WO2022052919A1 - 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 - Google Patents
基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 Download PDFInfo
- Publication number
- WO2022052919A1 WO2022052919A1 PCT/CN2021/116993 CN2021116993W WO2022052919A1 WO 2022052919 A1 WO2022052919 A1 WO 2022052919A1 CN 2021116993 W CN2021116993 W CN 2021116993W WO 2022052919 A1 WO2022052919 A1 WO 2022052919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shock wave
- grinding wheel
- nanoparticles
- nano
- tube
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B55/00—Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
- B24B55/02—Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
- B24B55/03—Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant designed as a complete equipment for feeding or clarifying coolant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B51/00—Arrangements for automatic control of a series of individual steps in grinding a workpiece
Definitions
- the invention relates to the technical field of lubrication and cooling in grinding processing, in particular to a nano-layer lubrication diamond grinding wheel grinding device based on shock wave cavitation effect.
- the traditional pouring lubrication adopts the method of continuously irrigating a large amount of grinding fluid into the grinding area for cooling lubrication. , but this lubrication method requires a large amount of grinding fluid, which is far from the development background of today's environmental protection and low carbon.
- this lubrication method requires a large amount of grinding fluid, which is far from the development background of today's environmental protection and low carbon.
- due to the high-speed rotation of the grinding wheel the surrounding air moves, and a dense "air barrier layer" is formed around it, making it difficult for the grinding fluid ejected from the nozzle to enter the grinding area.
- the actual effective flow of the grinding fluid is only a fraction of the total flow of the nozzle. 5%-40%.
- the grinding fluid cannot enter the contact interface between the grinding wheel and the workpiece, resulting in thermal damage to the workpiece surface in the contact area, which in turn affects the accuracy of the workpiece.
- nanoparticles endow it with excellent thermal conductivity. Under the same volume content, the surface area and heat capacity of nano-sized particles are much larger than those of millimeter- or micron-sized solid particles.
- the addition of nanoparticles improves the heat exchange performance of the grinding fluid, and the nanoparticles play the role of strengthening heat transfer and reducing the temperature of the grinding zone; in addition, the nanoparticles also have excellent anti-friction and anti-wear properties. properties and higher load-carrying capacity, thus further improving the tribological properties of the lubricating fluid.
- the invention patent with the publication number of "CN109759958A” and the invention titled “An electrostatic nozzle and a controllable jet micro-lubrication grinding system” discloses an electrostatic nozzle and a controllable jet micro-lubrication grinding method and device.
- the principle is to design Various types of electrostatic nozzles are used to accelerate the micro-spray of grinding coolant containing nanoparticles to the grinding zone, which improves the cooling and lubrication effect of the grinding zone to a certain extent.
- this technical solution still has the following problems: in the actual grinding process, due to the obstruction of the gas barrier layer on the surface of the grinding wheel and the sealing of the grinding area, it is currently difficult to fully and effectively inject the droplets containing nanoparticles into the grinding area.
- the core part cannot solve the problem of instant response lubrication of nanoparticles in the grinding zone.
- the present invention provides a nano-layer lubricated diamond grinding wheel grinding device based on the shock wave cavitation effect, which is used to solve the problem that the grinding fluid is difficult to enter the grinding core area due to the influence of the gas barrier layer in the grinding wheel grinding process.
- Nanoparticles do not respond immediately to lubrication problems inside the grinding zone.
- the basic principle is: use the shock wave to accelerate the nano-particles to impact the surface of the grinding wheel to form a nano-layer.
- the surface of the grinding wheel with the nano-layer rotates to contact with the workpiece, due to the mechanical action of grinding, such as friction, collision and extrusion, the nano-layer will be formed.
- the nanoparticles of the layer are released at the core of the grinding zone, realizing self-lubricating cooling inside the grinding zone.
- a nano-layer lubricated diamond grinding wheel grinding device based on shock wave cavitation effect which is characterized in that: it includes a control system, an acceleration module, a shock wave acceleration module, a processing module, and a recovery module;
- the control system is used to control the operation of the whole device
- the acceleration module includes an air pump, an air storage tank, an air pressure regulating valve, an acceleration tube, a detachable airtight powder feeding box, a powder feeding switch, a small Rafael tube, an air flow valve, an air pressure sensing switch, and an active switch;
- the air pump and the air storage tank provide the required compressed gas
- the accelerating tube is divided into an active cavity, a high-pressure cavity and a low-pressure cavity; the accelerating tube is flange-sealed with the small Rafael tube and the detachable airtight powder feeding box;
- the air pressure regulating valve, air pressure sensing switch, air flow valve, powder feeding switch, and movable switch are opened and closed in a certain order to jointly control the air pressure required by each chamber, so as to generate shock waves to push the nanoparticles forward;
- the air pressure regulating valve is opened, and the shock wave generated in the acceleration tube pushes the nanoparticles to move forward, and then accelerates by the Rafael effect of the small Rafael tube to make the nanoparticles obtain the initial velocity;
- the shock wave acceleration module includes an impact head, an electromagnetic coil, a radiator, an impact ball, a temperature sensor, a wave condenser, and a large Rafael tube;
- the electromagnetic coil is connected to a bipolar high-voltage pulse current, which is distributed around the outside of a semi-circular annular pipe;
- the back-and-forth movement in the above-mentioned pipeline hits the impact heads at both ends to generate high-frequency ballistic shock waves, and the impact ball is preferably a soft magnetic material;
- the radiator is distributed around the electromagnetic coil and the impact head, and the temperature sensor is installed on the radiator. to detect temperature and transmit temperature signals;
- the wave condenser is directly below the impact head;
- the large Rafael tubes are distributed under each impact head at both ends, and the Rafal effect generated by the wave condenser accelerates the nanoparticles ;
- the processing module includes a grinding wheel, a workpiece, and a workpiece fixing plate; the workpiece fixing plate is fixedly placed on the worktable of the grinding machine; the workpiece is fixedly placed on the workpiece fixing plate; the grinding wheel is located above the workpiece and fixed on the rotating spindle of the grinding machine;
- the recovery module includes a coarse vibration filter membrane, a fine vibration filter membrane, an electromagnet block, a recovery box, and an external magnetic field; the coarse vibration filter membrane is above the fine vibration filter membrane, and the electromagnetic filter is below the fine vibration filter membrane.
- Iron block, recovery box, and external magnetic field; the outside of the electromagnet block is a smooth inclined flow channel. After the electromagnet block is electrified and magnetic, the nanoparticles are adsorbed on the wall of the flow channel.
- the nanoparticles are in the external magnetic field can fall off smoothly under the influence of the recycle box; there is an automatic switch in the recovery box cover in the recovery box to control the opening and closing of the box cover; the automatic switch is connected to the above electromagnet block, when it is powered on, it is turned off, and the power is off. is turned on.
- control system includes: a general working controller, a current controller, a temperature controller and a pressure controller;
- the general working controller is connected to control the current controller, the temperature controller and the pressure controller, and the current controller is connected to control the electromagnetic coil and the electromagnet block;
- the temperature controller is connected to control the radiator and the temperature sensor
- the pressure controller is connected to control the air pressure detector, the air pressure regulating valve, the air flow valve, the air pressure sensing switch, the powder feeding switch and the active switch.
