WO2022052450A1 - 一种叶轮 - Google Patents

一种叶轮 Download PDF

Info

Publication number
WO2022052450A1
WO2022052450A1 PCT/CN2021/084549 CN2021084549W WO2022052450A1 WO 2022052450 A1 WO2022052450 A1 WO 2022052450A1 CN 2021084549 W CN2021084549 W CN 2021084549W WO 2022052450 A1 WO2022052450 A1 WO 2022052450A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
guide vane
disc
bottom edge
front disc
Prior art date
Application number
PCT/CN2021/084549
Other languages
English (en)
French (fr)
Inventor
邴德城
Original Assignee
德州丙田机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德州丙田机电科技有限公司 filed Critical 德州丙田机电科技有限公司
Publication of WO2022052450A1 publication Critical patent/WO2022052450A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the invention relates to the technical field of power machinery, in particular to an impeller, in particular to a direct-flow conical centrifugal impeller capable of conveying gaseous, liquid and other fluids, forward and backward, and a fluid conveying device containing the impeller.
  • the fan is a kind of power machine that converts the rotating mechanical energy into the kinetic energy and potential energy of the gas, and transports the gas out. It is a driven fluid machine. Fan is the habitual abbreviation for gas compression and gas conveying machinery in China. Wind; cooling and ventilation in air conditioning equipment and household appliances; drying and selection of grains, wind tunnel sources and inflation and propulsion of hovercraft, etc.
  • the fan impeller is equivalent to the heart of the fan, and different types of impellers are used in different fans.
  • Fans can be divided into axial flow fans, centrifugal fans and mixed flow fans according to the flow direction or impeller form after the airflow enters the impeller; among them,
  • the characteristics of the impeller of the axial flow fan are: the air inlet direction and the air outlet direction are the same, and the impeller mostly adopts the forward-swept guide vane or the steel guide vane or imported small cyclone impeller optimized by CAD process simulation technology;
  • the characteristics of the impeller of the centrifugal fan are: the inlet air direction and the air outlet direction are 90°, and the impeller is a forward curved impeller, a backward inclined impeller and a backward curved impeller;
  • the characteristics of the impeller of the mixed flow fan are: the movement of the airflow inside the fan combines the characteristics of the axial flow fan and the centrifugal fan, and the angle between the air inlet direction and the air outlet direction of the air flow is neither 90° nor 180°.
  • the difference between the axial flow fan and the centrifugal fan is: 1.
  • the principle of generating wind pressure is different.
  • the axial flow fan relies on the rotation of the guide vane to drive the gas to move in the axial direction, while the centrifugal fan relies on the rotation of the impeller.
  • the generated centrifugal force transports gas; 2.
  • Axial fans are generally large in size, while the impeller of centrifugal fans is closed and installed, and the volume is small; 3.
  • the wind pressure of axial fans is very low, but the air volume is large, while centrifugal fans are It can generate high wind pressure (up to 0.2MPa), and the air volume is not large.
  • the present invention provides an impeller with large air volume and small volume under the same power, and a fluid conveying device containing the impeller.
  • the present invention provides an impeller, comprising a front disc, a rear disc, and guide vanes arranged in an array between the front disc and the rear disc, and the guide vanes are trapezoidal A straight plate body, one end of the upper bottom edge of the guide plate is connected to the end face of the front plate, and one end of the lower bottom edge of the guide plate is connected to the rear plate.
  • the end surfaces where the upper bottom edge of the guide vane is located are all located on the annular end surface of the front disc; the outer side of the rear disc is connected to the inner side wall of the guide vane near the lower bottom edge; the front disc and the The rear discs are all annular plates, the central hole of the front disc is the fluid input port (if the fluid is gas and the impeller is used as the fan impeller, the input port is the air inlet), and the bottom end of the guide vane is Fluid outlet (if the fluid is gas and the impeller is used as a fan impeller, the outlet is the air outlet).
  • the guide vane is preferably a right-angled trapezoidal straight plate body, and the end face where the right-angled waist of the guide vane is located is parallel to the axis of the impeller; the contact point between the guide vane and the front disc is formed on the front disc.
  • the angle ⁇ between the tangent line and the guide vane is 1-89°, preferably 30-35°; the guide vane is a right-angled trapezoidal straight body, and the bottom angle ⁇ of the guide vane is 30° -80°, preferably 25-30°.
