WO2022052399A1 - 山洪泥石流沟道形成区的拦砂坝生态组合 - Google Patents

山洪泥石流沟道形成区的拦砂坝生态组合 Download PDF

Info

Publication number
WO2022052399A1
WO2022052399A1 PCT/CN2021/072379 CN2021072379W WO2022052399A1 WO 2022052399 A1 WO2022052399 A1 WO 2022052399A1 CN 2021072379 W CN2021072379 W CN 2021072379W WO 2022052399 A1 WO2022052399 A1 WO 2022052399A1
Authority
WO
WIPO (PCT)
Prior art keywords
dam
sand
ecological
sand retaining
debris flow
Prior art date
Application number
PCT/CN2021/072379
Other languages
English (en)
French (fr)
Inventor
陈剑刚
陈晓清
游勇
赵万玉
陈华勇
王喜安
金科
刘文润
Original Assignee
中国科学院、水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院、水利部成都山地灾害与环境研究所 filed Critical 中国科学院、水利部成都山地灾害与环境研究所
Publication of WO2022052399A1 publication Critical patent/WO2022052399A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Definitions

  • the invention relates to a debris flow prevention and control engineering structure, in particular to an ecological combination of sand retaining dams used in mountain torrent debris flow channel formation areas, belonging to the technical field of mountain disaster prevention technology and ecological structures.
  • Sand dam is the most common prevention and control engineering measure in mountain disasters. Almost all sand retaining dams are geotechnical engineering measures, specifically geotechnical structures of various structural types, which have the characteristics of rapid construction and quick effect, and have achieved obvious results in preventing and controlling debris flow disasters, greatly reducing disasters. risk and loss. In the treatment of debris flow channels, a series of disaster prevention measures have been gradually built around various geotechnical measures.
  • Plant litter covering the surface can prevent the soil from being directly impacted by raindrops, at the same time reduce the surface water runoff and soil erosion, and then regulate the mutual coupling relationship between rainfall-flood runoff and soil erosion-sand production from the slope to the watershed scale, and realize debris flow Ecological disaster prevention and mitigation functions of disasters.
  • the comprehensive application of ecological engineering measures and geotechnical engineering measures has become a more ideal measure for mountain disaster management.
  • the comprehensive prevention measures of ecological engineering and geotechnical engineering mainly have two defects: First, the current planning and design of ecological engineering measures are mainly based on empirical design, lacking quantitative design methods, and the It is difficult to realize the optimal configuration of the synergy between ecological engineering measures and geotechnical engineering measures due to the technical guidance of the coordination of measures. Second, due to the influence of the growth cycle, ecological engineering measures are often slow to take effect, and most of them take several years or more than ten years to play the role of prevention and control, and cannot play an immediate effect in rescue disaster prevention and mitigation projects. The initial design should meet certain conditions so that it can produce environmental governance benefits as soon as possible. None of these problems have been solved in the prior art.
  • the purpose of the present invention is to aim at the deficiencies of the prior art, and to provide an ecological combination of sand retaining dams used in the mountain torrent debris flow channel formation area.
  • N sand-blocking dams are constructed in the mountain torrent and debris flow channel formation area, which are named No. 1, No. 2, ..., respectively from upstream to downstream.
  • N sand retaining dams, the distance L between the nth (1 ⁇ n ⁇ N) and the n-1 sand retaining bar 7L s,n ⁇ 13L s,n , the L s,n is according to formula 1, formula 2 Calculate to determine:
  • L s,n is the length of the back-silting area in front of the nth sand retaining dam, in m,
  • the above-mentioned sand-blocking dam ecological assemblages were firstly obtained through on-site investigations to obtain various data.
  • the on-site investigation includes various surveying and mapping, measurement, simulation experiments and tests on the site of the mountain torrent and debris flow channel where the project is located, as well as the acquisition of historical disaster records, as well as the acquisition of empirical data that can be used for reference.
  • the formation area of the mountain torrent and debris flow channel is delineated, and then the ecological combination of sand-blocking dams is arranged in the formation area.
  • the ecological combination of sand retaining dams includes N ⁇ 2 sand retaining dams.
  • the accumulation bodies generated by the upstream debris flow before the sand retaining dams are used to change the channel shape, so that the Adjacent sand retaining bars have become a related combination in terms of spatial topography and various ecological factors, creating unique environmental conditions between adjacent sand retaining bars as the basis for ecological engineering measures.
  • the sand dam is generally a permeable sand dam, and the size of the upper discharge hole is gradually level design ideas.
  • the specification of the discharge hole of the first sand retaining dam is designed according to Equation 3 and Equation 4.
  • the height and width of the discharge hole of the downstream sand retaining dam along the channel direction are the discharge holes of the adjacent upstream sand retaining bar respectively.
  • the height is 0.6 to 0.8 times the width of the vent hole.
  • the present invention further optimizes the technical scheme, introduces different vegetation types, and plans the distribution of vegetation to further enhance the effect of the ecological combination.
  • the technical scheme is: the ecological combination of the sand retaining dam includes supporting ecological engineering measures, and the basic ecological engineering measures are the ecological engineering measures in front of the dam, including: on both sides of the ditch, from the sand retaining dam to the upstream L s length of arranging shrubs and grasses In the channel, from the upstream end of the back-silting area in front of the dam, from the downstream to the upstream, a shrub-grass belt with a length of 3L s to 6L s and a tree-grass belt with a length of 3L s to 6L s are arranged in sequence, and L s is The length of the back-silting area in front of the dam.
  • additional ecological engineering measures after the dam can be added, including: deploying on both sides of the ditch, arranging shrub and grass belts within the length of L b from the sand retaining dam to the downstream; From the downstream end of the scour pit behind the dam, a shrub and grass belt with a length of 3L b to 6L b and a arbor and grass belt with a length of 3L b to 6L b are arranged in sequence from upstream to downstream. Investigation confirmed.
  • the ecological engineering measures before and after the dam can effectively block the mountain torrent and debris flow, improve the roughness of the channel, and reduce the ditch by rationally arranging the arbor and grass belts and shrub-grass belts in the channel space between the adjacent sand dams.
  • the shore material participates in the activities of mountain torrents and debris flow, and improves the roughness of the channel, reduces the impact force and velocity of debris flow, and enhances the effect of gradual energy dissipation.
  • the length L b,n of the scour pit behind the nth sand retaining dam can be determined according to the on-site investigation.
  • the present invention also provides a method for calculating the index according to Equation 5:
  • L b,n is the length of the scour pit behind the nth sand retaining dam, in m
