WO2022052516A1 - 一种提高厚规格热轧型钢低温冲击韧性的热处理方法 - Google Patents

一种提高厚规格热轧型钢低温冲击韧性的热处理方法 Download PDF

Info

Publication number
WO2022052516A1
WO2022052516A1 PCT/CN2021/096628 CN2021096628W WO2022052516A1 WO 2022052516 A1 WO2022052516 A1 WO 2022052516A1 CN 2021096628 W CN2021096628 W CN 2021096628W WO 2022052516 A1 WO2022052516 A1 WO 2022052516A1
Authority
WO
WIPO (PCT)
Prior art keywords
section steel
heat treatment
steel
treatment method
temperature
Prior art date
Application number
PCT/CN2021/096628
Other languages
English (en)
French (fr)
Inventor
王中学
赵培林
吴会亮
王建军
刘超
李春传
路峰
武文健
Original Assignee
山东钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东钢铁股份有限公司 filed Critical 山东钢铁股份有限公司
Publication of WO2022052516A1 publication Critical patent/WO2022052516A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention belongs to the technical field of heat treatment, in particular, the invention relates to a heat treatment method for improving the low temperature toughness of thick gauge hot-rolled section steel.
  • Thick specification low temperature resistant section steel generally refers to flange or web thickness of more than 20mm, -40°C low temperature impact energy greater than 34KV/J, usually delivered in hot rolled state.
  • more alloying elements such as Nb, V, Ti and other alloying elements are added in the steelmaking process for microalloying treatment.
  • problems such as uneven deformation and large difference in cooling rate, resulting in deformation and temperature control process window. It is relatively narrow, and at the same time, the final rolling temperature is high due to the load of the rolling mill, and the cumulative rolling pass deformation is insufficient. It is easy to cause performance fluctuations due to uneven structure, and the production is difficult.
  • the low temperature impact toughness can be significantly improved on the premise that the strength does not decrease significantly, which not only has good economic benefits, but also has product safety. also greatly improved.
  • Patents CN100463978C and CN101876001A both use quenching + sub-temperature quenching process, which is heated and quenched in the austenite + ferrite two-phase region to obtain a ferrite soft phase to achieve the purpose of improving the toughness of the steel plate.
  • the heat treatment process involved in the patent CN102115806B adopts sub-temperature normalizing, that is, the heating temperature is 20-50°C below AC 3 and kept for a certain period of time, and air-cooled after being released from the furnace.
  • sub-temperature normalizing that is, the heating temperature is 20-50°C below AC 3 and kept for a certain period of time, and air-cooled after being released from the furnace.
  • the structure is small and uniform, the ferrite content is high, and the pearlite is short rod or granular, which can effectively reduce the strength loss during the heat treatment process and greatly improve the low temperature toughness of the extra-thick plate.
  • the above patents all use different offline heat treatment processes to improve the low temperature toughness of thick steel plates. Compared with steel plates, due to the complex section of section steel, it is not suitable for quenching and sub-temperature normalizing to improve low-temperature toughness.
  • the purpose of the present invention is to overcome the above problems and provide a heat treatment method for improving the low temperature impact toughness of thick gauge hot-rolled section steel.
  • the invention provides a heat treatment method for improving the low temperature impact toughness of thick gauge steel, the heat treatment method comprising the following steps:
  • the thickness of the shaped steel is 20-50 mm.
  • steel balls with a diameter of 0.8-2.0 mm can be used in the shot blasting treatment in the step 1), and the rotational speed of the steel balls is 80-120 m/s.
  • step 2) full nitrogen protection heating is adopted when heating the shaped steel.
  • the heating rate is 1.0°C/mm to 1.4°C/mm, and the specific heating time is determined according to the thickness of the section steel web or flange to be produced. .
  • the holding time is thickness (mm) ⁇ (0.8-1.6min/mm), so as to ensure that 1/4-1/3 of the flange thickness locally obtains an ideal heat treatment structure , the specific heating time depends on the thickness of the steel web or flange produced.
  • the process is simple and the heat treatment effect is good, and the thick gauge section steel can significantly increase the ductile-brittle transition temperature of the section steel and improve the low temperature resistance performance of the section steel without significantly reducing the strength.
  • the method according to the present invention is not limited to H-beam, but can also be extended to large-sized angle steel, I-beam, channel steel and other profiles.
  • the invention changes the original structure of the steel by normalizing the steel after hot rolling, and further realizes the refinement of the structure and the
  • the precipitation of carbides solves the problem of low-temperature impact caused by the existence of Widmandarin or bainite structure in the matrix after hot rolling, as well as coarse ferrite and pearlite structure, resulting in inconsistent impact performance, and fundamentally solves the problem.
  • the surface and core of the flange or web of the profiled steel are fine and uniform, the grain size difference in the thickness direction is reduced, the pearlite is short rod-shaped or granular, and the strength loss during the heat treatment process is 5 ⁇ 30MPa
  • the longitudinal impact energy at -40°C at 1/4 to 1/3 below the surface of the flange of thick gauge steel is greatly increased to more than 200J, which reduces energy consumption compared with full-thickness normalizing heat treatment, and meets the requirements of engineering structural steel. need.
  • Fig. 1 is the metallographic structure diagram of Q355E hot rolling with flange thickness of 36mm in the embodiment of the present invention
  • FIG. 2 is a metallographic structure diagram of Q355E with a flange thickness of 36 mm after heat treatment according to an embodiment of the present invention.
  • Example 1 Example 2 and Example 3 select the 355MPa strength grade steel Q355E as the representative, and the section steel with different flange thicknesses is used as the implementation object. Comparison of the metallographic structure of 36mm Q355E after hot rolling and heat treatment. The AC 3 transformation point was measured at 879°C using a thermal dilatometer, and then normalizing heat treatment was carried out according to the method of the present invention. The specific heat treatment process of Examples 1-3 is shown in Table 1 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种提高厚规格热轧型钢低温韧性的热处理方法,包括以下步骤:1)对型钢进行抛丸处理;2)将抛丸处理后的型钢进行加热,加热温度控制在AC3以上20~50℃,型钢达到AC3以上20~50℃后保温,保温时间为0.8~1.6min/mm×型钢厚度mm;然后出炉冷却至室温。该热处理方法从根本上解决了厚规格型钢,热轧后低温冲击性能不合格后难以逆转的技术问题,避免钢材因性能不合格直接判废,最大程度降低经济损失,增加了企业的经济效益。