  • the length ratio of the upper bottom edge to the lower bottom edge of the guide vane is: 1:1-1:1.2, preferably 1:1.1; the ratio of the diameter of the center hole of the front plate to the length of the right-angle waist of the guide vane is: 1:1-1.5:1, when the diameter of the central hole of the front disc is greater than 100cm, the ratio is preferably 1:1, and when the diameter of the central hole of the front disc is greater than 100cm, when the diameter is less than 100cm, the ratio is preferably 1.5:1).
  • the impeller may further include a casing for covering the guide vane, and the entire exterior of the impeller is a cone.
  • the impeller of the present invention is integrally formed, and can be integrally formed by one turn milling or one injection molding.
  • the number of the guide vanes is 2-1200.
  • the guide vane can be determined according to the maximum diameter of the impeller, and the ratio of the maximum diameter of the impeller to the number of blades is 5:1.
  • the diameter of the central through hole of the front plate (ie the input port) and the length of the bottom edge of the guide vane (ie the position of the output port) should be determined according to the actual needs and in combination with parameters such as the motor shaft diameter, air volume, and air pressure.
  • the driving mechanism is in driving connection with the rear disk or the front disk of the impeller.
  • the driving mechanism is connected with the rear disk of the impeller.
  • the present invention also provides a fluid conveying device, the fluid conveying device includes the impeller of the aforementioned structure; the fluid conveying device can be used for conveying gas, liquid, or powder or particles solid, etc.
  • the impeller of the present invention has many types of conveying fluids and a wide range of applicable environments, and can convey various fluids such as gas, liquid, solid, etc., and the impeller can be directly installed in pipelines, walls and other places after being connected to the driving mechanism;
  • the impeller of the present invention not only has the advantages of large fluid flow, but also has the advantages of high efficiency, large pressure and small volume; when used as a fan impeller for conveying gas, the fan volume can be reduced by 40% under the same power, and the same volume The lower efficiency can be increased by 2-5 times, and it has the advantages of both axial fans and centrifugal fans;
  • the special structural design of the impeller of the present invention and the direction of fluid inflow and outflow determine that the impeller can be produced by a one-time molding process, such as one-time milling or one-time injection molding.
  • a one-time molding process such as one-time milling or one-time injection molding.
  • the impeller of the present invention does not need to be assembled and welded, the process is simplified, the mass production can be performed, and the production cost is low.
  • the fluid inlet and outlet directions of the impeller of the present invention are completely different from the fluid direction of the existing impeller.
  • the traditional impeller is the direction of the inlet and outlet air is either coaxial at 180° (such as the impeller of an axial flow fan), or at 90° (such as the impeller of a centrifugal fan), or obliquely entering and obliquely outputting (such as the impeller of a diagonal flow fan), while the fluid orientation of the impeller of the present invention is coaxial entry, offset axis and parallel axis output.
  • the impeller of the present invention has the advantages of the aforementioned 1-3 because of the fluid guidance of the traditional impeller and the special fluid guidance brought about by the special structure.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 2 is another perspective structural schematic diagram of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 4 is another perspective structural schematic diagram of Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of the angles of the guide vanes in Embodiments 1 and 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a guide vane in Embodiments 1 and 2 of the present invention.
  • Fig. 7 is a schematic diagram of the direction of the flow guide of the impeller in Embodiments 1 and 2 of the present invention (for convenience of presentation, some guide vanes are omitted).
  • reference signs are: 1, front disc; 2, rear disc; 3, deflector; 4, shell.
  • the present embodiment provides an impeller, including a front disc, a rear disc, and guide vanes arranged in an array between the front disc and the rear disc,
  • the guide vane is a trapezoidal straight plate body, and one end of the upper bottom edge of the guide vane is connected to the end face of the front disc, and one end of the lower bottom edge of the guide vane is connected to the rear disc.
  • the end faces where the upper bottom edge of the guide vane is located are all located on the annular end surface of the front disc; the outer side of the rear disc is connected to the inner side wall of the guide vane near the lower bottom edge; the front disc and the rear disc are both annular plates, and the central hole of the front disc
