of Comparative Example 2. FIG. 比較例3の絶縁体における電位分布を表す図である。10 is a diagram illustrating a potential distribution in an insulator of Comparative Example 3. FIG. 比較例3の絶縁体における電界分布を表す図である。It is a figure showing the electric field distribution in the insulator of the comparative example 3. 実施例1、及び比較例1〜3の絶縁体についてのトリプルジャンクション部での電界の強度を比較するグラフである。It is a graph which compares the intensity | strength of the electric field in the triple junction part about the insulator of Example 1 and Comparative Examples 1-3. 実施例1、及び比較例1〜3の絶縁体ついての、導体から接地部への方向に沿った各位置での絶縁媒体接触面上の電界の強度を表すグラフである。It is a graph showing the intensity | strength of the electric field on the insulating-medium contact surface in each position along the direction from a conductor to a grounding part about the insulator of Example 1 and Comparative Examples 1-3. 実施例2の絶縁体における電位分布を表す図である。6 is a diagram illustrating a potential distribution in an insulator of Example 2. FIG. 実施例2の絶縁体における電界分布を表す図である。6 is a diagram illustrating an electric field distribution in an insulator of Example 2. FIG.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.

1.絶縁体:
1−1.本発明の絶縁体の基本的な実施形態:
図1は、本発明の技術範囲に属する絶縁体1の斜視図である。本発明の絶縁体1は、セラミックスを主成分とし、異なる誘電率を有している、低誘電部2と高誘電部3とが焼結によって一体化しているものである。高誘電部3は、誘電率15以上であり、低誘電部2は、誘電率15未満である。なお、本明細書において、低誘電部2及び高誘電部3の誘電率について、高い、又は、低い、と述べるが、これは低誘電部2の誘電率と、高誘電部3の誘電率とを比較するときの相対的な評価である点に留意する。
1. Insulator:
1-1. Basic embodiment of the insulator of the present invention:
FIG. 1 is a perspective view of an insulator 1 belonging to the technical scope of the present invention. The insulator 1 of the present invention is composed of a low dielectric portion 2 and a high dielectric portion 3 which are made of ceramics as main components and have different dielectric constants by sintering. The high dielectric portion 3 has a dielectric constant of 15 or more, and the low dielectric portion 2 has a dielectric constant of less than 15. In this specification, the dielectric constants of the low dielectric part 2 and the high dielectric part 3 are described as being high or low. This is because the dielectric constant of the low dielectric part 2 and the dielectric constant of the high dielectric part 3 are Note that this is a relative evaluation when comparing.

ここでいう「焼結により一体化」とは、低誘電部2と高誘電部3とが接触している境界21において、低誘電部2の主成分であるセラミックスの原料となるセラミックス粉末と、高誘電部3の主成分であるセラミックスの原料となるセラミックス粉末とが焼結によって結合し、低誘電部2と高誘電部2との結合が保持されていることをいう。   The term “integrated by sintering” as used herein refers to ceramic powder that is a raw material of ceramics that is a main component of the low dielectric part 2 at the boundary 21 where the low dielectric part 2 and the high dielectric part 3 are in contact with each other; It means that the ceramic powder, which is the raw material of the ceramic, which is the main component of the high dielectric part 3, is bonded by sintering, and the bond between the low dielectric part 2 and the high dielectric part 2 is maintained.

また、このような焼結によって、絶縁体1としての使用に十分に耐えうるような低誘電部2と高誘電部2との結合を実現する程度に、低誘電部2及び高誘電部3にセラミックスが含まれていることを、「セラミックスを主成分とする」という基準にする。   In addition, the low dielectric portion 2 and the high dielectric portion 3 are bonded to such a degree that the low dielectric portion 2 and the high dielectric portion 2 can be sufficiently bonded to be used as the insulator 1 by such sintering. The inclusion of ceramics is used as a criterion of “mainly ceramics”.

本発明の絶縁体1は、これを構成する低誘電部2及び高誘電部3が共にセラミックスを主成分とするため、エポキシ樹脂に代表される有機材料からなる絶縁体1と比較して、熱、紫外線、及び薬品などによる劣化も少ない。   The insulator 1 according to the present invention has both a low dielectric portion 2 and a high dielectric portion 3 constituting the same as ceramics as a main component. Therefore, compared with the insulator 1 made of an organic material typified by epoxy resin, There is little deterioration by UV, chemicals and chemicals.

焼結による一体化により、本発明の絶縁体1は、低誘電部2と高誘電部3とが直接的に結合する。そのため、本発明の絶縁体1では、低誘電部2と高誘電部3との結合に接着剤などの電界に影響を及ぼしうる他の部材を排除できる。よって、本発明の絶縁体1では、電界の設計する際、低誘電部2及び高誘電部3それぞれの誘電率を単純に考慮すればよく、当業者であれば、シミュレーションによる電界の設計を容易に適用できる。なお、シミュレーションについては、実施例において一具体例を詳しく述べる。   Due to the integration by sintering, the low dielectric portion 2 and the high dielectric portion 3 of the insulator 1 of the present invention are directly coupled. Therefore, in the insulator 1 of the present invention, other members that can affect the electric field, such as an adhesive, can be excluded from the connection between the low dielectric portion 2 and the high dielectric portion 3. Therefore, in the insulator 1 of the present invention, when designing the electric field, the dielectric constants of the low dielectric portion 2 and the high dielectric portion 3 may be simply taken into account, and those skilled in the art can easily design the electric field by simulation. Applicable to. In addition, about a simulation, one specific example is described in detail in an Example.

図1に示す絶縁体1は高誘電部3が低誘電部2の中に埋め込まれている形態になっているが、本発明の絶縁体1では、絶縁体1の仕様に応じ、絶縁媒体接触面13の一部が高誘電部3から形成される形態であってもよい。このような形態であっても、シミュレーションにより低誘電部2及び高誘電部3の最適な配置を見つけ出すことができる。   The insulator 1 shown in FIG. 1 has a form in which the high dielectric portion 3 is embedded in the low dielectric portion 2. However, in the insulator 1 according to the present invention, the insulating medium contact is performed according to the specifications of the insulator 1. A part of the surface 13 may be formed from the high dielectric portion 3. Even in such a form, the optimal arrangement of the low dielectric portion 2 and the high dielectric portion 3 can be found by simulation.

本発明の絶縁体1は、上述の基本的な実施形態を備える限りにおいて、用途に応じて、形状・大きさなどを自由に設計できる。次に、本発明の絶縁体1について、誘電率、成分などに関する具体的な形態を説明しつつ、好ましい実施形態についても述べていく。   As long as the insulator 1 of the present invention includes the above-described basic embodiment, the shape, size, and the like can be freely designed according to the application. Next, a preferred embodiment of the insulator 1 of the present invention will be described while explaining specific forms regarding the dielectric constant, components, and the like.