  • V g,n flow velocity of debris flowing through the nth sand retaining dam, in m/s, determined or valued by on-site investigation
  • V g,n V c,n ,
  • V c,n the average velocity of debris flow section at the site of the nth sand retaining dam, in m/s, determined by on-site investigation
  • the trees are planted in the shape of a tree, and the tree spacing is 0.6h to 0.8h .
  • the h tree is the average height of the tree in the tree-grass belt. ⁇ 0.6h shrub , h shrub is the average height of shrubs in the shrub-grass belt, h shrub > mudslide depth h df , h df is determined by on-site investigation.
  • the present invention further provides conditions for the selection of arbor in ecological engineering measures, specifically arbor-grass belt, arbor average diameter at breast height D arbor > arbor damage critical diameter D max .
  • This condition can guarantee the maximum bending moment M that the trees can withstand in the arbor and grass belt, and the trees can resist the impact force of flash floods and debris flows.
  • D max is calculated and determined according to Equation 6:
  • D max is the critical diameter of arbor damage, in m
  • the compressive strength of arbor wood along the grain, the unit is kN/m 2 , which is determined according to the tree species,
  • the upstream value of the sand retaining bar is 0.8 n-2 D 80 , and the downstream value of the n-th sand retaining bar is 0.8 n-1 D 80 .
  • the kinetic energy reduction coefficient, ranging from 0.2 to 0.3, unit
  • V c the average velocity of debris flow section, in m/s, determined by on-site investigation
  • the impact angle of the tree by the debris flow, the unit is °, the value is 90°,
  • W the weight of large rocks in debris flow, unit kN, according to different D calculated and determined according to the empirical formula
  • the ecological combination of the above sand dam is suitable for the debris flow channel of the mud-rock flow and mud depth h df ⁇ 3m at the site of the sand dam.
  • the present invention provides a special ecological space by adjusting the environmental factors of the small space of the channel between the adjacent sand retaining bars by designing the parameters of the distance between adjacent sand retaining bars.
  • the ecological combination scheme of sand dam Compared with the existing sand-blocking dam scheme in the channel formation area, the sand-blocking dam ecological combination scheme of the present invention provides a new type of sand-blocking dam with the improvement of conventional debris flow prevention and control engineering measures without increasing engineering investment and economic cost. District governance ideas.
  • the sand-blocking dam ecological combination of the present invention can effectively block debris flow and improve the roughness of the channel by rationally arranging different types of ecological engineering measures at the front and rear of the dam and the position of the slope and bank. rate, reduce the participation of ditch and bank materials in debris flow activities, reduce the impact force and flow velocity of debris flow, realize step-by-step energy dissipation, reduce the risk of damage to geotechnical engineering structures, improve the service life of engineering structures, realize the prevention and control of larger-scale debris flows, and achieve the goal of geotechnical engineering
  • the purpose of coordinated disaster reduction measures and ecological engineering measures effectively protect the safety of downstream residents, roads, houses and other facilities.
  • the ecological combination scheme of the sand retaining dam of the present invention provides a specific design scheme for the ecological prevention and control measures of debris flow, and provides a new basis for the transformation of the ecological prevention and control measures from an empirical qualitative type to an index quantitative type.
  • Figure 1 is a schematic diagram of the ecological assemblage of the sand-blocking dam in the channel formation area of the mountain torrent and debris flow (arrows indicate the direction of debris flow movement).
  • Fig. 2a and Fig. 2b are schematic diagrams of the specification meaning of the drain hole (Fig. 2a shows a top view, Fig. 2b shows a side view).
  • Figure 3 is a schematic top view of the ecological engineering measures of the sand retaining dam (the arrows indicate the direction of debris flow movement, and the dashed frame indicates the shrub and grass belts on both sides of the ditch).
  • Figure 4 is a schematic top view of the structure of the ecological engineering measures of the sand retaining dam (arrows indicate the direction of debris flow movement).
  • Figure 5 is a schematic diagram of the meaning of the indexes of h tree , h shrub and D tree .
  • a set of sand-blocking dam ecological combinations are designed in a channel formation area of a mountain torrent and debris flow by using the method of the present invention.
  • a mountain torrent and debris flow ditch has a watershed area of 9.4km 2 .
  • an ecological combination of sand-blocking dams was built in the formation area from upstream to downstream to control channel erosion.
  • Figure 1 is a schematic diagram of the ecological assemblage of the sand dam in the channel formation area of the mountain torrent and debris flow.
  • There are 2 permeable sand retaining dams 1 built in the area where the mountain torrent and debris flow channel is formed. From upstream to downstream, they are numbered as the first (i.e. n-1th), the second (i.e. nth), and the two The distance between 1 and L of the sand retaining dam 7L s,2 ⁇ 13L s,2 .
  • L distance 278m.
  • Fig. 2a and Fig. 2b are schematic diagrams of the specification meaning of the drain hole (Fig. 2a shows a top view, Fig. 2b shows a side view).
  • Figure 3 is a schematic top view structure of the ecological engineering measures of the sand retaining dam (the shrub and grass belts on both sides of the ditch are shown in the dotted frame), and Figure 4 is a schematic top view side view of the ecological engineering measures of the sand retaining dam.
  • silver fir is selected as the tree in the arbor-grass belt
  • Buxus sinica is selected as the shrub in the shrub-grass belt.
  • Vegetation is not arranged in the back-silting area 2 in front of the dam and in the scour pit 3 behind the dam.
  • Figure 5 is a schematic diagram of the meaning of the indexes of h tree , h shrub and D tree .
  • Arbor configuration requirements also include the average diameter at breast height D of arbor > critical diameter of arbor destruction D max .
  • the method of the present invention is used to design a set of ecological combination of sand retaining dams in a channel formation area of a mountain torrent and debris flow. The same content as in the first embodiment will not be repeated.
  • a debris flow ditch has a watershed area of 16.7km 2 .
  • the ecological assemblage of sand retaining dams includes 3 sand retaining dams 1, numbered from upstream to downstream as the first, the second, and the third.
  • the empirical calculation formula W to determine the weight W of the debris flow is the same as that of the first embodiment.
  • the distance between the 1st and 2nd sand retaining dams, L is finally determined to be 1267m .
  • the structure of the ecological engineering measures before the dam and the ecological engineering measures after the dam are the same as those in the first embodiment.
  • Arbor configuration requirements also include the average diameter at breast height D of arbor > critical diameter of arbor destruction D max .
  • Arbor configuration requirements also include the average diameter at breast height D of arbor > critical diameter of arbor destruction D max .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Architecture (AREA)
  • Revetment (AREA)