- the grinding wheel does not have a metal bond diamond grinding wheel, and the metal bond is a bronze bond; the surface of the grinding wheel is a bronze bond layer; the nanoparticles are metal nanoparticles, namely ferric oxide magnetic nanoparticles , the size of 50nm ⁇ 100nm.
- the small Rafal tube in the acceleration module is welded on the large Rafal tube in the shock wave acceleration module, and the diameter of the nozzle of the small Rafal tube is 2mm, and the diameter of the nozzle of the large Rafal tube is 20mm; the shock wave The speed-increasing module is located just above the processing module, and the distance from the nozzle part at the front end of the large Rafael tube to the surface of the grinding wheel is 10mm-15mm, and the recovery module is located below the processing module.
- the intake pipe in the acceleration module is fixed on the acceleration pipe, one end of the spring is fixed on the intake pipe, and one end is fixedly connected to the push plate;
- the spring is a tension spring;
- the push plate is an annular thin plate.
- the gas in the gas storage tank in the acceleration module enters the movable cavity in the acceleration tube and pushes the push plate to compress the gas in the high-pressure cavity.
- a shock wave will be generated; the acceleration tube structure It is a streamline tightening type, which enhances the generated shock wave.
- the deformation of the spring is used to cooperate with the opening and closing of the air pressure regulating valve, the air pressure sensing switch, the air flow valve, the powder feeding switch and the movable switch to generate a pulsed shock wave, which promotes the nanoparticles to accelerate forward at a high frequency.
- the air pressure sensor switch has a built-in pressure sensor, which opens instantly when the air pressure in the high pressure chamber is sensed to meet the set requirements.
- the upper end of the detachable airtight powder feeding box is connected to the movable cavity in the acceleration tube through an air conduit, and an air flow valve is installed on the air conduit; the powder feeding conduit at the lower end is a venturi structure.
- the outer side of the semi-circular annular pipe is an electromagnetic coil
- the inside of the pipe is an impact ball
- an impact head is located at each end. The impact head at both ends can generate two high-frequency ballistic shock wave sources.
- the nanoparticles with high initial velocity enter the large Rafal tube after being accelerated by the shock wave, under the continuous impact of the high-intensity and high-frequency shock wave, the nanoparticles are continuously displaced along the axial direction of the large Rafal tube. Increase the speed until the surface of the grinding wheel is impacted at the highest speed to form a nano layer; the thickness of the nano layer is 5 ⁇ m to 15 ⁇ m.
- the device directly embeds nanoparticles into the surface of the grinding wheel to form a nano layer by means of shock waves, which is equivalent to releasing nanoparticles from the inside of the grinding wheel to the workpiece surface, which greatly improves the lubrication and cooling effect in the core area of grinding and greatly reduces the grinding effect.
- Cutting specific energy while reducing the wasteful use of a large amount of grinding fluid, in line with the energy saving and environmental protection requirements advocated in the industrial field.
- Nanoparticles that are not embedded in the surface of the grinding wheel and released after grinding can be recovered and reused by the recycling module.
- the impact ball hits the left and right impact heads to generate dual shock wave sources.
- One of the shock wave sources pushes the nanoparticles to accelerate and impact the surface of the grinding wheel, while the other wave source is used to clean the abrasive debris and other impurities on the surface of the grinding wheel, reducing the impact of abrasive debris on grinding. processability, while providing a favorable environment for subsequent nanolayer formation.
- the surface deformation of the grinding wheel after treatment by this device is small, and it will not produce defects such as corrosion and cracks on the surface of the grinding wheel, nor will the diamond abrasive grains be carbonized, and the structure and use of the grinding wheel will not be changed.
- the device has high efficiency, fast formation of nano-layers, can be automated, and at the same time has low cost and meets the requirements of industrialized production.
- the surface structure of the grinding wheel changes, resulting in the initial refinement of the coarse grains of the grinding wheel binder, which provides favorable conditions for improving the bonding performance between the grinding wheel surface and the nano-layer, and has The formed nanolayers are not affected.
- the high-frequency and high-intensity shock wave further refines the grains of the grinding wheel bond, resulting in the final transformation of the grains of the grinding wheel bond from micron to submicron into nano-grains, which in turn strengthens the The degree of bonding of particles to the surface of the grinding wheel.
- the bonding performance of the nano-layer formed later has been greatly improved.
- the nano-layer will not fall off the surface of the grinding wheel in large pieces, and it will not happen.
- the phenomenon of the overall peeling of the nano-layer occurs, and the deposited nano-layer can only supply and release nanoparticles under the action of strong mechanical friction, collision and extrusion in the grinding arc area.
- the present invention lies in that the gas in the high-pressure chamber flows into the low-pressure chamber by means of the air pressure induction switch valve in the acceleration tube, and due to the streamlined structure design of the acceleration tube, an enhanced shock wave of supersonic motion is generated.
- the air flow also moves at a high speed. The movement of the air flow causes the nanoparticles to obtain a large initial velocity, and then ejected through the acceleration of the small Rafal tube; at the same time, under the action of the two-way electromagnetic force, the impact ball continues to reciprocate and impact the impact.
- the head generates a high-frequency shock wave, which is gathered by the wave condenser to form a high-intensity shock wave; the high-frequency and high-intensity shock wave generates a strong thrust on the nanoparticles, causing them to move downward at several times the speed of sound.
- Nanoparticles are released autonomously inside the grinding area, realizing the transformation of the lubrication mode in the grinding area from the outside to the inside; the fallen nanoparticles are recycled and reused through the recycling module.
- Figure 1 is a schematic diagram of a nano-layer lubricated diamond grinding wheel grinding device based on the shock wave cavitation effect.
- Figure 2 is a schematic diagram of the principle of nano-particles forming a nano-layer on the surface of the grinding wheel.
- Figure 3 is a schematic diagram of the principle of nano-layer releasing nanoparticles inside the grinding zone
- Fig. 4 is the partial structure diagram of the acceleration module
- Figure 5 is a structural diagram of a shock wave acceleration module.
- High pressure chamber 34. Push plate, 35. Active chamber, 36 .Intake pipe, 37. Spring, 38. Air flow valve, 39. Removable airtight powder feeding box, 40. Powder feeding switch, 41. Nano layer, 42. Diamond abrasive grain, 43. Bronze bond layer of grinding wheel.
- this embodiment provides a nano-layer lubricated diamond grinding wheel grinding device based on the shock wave cavitation effect.
- a nano-layer is formed on the metal bond layer.
- the nano-particles are released, which play the role of lubricating and cooling in the grinding zone, and realize the transformation of the grinding lubrication method from the outside to the inside, thereby improving the grinding Processing quality.
- the present invention also proposes a method for recovering impurities and nanoparticles such as abrasive debris on the surface of the grinding wheel by using shock waves, which reduces the cost and improves the quality of the grinding process.
