WO2022052323A1 - 一种微创手术机器人及其末端执行器 - Google Patents

一种微创手术机器人及其末端执行器 Download PDF

Info

Publication number
WO2022052323A1
WO2022052323A1 PCT/CN2020/131362 CN2020131362W WO2022052323A1 WO 2022052323 A1 WO2022052323 A1 WO 2022052323A1 CN 2020131362 W CN2020131362 W CN 2020131362W WO 2022052323 A1 WO2022052323 A1 WO 2022052323A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
clamp
minimally invasive
end effector
invasive surgical
Prior art date
Application number
PCT/CN2020/131362
Other languages
English (en)
French (fr)
Inventor
刘会聪
孙立宁
侯诚
陈涛
王凤霞
杨湛
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022052323A1 publication Critical patent/WO2022052323A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Definitions

  • the invention relates to the technical field of medical devices, in particular to a minimally invasive surgical robot and its end effector.
  • the minimally invasive surgical robot has the advantages of small wound, less bleeding, less pain, quick postoperative recovery, less infection and tissue damage, and is widely used in general surgery, urology, cardiac surgery and In complex operations such as gastroenterology, it can effectively improve the effect of surgical treatment and provide conditions for the development of telemedicine.
  • the force sensor or torque sensor fixed on the end effector has the advantages of convenient operation and fast response, but the accuracy of force perception is easily affected by the wetting caused by liquids such as disinfectant or body fluids.
  • Environmental influence another example, the force detection module connected to the main control system, the force detection module changes based on the driving parameters, and its force perception accuracy is easily affected by factors such as stiffness, friction, gravity, inertia and temperature;
  • Image recognition components such as cameras installed in the end effector, but there is an error between the theoretical model established by the image recognition component based on visual judgment and the real model, which also affects the accuracy of force perception.
  • the purpose of the present invention is to provide a minimally invasive surgical robot and its end effector, which are elastically erected between the fixed part and the elastic part.
  • the elastic frame is driven to elastically deform under the action of the force detector, and the three-dimensional force information is decoupled according to the feedback signals of all the force detection parts, and the accurate force perception is obtained by improving the range and sensitivity of the force perception, with high action accuracy and high safety.
  • the end effector of a minimally invasive surgical robot includes a first clamp and a second clamp that are hinged to each other; the first clamp and the second clamp are symmetrically provided with a clamping part, an elastic part and a a fixing part; the clamping part is fixedly connected with the elastic part, and the fixing part is suspended above the elastic part; an elastic frame is arranged between the elastic part and the fixing part, and the elastic frame is provided with a number of force detection parts; when the first clamp is clamped When the clamping part and the clamping part of the second clamp are in the clamping state, the elastic part drives the elastic frame to elastically deform, so as to decouple the three-dimensional force information according to the feedback signals of all the force detection parts.
  • the clamping portion is integrally connected with the elastic portion, and the cross-sectional area of the elastic portion is smaller than that of the clamping portion so that the rigidity of the elastic portion is smaller than that of the clamping portion.
  • the elastic portion is in the shape of a plate, and the elastic portion includes an elastic plate that is opposed to the elastic frame and two connecting arms symmetrically arranged on both sides of the elastic plate.
  • the elastic frame includes:
  • One end is fixedly connected with the center of all the elastic arms and the other end is fixedly connected with the fixed part.
  • the fixing ring is a square fixing ring, and all the elastic arms are connected to the inner wall of the square fixing ring in a one-to-one correspondence to form a cross-shaped structure.
  • the fixing part is a sealing shell fixed to an end of the elastic part away from the clamping part by means of colloid.
  • the fixing part is a sealing compound covering the outer periphery of the elastic part.
  • the clamping part is provided with an escape groove, and when the elastic part is elastically deformed, the escape groove is used to escape the fixed shell to prevent the fixed shell from abutting against the clamping part.
  • the force detection member is specifically a varistor.
  • the minimally invasive surgical robot provided by the present invention includes a robot body and the end effector described in any one of the above, and the end effector is arranged on the robot body.
  • the end effector of the minimally invasive surgical robot includes a first clamp and a second clamp that are hinged to each other, so that the first clamp and the second clamp can clamp foreign objects through opening and closing.