Abstract

本发明公开山洪泥石流沟道形成区的拦砂坝生态组合,针对性解决现有技术中生态工程与岩土工程的综合防治措施存在缺乏定量化设计指导以及初期设计条件不合理的缺陷。拦砂坝生态组合在山洪泥石流沟道形成区构筑数量N≥2座拦砂坝,相邻拦砂坝间距通过引入砂坝坝前回淤长度计算确定。优化的方案还包括生态工程措施,通过在坝前坝后的沟道两岸及沟道内规划不同植被类型增强生态组合效果。本发明具体提供了生态工程措施中重要设计参数的计算方法。本发明通过设计相邻拦砂坝间距参数实现调节坝间小空间环境因子营造特殊生态空间的拦砂坝生态组合,是不增加成本的新的形成区治理方案,并为生态防治措施从经验定性型向指标定量型转变提供了指导。

Description

山洪泥石流沟道形成区的拦砂坝生态组合 技术领域
本发明涉及一种泥石流防治工程构筑体,特别是涉及一种在山洪泥石流沟道形成区采用的拦砂坝的生态型组合,属于山地灾害防治技术、生态型构筑体技术领域。
背景技术
拦砂坝是山地灾害中最常见常用的防治工程措施。几乎所有拦砂坝都是岩土工程措施,具体是各种结构类型的岩土类构筑体,具有施工迅速和见效快的特点,在防治泥石流灾害方面取得了明显成效,极大的减轻了灾害风险与损失。在泥石流沟道治理中,围绕各种岩土工程措施逐步构建起了一系列灾害拦防措施体系。
但是,上述灾害拦防措施体系的长期运行中,其技术弊端开始显现。以岩土工程措施为主的风险防控体系虽然在减轻灾害损失方面成效显著,但是其功能随时间的推移会逐渐降低,且与居住区的总体环境不相协调。于是,生态工程措施开始被引入到灾害拦防措施体系中。生态工程措施通过降水截留、土壤保持及调节产汇流量等途径来改变泥石流形成的水动力学条件,达到抑制泥石流起动的目的。植物根系可以固定土壤,增加土壤抗拉强度与抗剪强度,降低坡面产汇流过程中的土壤侵蚀和运移。植物枯枝落叶覆盖地表能避免土壤受到雨滴的直接冲击,同时降低地表水分径流量,减少土壤侵蚀,进而从坡面到流域尺度调控降雨-洪水径 流与土壤侵蚀-产沙相互耦合关系,实现泥石流灾害的生态防灾与减灾功能。生态工程措施与岩土工程措施的综合运用成为山地灾害治理的更理想措施。
现有技术中,生态工程与岩土工程的综合防治措施主要存在两方面缺陷:其一、目前的生态工程措施规划设计主要以经验设计为主,缺乏定量化的设计方法,以及与岩土工程措施协同的技术指导,难以实现生态工程措施与岩土工程措施协同作用的优化配置。其二、由于受生长周期的影响,生态工程措施往往见效缓慢,大多需要几年或十几年才能发挥防治功效,在抢救性防灾减灾工程中并不能发挥即时效应,这要求生态工程措施的初期设计应当满足一定的条件,以使其能够尽快产生环境治理效益。这些问题在现有技术都尚未被解决。
发明内容
本发明的目的就是针对现有技术的不足,提供一种在山洪泥石流沟道形成区采用的拦砂坝的生态型组合。
为实现上述目的,本发明的技术方案如下:
一种山洪泥石流沟道形成区的拦砂坝生态组合,其特征在于:在山洪泥石流沟道形成区构筑数量N≥2座拦砂坝,自上游至下游分别命名为第1,2,…,N座拦砂坝,第n(1<n≤N)座与第n-1座拦砂坝间距L 间距=7L s,n~13L s,n,所述L s,n依式1、式2计算确定:
Figure PCTCN2021072379-appb-000001
H n=ζ n-1εD 80    式2
式中,L s,n—第n座拦砂坝坝前回淤区域长度,单位m,
H n—第n座拦砂坝坝高,单位m,
S init,n—第n座拦砂坝坝址处原始沟床比降,%,现场调查确定,
ξ—计算系数,取值0.5~0.9,
ζ—计算系数,取值0.6~0.8,
ε—计算系数,取值5~8,
D 80—第1座拦砂坝前沟床特征粒径,单位m,现场调查确定。
上述拦砂坝生态组合首先通过现场调查获得各类资料数据。现场调查包括了针对工程所在山洪泥石流沟道现场的各种测绘、测量、模拟实验测试,以及历史灾害记录获取,以及有参照借鉴作用的经验数据获取等。根据地形数据划定山洪泥石流沟道的形成区,再在形成区布设拦砂坝生态组合。拦砂坝生态组合包括数量N≥2座拦砂坝,通过对相邻拦砂坝间距的设计,利用上游泥石流在拦砂坝坝前发生回淤现象产生的堆积体、改变沟道形态,使相邻拦砂坝在空间地形及各生态因子方面成为关联性组合体,营造相邻拦砂坝之间独特的环境条件作为生态工程措施的基础。
为了使上述拦砂坝生态组合产生层次递进的拦粗排细、调控峰值流量、拦挡泥石流物质的综合防治效果,拦砂坝一般采用透过性拦砂坝,其上泄流孔规格采用逐级设计思路。具体是,第1座拦砂坝泄流孔规格依式3、式4设计,沿沟道方向下游拦砂坝泄流孔高度与泄流孔宽度分别是其相邻上游拦砂坝泄流孔高度与泄流孔宽度的0.6倍~0.8倍。
泄流孔高度:a 1=βD 80,β取值3~5    式3
泄流孔宽度:b 1=αD 80,α取值1~1.5  式4
以上述拦砂坝生态组合为基础,本发明对技术方案进一步优化,引入不同植被类型,并对植被分布加以规划,进一步增强生态组合的效果。技术方案是:拦砂坝生态组合包含配套的生态工程措施,基本的生态工程措施是坝前生态工程措施,包括:,在沟道两岸,从拦砂坝起向上游L s长度内配置灌草带;在沟道内,从拦砂坝的坝前回淤区域上游端起,自下游向上游依次配置3L s~6L s长度的灌草带、3L s~6L s长度的乔草带,L s是坝前回淤区域长度。除基本的坝前生态工程措施以外,还可增设坝后生态工程措施,包括:在沟道两岸配,从拦砂坝起向下游L b长度内配置灌草带;在沟道内,从拦砂坝的坝后冲刷坑下游端起,自上游向下游依次配置3L b~6L b长度的灌草带、3L b~6L b长度的乔草带,L b是坝后冲刷坑长度,可依现场调查确定。坝前与坝后的生态工程措施,通过在相邻拦砂坝间的沟道空间内合理布设乔草带与灌草带,能够对山洪泥石流进行有效拦挡,并提高沟道糙率,减少沟岸物质参与山洪泥石流活动,以及提高沟道糙率,降低泥石流冲击力与流速,增强实现逐级消能效果。
第n座拦砂坝坝后冲刷坑长度L b,n可依现场调查确定。本发明同时提供依式5测算该指标的方法:
Figure PCTCN2021072379-appb-000002
式中,L b,n—第n座拦砂坝坝后冲刷坑长度,单位m,
V g,n—第n座拦砂坝泥石流过坝流速,单位m/s,现场调查确定或取值V g,n=V c,n
V c,n—第n座拦砂坝选址处泥石流断面平均流速,单位m/s,现场调查确定,
h n—第n座拦砂坝过坝泥深,单位m,现场调查确定或取值 h n=h df,n
h df,n—第n座拦砂坝选址处泥石流泥深,单位m,现场调查确定,
g—重力加速度,单位m/s 2
进一步地,为避免生态工程被泥石流淤埋以及生态工程中的植被根系被泥石流冲刷破坏成为河道中的潜在阻塞物料,生态工程措施中,在坝前回淤区域内与坝后冲刷坑内均可以不配置植被。
乔草带中,乔木呈品字型栽植,乔木株距0.6h 乔木~0.8h 乔木,h 乔木是乔草带乔木平均高度;灌草带中,灌木呈品字型栽植,灌木窝距0.4h 灌木~0.6h 灌木,h 灌木是灌草带灌丛平均高度,h 灌木>泥石流泥深h df,h df由现场调查确定。