- the device includes: a control system, an acceleration module, a shock wave acceleration module, a processing module, and a recovery module.
- the control system includes: a general working controller 1, a current controller 2, a temperature controller 3 and a pressure controller 4;
- the acceleration module includes: an air pump 5, an air conduit 6, an air pressure detector 7, an air storage tank 8, Air pressure regulating valve 9, acceleration tube 10, small Rafael tube 29, movable switch 30, air pressure sensor switch 32, push plate 34, air intake pipe 36, spring 37, air flow valve 38, detachable closed powder feeding box 39, powder feeding
- the shock wave acceleration module includes: the shock head 12, the electromagnetic coil 13, the heat sink 14, the ceramic insulator 15, the shock ball 16, the temperature sensor 17, the wave condenser 18, the large Rafael tube 19;
- the processing module It includes: grinding wheel 20 , workpiece 21 , workpiece fixing plate 22 ;
- the recovery module includes: coarse vibration filter membrane 23 , fine vibration filter membrane 24 , electromagnet block 25 , recovery box 27 , and external magnetic field
- the control system is connected to the control acceleration module, the shock wave acceleration module, and the recovery module, specifically: the general working controller 1 is connected to the control current controller 2, the temperature controller 3 and the pressure controller 4; the current controller 2 is connected to the electromagnetic coil 13, the electromagnet Block 25, the generation of its magnetic field is controlled by energizing; the temperature controller 3 is connected to the radiator 14 and the temperature sensor 17, and the temperature is detected by the temperature sensor 17, and then the operating frequency of the radiator 14 is controlled; the pressure controller 4 is connected to the air pressure detector 7 , After the air pressure detector 7 detects that the air pressure of the air storage tank 8 meets the requirements, the pressure controller 4 controls the air pressure regulating valve 9, the air pressure sensing switch 32, the air flow valve 38, the powder feeding switch 40, and the opening and closing of the movable switch 30 to control each chamber. The required air pressure; the control system is used to control the operation of the entire device, so that the device can be automated.
- the air pump 5 and the air storage tank 8 and the air storage tank 8 and the acceleration tube 10 are connected by the air conduit 6 for ventilation.
- An air pressure detector 7 is installed on the tank 8, and an air pressure regulating valve 9 is installed in the air tube 6 of the air storage tank 8 and the acceleration tube 10;
- the cavity 35 and the high-pressure cavity 33 are distinguished by a movable push plate 34, the high-pressure cavity 33 and the low-pressure cavity 31 are separated by an air pressure induction switch 32, and the low-pressure cavity 31 and the small Rafael tube 29 are separated by a movable switch 30;
- the upper end of the end of 31 is sealed with the detachable airtight powder feeding box 39, and a powder feeding switch 40 is installed at the joint;
- the small Rafael tube 29 and the acceleration tube 10 are flange-sealed connection, and the diameter of the nozzle at the joint of the two tubes is the same
- the upper end of the detachable airtight powder feeding box 39 is connected with the movable cavity 35 in the acceleration
- air pressure regulating valve 9 air pressure sensing switch 32, air flow valve 38, powder feeding switch 40, and movable switch 30 are connected to the pressure controller 4, and are opened and closed in a certain order to produce the required pressure. shock wave.
- the air pressure regulating valve 9 When the nanoparticles 11 enter the low pressure chamber 31 from the detachable airtight powder feeding box 39 , the air pressure regulating valve 9 is opened, and the shock wave generated in the acceleration tube 10 pushes the nanoparticles to move forward, and then passes through the Rafael of the small Rafael tube 29 .
- the effect accelerates the nanoparticles to enter the large Rafael tube 19 at a higher speed; within the elastic limit, the deformation of the spring 37 is used to cooperate with the air pressure regulating valve 9, the air pressure sensing switch 32, the air flow valve 38, the powder feeding switch 40, and the movable
- the opening and closing of the switch 30 generates a pulsed shock wave, which pushes the nanoparticle forward supersonic motion at a high frequency.
- the small Rafael tube 29 in the acceleration module is welded on the large Rafael tube 19 in the shock wave acceleration module.
- a bipolar high-voltage pulse current is connected to the outer electromagnetic coil 13 distributed around a semi-circular annular pipe, and a bi-directional electromagnetic force is generated to push the shock ball 16 to move back and forth in the above-mentioned pipe to hit the shock head 12
- Two high-frequency ballistic shock waves will be generated; the radiator 14 is distributed on the periphery of the electromagnetic coil 13 and the impact head 12, and its function is to dissipate the heat generated by the back and forth movement of the impact ball 16 and the impact head 12;
- the temperature sensor 17 is installed on the radiator 14, used to detect temperature and transmit temperature signals;
- the wave condenser 18 is directly under the impact head 12, and a coating of acoustic characteristic reflective material is attached to the wall of the large Rafael tube 19 between the two. All are to gather the shock wave and increase the shock strength of the shock wave.
- Two shock wave sources are generated in the shock acceleration module. Due to the different positions of the wave condenser 18, one of them forms a shock wave with high frequency and low intensity after being concentrated, and impacts on the surface of the grinding wheel to produce a cavitation effect, which is used to clean the surface of the grinding wheel and other impurities. , which also provides favorable conditions for nanoparticles to form a nano-layer on the surface of the grinding wheel; the other is to form a high-frequency and high-intensity shock wave after aggregation, which is used to accelerate the impact of the nanoparticles until it impacts the surface of the grinding wheel at the highest speed to form a nano-layer.
- the high-intensity and high-frequency shock wave formed by the above aggregation produces cavitation effect when it impacts the nanoparticles, and has enough energy to break down the nanoparticles with agglomeration phenomenon, which effectively inhibits the appearance of the agglomeration phenomenon of nanoparticles and improves the dispersion performance of nanoparticles. .
- the temperature of the pipe will continue to rise, and a large amount of heat will also be generated around the impact head 12 after the impact ball 16 hits the impact head 12.
- the material of the above-mentioned pipe is preferably cooled
- the material with good heat dissipation performance is provided with an annular radiator 14 around the electromagnetic coil 13 and the impact head 12 outside the pipe.
- a temperature sensor 17 is installed on the radiator 14, and the temperature sensor 17 is connected to the temperature controller 3. When the temperature rises excessively, the temperature controller 3 sends an instruction for the radiator 14 to speed up the operating frequency.
- the nanoparticles 11 in the nano-layer 41 will fall into the core area of the grinding process due to mechanical friction, collision and extrusion, thereby realizing the grinding process. Self-releasing and self-lubricating during machining.
- a recovery module is provided below the workpiece fixing plate 22, for recovering nanoparticles.
- the coarse vibration filter membrane 23 filters out particles larger than 1 ⁇ m, and the fine vibration filter membrane 24 screens out particles less than or equal to 100 nm.
- the electromagnet block 25 affected by the electromagnet block 25, the magnetic nanoparticles are adsorbed on the wall of the flow channel.
- the automatic switch controls the recovery box cover 26 to open, and the magnetic nanoparticles on the flow channel wall are free to fall off under the influence of the electromagnet block 25 and the external magnetic field 28 at the bottom of the box. in the recovery box 27.