1−2.低誘電部と高誘電部との間の誘電率比:
本発明の絶縁体1では、高誘電部3の誘電率が、低誘電部の誘電率に対して、3〜20倍であると好ましい。誘電率の比率を大きくすることにより電界の集中を緩和する作用が高まるため、本発明の絶縁体1は、トリプルジャンクション部61などにおいて、特許文献1及び2に示される均一かつ低誘電率化した絶縁材料よりも、優れた電界緩和の効果を実現できる。
1-2. Permittivity ratio between low and high dielectric parts:
In the insulator 1 of the present invention, the dielectric constant of the high dielectric portion 3 is preferably 3 to 20 times that of the low dielectric portion. Since the effect of alleviating the concentration of the electric field is increased by increasing the ratio of the dielectric constant, the insulator 1 of the present invention has the uniform and low dielectric constant shown in Patent Documents 1 and 2 in the triple junction portion 61 and the like. An electric field relaxation effect superior to that of an insulating material can be realized.

1−3.低誘電部の成分:
低誘電部2の主成分となるセラミックスは、低誘電部2の誘電率を15未満とし、低誘電部2と高誘電部3との焼結による一体化を実現させるものであればよい。
1-3. Low dielectric component:
The ceramic that is the main component of the low dielectric part 2 may be any ceramic as long as the dielectric constant of the low dielectric part 2 is less than 15 and the low dielectric part 2 and the high dielectric part 3 are integrated by sintering.

低誘電部2の主成分となるセラミックスとしては、例えば、各種ガラス、アルミナ、ムライト、ジルコニア、窒化アルミ、窒化珪素、炭化珪素、コージェライトなどがある。また、低誘電部2は、ここに挙げたセラミックスが複数含まれるものであってもよい。   Examples of the ceramic as the main component of the low dielectric portion 2 include various glasses, alumina, mullite, zirconia, aluminum nitride, silicon nitride, silicon carbide, cordierite, and the like. Further, the low dielectric portion 2 may include a plurality of ceramics listed here.

1−4.高誘電部の成分:
高誘電部3の主成分となるセラミックスは、高誘電部3の誘電率を15以上とし、低誘電部2と高誘電部3との焼結による一体化を実現させるものであればよい。
1-4. Components of high dielectric part:
The ceramic that is the main component of the high dielectric part 3 may be any ceramic that achieves integration by sintering the low dielectric part 2 and the high dielectric part 3 with a dielectric constant of the high dielectric part 3 of 15 or more.

高誘電部3の主成分となるセラミックスとしては、例えば、各種ガラス、アルミナ、ムライト、ジルコニア、窒化アルミ、窒化珪素、炭化珪素、コージェライトなどがある。また、高誘電部3は、ここに挙げたセラミックスが複数含まれるものであってもよい。   Examples of the ceramic that is the main component of the high dielectric portion 3 include various glasses, alumina, mullite, zirconia, aluminum nitride, silicon nitride, silicon carbide, cordierite, and the like. The high dielectric portion 3 may include a plurality of ceramics listed here.

さらに、高誘電部3は、誘電率を高めるため、チタン酸バリウム、チタン酸鉛、酸化銅、酸化スズ、炭化珪素、ニオブ酸リチウム、及びニオブ酸鉛よりなる群から選ばれる少なくとも1種を含むことが好ましい。ここに挙げた成分の選択と量については、高誘電部3の誘電率、主成分となるセラミックスの種類などに応じて設定できる。   Further, the high dielectric portion 3 includes at least one selected from the group consisting of barium titanate, lead titanate, copper oxide, tin oxide, silicon carbide, lithium niobate, and lead niobate in order to increase the dielectric constant. It is preferable. The selection and amount of the components listed here can be set in accordance with the dielectric constant of the high dielectric portion 3 and the type of ceramic as the main component.

1−5.導体と接地との間に設けられる絶縁体としての実施形態:
図2は、図1に示す本発明の絶縁体1が、高電圧が印加される導体31と接地部32との間に設けられている様子を模式的に示す。このように、本発明の絶縁体1は、導体31と接地部32との間を支持する絶縁支持体として使用できる。なお、絶縁支持体は、碍子、スペーサー、ブッシングなどとも呼ばれている。
1-5. Embodiment as insulator provided between conductor and ground:
FIG. 2 schematically shows a state where the insulator 1 of the present invention shown in FIG. 1 is provided between a conductor 31 to which a high voltage is applied and a grounding portion 32. Thus, the insulator 1 of the present invention can be used as an insulating support that supports the space between the conductor 31 and the grounding portion 32. The insulating support is also called an insulator, a spacer, a bushing or the like.

本発明の絶縁体1では、図2に示すような絶縁支持体として使用するとき、絶縁体1の表面について、次の面が規定される。   When the insulator 1 of the present invention is used as an insulating support as shown in FIG. 2, the following surface is defined for the surface of the insulator 1.

図1及び図2を参照し述べると、本発明の絶縁体1の表面のうち、導体31と接触する表面は導体接触面11とし、接地部32と接触する表面は接地接触面12とし、絶縁媒体と接触する表面は絶縁媒体接触面13とする。   Referring to FIG. 1 and FIG. 2, among the surfaces of the insulator 1 of the present invention, the surface that contacts the conductor 31 is the conductor contact surface 11, the surface that contacts the grounding portion 32 is the ground contact surface 12, and is insulated. The surface in contact with the medium is an insulating medium contact surface 13.

本発明の絶縁体1の表面のうち、導体接触面11と絶縁媒体接触面13とが交わる箇所は、交点部14とする。   Of the surface of the insulator 1 according to the present invention, the intersection of the conductor contact surface 11 and the insulating medium contact surface 13 is defined as an intersection 14.

図3は、図2中に示すA−A’断面の一部を表す。絶縁体1が導体31及び接地部32に接続されているとき、交点部14は、誘電率の異なる3つの物質、絶縁体1、導体31、及び絶縁媒体33が交わる、いわゆるトリプルジャンクション部61にあたる。トリプルジャンクション部61では、図3に示すように、絶縁媒体33を挟んで絶縁体1と導体31とが鋭角を形成したとき、電界が集中する。   FIG. 3 shows a part of the A-A ′ cross section shown in FIG. 2. When the insulator 1 is connected to the conductor 31 and the ground part 32, the intersection part 14 corresponds to a so-called triple junction part 61 where three substances having different dielectric constants, the insulator 1, the conductor 31, and the insulating medium 33 intersect. . In the triple junction 61, as shown in FIG. 3, the electric field concentrates when the insulator 1 and the conductor 31 form an acute angle with the insulating medium 33 interposed therebetween.