在生态工程措施中,乔木具有重要的生态意义。但乔木具有生长周期长的特征,若配置不当则无法在拦砂坝生态组合中及时发挥防治作用。为此,本发明进一步提供生态工程措施中乔木的选用条件,具体是乔草带,乔木平均胸径D 乔木>乔木破坏临界直径D max。该条件能够在保证乔草带乔木所能承受的最大弯矩M 乔木能够阻抗山洪泥石流冲击力。D max依式6计算确定:
Figure PCTCN2021072379-appb-000003
式中,D max—乔木破坏临界直径,单位m,
σ—乔木木材顺纹抗压强度,单位为kN/m 2,根据树种确定,
D—泥石流大块石直径,单位m,沿沟道方向上游第1座拦砂坝上游取值最大块石粒径D 100、第1座拦砂坝下游取值特征粒径D 80、第n座拦砂坝上游取值0.8 n-2D 80、第n座拦砂坝下游取值0.8 n-1D 80
F 大块石—泥石流大块石的冲击力,单位kN,现场调查确定,
F 泥石流—泥石流冲击力,单位kN,现场调查确定。
上述F 大块石、F 泥石流也可分别依式7、式8计算确定:
Figure PCTCN2021072379-appb-000004
Figure PCTCN2021072379-appb-000005
式中,μ—动能折减系数,取值0.2~0.3,单位
Figure PCTCN2021072379-appb-000006
V c—泥石流断面平均流速,单位m/s,现场调查确定,
θ—乔木受泥石流冲击角度,单位°,取值90°,
W—泥石流大块石重量,单位kN,根据不同D依经验公式计算确定,
C 1、C 2—分别是泥石流大块石与乔木木材的弹性变形系数,C 1+C 2=0.005,单位m/kN,
λ—形状系数,取1.0,
γ c—泥石流重度,单位kN/m 3,现场调查确定,
g—重力加速度,单位m/s 2
上述拦砂坝生态组合适用于拦砂坝选址处泥石流泥深h df≤3m的山洪泥石流沟道。
与现有技术相比,本发明的有益效果是:(1)本发明提供了一种通过设计相邻拦砂坝间距参数实现调节相邻拦砂坝间沟道小空间环境因子营造特殊生态空间的拦砂坝生态组合方案。与现有的沟道形成区拦砂坝方案相比,本发明拦砂坝生态组合方案在不增加工程投入与经济成本的 前提下,借助常规泥石流防治工程措施的改进提供了一种新的形成区治理思路。(2)本发明拦砂坝生态组合在常规岩土工程措施的基础上,通过合理布置坝前坝后沟道及坡岸位置不同类型的生态工程措施,对泥石流进行有效拦挡,提高沟道糙率,减少沟岸物质参与泥石流活动,降低泥石流冲击力与流速,实现逐级消能,降低岩土工程结构损毁风险,提高工程结构使用寿命,实现对更大规模泥石流的防治,达到岩土工程措施与生态工程措施协同减灾的目的,有效保护了下游居民、道路、房屋等设施的安全。(3)本发明拦砂坝生态组合方案提供了泥石流生态防治措施的具体设计方案,为生态防治措施从经验定性型向指标定量型转变提供了新的基础。
附图说明
图1是山洪泥石流沟道形成区的拦砂坝生态组合示意图(箭头示泥石流运动方向)。
图2a、图2b是泄流孔规格含义示意图(图2a示俯视、图2b示侧视)。
图3是拦砂坝生态工程措施俯视结构示意图(箭头示泥石流运动方向,虚线框内示沟道两岸灌草带)。
图4是拦砂坝生态工程措施俯视侧视结构示意图(箭头示泥石流运动方向)。
图5是h 乔木、h 灌木、D 乔木指标含义示意图。
附图中的数字标记分别是:
1拦砂坝 2坝前回淤区域 3坝后冲刷坑 4乔草带乔木
5灌草带灌木 6泄流孔 7溢流口
具体实施方式
下面结合附图,对本发明的优选实施例作进一步的描述。
实施例一
如图1~图5所示,用本发明方法在某山洪泥石流沟道形成区设计一组拦砂坝生态组合。
某山洪泥石流沟流域面积9.4km 2,为控制泥石流灾害,在形成区从上游到下游修建拦砂坝生态组合,用以控制沟道侵蚀。
图1是山洪泥石流沟道形成区的拦砂坝生态组合示意图。在山洪泥石流沟道形成区内构筑数量2座透过性拦砂坝1,从上游到下游分别编号为第1座(即第n-1座)、第2座(即第n座),两座拦砂坝1间距L =7L s,2~13L s,2
现场调查确定各类数据,包括:
通过现场测量确定第2座拦砂坝坝址处原始沟床比降S init,1=S init,2=0.3;
通过现场筛分实验获取第1座拦砂坝1位置处的泥石流物质全颗粒级配曲线,确定最大粒径D 100=2.0m、特征粒径D 80=1.3m。
依据现场历史灾害记录,确定第1、2座拦砂坝坝址处泥石流泥深相同h df,1=h df,2=h df=0.8m,第1、2座拦砂坝1处泥石流断面平均流速相同V c,1=V c,2=V c=5.2m/s,泥石流沟道中泥石流重度γ c=16kN/m 3
根据现有技术确定泥石流大块石重量W经验计算式
Figure PCTCN2021072379-appb-000007
(式中,ρ为大块石容重,单位kN/m 3,经验取值ρ=27kN/m 3,其他参数含义 同前),银杉(Cathaya argyrophylla Chun et Kuang)木材顺纹抗压强度σ=31000kN/m 2
拦砂坝生态组合中各参数设计如下:
1、设计两座拦砂坝间距L 间距
将n=1,D 80=1.3m、ε=5、S init,1=0.3、ξ=0.5代入式1、式2,计算有第1座拦砂坝坝高H 1=6.5m、坝前回淤区域2长度L s,1=43.3m。
将n=2,D 80=1.3m、ζ=0.8、ε=5、S init,2=0.3、ξ=0.5代入式1、式2,计算有第2座拦砂坝坝高H 2=5.2m、坝前回淤区域2长度L s,2=34.7m。
在7L s,2~13L s,2取值范围内,根据地形与施工条件最终确定两座拦砂坝1间距L 间距=278m。
2、设计两座拦砂坝间距泄流孔规格
图2a、图2b是泄流孔规格含义示意图(图2a示俯视、图2b示侧视)。
根据泥石流物质全颗粒级配曲线,块石整体体积偏小,应当采用小开口参数(即α、β取值偏小),具体取值β=3、α=1。
第1座拦砂坝:将D 80=1.3m、β=3、α=1代入式3、式4,计算有泄流孔高度a 1=3.9m、泄流孔宽度b 1=1.3m;
第2座拦砂坝:第2座拦砂坝泄流孔高度与宽度分别取值第1座拦砂坝对应指标的0.8倍。计算有泄流孔高度a 2=3.12m、泄流孔宽度b 2=1.04m。
3、拦砂坝生态工程措施设计
在两座拦砂坝前后增设生态工程措施,包括坝前生态工程措施与坝 后生态工程措施。图3是拦砂坝生态工程措施俯视结构示意图(虚线框内示沟道两岸灌草带)、图4是拦砂坝生态工程措施俯视侧视结构示意图。
坝前生态工程措施:在拦砂坝1上游,在沟道两岸,从拦砂坝1至坝前L s长度内配置灌草带5;在沟道内,从坝前回淤区域2上游端起,自下游向上游依次配置3L s~6L s长度(图3、图4中标示长度L 1)的灌草带5、3L s~6L s长度(图3、图4中标示长度L 2)的乔草带4。