  • the fluid input port see Figure 7, if the fluid is gas and the impeller is used as a fan impeller, the input port is the air inlet
  • the bottom end of the guide vane is the fluid output port (see Figure 7, if the fluid is gas , the impeller is used as the fan impeller, and the output port is the air outlet).
  • the guide vane is preferably a right-angled trapezoidal straight plate body, and the end face where the right-angled waist of the guide vane is located is parallel to the impeller axis; the tangent line formed by the contact point of the guide vane and the front disc on the front disc is an included angle with the guide vane. ⁇ is 35°; the guide vane is a right-angled trapezoidal straight body, and the bottom angle ⁇ of the guide vane is 30°.
  • the length ratio of the upper bottom edge to the lower bottom edge of the guide vane is 1:1.1; the ratio of the diameter of the center hole of the front disc to the length of the right angle waist of the guide vane is: 1:1 or 1.5:1, and the diameter of the center hole of the current disc is greater than 100cm When the diameter of the central hole of the front disc is larger than 100 cm and the diameter is smaller than 100 cm, the ratio is preferably 1.5:1.
  • the impeller of the present invention is integrally formed, and can be integrally formed by one turn milling or one injection molding.
  • the diameter of the central through hole of the front disc (ie the input port) and the length of the bottom edge of the guide vane (ie the position of the output port) are determined according to the actual needs, combined with parameters such as the motor shaft diameter, air volume, and air pressure.
  • the drive mechanism When in use, the drive mechanism is connected with the rear disc of the impeller.
  • the present embodiment provides an impeller, including a front disk, a rear disk, and guide vanes arranged in an array between the front disk and the rear disk, the guide vanes It is a trapezoidal straight plate body, and one end of the upper bottom edge of the guide plate is connected to the end face of the front plate, and one end of the lower bottom edge of the guide plate is connected to the rear plate.
  • the end faces where the upper bottom edge of the guide vane is located are all located on the annular end surface of the front disc; the outer side of the rear disc is connected to the inner side wall of the guide vane near the lower bottom edge; the front disc and the rear disc are both annular plates, and the central hole of the front disc It is the fluid input port (if the fluid is gas and the impeller is used as the fan impeller, the input port is the air inlet), and the bottom end of the guide vane is the fluid output port (if the fluid is gas and the impeller is used as the fan impeller, the The output port is the air outlet).
  • the guide vane is preferably a right-angled trapezoidal straight plate body, and the end face where the right-angled waist of the guide vane is located is parallel to the impeller axis; the tangent line formed by the contact point of the guide vane and the front disc on the front disc is an included angle with the guide vane. ⁇ is 30°; the guide vane is a right-angled trapezoidal straight body, and the bottom angle ⁇ of the guide vane is 25°.
  • the length ratio of the upper bottom edge to the lower bottom edge of the guide vane is: 1:1.2; the ratio of the diameter of the center hole of the front disc to the length of the right angle waist of the guide vane is: 1:1-1.5:1, and the diameter of the center hole of the current disc is greater than
  • the ratio is preferably 1:1, and when the diameter of the central hole of the front disc is greater than 100 cm and the diameter is less than 100 cm, the ratio is preferably 1.5:1.
  • the impeller may further include a casing for wrapping the guide vanes, and the entire exterior of the impeller is a cone.
  • the impeller of the present invention is integrally formed, and can be integrally formed by one turn milling or one injection molding.
  • the diameter of the through hole in the center of the front disc (ie the input port) and the length of the bottom edge of the deflector (ie the position of the output port) should be determined according to the actual needs, combined with parameters such as the motor shaft diameter, air volume, and air pressure.
  • the driving mechanism is in driving connection with the rear disk or the front disk of the impeller.
  • the driving mechanism is connected with the rear disk of the impeller.
  • the number of guide vanes is further limited; the number of guide vanes is 2-1200 pieces, preferably, the number of guide vanes needs to be determined according to the maximum diameter of the impeller, and the maximum diameter of the impeller The ratio to the number of leaves is 5:1.
  • This embodiment is a fluid conveying device, and the fluid conveying device includes the impeller of any one of Embodiments 1-3; the fluid conveying device can be used to convey gas, liquid, or powder or granular solid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种叶轮,包括前盘(1)、后盘(2)以及阵列式分布设置在前盘(1)和后盘(2)之间的导流片(3),导流片(3)为梯形直板体,导流片(3)上底边一端与前盘(1)的端面连接、导流片(3)下底边一端与后盘(2)连接。该叶轮具有流体流通量大、效率高、压力大、体积小的优点。