- the recovery box 27 is equipped with an automatic switch to control the opening and closing of the recovery box cover 26; the automatic switch is connected to the above electromagnet block 25, when the electromagnet block 25 is energized, it is closed, and when it is powered off, it is opened.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
一种基于冲击波空化效应的纳米层(41)润滑金刚石砂轮(20)磨削装置,包括控制系统、加速模块、冲击波提速模块、加工模块、回收模块;控制系统控制本装置的运行;加速模块由加速管(10)、小拉法尔管(29)等组成,可使纳米颗粒(11)获得初速度;由电磁线圈(13)、冲击头(12)、冲击球(16)、聚波器(18)、大拉法尔管(19)等组成的冲击波提速模块将产生两个波源,一个用于清洗砂轮(20)表面杂质,另一个用于冲击具有初速度的纳米颗粒(11)到砂轮(20)表面形成纳米层(41);在加工过程中纳米层(41)的纳米颗粒(11)自主释放在磨削核心区,实现磨削区内部自润滑冷却;回收模块用于回收纳米颗粒(11),实现其重复利用。
Description
相关申请
本申请主张于2020年9月14日提交的、名称为“基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置”的中国发明专利申请:202010970004.8的优先权。
本发明涉及磨削加工中的润滑冷却技术领域,尤其指出一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置。
磨削加工因其加工精度高、对工件材料适应性强等特点,被广泛应用于当前加工行业,但磨削加工去除单位体积的材料所消耗的能量远远大于其他几种常用加工形式,而这些消耗的能量中,近90%会以磨削热的形式聚集在磨削区域,将会导致磨削区域出现高温高压的情况,进而影响磨具的使用寿命,降低工件的表面精度。
传统的浇注式润滑采用向磨削区连续灌溉大量磨削液的方法进行冷却润滑,磨削液优异的特性润滑使其在工件表面形成油膜,降低砂轮与工件之间的摩擦系数和磨削力,但是此润滑方式需要大量的磨削液,与当今环保和低碳的发展背景相离。同时由于砂轮高速旋转带动周围空气运动,进而在其周围形成致密的“气障层”,使喷嘴喷出的磨削液难进入磨削区,实际磨削液的有效流量仅为喷嘴总流量的5%-40%。磨削液无法进入砂轮与工件的接触界面,导致接触区工件表面极易产生热损伤,进而影响工件的精度。
纳米颗粒的自身性能赋予了它具有极好的导热性,在体积含量相同条件下,纳米级颗粒的表面积和热容量要远大于毫米级或微米级的固体颗粒。在磨削加工中,纳米颗粒的添加使磨削液的热交换性能得到提升,纳米颗粒起到了强化换热、降低磨削区温度的作用;此外,纳米颗粒还拥有极好的减摩抗磨特性和较高的承载能力,因此可进一步提高润滑液的摩擦学性能。
公开号为“CN109759958A”、发明名称为“一种静电喷嘴及可控射流微量润滑磨削系统”的发明专利公开了一种静电喷嘴及可控射流微量润滑磨削方法和装置,其原理是设计多种型号静电喷嘴用来加速含纳米颗粒的磨削冷却液微量喷射到磨削区,在 一定程度上提升了磨削区的冷却润滑效果。但是该技术方案仍旧存在以下问题:在实际磨削加工中,由于砂轮表面气障层的阻碍和磨削区的封闭性,目前很难将含有纳米颗粒的液滴充分有效地注入磨削区的核心部位,不能解决纳米颗粒在磨削区内部即时响应润滑的问题。
发明内容
本发明针对以上问题,提供一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,用于解决砂轮磨削加工过程中受气障层影响磨削液难以进入磨削核心区域,所包含的纳米颗粒在磨削区内部不能即时响应润滑的问题。其基本原理是:利用冲击波加速纳米颗粒冲击到砂轮表面形成纳米层,当带有纳米层的砂轮表面旋转到与工件接触时,由于磨削加工的滑擦、碰撞和挤压等机械作用导致纳米层的纳米颗粒释放在磨削区的核心部位,实现磨削区内部自润滑冷却。
为了实现上述目的,提供一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:包括控制系统、加速模块、冲击波提速模块、加工模块、回收模块;
所述控制系统用来控制整个装置运行;
所述加速模块包括气泵、储气罐、气压调节阀、加速管、可拆卸密闭送粉盒、送粉开关、小拉法尔管、气流阀、气压感应开关、活动开关;
所述气泵与储气罐提供所需的压缩气体;
所述加速管中分为活动腔、高压腔、低压腔;所述加速管与小拉法尔管、可拆卸密闭送粉盒法兰密封连接;
所述气压调节阀、气压感应开关、气流阀、送粉开关、活动开关按一定顺序打开与关闭,联合控制各室所需气压,以便产生激波推动纳米颗粒向前运动;纳米颗粒从可拆卸密闭送粉盒进入低压腔时,气压调节阀打开,加速管中产生的激波推动纳米颗粒向前运动,再经过小拉法尔管的拉法尔效应加速使纳米颗粒获得初速度;
冲击波提速模块包括冲击头、电磁线圈、散热器、冲击球、温度传感器、聚波器、大拉法尔管;电磁线圈外接双极高压脉冲电流,环绕分布在一个半圆环形管道外侧;冲击球在上述管道内来回运动撞击两端冲击头产生高频率弹道式冲击波,所述冲击球优选软磁性材料;所述散热器分布在电磁线圈与冲击头外围,所述温度传感器安装在 散热器上,用来检测温度和传递温度信号;所述聚波器在冲击头的正下方;所述大拉法尔管在两端冲击头下方各分布一个,其产生的拉法尔效应对纳米颗粒起加速作用;
加工模块包括砂轮、工件、工件固定板;所述工件固定板固定放置在磨床工作台上;所述工件固定放置在工件固定板上;所述砂轮位于工件上方且固定在磨床的旋转主轴上;
回收模块包括粗振动过滤网膜、细振动过滤网膜、电磁铁块、回收盒、外加磁场;所述粗振动过滤网膜在细振动过滤网膜上方,而细振动过滤网膜下方依次是电磁铁块、回收盒、外加磁场;所述电磁铁块外侧为光滑的倾斜流道,在电磁铁块通电有磁性后,纳米颗粒就吸附在流道壁上,当断电后纳米颗粒在外加磁场的影响下能够顺利脱落;所述回收盒中的回收盒盖中有一个自动开关,控制盒盖的开与闭;所述自动开关连接上述电磁铁块,当其通电工作时则关闭,断电则打开。
进一步地,所述控制系统包括:工作总控制器、电流控制器、温度控制器和压力控制器;
工作总控制器连接控制电流控制器、温度控制器和压力控制器,电流控制器连接控制电磁线圈、电磁铁块;
温度控制器连接控制散热器、温度传感器;
压力控制器连接控制气压检测器、气压调节阀、气流阀、气压感应开关、送粉开关、活动开关。
进一步地,所述砂轮未金属结合剂金刚石砂轮,所述金属结合剂为青铜结合剂;所述砂轮表面是青铜结合剂层;所述纳米颗粒为金属纳米颗粒,即三氧化二铁磁性纳米颗粒,尺寸大小50nm~100nm。
进一步地,所述加速模块中小拉法尔管焊接在冲击波提速模块中大拉法尔管上,且小拉法尔管喷嘴直径为2mm,大拉法尔管的喷嘴直径为20mm;所述冲击波提速模块位于加工模块的正上方,且大拉法尔管前端喷嘴部分到砂轮表面的距离为10mm~15mm,所述回收模块位于加工模块的下方。
进一步地,所述加速模块中的进气管固定在加速管上,弹簧一端固定在进气管上,一端固定连接推板;所述弹簧为拉伸弹簧;所述推板为环形薄板。
进一步地,所述加速模块中储气罐的气体进入加速管中活动腔推动推板压缩高压腔内的气体,当高压腔的压缩气体进入低压腔时,将产生激波;所述加速管结构为流 线收紧型,对产生的激波起增强作用。