坝后生态工程措施:在拦砂坝1下游,在沟道两岸,从拦砂坝1至坝后L b长度内配置灌草带5;在沟道内,从坝后冲刷坑3下游端起,自上游向下游依次布置3L b~6L b长度(图3、图4中标示长度L 3)的灌草带5、3L b~6L b长度(图3、图4中标示长度L 4)的乔草带4。
第1座拦砂坝:将V g,1=V c,1=5.2m/s、H 1=6.5m、h 1=h df,1=0.8m代入式5,计算有第1座拦砂坝坝后冲刷坑3长度L b,1=9.27m。
第2座拦砂坝:将V g,2=V c,2=5.2m/s、H 2=5.2m、h 2=h df,2=0.8m代入式5,计算有第2座拦砂坝坝后冲刷坑3长度L b,2=8.04m。
以第1座拦砂坝生态工程措施为例,拦砂坝1上游沟道两岸配置灌草带5长度L s,1=43.3m,拦砂坝1上游沟道内配置灌草带5长度L 1=3L s,1=130m、配置乔草带4长度L 2=3L s,1=130m;拦砂坝1下游沟道两岸配置灌草5带长度L b,1=9.27m,拦砂坝1下游沟道内配置灌草带5长度L 3=3L b,1=28m、配置乔草带4长度L 4=3L b,1=28m。
乔草带4中,乔木呈品字型栽植,乔木株距0.6h 乔木~0.8h 乔木,h 乔木是乔草带乔木平均高度;灌草带5中,灌木呈品字型栽植,灌木窝距0.4h 灌木~0.6h 灌木,h 灌木是灌草带灌丛平均高度,h 灌木>泥石流泥深h df=0.8m。本 实施方式中,乔草带的乔木选择银杉,灌草带的灌木选择黄杨(Buxus sinica)。在坝前回淤区域2内与坝后冲刷坑3内均不配置植被。图5是h 乔木、h 灌木、D 乔木指标含义示意图。
乔木的配置要求还包括乔木平均胸径D 乔木>乔木破坏临界直径D max。根据规则,计算中所需泥石流大块石直径D值为:第1座拦砂坝上游取值最大块石粒径D 100=2.0m、第1座拦砂坝下游取值特征粒径D 80=1.3m、第2座拦砂坝上游泥石流大块石直径D=0.8 n-2D 80=1.3m、第2座拦砂坝下游泥石流大块石直径D=0.8 n-1D 80=1.04m。
以第1座拦砂坝坝前乔草带为例:将
Figure PCTCN2021072379-appb-000008
Vc=5.2m/s、θ=90°、W=110.8KN、C 1+C 2=0.005KN/m、λ=1.0、γ c=16kN/m 3、g=9.8m/s 2代入式7、式8,计算有F 大块石=234.6KN、F 泥石流=35.3KN,再与σ=31000kN/m 2、D=2.0m、h df=0.8m代入式6,计算有D max=0.434m。故本实施方式中,需保证第1座拦砂坝坝前乔草带中银杉平均胸径D 乔木>0.434m。根据需要选择移植银杉植株。
实施例二
用本发明方法在某山洪泥石流沟道形成区设计一组拦砂坝生态组合。与实施例一中相同内容不再重复。
某泥石流沟流域面积16.7km 2,为控制泥石流灾害,修建一组拦砂坝生态组合,采用生态工程措施与岩土工程措施协同控制沟道侵蚀的防治方法。拦砂坝生态组合包括3座拦砂坝1,从上游到下游分别编号为第1座、第2座、第3座。
现场调查确定各类数据,包括:
通过现场测量确定第2座拦砂坝坝址处原始沟床比降S init,1=S init,2= 0.2;
通过现场筛分实验获取第1座拦砂坝位置处的泥石流物质全颗粒级配曲线,确定最大粒径D 100=3.0m、特征粒径D 80=2.2m。
依据现场历史灾害记录,确定第1、2、3座拦砂坝坝址处泥石流泥深相同h df,1=h df,2=h df,3=h df=1.4m,第1、2、3座拦砂坝处泥石流断面平均流速相同V c,1=V c,2=V c,3=V c=6.5m/s,泥石流沟道中泥石流重度γ c=21kN/m 3
根据现有技术确定泥石流大块石重量W经验计算式同实施例一,银杉木材顺纹抗压强度σ=31000kN/m 2
拦砂坝生态组合中各参数设计如下:
1、第1、2座拦砂坝组合设计
1.1设计拦砂坝间距L 间距
采用与实施例一相同的计算,有:
有第1座拦砂坝坝高H 1=17.6m、坝前回淤区域2长度L s,1=176m。
第2座拦砂坝坝高H 2=14.08m、坝前回淤区域2长度L s,2=140.8m。
在7L s,2~13L s,2取值范围内,根据地形与施工条件最终确定第1、2座拦砂坝1间距L 间距=1267m。
1.2设计第1、2座拦砂坝间距泄流孔规格
根据泥石流物质全颗粒级配曲线,块石整体体积偏小,应当采用大开口参数(即α、β取值偏大),具体取值β=5、α=1.5。
采用与实施例一相同计算,有
第1座拦砂坝:泄流孔高度a 1=11m、泄流孔宽度b 1=3.3m;
第2座拦砂坝:泄流孔高度a 2=8.8m、泄流孔宽度b 2=2.64m。
1.3设计第1、2座拦砂坝生态工程措施
坝前生态工程措施、坝后生态工程措施结构同实施例一。
与实施例一相同的计算,有第1座拦砂坝坝后冲刷坑3长度L b,1=20.22m,第2座拦砂坝坝后冲刷坑3长度L b,2=17.46m。
生态工程措施中,各类植物物种选择同实施例一。
乔木的配置要求还包括乔木平均胸径D 乔木>乔木破坏临界直径D max
根据规则,计算中所需泥石流大块石直径D值为:第1座拦砂坝上游取值最大块石粒径D 100=3.0m、第1座拦砂坝下游取值特征粒径D 80=2.2m、第2座拦砂坝上游泥石流大块石直径D=0.8 n-2D 80=2.2m、第2座拦砂坝下游泥石流大块石直径D=0.8 n-1D 80=1.76m。
以第1座拦砂坝坝前乔草带为例,与实施例一方法相同计算有F 大块 =538.8KN、F 泥石流=126.8KN、D max=0.665m。故需保证此处乔草带中银杉平均胸径D 乔木>0.665m。
2、第2、3座拦砂坝组合设计
2.1设计第2、3座拦砂坝间距L 间距
采用与实施例一相同方法,计算有第3座拦砂坝坝高H 3=11.26m、坝前回淤区域2长度L s,3=112.6m。
在7L s,3~13L s,3取值范围内,根据地形与施工条件最终确定第2、3座拦砂坝间距L 间距=1010m。
2.2设计第3座拦砂坝间距泄流孔规格
第3座拦砂坝:第3座拦砂坝泄流孔高度与宽度分别取值第2座拦砂坝1对应指标的0.8倍。计算有泄流孔高度a 3=7.04m、泄流孔宽度 b 3=2.11m。
2.3设计第2、3座拦砂坝生态工程措施
坝前生态工程措施、坝后生态工程措施结构及各类植物物种选择同实施例一。
与实施例一相同的计算,有第3座拦砂坝坝后冲刷坑3长度L b,3=15.12m。
乔木的配置要求还包括乔木平均胸径D 乔木>乔木破坏临界直径D max
根据规则,计算中所需泥石流大块石直径D值为:第3座拦砂坝上游泥石流大块石直径D=0.8 3-2D 80=1.76m、第3座拦砂坝1下游泥石流大块石直径D=0.8 3-1D 80=1.41m。
以第3座拦砂坝坝后乔草带为例:采用实施例一相同计算过程,有F 大块石=173.5KN、F 泥石流=126.8KN、D max=0.41m。故需保证乔草带中银杉平均胸径D 乔木>0.41m。根据需要选择移植银杉植株。