Description

一种叶轮 技术领域
本发明涉及动力机械技术领域,特别涉及一种叶轮,具体为一种能够输送气态、液态等流体、且前进后出的直流圆锥离心式叶轮及含有该叶轮的流体输送装置。
背景技术
风机是将旋转的机械能转换成气体的动能和势能,并将气体输送出去的一种动力机械,它是一种从动的流体机械。风机是中国对气体压缩和气体输送机械的习惯简称,风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却,锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送,风洞风源和气垫船的充气和推进等。
风机叶轮相当于风机的心脏,不同的风机所应用叶轮类型也不同。风机根据气流进入叶轮后的流动方向或者叶轮形式可以分为:轴流式风机、离心式风机和混流风机;其中,
1、轴流风机叶轮的特点为:进风方向和出风方向相同,其叶轮多采用前掠型导流片或使用CAD流程模拟技术优化设计的钢制导流片或进口小旋风叶轮;
2、离心风机叶轮的特点为:进风风向和出风方向成90°,叶轮为前弯叶轮、后倾叶轮和后弯叶轮;
3、混流风机叶轮特点为:气流在风机内部的运动总综合了轴流风机和离心风机的特点,气流的进风方向和出风方向间的角度既不是90°也不是180°。
此外,轴流风机和离心风机二者的区别在于:1、产生风压的原理不同,轴流式风机是靠导流片的旋转而带动气体沿轴向运动,而离心式风机是靠叶轮旋转产生的离心力输送气体;2、轴流式风机一般体积大,而离心式风机的叶轮封闭安装,体积小;3、轴流式通机的风压很低、但风量大,而离心式风机则可以产生较高的风压(最高可达到0.2MPa)、风量不大。
上述三种传统形式的风机很难满足某些特定场所的通风要求,即:在同等功率下,不仅要求风机风量大、风压大、效率高,而且风机体积还缩小20%以 上,如何能够提供一种同等功率下风量风压大且体积小的叶轮是本发明所要解决的课题。
发明内容
为了解决现有技术中风机不能满足某些应用需求,本发明提供一种在同等功率下、风量风压大且体积小的叶轮及含有该叶轮的流体输送装置。
为了实现上述发明目的,本发明提供了一种叶轮,包括前盘、后盘、以及阵列式分布设置在所述前盘和所述后盘之间的导流片,所述导流片为梯形直板体,且所述导流片上底边一端与所述前盘的端面连接、所述导流片下底边一端与所述后盘连接。
所述导流片上底边所处的端面全部位于所述前盘的环形端面上;所述后盘的外侧面与所述导流片靠近下底边内侧壁连接;所述前盘和所述后盘均为环形板,所述前盘的中心孔为流体输入口(若流体为气体、叶轮用作风机叶轮,该输入口即为进风口),所述导流片下底边端部为流体输出口(若流体为气体、叶轮用作风机叶轮,该输出口即为出风口)。
所述导流片优选为直角梯形直板体,且所述导流片直角腰边所处的端面与叶轮轴心平行;所述导流片与所述前盘接触点在所述前盘形成的切线、与该所述导流片所呈夹角α为1-89°,优选为30-35°;所述导流片为直角梯形直板体,且所述导流片的底角β为30-80°,优选为25-30°。
所述导流片的上底边与下底边的长度比例为:1:1-1:1.2,优选为1:1.1;所述前盘中心孔直径与所述导流片的直角腰长度比例为:1:1-1.5:1,当前盘中心孔直径大于100cm时、该比例优选为1:1,当前盘中心孔直径大于100cm时直径小于100cm时、该比例优选为1.5:1)。
优选地,所述叶轮还可以包括用于包覆所述导流片的外壳,所述叶轮整体外部为锥形体。
特别的,本发明的叶轮为一体成型,经过一次车铣或一次注模即可一体成型。
所述导流片的数量为2-1200片,优选的,所述导流片的可以依据叶轮最大直径来决定,叶轮最大直径与叶片数的比例为5:1。
所述前盘中心通孔(即输入口)的直径以及导流片下底边长度(即输出口位置)均需根据实际需求,结合电机轴径、风量、风压等参数来确定。