本発明の絶縁体1は、低誘電部2が絶縁媒体接触面13を形成していると好ましい。また、このとき、高誘電部3は、絶縁媒体接触面13、特にトリプルジャンクション部61における電界の集中を緩和させるような形状と配置にて設けられていると好ましい。   In the insulator 1 of the present invention, it is preferable that the low dielectric portion 2 forms the insulating medium contact surface 13. At this time, it is preferable that the high dielectric portion 3 is provided in a shape and an arrangement so as to alleviate electric field concentration on the insulating medium contact surface 13, particularly the triple junction portion 61.

1−6.本発明の絶縁体の利点:
絶縁媒体の破壊電圧は様々な要因により一義的に比較するのは困難であるが、通常、アルミナなどの無機絶縁材料の理想的破壊電界は1000kV/mmといわれており、対して、エポキシなどの有機絶縁材料の理想的破壊電界は100kV/mmといわれている。本発明の絶縁体1は、セラミックを主成分とする無機絶縁材料のみから構成されているため、有機絶縁材料では困難と考えられている、低誘電部2と高誘電部3との間の大きな誘電率比の設定、及び高誘電部3をトリプルジャンクション部61に近接させた特殊な配置などが可能になる。このように無機絶縁材料からなることに起因した本発明の絶縁体1の利点については、実施例においてシミュレーションを用い詳しく述べる。
1-6. Advantages of the insulator of the present invention:
Although the breakdown voltage of an insulating medium is difficult to compare unambiguously due to various factors, the ideal breakdown electric field of an inorganic insulating material such as alumina is generally said to be 1000 kV / mm. The ideal breakdown electric field of the organic insulating material is said to be 100 kV / mm. Since the insulator 1 of the present invention is composed only of an inorganic insulating material mainly composed of ceramic, it is considered to be difficult with an organic insulating material, and is large between the low dielectric portion 2 and the high dielectric portion 3. The setting of the dielectric constant ratio and the special arrangement in which the high dielectric portion 3 is placed close to the triple junction portion 61 are possible. The advantages of the insulator 1 of the present invention resulting from the inorganic insulating material will be described in detail using simulations in the examples.

2.絶縁体の製造方法:
本発明の絶縁体1の製造方法は、従来公知の様々な方法を採用できる。例えば、射出成型、スリップキャスト、コールドアイソスタティックプレス、スラリーディップ、ドクターブレード法、及びゲルキャスト法などがある。
2. Insulator manufacturing method:
As the method for manufacturing the insulator 1 of the present invention, various conventionally known methods can be adopted. Examples include injection molding, slip casting, cold isostatic pressing, slurry dip, doctor blade method, and gel casting method.

ゲルキャスト法とは、セラミックス粉末、分散媒、及びゲル化剤を少なくとも含むスラリーを調製し、次いでこのスラリーを成形型の内部の成形空間に注型してゲル化させることにより成形体を形成し、さらにこの成形体を焼成することによってセラミックス製品を製造する方法である。ゲルキャスト法では、低誘電部2と高誘電部3とが複雑な形状にて組み合されることにも対応でき、一体化している低誘電部2と高誘電部3との境界21に欠陥が生じにくい利点もある。例えば、特開2001−335371号公報にゲルキャスト法が詳しく説明されている。   In the gel casting method, a molded body is formed by preparing a slurry containing at least a ceramic powder, a dispersion medium, and a gelling agent, and then casting the slurry into a molding space inside the molding die to cause gelation. Further, this is a method for producing a ceramic product by firing the compact. The gel cast method can cope with a combination of the low dielectric portion 2 and the high dielectric portion 3 in a complicated shape, and a defect occurs at the boundary 21 between the integrated low dielectric portion 2 and the high dielectric portion 3. There are also difficult advantages. For example, the gel casting method is described in detail in JP-A No. 2001-335371.

例えば、次に述べるゲルキャスト法を用いる製造方法によって、本発明の絶縁体1を製造できる。   For example, the insulator 1 of the present invention can be manufactured by a manufacturing method using a gel casting method described below.

2−1.ゲルキャスト法による成形及び焼成の概要:
ゲルキャスト法を用いる絶縁体の製造方法の一実施形態では、低誘電部2の型がとれる成形型と、低誘電部2と高誘電部3とが一体化した形状の型がとれる成形型を用意する。
2-1. Overview of gel casting and firing:
In one embodiment of the method of manufacturing an insulator using the gel cast method, a molding die that can take a mold of the low dielectric portion 2 and a molding die that can take a die having a shape in which the low dielectric portion 2 and the high dielectric portion 3 are integrated. prepare.

まず、低誘電部2の型がとれる成形型の成形空間内に低誘電部2のためのスラリーを注型してゲル化させ、低誘電部2のもとになる成形体を作製する。   First, the slurry for the low dielectric part 2 is cast and gelled in the molding space of the molding die where the mold of the low dielectric part 2 can be taken to produce a molded body that is the basis of the low dielectric part 2.

次いで、低誘電部2と高誘電部3とが一体化した形状の型がとれる成形型の成形空間の所定の場所に、先に成形された低誘電部2のもとになる成形体を配置し、残余の成形空間に高誘電部3のためのスラリーを注型してゲル化させることにより、低誘電部2と高誘電部3からなる絶縁体1のための成形体を作製する。   Next, a molded body that is the basis of the previously formed low dielectric portion 2 is placed in a predetermined place in the molding space of the molding die in which the die having the shape in which the low dielectric portion 2 and the high dielectric portion 3 are integrated can be obtained. Then, a slurry for the high dielectric portion 3 is cast and gelled in the remaining molding space, so that a molded body for the insulator 1 including the low dielectric portion 2 and the high dielectric portion 3 is produced.

続いて、この成形体を焼成することにより、低誘電部2の主成分であるセラミックスの原料となるセラミックス粉末と、高誘電部3の主成分であるセラミックスの原料となるセラミックス粉末とが境界21において焼結によって結合するため、低誘電部2と高誘電部3とが焼結によって一体化した絶縁体1ができる。   Subsequently, by firing this molded body, a ceramic powder that is a raw material of ceramics that is a main component of the low dielectric portion 2 and a ceramic powder that is a raw material of ceramics that is the main component of the high dielectric portion 3 are bounded 21. In this case, the low dielectric portion 2 and the high dielectric portion 3 are integrated by sintering.