Claims (10)

  1. 山洪泥石流沟道形成区的拦砂坝生态组合,其特征在于:在山洪泥石流沟道形成区构筑数量N≥2座拦砂坝(1),自上游至下游分别命名为第1,2,…,N座拦砂坝(1),第n(1<n≤N)座与第n-1座拦砂坝(1)间距L 间距=7L s,n~13L s,n,所述L s依式1计算确定:
    Figure PCTCN2021072379-appb-100001
    H n=ζ n-1εD 80  式2
    式中,L s,n—第n座拦砂坝坝前回淤区域长度,单位m,
    H n—第n座拦砂坝坝高,单位m,
    S init,n—第n座拦砂坝坝址处原始沟床比降,%,现场调查确定,
    ξ—计算系数,取值0.5~0.9,
    ζ—计算系数,取值0.6~0.8,
    ε—计算系数,取值5~8,
    D 80—第1座拦砂坝前沟床特征粒径,单位m,现场调查确定。
  2. 根据权利要求1所述拦砂坝生态组合,其特征在于:所述拦砂坝(1)是透过性拦砂坝;第1座拦砂坝泄流孔规格依式3、式4设计,沿沟道方向下游拦砂坝泄流孔高度与泄流孔宽度分别是其相邻上游拦砂坝泄流孔高度与泄流孔宽度的0.6倍~0.8倍,
    泄流孔高度:a 1=βD 80,β取值3~5  式3
    泄流孔宽度:b 1=αD 80,α取值1~1.5  式4。
  3. 根据权利要求1所述的拦砂坝生态组合,其特征在于:还包含生态工程措施,所述生态工程措施是坝前生态工程措施,包括:在沟道两岸,从拦砂坝(1)起向上游L s长度内配置灌草带;在沟道内,从拦砂坝 (1)的坝前回淤区域(2)上游端起,自下游向上游依次配置3L s~6L s长度的灌草带、3L s~6L s长度的乔草带,L s是坝前回淤区域(2)长度。
  4. 根据权利要求3所述的拦砂坝组合,其特征在于:所述生态工程措施还包括坝后生态工程措施,包括:在沟道两岸配,从拦砂坝(1)起向下游L b长度内配置灌草带;在沟道内,从拦砂坝(1)的坝后冲刷坑(3)下游端起,自上游向下游依次配置3L b~6L b长度的灌草带、3L b~6L b长度的乔草带,L b是坝后冲刷坑(3)长度。
  5. 根据权利要求4所述的拦砂坝组合,其特征在于:坝后冲刷坑(3)长度依式5计算确定:
    Figure PCTCN2021072379-appb-100002
    式中,L b,n—第n座拦砂坝坝后冲刷坑长度,单位m,
    V g,n—第n座拦砂坝泥石流过坝流速,单位m/s,现场调查确定或取值V g,n=V c,n,,
    V c,n—第n座拦砂坝选址处泥石流断面平均流速,单位m/s,现场调查确定,
    h n—第n座拦砂坝过坝泥深,单位m,现场调查确定或取值h n=h df,n
    h df,n—第n座拦砂坝选址处泥石流泥深,单位m,现场调查确定,
    g—重力加速度,单位m/s 2
  6. 根据权利要求3或4所述的拦砂坝组合,其特征在于:所述生态工程措施中,在坝前回淤区域(2)内与坝后冲刷坑(3)内均不配置植被。
  7. 根据权利要求3或4所述的拦砂坝组合,其特征在于:所述乔草带中,乔木呈品字型栽植,乔木株距0.6h 乔木~0.8h 乔木,h 乔木是乔草带乔 木平均高度;所述灌草带中,灌木呈品字型栽植,灌木窝距0.4h 灌木~0.6h 灌木,h 灌木是灌草带灌丛平均高度,h 灌木>泥石流泥深h df
  8. 根据权利要求3或4所述的拦砂坝生态组合,其特征在于:所述乔草带中,乔木平均胸径D 乔木>乔木破坏临界直径D max,所述D max依式4计算确定:
    Figure PCTCN2021072379-appb-100003
    式中,D max—乔木破坏临界直径,单位m,
    σ—乔木木材顺纹抗压强度,单位为kN/m 2,根据树种确定,
    D—泥石流大块石直径,单位m,沿沟道方向上游第1座拦砂坝上游取值最大块石粒径D 100、第1座拦砂坝下游取值特征粒径D 80、第n座拦砂坝上游取值0.8 n-2D 80、第n座拦砂坝下游取值0.8 n-1D 80
    F 大块石—泥石流大块石的冲击力,单位kN,现场调查确定,
    F 泥石流—泥石流冲击力,单位kN,现场调查确定。
  9. 根据权利要求8所述的拦砂坝生态组合,其特征在于:所述F 大块石、F 泥石流分别依式7、式8计算确定:
    Figure PCTCN2021072379-appb-100004
    Figure PCTCN2021072379-appb-100005
    式中,μ—动能折减系数,取值0.2~0.3,单位
    Figure PCTCN2021072379-appb-100006
    V c—泥石流断面平均流速,单位m/s,现场调查确定,
    θ—乔木受泥石流冲击角度,单位°,取值90°,
    W—泥石流大块石重量,单位kN,根据不同D依经验公式计算 确定,
    C 1、C 2—分别是泥石流大块石与乔木木材的弹性变形系数,C 1+C 2=0.005,单位m/kN,
    λ—形状系数,取1.0,
    γ c—泥石流重度,单位kN/m 3,现场调查确定,
    g—重力加速度,单位m/s 2
  10. 根据权利要求1、2、3、4、5、9任一所述的拦砂坝生态组合,其特征在于:适用于泥石流泥深h df≤3m的山洪泥石流沟道。
PCT/CN2021/072379 2020-09-11 2021-01-18 山洪泥石流沟道形成区的拦砂坝生态组合 WO2022052399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010956470.0 2020-09-11
CN202010956470.0A CN112081071B (zh) 2020-09-11 2020-09-11 山洪泥石流沟道形成区的拦砂坝生态组合