进一步地,在弹性限定内,利用弹簧的变形与气压调节阀、气压感应开关、气流阀、送粉开关、活动开关的开闭相互配合产生脉冲式激波,高频率地推动纳米颗粒向前加速运动;所述气压感应开关内置一个压力传感器,当感应到高压腔气压符合设定要求时瞬时打开。
进一步地,所述可拆卸密闭送粉盒上端通过导气管与加速管中的活动腔相连,并于导气管上安装有气流阀;其下端送粉管道为文氏管结构。
进一步地,所述冲击波提速模块中半圆环形管道外侧为电磁线圈,管内为冲击球,两端各一个冲击头,当电磁线圈外接双极高压脉冲电流产生双向电磁力作用于冲击球时,往复撞击两端冲击头可产生两个高频率弹道式冲击波源。
进一步地,低强度高频率冲击波直接冲击到砂轮表面时会产生空化效应,用于清洗砂轮表面杂质;同时当冲击波的能量向内传递时使砂轮表面粗晶粒实现初始细化;高强度高频率的冲击波冲击纳米颗粒时会产生空化效应,抑制纳米颗粒团聚现象。
进一步地,当经过激波加速后具有较高的初速度的纳米颗粒进入大拉法尔管时,在高强度高频率的冲击波不断冲击作用下,纳米颗粒沿大拉法尔管轴向不断被提速,直至以最高速度冲击到砂轮表面形成纳米层;所述纳米层厚度5μm~15μm。
本发明的有益效果如下:
1、本装置借助冲击波直接将纳米颗粒均匀嵌入砂轮表面形成一层纳米层,相当于从砂轮内部释放纳米颗粒到工件加工表面,极大提高了磨削核心区域内部的润滑冷却效果,大幅降低磨削比能,同时减少了大量磨削液的浪费使用,符合工业领域提倡的节能环保要求。未嵌入砂轮表面和磨削释放后的纳米颗粒,经回收模块回收能再利用。
2、本装置中冲击球撞击左右冲击头产生双冲击波源,其中一个冲击波源推动纳米颗粒加速冲击到砂轮表面,而另一个波源用来清洗砂轮表面的磨屑等杂质,减少磨屑对磨削加工性能的影响,同时为后面纳米层形成提供有利环境。
3、本装置处理后砂轮表面变形小,不会对砂轮表面产生腐蚀、裂纹等缺陷,亦不会使金刚石磨粒碳化,不会改变砂轮结构及其使用。
4、本装置效率高、纳米层形成速度快、可实现自动化,同时成本低、符合工业化生产要求。
5、当冲击波的能量向内传递时使砂轮表面结构组织发生变化,导致砂轮结合剂粗晶粒实现初始细化,为提高砂轮表面与纳米层之间的结合性能提供了有利条件,且对已形成的纳米层不造成影响。
6、高频率低强度冲击波初始细化的基础上,高频率高强度冲击波进一步细化砂轮结合剂晶粒,导致砂轮结合剂晶粒由微米到亚微米最终转变为纳米晶粒,进而增强了纳米颗粒与砂轮表面的结合度。
7、经过高频率低强度冲击波的冲击改性作用,使后面形成的纳米层的结合性能得到大幅度提升,在砂轮旋转过程中不会发生纳米层从砂轮表面大块脱落的情况,更不会出现纳米层整体剥落的现象,沉积形成的纳米层只有在磨削弧区强烈的机械滑擦、碰撞和挤压作用下才会自主供给释放纳米颗粒。
8、本发明在于借助加速管中当气压感应开关阀开起时高压腔气体向低压腔内流动,又由于加速管流线收紧型的结构设计,产生超声速运动的增强激波,激波后的气流也作高速运动,气流的运动使纳米颗粒获得一个较大的初速度,再经过小拉法尔管的加速喷出;与此同时在双向电磁力的作用下,冲击球不断往复撞击冲击头产生高频率的冲击波,经过聚波器聚集形成高强度的冲击波;高频率高强度的冲击波对纳米颗粒产生强大推力使其以数倍声速的速度向下运动,随着冲击波在空气中的不断传播,不断的给纳米颗粒加速,同时由于拉法尔效应的影响纳米颗粒的速度越来越快,使其以最高速度冲击砂轮表面,并嵌入砂轮表面形成纳米层;纳米层与工件接触时在磨削区内部自主释放纳米颗粒,实现磨削区润滑方式从外部到内部的转变;掉落的纳米颗粒则通过回收模块回收再利用。
图1是一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置示意图。
图2是纳米颗粒在砂轮表面形成纳米层原理示意图。
图3是纳米层在磨削区内部释放纳米颗粒原理示意图;
图4是加速模块部分结构图;
图5是冲击波提速模块结构图。
其中,1.工作总控制器,2.电流控制器,3.温度控制器,4.压力控制器,5.气泵,6.导气管,7.气压检测器,8.储气罐,9.气压调节阀,10.加速管,11.纳米颗粒,12.冲击头,13.电磁线圈,14.散热器,15.陶瓷绝缘体,16.冲击球,17.温度传感器, 18.聚波器,19.大拉法尔管,20.砂轮,21.工件,22.工件固定板,23.粗振动过滤网膜,24.细振动过滤网膜,25.电磁铁块,26.回收盒盖,27.回收盒,28.外加磁场,29.小拉法尔管,30.活动开关,31.低压腔,32.气压感应开关,33.高压腔,34.推板,35.活动腔,36.进气管,37.弹簧,38.气流阀,39.可拆卸密闭送粉盒,40.送粉开关,41.纳米层,42.金刚石磨粒,43.砂轮青铜结合剂层。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
如图1-5所示,该实施例提供了一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其实质是利用冲击球冲击产生的冲击波来加速纳米颗粒使其在砂轮表面的金属结合剂层上形成纳米层,当纳米层旋转到与工件接触时再释放纳米颗粒,在磨削区内部起到润滑冷却作用,实现磨削润滑方式从外部到内部的转变,进而提升磨削加工质量。同时本发明也提出了利用冲击波清洗砂轮表面磨屑等杂质与纳米颗粒回收方法,降低了成本,提高了磨削加工的质量。
本装置包括:控制系统、加速模块、冲击波提速模块、加工模块、回收模块。所述控制系统包括:工作总控制器1、电流控制器2、温度控制器3和压力控制器4;所述加速模块包括:气泵5、导气管6、气压检测器7、储气罐8、气压调节阀9、加速管10、小拉法尔管29、活动开关30、气压感应开关32、推板34、进气管36、弹簧37、气流阀38、可拆卸密闭送粉盒39、送粉开关40;所述冲击波提速模块包括:冲击头12、电磁线圈13、散热器14、陶瓷绝缘体15、冲击球16、温度传感器17、聚波器18、大拉法尔管19;所述加工模块包括:砂轮20、工件21、工件固定板22;所述回收模块包括:粗振动过滤网膜23、细振动过滤网膜24、电磁铁块25、回收盒27、外加磁场28。
控制系统连接控制加速模块、冲击波提速模块、回收模块,具体是:工作总控制器1连接控制电流控制器2、温度控制器3和压力控制器4;电流控制器2连接电磁 线圈13、电磁铁块25,通过通电来控制其磁场的产生;温度控制器3连接散热器14、温度传感器17,通过温度传感器17检测温度高低,然后控制散热器14工作频率;压力控制器4连接气压检测器7,通过气压检测器7检测到储气罐8气压符合要求后,压力控制器4控制气压调节阀9、气压感应开关32、气流阀38、送粉开关40、活动开关30的开闭控制各室所需气压;控制系统用来控制整个装置运行,使本装置实现自动化。
如图4所示,在加速模块中气泵5与储气罐8、储气罐8与加速管10之间用导气管6连接通气,在气泵5与储气罐8的导气管6和储气罐8上装有一个气压检测器7,储气罐8与加速管10的导气管6装有一个气压调节阀9;加速管10中分为活动腔35、高压腔33、低压腔31,其中活动腔35与高压腔33用可移动的推板34来区分,高压腔33与低压腔31用气压感应开关32隔开,低压腔31与小拉法尔管29用活动开关30隔开;低压腔31末尾上端与可拆卸密闭送粉盒39密封连接,相接处装有送粉开关40;小拉法尔管29与加速管10为法兰密封连接,且两管连接处的管口直径一致;可拆卸密闭送粉盒39上端通过导气管6与加速管10中的活动腔35相连,并于导气管6上安装有气流阀38,其下端送粉管道为文氏管结构,利于纳米颗粒11加速下落,且长期使用不易发生堵塞现象;气压调节阀9、气压感应开关32、气流阀38、送粉开关40、活动开关30连接压力控制器4,按一定顺序开闭来产生所需的激波。