Description

一种提高厚规格热轧型钢低温冲击韧性的热处理方法
相关申请的交叉参考
该申请要求2020年9月9日提交的中国专利申请号为202010940790.7的专利申请的优先权,该专利申请在此被完全引入作为参考。
技术领域
本发明属于热处理技术领域,具体地讲,本发明涉及一种提高厚规格热轧型钢低温韧性的热处理方法。
背景技术
随着国际国内海洋经济的发展,石油和天然气开采已经逐渐从陆上区域拓展到海洋领域,从内陆海洋扩展到极地海洋区域。因此,在石油平台用高端海洋工程装备用钢需求量增加的基础上,对钢材的耐腐蚀性,低温韧性,抗层状撕裂性能等综合性能要求逐渐提升。在尺寸规格方面,包括H型钢,角钢,槽钢在内的型材也由中小规格逐渐向超大规格发展。翼缘或者腿部厚度的增加对组织的一致性要求更高,同时对后续结构稳定性和寿命周期也产生巨大影响。对于极地环境条件下使用的耐低温性能的型钢,尺寸效应尤其明显;因此,改善厚规格型钢组织均匀性,提升使用性能,是目前型钢制备过程中的一个普遍存在急需攻克的难题。
厚规格耐低温型钢一般指翼缘或者腹板厚度20mm以上,-40℃低温冲击功大于34KV/J,通常以热轧状态交货。为了保证低温韧性和强度,炼钢过程添加较多Nb,V,Ti等合金元素进行微合金化处理,轧制过程存在变形不均和冷却速率差异大等问题,导致变形量及温度控制工艺窗口比较窄,同时,受轧机负荷限制终轧温度高,累积轧制道次变形量不足,很容易因组织不均匀而造成性能波动,生产难度较大。综合考虑厚规格耐低温型钢的成材率和成本因素,若能采用适当的热处理工艺,在强度不出现明显降低的前提下,显著提高低温冲击韧性,不但具有较好的经济效益,而且产品安全性也大幅度提升。
目前,许多专利技术涉及到如何提高低温韧性。如专利CN104745796 B,采用辊压式淬火机对超高强度钢板进行淬火处理,在表层和心部分别得到不同的M和M+F组织,此类工艺控制难度大,得到的组织均匀性较差;专利CN100463978C和CN101876001A,均采用的是淬火+亚温淬火工艺,其在奥氏体+铁素体两相区加热并淬火,得到铁素体软相来达到提高钢板韧性目的。专利CN102115806B涉及的热处理工艺采用亚温正火,即加热温度到AC 3以下20-50℃并保温一定时间,出炉后空冷。热处理后组织细小而均匀,铁素体含量高, 珠光体呈短棒状或者粒状,在有效减少热处理过程中强度损失的同时,大幅提高特厚板的低温韧性。上述专利均利用不同离线热处理工艺实现厚钢板低温韧性的提升。与钢板相比,由于型钢的断面复杂,因此不适应淬火及亚温正火等工艺来提升低温韧性。
发明内容
本发明的目的在于克服上述难题,提供一种提高厚规格热轧型钢低温冲击韧性的热处理方法。
为达到上述目的,本发明采用了如下技术方案:
本发明提供了一种提高厚规格型钢低温冲击韧性的热处理方法,所述热处理方法包括如下步骤:
1)对型钢进行抛丸处理,以使型材表面的氧化铁皮脱落;
2)将抛丸后的型钢置于加热炉或者热处理炉内进行加热,加热温度控制在AC 3以上20~50℃(正火热处理温度),型材达到AC 3以上20~50℃后保温,保温时间为厚度(mm)×(0.8~1.6min/mm),较全截面热处理时间缩短;随后出炉自然冷却至室温。
根据本发明的一个实施例,所述型钢的厚度为20-50mm。
根据本发明的一个实施例,所述步骤1)中抛丸处理时可以使用直径为0.8~2.0mm的钢珠,钢珠的旋转速度为80m/s~120m/s。