  • the first clamp and the second clamp are symmetrically provided with a clamping part, an elastic part and a fixing part, and the fixing part is suspended on the elastic part; when the clamping part of the first clamp and the clamping part of the second clamp are in the position of In the clamping state, the elastic part connected to the clamping part is elastically deformed, and the elastic part drives the elastic frame between the elastic part and the fixed part to elastically deform, and the three-dimensional output is decoupled according to the feedback signals of all the force detection parts.
  • the elastic deformation of the elastic frame can increase the range of force perception, which is still conducive to improving the sensitivity of force perception.
  • the improvement of force perception sensitivity is conducive to obtaining accurate force perception, helps to improve the action accuracy of the end effector, reduces the risk of misoperation, and has a higher safety of surgery.
  • the minimally invasive surgical robot comprising the above-mentioned end effector provided by the present invention has the same beneficial effect.
  • FIG. 1 is a structural diagram of an end effector of a minimally invasive surgical robot provided by a specific embodiment of the present invention
  • Fig. 2 is the exploded view of Fig. 1;
  • Fig. 3 is the front view of the first clamp in Fig. 1;
  • FIG. 4 is a cross-sectional view of the elastic frame and the fixing part in FIG. 1 after being assembled;
  • Fig. 5 is the front view of the elastic frame in Fig. 1;
  • FIG. 6 is a front view of the elastic part and the clamping part integrally connected in FIG. 1;
  • FIG. 7 is a top view of FIG. 6 .
  • FIG. 1 is a structural diagram of an end effector of a minimally invasive surgical robot according to a specific embodiment of the present invention
  • FIG. 2 is an exploded view of FIG. 1
  • the front view of the clamp
  • Figure 4 is a cross-sectional view of the elastic frame and the fixing part in Figure 1
  • Figure 5 is a front view of the elastic frame in Figure 1
  • the front view of the clamping part
  • FIG. 7 is the top view of FIG. 6 .
  • the embodiment of the present invention discloses an end effector of a minimally invasive surgical robot, which includes a first clamp 1 and a second clamp 2.
  • the first clamp 1 and the second clamp 2 are rotatably connected by a rotating pin, and the rotating pin is installed On the support base, the first clamp 1 and the second clamp 2 can be opened and closed through relative rotation, which is convenient for grasping foreign objects such as dirt.
  • the first clamp 1 and the second clamp 2 are symmetrically provided with a clamping part 3 , an elastic part 4 and a fixing part 5 .
  • the fixed part 5 is suspended above the elastic part 4, that is, one end of the fixed part 5 is fixed to the elastic part 4 and the other end is suspended, which provides conditions for the elastic deformation of the elastic frame 6;
  • the force detection pieces can be used to detect the elastic force of the elastic frame 6. According to the feedback signals of all the force detection pieces, it is convenient to use the elasticity of the elastic frame 6.
  • the force obtains the three-dimensional force information between the first clamp 1 and the second clamp 2, and obtains key parameters such as the clamping force and their respective moments through matrix transformation.
  • the force detection element may be a varistor, and the three-dimensional force information is calculated according to the changing resistance value of the varistor, but the type of the force detection element is not limited to this.
  • the first clamp 1 includes a first clamping part, a first elastic part and a first fixing part
  • the second clamp 2 includes a second clamping part, a second elastic part and a second fixing part
  • the first clamping part and the second clamping portion are the same
  • the structures of the first elastic portion and the second elastic portion are the same
  • the structures of the first fixing portion and the second fixing portion are the same.
  • the structures of the clamping portion 3 , the elastic portion 4 and the fixing portion 5 refer to the following for details.
  • the elastic part 4 of the first clamp 1 and the elastic part 4 of the second clamp 2 are in the respective The action of the clamping part 3 sends elastic deformation at the same time, and one end of the elastic frame 6 is fixed to the fixing part 5, so that the elastic frame 6 drives the elastic frame 6 connected to it to synchronously undergo elastic deformation, so that the force on the elastic frame 6 can be detected.
  • multi-dimensional force information can effectively improve the sensitivity of force perception; in addition, the elastic member is elastically deformed under the action of the elastic part 4 , which is conducive to improving the range of force perception and further improving the sensitivity of force perception.