纳米颗粒11从可拆卸密闭送粉盒39进入低压腔31时,气压调节阀9打开,加速管10中产生的激波推动纳米颗粒向前运动,再经过小拉法尔管29的拉法尔效应加速使纳米颗粒以较高的速度进入大拉法尔管19中;在弹性限定内,利用弹簧37的变形配合气压调节阀9、气压感应开关32、气流阀38、送粉开关40、活动开关30的开闭产生脉冲式激波,高频率地推动纳米颗粒向前超声速运动。
加速模块中的小拉法尔管29焊接在冲击波提速模块中大拉法尔管19上。
如图5所示,在冲击波提速模块中,环绕分布在一个半圆环形管道外侧电磁线圈13外接入双极高压脉冲电流,产生双向电磁力推动冲击球16在上述管道内来回运动撞击冲击头12产生将产生两个高频率弹道式冲击波;散热器14分布在电磁线圈13与冲击头12外围,作用是散发冲击球16来回运动和撞击冲击头12所产生的热量;温度传感器17安装在散热器14上,用来检测温度和传递温度信号;聚波器18在冲 击头12的正下方,并在两者之间的大拉法尔管19壁上附着有声特性反射材料的涂层,其目的都是为了聚集冲击波,增加冲击波的冲击强度。
冲击提速模块中产生两个冲击波源,由于聚波器18位置设置不同,其中一个通过聚集后形成高频率低强度的冲击波,冲击到砂轮表面产生空化效应,用来清洗砂轮表面磨屑等杂质,也为纳米颗粒在砂轮表面形成纳米层提供有利条件;另外一个通过聚集后形成高频率高强度的冲击波,用来加速冲击纳米颗粒,直至以最高速度冲击到砂轮表面形成纳米层。
上述聚集形成的高强度高频率的冲击波在冲击纳米颗粒的时产生空化效应,有足够的能量击穿存在团聚现象的纳米颗粒,有效抑制了纳米颗粒团聚现象的出现,提高纳米颗粒的分散性能。
由于冲击球16在半圆状的环形管道里高速往复运动,管道的温度会持续上升,冲击球16撞击冲击头12后在冲击头12周围也会产生大量的热量,基于此上述管道的材料优选降温散热性能良好的材料,在管道外的电磁线圈13和冲击头12的周围设有环形散热器14。散热器14上装有温度传感器17,温度传感器17连接温度控制器3,当温度升温过度时,温度控制器3就发出散热器14加快工作频率的指令。
当带有纳米层41的砂轮表面旋转到与工件21接触时,由于机械滑擦、碰撞和挤压作用纳米层41内的纳米颗粒11将掉落在磨削加工的核心区域内部,进而实现磨削加工过程中的自释放、自润滑。
工件固定板22的下面,设有回收模块,用于回收纳米颗粒。粗振动过滤网膜23过滤尺寸大于1μm的颗粒,细振动过滤膜24筛选出小于等于100nm的颗粒,在倾斜流道受电磁铁块25的影响,带有磁性的纳米颗粒吸附在流道的壁上,当工作结束电磁铁块25断电时,自动开关控制回收盒盖26打开,流道壁上的磁性纳米颗粒在没有电磁铁块25和盒底的外加磁场28的影响下,自由脱落到回收盒27中。
回收盒27上装有自动开关,控制回收盒盖26的开与闭;自动开关连接上述电磁铁块25,当电磁铁块25通电工作时则关闭,断电则打开。
Claims (10)
- 一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:包括控制系统、加速模块、冲击波提速模块、加工模块、回收模块;所述控制系统用来控制整个装置运行;所述加速模块包括气泵(5)、储气罐(8)、气压调节阀(9)、加速管(10)、可拆卸密闭送粉盒(39)、送粉开关(40)、小拉法尔管(29)、气流阀(38)、气压感应开关(32)、活动开关(30);所述气泵(5)与储气罐(8)提供所需的压缩气体;所述加速管(10)中分为活动腔(35)、高压腔(33)、低压腔(31);所述加速管(10)与小拉法尔管(29)、可拆卸密闭送粉盒(39)法兰密封连接;所述气压调节阀(9)、气压感应开关(32)、气流阀(38)、送粉开关(40)、活动开关(30)按一定顺序打开与关闭,联合控制各室所需气压,以便产生激波推动纳米颗粒向前运动;纳米颗粒(11)从可拆卸密闭送粉盒(39)进入低压腔(31)时,气压调节阀(9)打开,加速管(10)中产生的激波推动纳米颗粒向前运动,再经过小拉法尔管(29)的拉法尔效应加速使纳米颗粒获得初速度;冲击波提速模块包括冲击头(12)、电磁线圈(13)、散热器(14)、冲击球(16)、温度传感器(17)、聚波器(18)、大拉法尔管(19);电磁线圈(13)外接双极高压脉冲电流,环绕分布在一个半圆环形管道外侧;冲击球(16)在上述管道内来回运动撞击两端冲击头(12)产生高频率弹道式冲击波,所述冲击球(16)优选软磁性材料;所述散热器(14)分布在电磁线圈(13)与冲击头(12)外围,所述温度传感器(17)安装在散热器(14)上,用来检测温度和传递温度信号;所述聚波器(18)在冲击头(12)的正下方;所述大拉法尔管(19)在两端冲击头(12)下方各分布一个,其产生的拉法尔效应对纳米颗粒起加速作用;加工模块包括砂轮(20)、工件(21)、工件固定板(22);所述工件固定板(22)固定放置在磨床工作台上;所述工件(21)固定放置在工件固定板(22)上;所述砂轮(20)位于工件(21)上方且固定在磨床的旋转主轴上;回收模块包括粗振动过滤网膜(23)、细振动过滤网膜(24)、电磁铁块(25)、回收盒(27)、外加磁场(28);所述粗振动过滤网膜(23)在细振动过滤网膜(24) 上方,而细振动过滤网膜(24)下方依次是电磁铁块(25)、回收盒(27)、外加磁场(28);所述电磁铁块(25)外侧为光滑的倾斜流道,在电磁铁块(25)通电有磁性后,纳米颗粒就吸附在流道壁上,当断电后纳米颗粒在外加磁场(28)的影响下能够顺利脱落;所述回收盒(27)中的回收盒盖(26)中有一个自动开关,控制盒盖的开与闭;所述自动开关连接上述电磁铁块(25),当其通电工作时则关闭,断电则打开。
- 根据权利要求1所述的基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:所述控制系统包括:工作总控制器(1)、电流控制器(2)、温度控制器(3)和压力控制器(4);工作总控制器(1)连接控制电流控制器(2)、温度控制器(3)和压力控制器(4),电流控制器(2)连接控制电磁线圈(13)、电磁铁块(25);温度控制器(3)连接控制散热器(14)、温度传感器(17);压力控制器(4)连接控制气压检测器(7)、气压调节阀(9)、气流阀(38)、气压感应开关(32)、送粉开关(40)、活动开关(30)。
- 根据权利要求1所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:所述砂轮(20)未金属结合剂金刚石砂轮,所述金属结合剂为青铜结合剂;所述砂轮表面是青铜结合剂层(43);所述纳米颗粒(11)为金属纳米颗粒,即三氧化二铁(γ-Fe 2O 3)磁性纳米颗粒,尺寸大小50nm~100nm。
- 根据权利要求1所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:所述加速模块中小拉法尔管(29)焊接在冲击波提速模块中大拉法尔管(19)上,且小拉法尔管(29)喷嘴直径为2mm,大拉法尔管(19)的喷嘴直径为20mm;所述冲击波提速模块位于加工模块的正上方,且大拉法尔管(19)前端喷嘴部分到砂轮表面的距离为10mm~15mm,所述回收模块位于加工模块的下方。
- 根据权利要求1所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:所述加速模块中的进气管(36)固定在加速管(10)上,弹簧(37)一端固定在进气管(36)上,一端固定连接推板(34);所述弹簧(37)为拉伸弹簧;所述推板(34)为环形薄板。