实际使用时,驱动机构与叶轮后盘或前盘传动连接,优选地,驱动机构与叶轮后盘连接。
为了更好的实现上述发明目的,本发明还提供了一种流体输送装置,所述流体输送装置包括前述结构的叶轮;所述的流体输送装置,可用于输送气体、液体、或粉末状或颗粒状固体等。
本发明的有益效果是:
1、本发明叶轮的输送流体类型多、适用环境范围广,能够输送气体、液体、固体等多种流体,而且叶轮连接驱动机构后可直接装于管道、墙壁等场所;
2、本发明叶轮不仅具有流体流通量大的优点,同时还具有效率高、压力大、体积小的优点;作为输送气体的风机叶轮时,在同等功率下风机体积可缩小40%,在同等体积下效率可提高2-5倍,同时兼备轴流式风机和离心式风机的优点;
3、本发明叶轮的特殊结构设计以及流体进出方向,决定了该叶轮能够采用一次成型工艺制作,如一次车铣或一次注模成型,与现有传统风机叶轮(以离心风机叶轮相比,由于离心风机叶轮的风向是直进侧出,无法采用一次成型的工艺)相比,本发明的叶轮无需组装、焊接,工艺简化,可批量生产,制作成本低。
此外,本发明叶轮的流体进出方向完全不同于现有叶轮的流体导向,以风机叶轮为例,传统叶轮是进出风方向要么同轴呈180°(如轴流风机的叶轮)、要么呈90°(如离心风机的叶轮)、要么是斜向进入斜向输出(如斜流风机的叶轮),而本发明叶轮的流体导向为同轴进入、偏移轴线且平行轴线输出,该种流体导向区别于传统叶轮流体导向,也正是特殊的结构所带来的特殊流体导向,本发明的叶轮才具有前述1-3的优势。
附图说明
图1为本发明实施例1的结构示意图。
图2为本发明实施例1的另一角度结构示意图。
图3为本发明实施例2的结构示意图。
图4为本发明实施例2的另一角度结构示意图。
图5为本发明实施例1和2中导流片角度示意图。
图6为本发明实施例1和2中导流片的结构示意图。
图7位本发明实施例1和2中叶轮的导流方向示意图(为了方便展示,省略部分导流片)。
其中,附图标记为:1、前盘;2、后盘;3、导流片;4、外壳。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,对本方案进行阐述。
实施例1(无外壳叶轮)
参见图1、图2、图5、图6和图7,本实施例提供了一种叶轮,包括前盘、后盘、以及阵列式分布设置在前盘和后盘之间的导流片,导流片为梯形直板体,且导流片上底边一端与前盘的端面连接、导流片下底边一端与后盘连接。
导流片上底边所处的端面全部位于前盘的环形端面上;后盘的外侧面与导流片靠近下底边内侧壁连接;前盘和后盘均为环形板,前盘的中心孔为流体输入口(参见图7,若流体为气体、叶轮用作风机叶轮,该输入口即为进风口),导流片下底边端部为流体输出口(参见图7,若流体为气体、叶轮用作风机叶轮,该输出口即为出风口)。
导流片优选为直角梯形直板体,且导流片直角腰边所处的端面与叶轮轴心平行;导流片与前盘接触点在前盘形成的切线、与导流片所呈夹角α为35°;导流片为直角梯形直板体,且导流片的底角β为30°。
导流片的上底边与下底边的长度比例为1:1.1;前盘中心孔直径与导流片的直角腰长度比例为:1:1或1.5:1,当前盘中心孔直径大于100cm时、该比例优选为1:1,当前盘中心孔直径大于100cm时直径小于100cm时、该比例优选为1.5:1。
特别的,本发明的叶轮为一体成型,经过一次车铣或一次注模即可一体成型。
前盘中心通孔(即输入口)的直径以及导流片下底边长度(即输出口位置)均根据实际需求,结合电机轴径、风量、风压等参数来确定。
使用时,驱动机构与叶轮后盘传动连接。
实施例2(有外壳叶轮)
参见图3、图4、图5和图6,本实施例提供了一种叶轮,包括前盘、后盘、以及阵列式分布设置在前盘和后盘之间的导流片,导流片为梯形直板体,且导 流片上底边一端与前盘的端面连接、导流片下底边一端与后盘连接。