  • the end effector of the minimally invasive surgical robot provided by the present invention can improve the sensitivity of force perception, and the improvement of the sensitivity is conducive to obtaining accurate force perception, helps to improve the action accuracy of the end effector, and reduces the The risk of misoperation is high, and the safety of the operation is high.
  • the clamping portion 3 and the elastic portion 4 are integrally connected, and the two are arranged linearly, so that the elastic portion 4 can be elastically deformed under the action of the clamping portion 3 by leveraging the principle.
  • the cross-sectional area of the elastic portion 4 is smaller than the cross-sectional area of the clamping portion 3, so that the rigidity of the elastic portion 4 is smaller than that of the clamping portion 3, so as to ensure that the clamping portion 3 has sufficient rigidity to clamp foreign objects reliably, At the same time, the elasticity of the elastic portion 4 is improved, so as to further ensure that the elastic portion 4 is elastically deformed under the action of the clamping portion 3 .
  • the clamping part 3 of the first clamp 1 and the clamping part 3 of the second clamp 2 are both in the shape of a quadrangular pyramid, and the clamping part 3 of the first clamp 1 and the second clamp
  • the clamping surfaces of the clamping portion 3 of 2 are all flat surfaces.
  • the elastic portion 4 may be in the shape of a plate, that is, the elastic portion 4 of the first clamping portion and the elastic portion 4 of the second clamping portion are both flat plates.
  • the clamping plane of the clamping portion 3 is coplanar with the bottom surface of the elastic portion 4 .
  • the elastic part 4 includes a plate body, an elastic plate 41 and a connecting arm 42.
  • the plate body is integrally connected with the clamping part 3, and the elastic plate 41 and the connecting arm 42 are both arranged on the plate body near the clamp.
  • the elastic plate 41 abuts against the elastic frame 6 , so that the elastic plate 41 drives the elastic frame 6 to synchronously elastically deform.
  • Two connecting arms 42 are symmetrically arranged on both sides of the elastic plate 41 , and the width of the connecting arms 42 is much smaller than that of the elastic plate 41 , which is beneficial to further reduce the rigidity of the elastic portion 4 and fully increase the range of force perception.
  • the two connecting arms 42 are integrally connected with the elastic plate 41 , and one end of the two connecting arms 42 away from the elastic plate 41 is integrally adjacent to the plate body.
  • a number of through holes may be added on the elastic plate 41 to reduce the rigidity of the elastic plate 41 .
  • the structure of the elastic portion 4 is not limited to this, and the elastic deformation degree of the elastic portion 4 can also be improved by reducing the thickness or width of the elastic portion 4 or providing a hollow structure.
  • the elastic frame 6 includes a fixing ring 61 , an elastic arm 62 and a connecting column 63 .
  • the fixing ring 61 is attached to the elastic portion 4 , and the fixing ring 61 can be glued to the elastic plate 41 .
  • the elastic arms 62 are provided with the center of the fixing ring 61 , and the elastic arms 62 are radially distributed and integrally connected. When the elastic plate 41 is elastically deformed, the suspended elastic arms 62 are elastically deformed accordingly.
  • the force detection piece is integrally arranged on the elastic arm 62 , and when the elastic arm 62 is elastically deformed, all the force detection pieces perform force detection, which is convenient for decoupling the three-dimensional force information.
  • the connecting column 63 is fixedly connected with the center of all the elastic arms 62 and the other end is fixedly connected with the fixing portion 5 .
  • the connecting post 63 itself has no elasticity, which provides conditions for the deformation of all the elastic arms 62 .
  • the fixing ring 61 is a square fixing ring
  • the elastic arms 62 specifically include four.
  • the four elastic arms 62 are fixedly connected with the inner walls of the square fixing ring in a one-to-one correspondence, so that the elastic arms 62 form a cross-shaped structure. .
  • All the force detection members are evenly distributed on the four elastic arms 62 .
  • connection post 63 is specifically a metal probe.
  • the metal probe can be processed by an ultra-precision machining process, and the metal probe can be fixed to the center of all the elastic arms 62 by using a micro-assembly technology.
  • the elastic plate 41 drives all the elastic arms 62 to elastically deform, and the resistance of all the varistors changes, which can be decoupled through the changed resistance.