- 根据权利要求1所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:所述加速模块中储气罐(8)的气体进入加速管(10)中活动腔(35) 推动推板(34)压缩高压腔(33)内的气体,当高压腔(33)的压缩气体进入低压腔(31)时,将产生激波;所述加速管(10)结构为流线收紧型,对产生的激波起增强作用。
- 根据权利要求1所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:在弹性限定内,利用弹簧(37)的变形与气压调节阀(9)、气压感应开关(32)、气流阀(38)、送粉开关(40)、活动开关(30)的开闭相互配合产生脉冲式激波,高频率地推动纳米颗粒向前加速运动;所述气压感应开关(32)内置一个压力传感器,当感应到高压腔(33)气压符合设定要求时瞬时打开;所述可拆卸密闭送粉盒(39)上端通过导气管(6)与加速管(10)中的活动腔(35)相连,并于导气管(6)上安装有气流阀(38);其下端送粉管道为文氏管结构。
- 根据权利要求1所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:所述冲击波提速模块中半圆环形管道外侧为电磁线圈(13),管内为冲击球(16),两端各一个冲击头(12),当电磁线圈(13)外接双极高压脉冲电流产生双向电磁力作用于冲击球(16)时,往复撞击两端冲击头(12)可产生两个高频率弹道式冲击波源。
- 根据权利要求8所述基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:低强度高频率冲击波直接冲击到砂轮表面时会产生空化效应,用于清洗砂轮表面杂质;同时当冲击波的能量向内传递时使砂轮表面粗晶粒实现初始细化;高强度高频率的冲击波冲击纳米颗粒时会产生空化效应,抑制纳米颗粒团聚现象。
- 根据权利要求1所述一种基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置,其特征在于:当经过激波加速后具有较高的初速度的纳米颗粒进入大拉法尔管(19)时,在高强度高频率的冲击波不断冲击作用下,纳米颗粒沿大拉法尔管(19)轴向不断被提速,直至以最高速度冲击到砂轮表面形成纳米层(41);所述纳米层(41)厚度5μm~15μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023515844A JP7464327B2 (ja) | 2020-09-14 | 2021-09-07 | 衝撃波キャビテーション効果に基づくナノ層潤滑ダイヤモンド砥石研削装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010970004.8 | 2020-09-14 | ||
CN202010970004.8A CN111993270B (zh) | 2020-09-14 | 2020-09-14 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052919A1 true WO2022052919A1 (zh) | 2022-03-17 |
Family
ID=73468648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/116993 WO2022052919A1 (zh) | 2020-09-14 | 2021-09-07 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7464327B2 (zh) |
CN (1) | CN111993270B (zh) |
WO (1) | WO2022052919A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117681121A (zh) * | 2024-01-29 | 2024-03-12 | 内蒙古工业大学 | 一种内置可调节超临界二氧化碳喷出角度的磨削机床刀具 |
CN118143848A (zh) * | 2024-05-13 | 2024-06-07 | 石家庄泓桥机械制造有限公司 | 一种行星轮内孔鼓形滚道加工装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111993270B (zh) * | 2020-09-14 | 2021-08-13 | 湖南理工学院 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 |
CN112025554B (zh) * | 2020-09-14 | 2021-08-13 | 湖南理工学院 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削方法 |
CN114248170B (zh) * | 2021-12-20 | 2023-06-30 | 湖南理工学院 | 纳米气溶胶定向吸附金刚石砂轮磨削加工装置及方法 |
CN115351688B (zh) * | 2022-07-14 | 2023-11-17 | 江苏甬金金属科技有限公司 | 一种附带复检功能的自动定位式抛光装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0624426A1 (de) * | 1993-05-11 | 1994-11-17 | DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung | Verfahren und Anordnung zum Zerspanen von Schichten |
CN102212818A (zh) * | 2011-05-11 | 2011-10-12 | 江苏大学 | 冲击波加速纳米颗粒诱导金属表面纳米化方法及装置 |
CN103231310A (zh) * | 2013-05-15 | 2013-08-07 | 青岛理工大学 | 低温冷却与纳米粒子射流微量润滑耦合磨削介质供给系统 |
CN105033780A (zh) * | 2015-06-23 | 2015-11-11 | 河南理工大学 | 一种适用于硬脆材料的深腔加工系统 |
CN111993270A (zh) * | 2020-09-14 | 2020-11-27 | 湖南理工学院 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 |
CN112025554A (zh) * | 2020-09-14 | 2020-12-04 | 湖南理工学院 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59205254A (ja) * | 1983-05-07 | 1984-11-20 | Kuroda Precision Ind Ltd | 切削液供給装置 |
AU8766391A (en) * | 1990-08-31 | 1992-03-30 | Productivity Xperts, Inc | Method and apparatus of machining with improved chip control |
JP2000317770A (ja) * | 1999-05-10 | 2000-11-21 | Taco Co Ltd | 工作機械等の切削加工方法とその複合加工装置 |