低誘電部2と高誘電部3とが複雑な形の境界21を有して結合しているときには、2以上の成形型を用意して、低誘電部2及び高誘電部3の成形体を部分的に成形し、この部分的な成形を段階的に行うことにより、低誘電部2と高誘電部3からなる絶縁体1のための成形体を作りあげる方法を採用できる。   When the low dielectric part 2 and the high dielectric part 3 are joined with a complex shape boundary 21, two or more molding dies are prepared, and the molded bodies of the low dielectric part 2 and the high dielectric part 3 are prepared. A method of forming a molded body for the insulator 1 including the low dielectric portion 2 and the high dielectric portion 3 by partially forming and performing the partial molding stepwise can be employed.

また、高誘電部3が、誘電率の異なる複数の領域41から形成されるときには、上述の低誘電部2及び高誘電部3の成形と同様の方法を適用すればよい。すなわち、各領域41の誘電率に応じたスラリーを調製し、それぞれ領域41の形状の型がとれる成形型を用意して段階的に成形していけばよい。   When the high dielectric portion 3 is formed from a plurality of regions 41 having different dielectric constants, the same method as the molding of the low dielectric portion 2 and the high dielectric portion 3 described above may be applied. That is, a slurry corresponding to the dielectric constant of each region 41 is prepared, and a molding die that can take the shape of each region 41 is prepared and molded in stages.

2−2.スラリー:
低誘電部2、及び高誘電部3を形成するためのスラリーは、セラミックス粉末、分散剤、バインダーなどを混合させて調製する。
2-2. slurry:
The slurry for forming the low dielectric part 2 and the high dielectric part 3 is prepared by mixing ceramic powder, a dispersant, a binder and the like.

低誘電部2、及び高誘電部3を形成するためのスラリーの調製は、セラミックス粉末、分散剤、ゲル化剤などから調製し、場合によっては無機フィラーを適宜添加することにより、誘電率を調整しつつ行う。   The slurry for forming the low dielectric part 2 and the high dielectric part 3 is prepared from ceramic powder, a dispersant, a gelling agent, etc., and the dielectric constant is adjusted by adding an inorganic filler as appropriate. While doing.

以上のようなゲルキャスト法では、成形型を使用するため、各部の寸法誤差を小さくできる。また、既に成形体の時点において、低誘電部2及び高誘電部3が所望の形状・配置にて一体の状態になるため、低誘電部2と高誘電部3とが焼結によって確実に一体化する。   In the gel casting method as described above, since a molding die is used, the dimensional error of each part can be reduced. Further, since the low dielectric portion 2 and the high dielectric portion 3 are integrated in a desired shape and arrangement at the time of the molded body, the low dielectric portion 2 and the high dielectric portion 3 are surely integrated by sintering. Turn into.

この絶縁体1の製造方法では、焼成の後、低誘電部2又は高誘電部3をトリミングして、電界の集中の緩和に適する形状に仕上げることもできる。   In this method of manufacturing the insulator 1, after firing, the low dielectric portion 2 or the high dielectric portion 3 can be trimmed to a shape suitable for alleviating electric field concentration.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

3−1.シミュレーションによるトリプルジャンクション部での電界集中の緩和の検討:
ここでは、図1に示す円錐台形の絶縁体1を想定したシミュレーションの一例を説明する。高誘電部3は、真円の断面の両端が開いた円筒形状であり、高誘電部3の円筒形状の軸19に沿った両端が平行になっている。このような高誘電部3が、高誘電部3の円筒形状の軸19を絶縁体1の円錐台形の軸20に合わせて低誘電部2の中に埋め込まれ、高誘電部3の一方の端部が導体接触面11に現れている。そのため、絶縁体1を導体接触面11は、軸19,20を中心として同心円状に、中心に低誘電部2、中間に高誘電部3、外周に低誘電部2という配置から構成される。
3-1. Study of relaxation of electric field concentration at triple junction by simulation:
Here, an example of simulation assuming the truncated cone-shaped insulator 1 shown in FIG. 1 will be described. The high dielectric portion 3 has a cylindrical shape in which both ends of a perfect circular cross section are open, and both ends along the cylindrical axis 19 of the high dielectric portion 3 are parallel to each other. Such a high dielectric portion 3 is embedded in the low dielectric portion 2 with the cylindrical shaft 19 of the high dielectric portion 3 aligned with the frustoconical shaft 20 of the insulator 1, and one end of the high dielectric portion 3 is embedded. The part appears on the conductor contact surface 11. Therefore, the conductor contact surface 11 of the insulator 1 is concentrically formed around the shafts 19 and 20, and has a low dielectric portion 2 at the center, a high dielectric portion 3 at the middle, and a low dielectric portion 2 at the outer periphery.

図3は、図1及び図2中のA−A’断面の一部を表す、導体31及び接地部32に接続された絶縁体1の断面であり、軸19、20を含むように切られている。この円錐台形の絶縁体1では、導体接触面11が小さく接地接触面32が大きいため、導体31と絶縁媒体接触面13との間が鋭角になる。そのため、この図に示す絶縁体1では、導体接触面11と絶縁媒体接触面13とが交わる交点部14が、(電極)導体−絶縁物沿面−絶縁媒体の三要素が接触するトリプルジャンクション部61にあたり、導体31に高電圧をかけたときには電界が集中しやすくなる。   FIG. 3 is a cross section of the insulator 1 connected to the conductor 31 and the grounding portion 32, which represents a part of the AA ′ cross section in FIGS. 1 and 2, and is cut to include the shafts 19 and 20. ing. In this truncated cone-shaped insulator 1, since the conductor contact surface 11 is small and the ground contact surface 32 is large, the conductor 31 and the insulating medium contact surface 13 have an acute angle. Therefore, in the insulator 1 shown in this figure, the intersection portion 14 where the conductor contact surface 11 and the insulating medium contact surface 13 intersect is the triple junction portion 61 where the three elements (electrode) conductor-insulator creepage-insulating medium contact. In this case, when a high voltage is applied to the conductor 31, the electric field tends to concentrate.

高誘電部3の端部のうち、トリプルジャンクション部61に最も近い端部、換言すると交点部14に最も近い端部を交点側端部30とする。図3に示す絶縁体1において、交点側端部30は、導体接触面11上にある。   Of the end portions of the high dielectric portion 3, the end portion closest to the triple junction portion 61, in other words, the end portion closest to the intersection portion 14 is defined as an intersection side end portion 30. In the insulator 1 shown in FIG. 3, the intersection-side end 30 is on the conductor contact surface 11.