Publications (1)

Publication Number Publication Date
WO2022052399A1 true WO2022052399A1 (zh) 2022-03-17

Family

ID=73737547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072379 WO2022052399A1 (zh) 2020-09-11 2021-01-18 山洪泥石流沟道形成区的拦砂坝生态组合

Country Status (2)

Country Link
CN (1) CN112081071B (zh)
WO (1) WO2022052399A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115081069A (zh) * 2022-06-21 2022-09-20 河南大学 一种道路沉沙池规划方法及系统
CN116519264A (zh) * 2023-06-30 2023-08-01 中国科学院、水利部成都山地灾害与环境研究所 泥石流沟道断面综合糙率系数的动态测定方法及装置
CN117216831A (zh) * 2023-08-18 2023-12-12 中铁交通投资集团有限公司 一种基于河流弯道水沙调控的公路水毁防护设计方法
CN117760903A (zh) * 2024-02-21 2024-03-26 中国地质调查局成都地质调查中心(西南地质科技创新中心) 一种山洪泥石流容重监测球
CN117216831B (zh) * 2023-08-18 2024-06-07 中铁交通投资集团有限公司 一种基于河流弯道水沙调控的公路水毁防护设计方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112081071B (zh) * 2020-09-11 2022-04-05 中国科学院、水利部成都山地灾害与环境研究所 山洪泥石流沟道形成区的拦砂坝生态组合
CN113322900B (zh) * 2021-07-07 2022-05-27 兰州大学 一种防治沟道泥石流启动的综合治理措施及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463593A (zh) * 2009-01-08 2009-06-24 中国科学院水利部成都山地灾害与环境研究所 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用
CN103276687A (zh) * 2013-05-31 2013-09-04 中国科学院、水利部成都山地灾害与环境研究所 一种拦砂坝后泥石流回淤形态测算方法及应用
CN106680454A (zh) * 2015-11-10 2017-05-17 中国科学院城市环境研究所 一种具拦沙坝已治理崩岗土壤侵蚀模数测算方法
US20170370062A1 (en) * 2016-06-24 2017-12-28 PoweChina Huadong Engineering Coporation Limited Economical debris flow blocking dam structure and construction method thereof
CN110309600A (zh) * 2019-07-04 2019-10-08 安阳工学院 一种基于物质与能量调控目标的开口型拦砂坝群设计方法
JP2020064427A (ja) * 2018-10-16 2020-04-23 株式会社パスコ 砂防堰堤の堆積量算出装置、及び制御プログラム
CN112081071A (zh) * 2020-09-11 2020-12-15 中国科学院、水利部成都山地灾害与环境研究所 山洪泥石流沟道形成区的拦砂坝生态组合