导流片上底边所处的端面全部位于前盘的环形端面上;后盘的外侧面与导流片靠近下底边内侧壁连接;前盘和后盘均为环形板,前盘的中心孔为流体输入口(若流体为气体、叶轮用作风机叶轮,该输入口即为进风口),导流片下底边端部为流体输出口(若流体为气体、叶轮用作风机叶轮,该输出口即为出风口)。
导流片优选为直角梯形直板体,且导流片直角腰边所处的端面与叶轮轴心平行;导流片与前盘接触点在前盘形成的切线、与导流片所呈夹角α为30°;导流片为直角梯形直板体,且导流片的底角β为25°。
导流片的上底边与下底边的长度比例为:1:1.2;前盘中心孔直径与导流片的直角腰长度比例为:1:1-1.5:1,当前盘中心孔直径大于100cm时、该比例优选为1:1,当前盘中心孔直径大于100cm时直径小于100cm时、该比例优选为1.5:1。
优选地,叶轮还可以包括用于包覆导流片的外壳,叶轮整体外部为锥形体。
特别的,本发明的叶轮为一体成型,经过一次车铣或一次注模即可一体成型。
前盘中心通孔(即输入口)的直径以及导流片下底边长度(即输出口位置)均需根据实际需求,结合电机轴径、风量、风压等参数来确定。
实际使用时,驱动机构与叶轮后盘或前盘传动连接,优选地,驱动机构与叶轮后盘连接。
实施例3
在实施例1或2的基础上,进一步限定了导流片的数量;导流片的数量为2-1200片,优选的,导流片的数量是需要依据叶轮最大直径来决定,叶轮最大直径与叶片数的比例为5:1。
实施例4
本实施例为一种流体输送装置,流体输送装置包括实施例1-3任一项的叶轮;的流体输送装置,可用于输送气体、液体、或粉末状或颗粒状固体等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种叶轮,其特征在于,包括前盘、后盘、以及阵列式分布设置在所述前盘和所述后盘之间的导流片,所述导流片为梯形直板体,且所述导流片上底边一端与所述前盘的端面连接、所述导流片下底边一端与所述后盘连接。
  2. 根据权利要求1所述的叶轮,其特征在于,所述导流片上底边所处的端面全部位于所述前盘的环形端面上;所述后盘的外侧面与所述导流片靠近下底边内侧壁连接。
  3. 根据权利要求1所述的叶轮,其特征在于,所述导流片为直角梯形直板体,且所述导流片直角腰边所处的端面与叶轮轴心平行。
  4. 根据权利要求1-3任一项叶轮,其特征在于,所述前盘和所述后盘均为环形板,所述前盘的中心孔为流体输入口,所述导流片下底边端部为流体输出口。
  5. 根据权利要求1-4任一项所述的叶轮,其特征在于,所述导流片与所述前盘接触点在所述前盘形成的切线、与该所述导流片所呈夹角α为1-89°。
  6. 根据权利要求1-4任一项所述的叶轮,其特征在于,所述导流片的底角β为30-80°。
  7. 根据权利要求6所述的叶轮,其特征在于,所述导流片的上底边与下底边的长度比例为:1:1.1;所述前盘中心孔直径与所述导流片的直角腰长度比例为:1:1-1.5:1。
  8. 根据权利要求1-7任一项所述的叶轮,其特征在于,所述叶轮还包括用于包覆所述导流片的外壳。
  9. 根据权利要求1-8任一项所述的叶轮,其特征在于,所述叶轮为一体成型。
  10. 一种流体输送装置,其特征在于,所述流体输送装置包括叶轮,所述叶轮为权利要求1-9任一项所述的叶轮。
PCT/CN2021/084549 2020-09-14 2021-03-31 一种叶轮 WO2022052450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010963358.X 2020-09-14
CN202010963358.XA CN112065749B (zh) 2020-09-14 2020-09-14 一种叶轮