まとめると、図1〜3に示す絶縁体1では、低誘電部2が、絶縁媒体接触面13を形成している。さらに、高誘電部3は、低誘電部2と高誘電部3との境界21が絶縁媒体接触面13に沿うように配置されている。具体的に述べると、高誘電部3の配置は、交点部14近傍、すなわちトリプルジャンクション部61近傍において、高誘電部3の交点側端部30から接地部32に向かって形成されている境界21aが絶縁媒体接触面13に沿うようになされている。   In summary, in the insulator 1 shown in FIGS. 1 to 3, the low dielectric portion 2 forms the insulating medium contact surface 13. Further, the high dielectric part 3 is arranged so that the boundary 21 between the low dielectric part 2 and the high dielectric part 3 is along the insulating medium contact surface 13. More specifically, the high dielectric portion 3 is arranged in the vicinity of the intersection portion 14, that is, in the vicinity of the triple junction portion 61, at the boundary 21 a formed from the intersection side end 30 of the high dielectric portion 3 toward the ground portion 32. Along the insulating medium contact surface 13.

上述の形態の絶縁体1において、低誘電部2と高誘電部3との誘電率比を10とし、絶縁媒体を真空としたときのシミュレーションの結果を、高誘電部3の形状及び配置に関する3つのパラメータに注目し、図3の断面図、及び図4〜6に示すデータを参照しつつ説明する。   In the insulator 1 of the above-described form, the simulation result when the dielectric constant ratio between the low dielectric portion 2 and the high dielectric portion 3 is 10 and the insulating medium is evacuated is shown as 3 in the shape and arrangement of the high dielectric portion 3. Focusing on one parameter, explanation will be made with reference to the cross-sectional view of FIG. 3 and the data shown in FIGS.

第1のパラメータは、高誘電部3の厚みZである。図3を参照し述べると、高誘電部3の厚みZは、導体接触面11上に現れている高誘電部3の一方の端部から他方の端部までの長さである。また、高誘電部3の厚みZは、絶縁媒体接触面13に沿うように交点側端部30から接地部32に向かって形成されている境界21aの長さにも比例している。   The first parameter is the thickness Z of the high dielectric portion 3. Referring to FIG. 3, the thickness Z of the high dielectric portion 3 is a length from one end portion of the high dielectric portion 3 appearing on the conductor contact surface 11 to the other end portion. The thickness Z of the high dielectric portion 3 is also proportional to the length of the boundary 21 a formed from the intersection side end portion 30 toward the grounding portion 32 along the insulating medium contact surface 13.

図4のグラフでは、高誘電部3の厚みZとトリプルジャンクション部61での電界強度との関係をシミュレーションにて算出した結果が示されている。図1〜3に示す低誘電部2及び高誘電部3の形状と配置のケースでは、高誘電部3の厚みZが2.6mm以上あるとき、トリプルジャンクション部61の電界強度が十分に小さい、すなわちトリプルジャンクション部61での電界集中が緩和される。なお、高誘電部3の厚みZが2.6mm以上という数値は、後で述べる高誘電部3の幅D、交点側端部30とトリプルジャンクション部61との距離r、電圧、導体31と絶縁媒体接触面13との角度θによらないことがシミュレーションで判明している。さらに、高誘電部3の厚みZが2.6mm以上のときには、接地部32の側にある境界21bに発生する内部電界集中が、トリプルジャンクション部61に影響を及ぼさない。   In the graph of FIG. 4, the result of having calculated the relationship between the thickness Z of the high dielectric part 3 and the electric field strength in the triple junction part 61 by simulation is shown. In the case of the shape and arrangement of the low dielectric portion 2 and the high dielectric portion 3 shown in FIGS. 1 to 3, when the thickness Z of the high dielectric portion 3 is 2.6 mm or more, the electric field strength of the triple junction portion 61 is sufficiently small. That is, the electric field concentration in the triple junction 61 is alleviated. The numerical value that the thickness Z of the high dielectric portion 3 is 2.6 mm or more is the width D of the high dielectric portion 3 described later, the distance r between the intersection side end portion 30 and the triple junction portion 61, voltage, insulation with the conductor 31. It has been found by simulation that it does not depend on the angle θ with the medium contact surface 13. Further, when the thickness Z of the high dielectric part 3 is 2.6 mm or more, the internal electric field concentration generated at the boundary 21 b on the ground part 32 side does not affect the triple junction part 61.

第2のパラメータは、高誘電部3の交点側端部30と交点部14(トリプルジャンクション部61)との距離rである。   The second parameter is the distance r between the intersection-side end 30 of the high dielectric portion 3 and the intersection 14 (triple junction 61).

図5のグラフでは、距離rとトリプルジャンクション部61での電界強度との関係をシミュレーションにて算出した結果が示されている。なお、図5のグラフのシミュレーションでは、前述の高誘電部3の厚みZが2.6mmに設定されている。図5のグラフから、距離rが、小さいときほどトリプルジャンクション部61での電界強度が小さくなる、すなわちトリプルジャンクション部61での電界集中が緩和されることがわかる。距離rが0mmのとき、すなわち高誘電部3の交点側端部30が交点14(トリプルジャンクション部61)と一致するとき、トリプルジャンクション部61での電界強度が最も小さくなる。   The graph of FIG. 5 shows the result of calculating the relationship between the distance r and the electric field strength at the triple junction 61 by simulation. In the simulation of the graph of FIG. 5, the thickness Z of the high dielectric portion 3 is set to 2.6 mm. From the graph of FIG. 5, it can be seen that the smaller the distance r, the smaller the electric field strength at the triple junction 61, that is, the electric field concentration at the triple junction 61 is reduced. When the distance r is 0 mm, that is, when the intersection-side end 30 of the high dielectric portion 3 coincides with the intersection 14 (triple junction portion 61), the electric field strength at the triple junction portion 61 is the smallest.

第3のパラメータは、高誘電部3の幅Dである。図3を参照し述べると、高誘電部3の幅Dは、導体31に対して平行に、交点側端部30から絶縁体1の軸20に向かう方向に測られる高誘電部3の長さである。   The third parameter is the width D of the high dielectric portion 3. Referring to FIG. 3, the width D of the high dielectric portion 3 is the length of the high dielectric portion 3 measured in the direction from the intersection side end portion 30 toward the axis 20 of the insulator 1 in parallel to the conductor 31. It is.