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224243A (ja) * 2000-02-15 2001-08-21 Fujita Corp 人工緑化方法および人工緑地
CN102108690B (zh) * 2011-01-17 2012-09-05 中国科学院水利部成都山地灾害与环境研究所 一种泥石流沟谷生态工程泥沙拦固方法及其应用
CN103588303B (zh) * 2013-11-11 2015-04-08 武汉理工大学 三峡库区山坡地沟壑农业面源污染生态谷坊阻控系统
CN108797533B (zh) * 2018-06-14 2020-05-19 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流拦砂坝圆形泄流孔的设计方法
CN109930556A (zh) * 2019-04-24 2019-06-25 黑龙江省水利科学研究院 一种复合式谷坊水土保持方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463593A (zh) * 2009-01-08 2009-06-24 中国科学院水利部成都山地灾害与环境研究所 基于泥石流软基消能的横向齿槛基础埋深设计方法及应用
CN103276687A (zh) * 2013-05-31 2013-09-04 中国科学院、水利部成都山地灾害与环境研究所 一种拦砂坝后泥石流回淤形态测算方法及应用
CN106680454A (zh) * 2015-11-10 2017-05-17 中国科学院城市环境研究所 一种具拦沙坝已治理崩岗土壤侵蚀模数测算方法
US20170370062A1 (en) * 2016-06-24 2017-12-28 PoweChina Huadong Engineering Coporation Limited Economical debris flow blocking dam structure and construction method thereof
JP2020064427A (ja) * 2018-10-16 2020-04-23 株式会社パスコ 砂防堰堤の堆積量算出装置、及び制御プログラム
CN110309600A (zh) * 2019-07-04 2019-10-08 安阳工学院 一种基于物质与能量调控目标的开口型拦砂坝群设计方法
CN112081071A (zh) * 2020-09-11 2020-12-15 中国科学院、水利部成都山地灾害与环境研究所 山洪泥石流沟道形成区的拦砂坝生态组合

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115081069A (zh) * 2022-06-21 2022-09-20 河南大学 一种道路沉沙池规划方法及系统
CN116519264A (zh) * 2023-06-30 2023-08-01 中国科学院、水利部成都山地灾害与环境研究所 泥石流沟道断面综合糙率系数的动态测定方法及装置
CN116519264B (zh) * 2023-06-30 2024-03-12 中国科学院、水利部成都山地灾害与环境研究所 泥石流沟道断面综合糙率系数的动态测定方法及装置
CN117216831A (zh) * 2023-08-18 2023-12-12 中铁交通投资集团有限公司 一种基于河流弯道水沙调控的公路水毁防护设计方法
CN117216831B (zh) * 2023-08-18 2024-06-07 中铁交通投资集团有限公司 一种基于河流弯道水沙调控的公路水毁防护设计方法
CN117760903A (zh) * 2024-02-21 2024-03-26 中国地质调查局成都地质调查中心(西南地质科技创新中心) 一种山洪泥石流容重监测球
CN117760903B (zh) * 2024-02-21 2024-06-07 中国地质调查局成都地质调查中心(西南地质科技创新中心) 一种山洪泥石流容重监测球

Also Published As

Publication number Publication date
CN112081071A (zh) 2020-12-15
CN112081071B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2022052399A1 (zh) 山洪泥石流沟道形成区的拦砂坝生态组合
CN107165136B (zh) 针对土著鱼类保护的库尾反调节方法
CN112115538B (zh) 拦砂坝坝体与坝基的保护方法
Gupta Drainage engineering: Principles and practices
CN112942385B (zh) 村镇建筑山洪泥石流防护系统、设计方法
Sawamoto et al. Topography change due to floods and recovery process at the Abukuma river mouth
McCullough et al. Channel aggradation by beaver dams on a small agricultural stream in Eastern Nebraska
Changming et al. Some problems of flooding and its prevention in the lower Yellow River
Lewis INVESTIGATION OF RAINFALL, RUN-OFF AND YIELD ON THE ALWEN AND BRENIG CATCHMENTS.
Nishat et al. A strategic view of land management planning in Bangladesh
Bagatur et al. Evaluation with stream characteristics of downstream flood problems after dam construction
Attia et al. Cause and Combat of Agriculture Land Desertification in Egypt Related to River Processes
Morris Sediment Management at the Proposed Kaiha 2 Hydropower Project, Mano River Basin, Liberia
Mackenzie Notes on Irrigation Works: A Course of Lectures Delivered at Oxford Under the Auspices of the Common University Fund
DAM FINAL YEAR PROJECT ON DESIGN OF SUITABLE GRAVITY DAM IN BLATE RIVER, RIFT VALLEY BASIN, ETHIOPIA
Imam et al. Future Changes Downstream New Assiut Barrage
Chen et al. Design of Open Check Dams and Their Application in the Wenchuan Earthquake Area
Stotherd IRRIGATION WORKS IN THE JEYPORE STATE, RAJPUTANA, INDIA.
Lindow et al. Channel evolution and sediment transport in a restored sand bed stream
KRAKOVSKÁ et al. PROPOSAL OF FLOOD CONTROL
Bolton A report on irrigation in Dera Ismail Khan.
McCullough et al. Hydraulic Characteristics and Dynamics of Beaver Dams in a Midwestern US Agricultural Watershed
Brown Irrigation under British engineers
Suljić et al. The analysis of water release from the hydro accumulation lake Modrac with spillway curve and volume curves
Braunović et al. Erosion processes in the drainage basin of the Predejane River (southeastern Serbia) in the period 1953-2012.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865463

Country of ref document: EP

Kind code of ref document: A1