根据本发明的一个实施例,所述步骤2)中对型钢加热时采用全氮气保护加热。
根据本发明的一个实施例,所述步骤2)中,在对型钢进行加热时,加热速率为1.0℃/mm~1.4℃/mm,具体加热时间根据生产的型钢腹板或翼缘厚度而定。
根据本发明的一个实施例,在对型钢进行加热时,保温时间为厚度(mm)×(0.8~1.6min/mm),保证翼缘厚度的1/4~1/3局部获得理想的热处理组织,具体加热时间根据生产的型钢腹板或翼缘厚度而定。
根据本发明的方法,具有工艺简单、热处理效果好的特点,可以使得厚规格型钢,在强度没有明显降低的情况下,显著提高型钢的韧脆转变温度,提升型钢的耐低温性能。
根据本发明的方法,不仅限于H型钢,也可扩展应用于大规格角钢、工字钢和槽钢等型材。
与现有技术相比,本发明的优势在于:
本发明针对厚规格型钢厚度方向组织不均匀,表层和心部晶粒度差距较大现象,通过对热轧后型钢进行正火处理,改变型钢原有的组织形态,进一步实现了组织细化及碳化物的析出,解决了因热轧后基体中存在魏氏组织或贝氏体组织,以及粗大铁素体和珠光体组织导致的低温冲击偏低,致使冲击性能不合的问题,从根本上解决了厚规格型钢,热轧后低温冲击 性能不合格后难以逆转的技术问题,避免钢材因性能不合格直接判废,最大程度降低经济损失,增加了企业的经济效益。
采用上述正火热处理工艺,型钢翼缘或腹板表面和心部组织细小且均匀,厚度方向组织晶粒度等级差距减小,珠光体呈短棒状或者粒状,在热处理过程中强度损失5~30MPa的同时,大幅度提高厚规格型钢翼缘部位表面以下1/4~1/3处-40℃纵向冲击功至200J以上,与全厚度正火热处理相比降低了能耗,同时满足工程结构用钢需求。
附图说明
图1为本发明实施例翼缘厚度36mm的Q355E热轧的金相组织图;
图2为本发明实施例翼缘厚度36mm的Q355E热处理后金相组织图。
具体实施方式
结合附图和实施例对本发明的具体实施方式做进一步描述。
实施例1~3
实施例1、实施例2和实施例3选择355MPa强度级别钢种Q355E为代表,不同翼缘厚度的型钢作为实施对象,图1和图2是示出了根据本发明一个实施例,翼缘厚度36mm的Q355E热轧和热处理后金相组织对比图。利用热膨胀仪测得AC 3转变点879℃,然后根据本发明所述的方法进行正火热处理,实施例1-3具体热处理工艺如下表1所示:
表1正火工艺实施方案
Figure PCTCN2021096628-appb-000001
按照标准为BS EN ISO 377-1997《力学性能试验试样的取样位置和制备》;屈服强度、抗拉强度、延伸率的试验方法参照标准ISO6892-1-2009《金属材料室温拉伸试验方法》;冲击功试验方法参照标准ISO 148-1《金属材料夏比摆锤冲击试验》,结果见表2。
表2性能变化对比
Figure PCTCN2021096628-appb-000002
Figure PCTCN2021096628-appb-000003
从表2中可见,本发明实施例1-3屈服强度和抗拉强度降低20MPa以内,其-40℃冲击功大幅度提高。可以满足制备海洋工程构件在极低环境下的使用条件,适用于制作海洋石油平台、海洋远洋运输船舶等具有较高低温韧性要求的支撑结构件。
本发明未详细说明的内容均可采用本领域的常规技术知识。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