図6のグラフでは、高誘電部3の幅Dとトリプルジャンクション部61での電界強度との関係をシミュレーションにて算出した結果が示されている。図6のグラフから、図1〜3に示す低誘電部2及び高誘電部3の形状と配置のケースにおいて、高誘電部3の幅Dが3mm以上のとき、トリプルジャンクション部61での電界強度が十分に小さい、すなわちトリプルジャンクション部61での電界集中が緩和されることがわかる。これは、高誘電部3の幅Dが3mm以上あれば、境界21a全体に沿って電位を引き込む効果が十分に現れ、結果、トリプルジャンクション部61近傍の電界は弱まるからである。   The graph of FIG. 6 shows the result of calculating the relationship between the width D of the high dielectric portion 3 and the electric field strength at the triple junction portion 61 by simulation. From the graph of FIG. 6, in the case of the shape and arrangement of the low dielectric portion 2 and the high dielectric portion 3 shown in FIGS. 1 to 3, the electric field strength at the triple junction portion 61 when the width D of the high dielectric portion 3 is 3 mm or more. Is sufficiently small, that is, the electric field concentration at the triple junction 61 is reduced. This is because if the width D of the high dielectric portion 3 is 3 mm or more, the effect of drawing the potential along the entire boundary 21a appears sufficiently, and as a result, the electric field in the vicinity of the triple junction portion 61 is weakened.

以上のシミュレーションの結果から、図1〜3に示す低誘電部2及び高誘電部3の形状と配置のケースにおいて、高誘電部3の厚みZが2.6mm以上、高誘電部30の交点側端部30と交点部14(トリプルジャンクション部61)との距離rが0mm、高誘電部3の幅Dが3mm以上のとき、トリプルジャンクション部61での電界集中が十分に緩和されることが判明した。次に、上述の高誘電部3の形状及び配置を備えた絶縁体1における、低誘電部2と高誘電部3との誘電率比、及び材質との関係に着目してシミュレーションした結果を述べる。   From the results of the above simulation, in the case of the shape and arrangement of the low dielectric portion 2 and the high dielectric portion 3 shown in FIGS. 1 to 3, the thickness Z of the high dielectric portion 3 is 2.6 mm or more and the intersection side of the high dielectric portion 30 When the distance r between the end 30 and the intersection 14 (triple junction 61) is 0 mm and the width D of the high dielectric part 3 is 3 mm or more, the electric field concentration at the triple junction 61 is sufficiently relaxed. did. Next, a simulation result will be described by paying attention to the relationship between the dielectric constant ratio between the low dielectric portion 2 and the high dielectric portion 3 and the material in the insulator 1 having the shape and arrangement of the high dielectric portion 3 described above. .

3−2.低誘電部と高誘電部の誘電率比の検討:
3−2−1.絶縁体の構成:
図1、図7及び図9に示す円錐台形の絶縁体1についてのシミュレーションをした。次に述べる実施例1及び比較例1〜3の絶縁体1は、導体接触面11の直径20mm、接地接触面12の直径40mm、高さ10mmの円錐台形とし、絶縁体1の導体接触面11には100kVの電圧がかかる導体31を接続し、絶縁媒体33は真空とした。絶縁体1の材質、誘電率比については、次に述べるものに設定した。
3-2. Examination of dielectric constant ratio between low dielectric part and high dielectric part:
3-2-1. Insulator configuration:
A simulation was performed for the truncated cone-shaped insulator 1 shown in FIGS. 1, 7, and 9. The insulator 1 of Example 1 and Comparative Examples 1 to 3 described below has a truncated cone shape with a diameter of 20 mm of the conductor contact surface 11, a diameter of 40 mm of the ground contact surface 12, and a height of 10 mm, and the conductor contact surface 11 of the insulator 1. Is connected to a conductor 31 to which a voltage of 100 kV is applied, and the insulating medium 33 is evacuated. The material and dielectric constant ratio of the insulator 1 were set as described below.

(実施例1)
上述の、図1〜3に示す低誘電部2及び高誘電部3の形状と配置と同じであり、上述のシミュレーションにおいてトリプルジャンクション部61での電界集中の十分な緩和が示された形態である、高誘電部3の厚みZが2.6mm、高誘電部30の交点側端部30と交点部14(トリプルジャンクション部61)との距離rが0mm、高誘電部3の幅Dが3mmとなるように設定した。低誘電部2及び高誘電部3が、ともにセラミックスを主成分とする無機絶縁材料からなり、低誘電部2の誘電率が8、高誘電部3の誘電率が80とした。
Example 1
It is the same as the shape and arrangement of the low dielectric portion 2 and the high dielectric portion 3 shown in FIGS. 1 to 3 described above, and is a form in which sufficient relaxation of the electric field concentration in the triple junction portion 61 is shown in the above simulation. The thickness Z of the high dielectric portion 3 is 2.6 mm, the distance r between the intersection side end portion 30 of the high dielectric portion 30 and the intersection portion 14 (triple junction portion 61) is 0 mm, and the width D of the high dielectric portion 3 is 3 mm. Was set to be. The low dielectric part 2 and the high dielectric part 3 are both made of an inorganic insulating material mainly composed of ceramics. The dielectric constant of the low dielectric part 2 is 8 and the dielectric constant of the high dielectric part 3 is 80.

(実施例2)
図7は、実施例2の絶縁体1の斜視図である。図8は、図7中のA−A’断面の一部断面図であり、導体接触面11及び接地接触面12それぞれに導体31及び接地部32が接続された状態にて表されている。高誘電部3は、直径20mm、高さ10mmの円柱形状として絶縁体1の中心に配置した。実施例2の絶縁体1において、交点側端部30は、交点部14(トリプルジャンクション部61)に一致し、境界21aは、絶縁媒体接触面13に沿って交点側端部30から接地接触面12まで形成されている。
(Example 2)
FIG. 7 is a perspective view of the insulator 1 according to the second embodiment. FIG. 8 is a partial cross-sectional view taken along the line AA ′ in FIG. 7 and shows a state in which the conductor 31 and the ground portion 32 are connected to the conductor contact surface 11 and the ground contact surface 12, respectively. The high dielectric portion 3 was arranged at the center of the insulator 1 as a cylindrical shape having a diameter of 20 mm and a height of 10 mm. In the insulator 1 according to the second embodiment, the intersection side end portion 30 coincides with the intersection portion 14 (triple junction portion 61), and the boundary 21a extends from the intersection side end portion 30 along the insulating medium contact surface 13 to the ground contact surface. Up to twelve are formed.

(比較例1)
図9の斜視図及び図10の断面図に示す、エポキシ樹脂の有機絶縁材料からなり、誘電率5にて一様な円錐台形の絶縁体1とした。
(Comparative Example 1)
The insulating body 1 is made of an epoxy resin organic insulating material and has a uniform dielectric constant 5 with a dielectric constant 5 shown in the perspective view of FIG. 9 and the cross-sectional view of FIG.