  • the three-dimensional force information is obtained, and the accurate clamping force or moment is calculated.
  • the inverted elastic frame 6 can still achieve the purpose of the present invention.
  • the fixing part 5 is specifically a sealing shell fixed to the end of the elastic part 4 away from the clamping part 3 by means of colloid.
  • the sealing shell can also protect the force detection part from the influence of the disinfectant, and ensure the force detection. Pieces have high detection accuracy.
  • the fixing portion 5 can also be embodied as a sealing colloid covering the outer periphery of the elastic portion 4 , which can still function as a sealing force detecting element, so that the force detecting element is not affected by the disinfectant.
  • the colloid or sealing colloid can not only play a fixing role, but also deform with the elastic part 4 .
  • the fixing shell is fixed to the end of the elastic part 4 away from the clamping part 3 by means of colloid
  • the clamping portion 3 is provided with an avoidance groove 31 .
  • the avoidance groove 31 is used to avoid the fixed shell to prevent the fixed shell from abutting against the clamping portion 3 .
  • the escape groove 31 is a triangular groove.
  • the end of the fixed shell close to the clamping part 3 is provided with a triangular-shaped protrusion, and the triangular-shaped flange is opposite to the triangular-shaped groove. Whether the second clamp 2 clamps foreign objects, the triangular flange and the triangular groove are not in contact.
  • the structure of the escape groove 31 is not limited to this.
  • the minimally invasive surgical robot provided by the present invention includes a robot body and the above-mentioned end effector.
  • the end effector is arranged on the robot body and has the same beneficial effects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manipulator (AREA)

Abstract

一种微创手术机器人及其末端执行器,末端执行器包括相互铰接的第一夹钳和第二夹钳;第一夹钳与第二夹钳均对称设有夹持部、弹性部及固定部;夹持部与弹性部相固连,固定部悬置于弹性部上方;弹性部与固定部之间设有弹性架,弹性架设有若干力检测件;当第一夹钳的夹持部与第二夹钳的夹持部处于夹持状态时,弹性部带动弹性架发生弹性变形,使弹性架内全部力检测件进行力检测,从而依据全部所述力检测件反馈的信号解耦出三维力信息,提升力感知的灵敏性。力感知灵敏性的提升有利于获取准确的力感知,有助于提升末端执行器的动作精度,降低误操作风险,手术的安全性较高。

Description

一种微创手术机器人及其末端执行器