Publications (1)

Publication Number Publication Date
WO2022052450A1 true WO2022052450A1 (zh) 2022-03-17

Family

ID=73697020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084549 WO2022052450A1 (zh) 2020-09-14 2021-03-31 一种叶轮

Country Status (2)

Country Link
CN (1) CN112065749B (zh)
WO (1) WO2022052450A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065749B (zh) * 2020-09-14 2021-09-24 德州丙田机电科技有限公司 一种叶轮
CN112983886B (zh) * 2021-03-05 2022-09-16 青岛丙田机电科技有限公司 一种板式风轮

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2770789Y (zh) * 2005-02-06 2006-04-12 王连华 浮选机的叶轮和定子的组合构造
CN101652573A (zh) * 2007-04-05 2010-02-17 博格华纳公司 环形风扇和护罩空气导向系统
CN201944004U (zh) * 2010-11-22 2011-08-24 隆鑫通用动力股份有限公司 一种风冷发电机及其冷却风扇
CN203384104U (zh) * 2013-08-15 2014-01-08 威海克莱特菲尔风机股份有限公司 插接式叶轮
CN204610373U (zh) * 2015-04-17 2015-09-02 高邮市科特电机制造有限公司 一种发电机风扇
JP2017180094A (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 送風ファンおよびこれを用いた送風ユニット
CN208702771U (zh) * 2018-07-27 2019-04-05 深圳兴奇宏科技有限公司 扇叶结构及离心风扇
CN210178646U (zh) * 2019-05-29 2020-03-24 太仓市宇格明叶环保设备有限公司 一种可一体注塑成型的叶轮
CN111456948A (zh) * 2020-04-28 2020-07-28 张建辉 一种滚筒式锥型气泵及滚筒叶轮加工方法
CN112065749A (zh) * 2020-09-14 2020-12-11 德州丙田机电科技有限公司 一种叶轮

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288348C (zh) * 2003-04-29 2006-12-06 上海交通大学 管道双流叶轮

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2770789Y (zh) * 2005-02-06 2006-04-12 王连华 浮选机的叶轮和定子的组合构造
CN101652573A (zh) * 2007-04-05 2010-02-17 博格华纳公司 环形风扇和护罩空气导向系统
CN201944004U (zh) * 2010-11-22 2011-08-24 隆鑫通用动力股份有限公司 一种风冷发电机及其冷却风扇
CN203384104U (zh) * 2013-08-15 2014-01-08 威海克莱特菲尔风机股份有限公司 插接式叶轮
CN204610373U (zh) * 2015-04-17 2015-09-02 高邮市科特电机制造有限公司 一种发电机风扇
JP2017180094A (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 送風ファンおよびこれを用いた送風ユニット
CN208702771U (zh) * 2018-07-27 2019-04-05 深圳兴奇宏科技有限公司 扇叶结构及离心风扇
CN210178646U (zh) * 2019-05-29 2020-03-24 太仓市宇格明叶环保设备有限公司 一种可一体注塑成型的叶轮
CN111456948A (zh) * 2020-04-28 2020-07-28 张建辉 一种滚筒式锥型气泵及滚筒叶轮加工方法
CN112065749A (zh) * 2020-09-14 2020-12-11 德州丙田机电科技有限公司 一种叶轮

Also Published As

Publication number Publication date
CN112065749A (zh) 2020-12-11
CN112065749B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2022052450A1 (zh) 一种叶轮
US11855511B2 (en) Wind power generation unit, electric motor, and airflow delivery device for electric motor air gap
CN105987018A (zh) 多组风叶的离心式风机
CN101949387B (zh) 一种风洞式风扇
WO2020043159A1 (zh) 电机及其轴系的换热装置、风力发电机组
CN206487639U (zh) 一种离心风机箱
CN207673580U (zh) 一种新型节能的混流通风机
US20150147167A1 (en) Ventilation unit
CN104696974A (zh) 一种声波吹灰装置
CN202789616U (zh) 轴向离心风机
CN111946662B (zh) 离心叶轮及风机
CN204591806U (zh) 一种适用于汽车空调的离心风机
TW202140932A (zh) 非密封式真空泵具有與氣體撞擊而無葉片的超音速轉動的表面
CN201843798U (zh) 一种风洞式风扇
CN205779897U (zh) 离心风机
CN207795607U (zh) 风机装置及烟机
CN206206253U (zh) 一种带有迷宫密封体的叶轮结构及离心压缩设备
CN217539095U (zh) 一种防止叶轮轴与机箱间动密封处漏风的离心式风机
JPS5893997A (ja) 電動送風機
WO2020207409A1 (zh) 离心风机的壳体、离心风机及干衣机
CN214196737U (zh) 一种子午加速型人防混流风机
US3859009A (en) Centrifugal blower
TWI839103B (zh) 非密封式真空泵具有與氣體撞擊而無葉片的超音速轉動的表面
WO2021049536A1 (ja) 送風ファン
CN209687764U (zh) 一种串联离心风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865513

Country of ref document: EP

Kind code of ref document: A1