(比較例2)
低誘電部2及び高誘電部3は、ともにエポキシ樹脂からなる有機絶縁材料とし、低誘電部2の誘電率が5、高誘電部3の誘電率が9とした以外は、実施例1に同じとした。
(Comparative Example 2)
The low dielectric part 2 and the high dielectric part 3 are both organic insulating materials made of epoxy resin, and the same as Example 1 except that the dielectric constant of the low dielectric part 2 is 5 and the dielectric constant of the high dielectric part 3 is 9. It was.

(比較例3)
低誘電部2及び高誘電部3は、ともにエポキシ樹脂からなる有機絶縁材料とし、低誘電部2の誘電率が5、高誘電部3の誘電率が50とした以外は、実施例1に同じとした。
(Comparative Example 3)
The low dielectric part 2 and the high dielectric part 3 are both organic insulating materials made of epoxy resin, and the same as in Example 1 except that the low dielectric part 2 has a dielectric constant of 5 and the high dielectric part 3 has a dielectric constant of 50. It was.

3−2−2.シミュレーションの結果及び評価:
シミュレーションにより得られた電位分布について、実施例1は図11A、比較例1は12A、及び比較例2は図13A、比較例3は図14Aに示す。シミュレーションにより得られた電界分布について、実施例1は図11B、比較例1は12B、及び比較例2は図13B、比較例3は図14Bに示す。さらに、実施例1及び比較例1〜3の絶縁体1について、トリプルジャンクション部61での電界強度を図15のグラフに示す。なお、図15のグラフに示すトリプルジャンクション部61での電界強度は、比較例1におけるトリプルジャンクション部61での電界強度を100した相対値にて表す。
3-2-2. Simulation results and evaluation:
The potential distribution obtained by the simulation is shown in FIG. 11A for Example 1, 12A for Comparative Example 1, FIG. 13A for Comparative Example 2, and FIG. 14A for Comparative Example 3. As for the electric field distribution obtained by the simulation, Example 1 is shown in FIG. 11B, Comparative Example 1 is shown in 12B, Comparative Example 2 is shown in FIG. 13B, and Comparative Example 3 is shown in FIG. 14B. Furthermore, the electric field strength in the triple junction part 61 is shown in the graph of FIG. 15 about the insulator 1 of Example 1 and Comparative Examples 1-3. In addition, the electric field strength in the triple junction part 61 shown in the graph of FIG. 15 is represented by the relative value which set the electric field strength in the triple junction part 61 in the comparative example 1 to 100.

誘電率5にて一様な比較例1の絶縁体1よりも、低誘電部2と高誘電部3とからなる、実施例1、比較例2及び比較例3の絶縁体1では、トリプルジャンクション部61での電界強度が小さいことが判明した。さらに、誘電部2と高誘電部3とからなる絶縁体1でも、低誘電部2と高誘電部3との間の誘電率比が大きい実施例1及び比較例3の絶縁体1は、比較例2の絶縁体1と比べ、トリプルジャンクション部61での電界強度がより小さいことが判明した。   Compared to the insulator 1 of the comparative example 1 having a uniform dielectric constant of 5, the insulator 1 of the example 1, the comparative example 2 and the comparative example 3 having the low dielectric part 2 and the high dielectric part 3 are triple junctions. It was found that the electric field strength at the portion 61 was small. Further, even in the insulator 1 composed of the dielectric part 2 and the high dielectric part 3, the insulators 1 of Example 1 and Comparative Example 3 in which the dielectric constant ratio between the low dielectric part 2 and the high dielectric part 3 is large are compared. It was found that the electric field strength at the triple junction 61 was smaller than that of the insulator 1 of Example 2.

なお、図11B及び図14B中の矢頭にて示すように、実施例1及び比較例3の絶縁体1では、低誘電部2と高誘電部3との境界21に内部電界集中が生じることが判明した。この内部電界中の程度は、セラミックスを主成分とする無機絶縁材料からなる実施例1の絶縁体1では内部絶縁破壊は生じないが、エポキシ樹脂の有機絶縁材料からなる比較例3の絶縁体1では内部絶縁破壊が生じることが予想されるものであった。   11B and 14B, in the insulator 1 of Example 1 and Comparative Example 3, internal electric field concentration may occur at the boundary 21 between the low dielectric portion 2 and the high dielectric portion 3. found. The degree of this internal electric field does not cause internal dielectric breakdown in the insulator 1 of Example 1 made of an inorganic insulating material mainly composed of ceramics, but the insulator 1 of Comparative Example 3 made of an organic insulating material of epoxy resin. Then, internal breakdown was expected to occur.

図16のグラフは、実施例1及び比較例1〜3の絶縁体1について、導体接触面11から接地接触面12への方向に沿った絶縁媒体接触面13上の各位置での電界強度を示す。図16のグラフの縦軸の上限(Z=10mm)は、トリプルジャンクション部61に相当する。比較例1の絶縁体1では、トリプルジャンクション部61における電界強度が著しく大きい。比較例2の絶縁体1では、比較例1と比べ、トリプルジャンクション部61における電界強度の増大は若干和らいでいた。実施例1及び比較例3の絶縁体1では、トリプルジャンクション部61での電界強度が小さく、むしろ導体接触面11と接地接触面12との中間の位置での絶縁媒体接触面13上で電界強度が大きいことが判明した。   The graph of FIG. 16 shows the electric field strength at each position on the insulating medium contact surface 13 along the direction from the conductor contact surface 11 to the ground contact surface 12 for the insulator 1 of Example 1 and Comparative Examples 1 to 3. Show. The upper limit (Z = 10 mm) of the vertical axis of the graph of FIG. 16 corresponds to the triple junction unit 61. In the insulator 1 of the comparative example 1, the electric field strength in the triple junction part 61 is remarkably large. In the insulator 1 of the comparative example 2, the increase in the electric field strength in the triple junction 61 was slightly less than that of the comparative example 1. In the insulator 1 of Example 1 and Comparative Example 3, the electric field strength at the triple junction 61 is small, but rather the electric field strength on the insulating medium contact surface 13 at a position intermediate between the conductor contact surface 11 and the ground contact surface 12. Turned out to be great.

図17A及び図17Bは、それぞれ実施例2の絶縁体1における電位分布及び電界分布を表す。低誘電部2と高誘電部3との境界21aが、絶縁媒体接触面13に沿って交点側端部30から接地接触面12まで形成されている形態においても、トリプルジャンクション部61での電界集中の緩和がなさることが判明した。   17A and 17B show the potential distribution and electric field distribution in the insulator 1 of Example 2, respectively. Even in a form in which the boundary 21 a between the low dielectric part 2 and the high dielectric part 3 is formed from the intersection side end 30 to the ground contact surface 12 along the insulating medium contact surface 13, the electric field concentration in the triple junction portion 61. It was found that there was no relaxation.