  1. 一种提高厚规格热轧型钢低温冲击韧性的热处理方法,包括以下步骤:
    1)对型钢进行抛丸处理;
    2)将抛丸处理后的型钢进行加热,加热温度控制在AC 3以上20~50℃,型钢达到AC 3以上20~50℃后保温,保温时间为0.8~1.6min/mm×型钢厚度mm;然后出炉冷却至室温。
  2. 根据权利要求1所述的热处理方法,其特征在于,所述型钢的厚度为20-50mm。
  3. 根据权利要求1所述的热处理方法,其特征在于,所述步骤1)中抛丸处理时,所用钢珠的直径为0.8~2.0mm。
  4. 根据权利要求3所述的热处理方法,其特征在于,钢珠的旋转速度为80m/s~120m/s。
  5. 根据权利要求1所述的热处理方法,其特征在于,所述步骤2)中对型钢加热时采用全氮气保护加热。
  6. 根据权利要求1所述的热处理方法,其特征在于,所述步骤2)中加热速率为1.0℃/mm~1.4℃/mm。
PCT/CN2021/096628 2020-09-09 2021-05-28 一种提高厚规格热轧型钢低温冲击韧性的热处理方法 WO2022052516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010940790.7 2020-09-09
CN202010940790.7A CN112195321A (zh) 2020-09-09 2020-09-09 一种提高厚规格热轧型钢低温冲击韧性的热处理方法

Publications (1)

Publication Number Publication Date
WO2022052516A1 true WO2022052516A1 (zh) 2022-03-17

Family

ID=74006469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096628 WO2022052516A1 (zh) 2020-09-09 2021-05-28 一种提高厚规格热轧型钢低温冲击韧性的热处理方法

Country Status (2)