JP2003103465A (ja) | 2001-09-27 | 2003-04-08 | Tokuji Umehara | 磁場配列を利用した研削用砥粒体の再生方法及び再生装置 |
CN101736385A (zh) * | 2008-11-19 | 2010-06-16 | 苏州有色金属研究院有限公司 | 铝合金自润滑表面的处理工艺 |
CN101736214B (zh) * | 2010-01-08 | 2012-07-25 | 清华大学 | 一种轻金属表面激光冲击微纳米颗粒注入强化方法 |
CN102275088B (zh) * | 2010-06-12 | 2013-07-24 | 成都三洪商贸有限公司 | 低温雾化润滑冷却系统 |
JP5982693B2 (ja) | 2012-08-13 | 2016-08-31 | 国立大学法人長岡技術科学大学 | 研削液供給装置 |
WO2014117315A1 (zh) | 2013-02-04 | 2014-08-07 | 青岛理工大学 | 纳米流体静电雾化可控射流微量润滑磨削系统 |
CN208067922U (zh) * | 2018-03-15 | 2018-11-09 | 绍兴双联齿轮有限公司 | 一种齿轮加工多功能磨床 |
-
2020
- 2020-09-14 CN CN202010970004.8A patent/CN111993270B/zh active Active
-
2021
- 2021-09-07 WO PCT/CN2021/116993 patent/WO2022052919A1/zh active Application Filing
- 2021-09-07 JP JP2023515844A patent/JP7464327B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0624426A1 (de) * | 1993-05-11 | 1994-11-17 | DaimlerChrysler Aerospace Airbus Gesellschaft mit beschränkter Haftung | Verfahren und Anordnung zum Zerspanen von Schichten |
CN102212818A (zh) * | 2011-05-11 | 2011-10-12 | 江苏大学 | 冲击波加速纳米颗粒诱导金属表面纳米化方法及装置 |
CN103231310A (zh) * | 2013-05-15 | 2013-08-07 | 青岛理工大学 | 低温冷却与纳米粒子射流微量润滑耦合磨削介质供给系统 |
CN105033780A (zh) * | 2015-06-23 | 2015-11-11 | 河南理工大学 | 一种适用于硬脆材料的深腔加工系统 |
CN111993270A (zh) * | 2020-09-14 | 2020-11-27 | 湖南理工学院 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 |
CN112025554A (zh) * | 2020-09-14 | 2020-12-04 | 湖南理工学院 | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117681121A (zh) * | 2024-01-29 | 2024-03-12 | 内蒙古工业大学 | 一种内置可调节超临界二氧化碳喷出角度的磨削机床刀具 |
CN117681121B (zh) * | 2024-01-29 | 2024-04-30 | 内蒙古工业大学 | 一种内置可调节超临界二氧化碳喷出角度的磨削机床刀具 |
CN118143848A (zh) * | 2024-05-13 | 2024-06-07 | 石家庄泓桥机械制造有限公司 | 一种行星轮内孔鼓形滚道加工装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7464327B2 (ja) | 2024-04-09 |
JP2023542642A (ja) | 2023-10-11 |
CN111993270A (zh) | 2020-11-27 |
CN111993270B (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022052919A1 (zh) | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削装置 | |
WO2022052899A1 (zh) | 基于冲击波空化效应的纳米层润滑金刚石砂轮磨削方法 | |
US9580815B2 (en) | Method and apparatus for nanocrystallizing a metal surface by shock wave-accelerated nanoparticles | |
WO2020168995A1 (zh) | 一种大型薄壁件支撑设备及支撑方法 | |
CN111451540A (zh) | 一种用于铁质工件钻孔的精密数控设备 | |
CN101972701B (zh) | 一种流体除铁装置 | |
CN201372129Y (zh) | 一种带有防磨盖的耐磨弯头 | |
CN2850822Y (zh) | 高压水射流切割机用喷砂管 | |
CN217381055U (zh) | 一种用针阀控制喷嘴通流面积的可调引射器 | |
CN102359631A (zh) | 一种调压锥阀调压阀组 | |
CN207104671U (zh) | 一种内孔表面的可调反射式超声喷丸强化装置 | |
CN213136377U (zh) | 一种高效型阀体生产用喷砂装置 | |
CN115446738A (zh) | 一种海绵磨料喷砂机 | |
CN112518143A (zh) | 一种亚克力板材激光切割装置 | |
CN100457286C (zh) | 一种冷喷涂高压送粉器 | |
CN113997205A (zh) | 一种高压脉冲磨料射流发生装置及方法 | |
CN114248170B (zh) | 纳米气溶胶定向吸附金刚石砂轮磨削加工装置及方法 | |
CN221837052U (zh) | 一种新型超声喷丸加工冷却装置 | |
CN114434282A (zh) | 一种基于磁弱强化冲击植入纳米润滑砂轮磨削装置及方法 | |
CN215823289U (zh) | 一种高效节能型气流粉碎机喷嘴 | |
CN110541826A (zh) | 一种真空束焊机用真空泵 | |
CN220329979U (zh) | 一种采用等离子转移弧加热制取金属粒子粉末的收集器 | |
CN219954670U (zh) | 一种可处理堵塞的管道机器人 | |
CN213205735U (zh) | 一种煤矿井下喷雾装置 | |
CN116538147B (zh) | 一种具有快速散热效果的涡轮增压器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21865973 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023515844 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21865973 Country of ref document: EP Kind code of ref document: A1 |