本発明は、ガス絶縁機器の絶縁支持体やケーブル接続部の絶縁部材などとして使用される、セラミックスを主成分とする絶縁体として利用できる。   INDUSTRIAL APPLICATION This invention can be utilized as an insulator which has ceramics as a main component and is used as an insulation support body of a gas insulation apparatus, an insulation member of a cable connection part, etc.

1:絶縁体、2:絶縁媒体接触部、3:高誘電率部、11:導体接触面、12:接地接触面、13:絶縁媒体接触面、14:交点部、19:円筒形状の軸、20:円錐台形の軸、21:境界、21a:境界、21b:境界、31:導体、32:接地部、33:絶縁媒体、61:トリプルジャンクション部。 1: insulator, 2: insulating medium contact part, 3: high dielectric constant part, 11: conductor contact surface, 12: ground contact surface, 13: insulating medium contact surface, 14: intersection point, 19: cylindrical shaft, 20: frustoconical axis, 21: boundary, 21a: boundary, 21b: boundary, 31: conductor, 32: grounding part, 33: insulating medium, 61: triple junction part.

Claims (4)

誘電率の異なる2つのセラミックスを主成分とする誘電部を有し、
前記誘電部のうち、誘電率15未満の低い誘電率を有するものが低誘電部とされ、誘電率15以上の高い誘電率を有するものが高誘電部とされ、
前記低誘電部及び前記高誘電部が、焼結によって一体化している絶縁体。
It has a dielectric part composed mainly of two ceramics with different dielectric constants,
Among the dielectric parts, those having a low dielectric constant of less than 15 are defined as low dielectric parts, and those having a high dielectric constant of 15 or more are designated as high dielectric parts,
An insulator in which the low dielectric part and the high dielectric part are integrated by sintering.
前記高誘電部の誘電率が、前記低誘電部の誘電率に対して、3〜20倍である請求項1に記載の絶縁体。   The insulator according to claim 1, wherein a dielectric constant of the high dielectric portion is 3 to 20 times that of the low dielectric portion. 前記高誘電部は、チタン酸バリウム、チタン酸鉛、酸化銅、酸化スズ、炭化珪素、ニオブ酸リチウム、及びニオブ酸鉛よりなる群から選ばれる少なくとも1種を含む請求項1又は2に記載の絶縁体。   The high dielectric portion includes at least one selected from the group consisting of barium titanate, lead titanate, copper oxide, tin oxide, silicon carbide, lithium niobate, and lead niobate. Insulator. 高電圧が印加される導体と接触する導体接触面と、接地部と接触する接地接触面と、絶縁媒体と接触する絶縁媒体接触面と、を有し、
前記低誘電部は、前記絶縁媒体接触面を形成し、
前記高誘電部は、前記高誘電部と前記低誘電部との境界が前記絶縁媒体接触面に沿うように配置されている請求項1〜3のいずれか一項に記載の絶縁体。
A conductor contact surface that contacts a conductor to which a high voltage is applied, a ground contact surface that contacts a ground portion, and an insulating medium contact surface that contacts an insulating medium;
The low dielectric part forms the insulating medium contact surface;
The insulator according to any one of claims 1 to 3, wherein the high dielectric portion is disposed such that a boundary between the high dielectric portion and the low dielectric portion is along the insulating medium contact surface.
JP2009078368A 2009-03-27 2009-03-27 Insulator Expired - Fee Related JP5405169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078368A JP5405169B2 (en) 2009-03-27 2009-03-27 Insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078368A JP5405169B2 (en) 2009-03-27 2009-03-27 Insulator

Publications (2)

Publication Number Publication Date
JP2010232016A true JP2010232016A (en) 2010-10-14
JP5405169B2 JP5405169B2 (en) 2014-02-05

Family

ID=43047656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078368A Expired - Fee Related JP5405169B2 (en) 2009-03-27 2009-03-27 Insulator

Country Status (1)

Country Link
JP (1) JP5405169B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125629A1 (en) * 2013-02-15 2014-08-21 富士機械製造株式会社 Electrostatic coupled noncontact power supply device
CN112670040A (en) * 2020-11-20 2021-04-16 华北电力大学 Ceramic post insulator for gas-insulated high-voltage electrical equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101229A (en) * 2001-09-27 2003-04-04 Kyocera Corp Ceramic multilayer wiring board and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101229A (en) * 2001-09-27 2003-04-04 Kyocera Corp Ceramic multilayer wiring board and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125629A1 (en) * 2013-02-15 2014-08-21 富士機械製造株式会社 Electrostatic coupled noncontact power supply device
CN104995818A (en) * 2013-02-15 2015-10-21 富士机械制造株式会社 Electrostatic coupled noncontact power supply device
JPWO2014125629A1 (en) * 2013-02-15 2017-02-02 富士機械製造株式会社 Electrostatic coupling type non-contact power feeding device
CN112670040A (en) * 2020-11-20 2021-04-16 华北电力大学 Ceramic post insulator for gas-insulated high-voltage electrical equipment

Also Published As

Publication number Publication date
JP5405169B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
EP2533251B1 (en) Electrical insulating material and high voltage equipment
CN110265176B (en) Dielectric gradient material and application thereof
CN103578715A (en) Medium frequency transformer
JP5405169B2 (en) Insulator
JP2008141809A (en) Resin mold insulated conductor
CN103270560B (en) Transformer winding and transformer
JP2006252893A (en) Manufacturing method of gradient dielectric constant electric insulation mold and electric insulation mold
US8692643B2 (en) Transformer winding
CN105448495B (en) A kind of high-tension electricity transformer
WO2017022003A1 (en) Functionally graded material, coil, insulation spacer, insulation device, and method for manufacturing functionally graded material
EP3066671B1 (en) Surge arrester with moulded sheds and apparatus for moulding
CN1848360A (en) Capacitor of magnetron
JP2019087428A (en) Insulating spacer
JP2020507886A (en) Insulation structure for high or medium voltage equipment
JP2005327580A (en) Insulating spacer and gas-insulation equipment
JP5171298B2 (en) Resin mold vacuum valve
CN104979059A (en) Manufacturing method for capacitive high-voltage bushing core
CN1592016A (en) Gas-insulated high-voltage switchgear
JP2005033930A (en) Stress cone for termination joint
US20210265189A1 (en) Ceramic structure and wafer system
JPH05196174A (en) Insulated vacuum valve
KR101697625B1 (en) Gas insulated switchgear and manufacturing method of this
JP5620239B2 (en) Insulation support device
EP3544133A1 (en) Supporting insulator and manufacturing method therefor
JP3963589B2 (en) Method for manufacturing power cable connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

LAPS Cancellation because of no payment of annual fees