Country Link
CN (1) CN112195321A (zh)
WO (1) WO2022052516A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195321A (zh) * 2020-09-09 2021-01-08 山东钢铁股份有限公司 一种提高厚规格热轧型钢低温冲击韧性的热处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392350A (zh) * 2007-09-18 2009-03-25 宝山钢铁股份有限公司 一种极低屈服点钢板及其制造方法
CN101545077A (zh) * 2008-03-24 2009-09-30 宝山钢铁股份有限公司 一种低温用钢及其制造方法
CN101613840A (zh) * 2008-06-23 2009-12-30 宝山钢铁股份有限公司 强韧性匹配及高温性能优良的特厚钢板及其制造方法
CN102277540A (zh) * 2010-06-10 2011-12-14 宝山钢铁股份有限公司 抗高温pwht软化的正火型钢板及其制造方法
WO2012073628A1 (ja) * 2010-11-30 2012-06-07 Udトラックス株式会社 鋳鉄材料の疲労強度向上方法
CN102719744A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 低温结构用钢及其制造方法
CN103215418A (zh) * 2013-05-15 2013-07-24 莱芜钢铁集团有限公司 一种特厚钢板的热处理方法
CN112195321A (zh) * 2020-09-09 2021-01-08 山东钢铁股份有限公司 一种提高厚规格热轧型钢低温冲击韧性的热处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605241A (zh) * 2011-12-30 2012-07-25 内蒙古包钢钢联股份有限公司 一种正火型16MnDR低温压力容器钢板及其制造方法
CN102703805A (zh) * 2012-06-22 2012-10-03 内蒙古包钢钢联股份有限公司 一种正火型船板钢及其生产方法
CN105925904B (zh) * 2016-06-23 2017-11-21 江阴兴澄特种钢铁有限公司 一种高温高强度、低温冲击韧性优良的含Mo钢板及其制造方法
CN110592480B (zh) * 2019-09-25 2022-01-11 南京钢铁股份有限公司 心部低温冲击韧性优异的厚规格q345r钢板及制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392350A (zh) * 2007-09-18 2009-03-25 宝山钢铁股份有限公司 一种极低屈服点钢板及其制造方法
CN101545077A (zh) * 2008-03-24 2009-09-30 宝山钢铁股份有限公司 一种低温用钢及其制造方法
CN101613840A (zh) * 2008-06-23 2009-12-30 宝山钢铁股份有限公司 强韧性匹配及高温性能优良的特厚钢板及其制造方法
CN102277540A (zh) * 2010-06-10 2011-12-14 宝山钢铁股份有限公司 抗高温pwht软化的正火型钢板及其制造方法
WO2012073628A1 (ja) * 2010-11-30 2012-06-07 Udトラックス株式会社 鋳鉄材料の疲労強度向上方法
CN102719744A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 低温结构用钢及其制造方法
CN103215418A (zh) * 2013-05-15 2013-07-24 莱芜钢铁集团有限公司 一种特厚钢板的热处理方法
CN112195321A (zh) * 2020-09-09 2021-01-08 山东钢铁股份有限公司 一种提高厚规格热轧型钢低温冲击韧性的热处理方法

Also Published As

Publication number Publication date
CN112195321A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN110499448B (zh) 一种性能优异的高n奥氏体不锈钢中厚板及其制造方法
US7967926B2 (en) UOE steel pipe excellent in collapse strength and method of production thereof
WO2020169075A1 (zh) 一种高强度耐候钢薄带及其生产方法
JP5900303B2 (ja) 鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板とその製造方法
WO2016045266A1 (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN104264069B (zh) 一种特厚规格x70管线钢及其制造方法
CN106367685B (zh) 深海钻探隔水管用x80及以下钢级管线钢及其制备方法
CN109161790A (zh) 一种酸性条件下使用的高级别高韧性管件钢板及其制造方法
CN110484817B (zh) 一种消除超宽幅节约型双相不锈钢中厚板表面裂纹的方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
AU2011210499A1 (en) Production method for seamless steel pipe used in line pipe, and seamless steel pipe used in line pipe
CN105177257A (zh) 一种高氮无镍奥氏体不锈钢抗晶间腐蚀处理工艺
CN106756612B (zh) 一种贝氏体/马氏体/奥氏体高韧易焊接船板钢及制造方法
US20180355451A1 (en) Seamless steel pipe and method of manufacturing the same
CN110129539B (zh) 一种500MPa级海洋工程用H型钢的生产工艺
CN107988562A (zh) 一种x65级低成本海底管线钢及其制造方法
US20150361518A1 (en) 500 MPa GRADE LONGITUDINALLY WELDED STEEL PIPE WITH LOW YIELD RATIO AND MANUFACTURING METHOD THEREFOR
CN105695898B (zh) 一种浮式lng管线用x70q热轧厚板及其生产方法
CN114892083A (zh) 一种高止裂性e40厚钢板的生产方法
CN109023057A (zh) 一种提高x80m级管线钢心部冲击的生产方法
CN114892107A (zh) 一种高止裂性e47厚钢板的生产方法
CN107904496A (zh) 一种耐二氧化碳腐蚀管线钢及其制造方法
WO2022052516A1 (zh) 一种提高厚规格热轧型钢低温冲击韧性的热处理方法
JP2010229441A (ja) 高靭性高張力厚鋼板の製造方法
JP2016089267A (ja) サブミクロンオーステナイト強靱化の高強靱性薄鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865577

Country of ref document: EP

Kind code of ref document: A1