本申请要求于2020年09月10日提交中国专利局、申请号为202010946741.4、发明名称为“一种微创手术机器人及其末端执行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械技术领域,特别涉及一种微创手术机器人及其末端执行器。
背景技术
微创手术机器人作为集诸多学科为一体的新型医疗器械,具备创口小、出血少、疼痛小、术后恢复快、减少感染和组织损伤等优势,广泛应用于普外科、泌尿外科、心脏外科及消化内科等复杂手术中,能够有效提升手术治疗效果,为远程医疗发展提供条件。
然而,人体器官组织脆弱,对末端执行器所施加的操作力精度要求较高,而现有微创手术机器人的末端执行器的力感知准确性相对较差,力反馈不灵敏,使末端执行器在手术过程中存在刺穿组织或器脏的风险,手术安全性难以得到有效保障。
例如,固设于末端执行器的力传感器或力矩传感器,此类力感应件尽管具有操作方便且响应速度快等优势,但是其力感知的准确性易受消毒液或体液等液体所产生的湿润环境影响;再例如,与主控系统相连的力检测模块,力检测模块基于驱动参数进行变化,其力感知准确性易受刚度、摩擦力、重力、惯性及温度等因素的影响;又例如,设于末端执行器的图像识别件,例如摄像头等,但图像识别件依靠视觉判断所建立的理论模型与真实模型之间存在误差,同样影响力感知的准确性。
因此,如何提升现有微创机器人的末端执行器的安全性是本领域技术人员需解决的技术问题。
发明内容
本发明的目的在于提供一种微创手术机器人及其末端执行器,弹性架设于固定部及弹性部之间,当与弹性部相连的夹持部夹持外物时,弹性部在夹持部的作用下带动弹性架发生弹性变形,依据全部力检测件反馈的信号解耦出三维力信息,通过提升力感知的量程及灵敏性获取准确的力感知,动作精度高,安全性较高。
本发明所提供的一种微创手术机器人的末端执行器,包括相互铰接的第一夹钳和第二夹钳;第一夹钳与第二夹钳均对称设有夹持部、弹性部及固定部;夹持部与弹性部相固连,固定部悬置于弹性部上方;弹性部与固定部之间设有弹性架,弹性架设有若干力检测件;当第一夹钳的夹持部与第二夹钳的夹持部处于夹持状态时,弹性部带动弹性架发生弹性变形以依据全部力检测件反馈的信号解耦出三维力信息。
优选的,夹持部与弹性部一体式相连,弹性部的横截面面积小于夹持部的横截面面积以使弹性部的刚性小于夹持部的刚性。
优选的,弹性部呈板状,弹性部包括与弹性架相抵的弹性板及两根分别对称设于弹性板两侧的连接臂。
优选的,弹性架包括:
贴附于弹性部的固定环,固定环的中心固设有若干一体式相连且呈辐射状分布的弹性臂,力检测件一体式设于弹性臂以在弹性臂发生弹性变形时解耦出三维力信息;
一端与全部弹性臂的中心相固连且另一端与固定部相固连的连接柱。
优选的,固定环具体为方形固定环,全部弹性臂与方形固定环的内壁一一对应相连以形成十字状结构。
优选的,固定部具体为借助胶体固定于弹性部远离夹持部的一端的密封壳。
优选的,固定部具体为罩于弹性部外周的密封胶体。
优选的,夹持部设有避让槽,当弹性部发生弹性变形时,避让槽用于避让固定壳以防止固定壳与夹持部相抵。
优选的,力检测件具体为压敏电阻。
本发明所提供的微创手术机器人,包括机器人本体和上述任一项所述 的末端执行器,末端执行器设于机器人本体。
相对于背景技术,本发明所提供的微创手术机器人的末端执行器,包括相互铰接的第一夹钳和第二夹钳,使第一夹钳与第二夹钳通过开合夹取外物。第一夹钳与第二夹钳均对称设有夹持部、弹性部及固定部,固定部悬置于弹性部;当第一夹钳的夹持部与第二夹钳的夹持部处于夹持状态时,与夹持部相连的弹性部发生弹性变形,弹性部随之带动设于弹性部与固定部之间的弹性架发生弹性变形,依据全部力检测件反馈的信号解耦出三维力信息,从而提升力感知的灵敏性;弹性架的弹性变形可提升力感知的量程,仍有利于提升力感知的灵敏性。力感知灵敏性的提升有利于获取准确的力感知,有助于提升末端执行器的动作精度,降低误操作风险,手术的安全性较高。
本发明所提供的包含上述末端执行器的微创手术机器人具有相同的有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明一种具体实施例所提供的微创手术机器人的末端执行器的结构图;
图2为图1的爆炸图;
图3为图1中第一夹钳的主视图;
图4为图1中的弹性架与固定部组装后的横截面图;
图5为图1中弹性架的主视图;
图6为图1中一体式相连的弹性部与夹持部的主视图;
图7为图6的俯视图。
附图标记如下:
第一夹钳1、第二夹钳2、夹持部3、弹性部4、固定部5和弹性架6;
避让槽31;
弹性板41和连接臂42;
固定环61、弹性臂62和连接柱63。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考图1至图7,图1为本发明一种具体实施例所提供的微创手术机器人的末端执行器的结构图;图2为图1的爆炸图;图3为图1中第一夹钳的主视图;图4为图1中的弹性架与固定部组装后的横截面图;图5为图1中弹性架的主视图;图6为图1中一体式相连的弹性部与夹持部的主视图;图7为图6的俯视图。
本发明实施例公开了一种微创手术机器人的末端执行器,包括第一夹钳1和第二夹钳2,第一夹钳1和第二夹钳2通过转动销转动连接,转动销安装支撑座上,使第一夹钳1与第二夹钳2通过相对转动实现开合,方便夹取器脏等外物。
第一夹钳1与第二夹钳2均对称设有夹持部3、弹性部4及固定部5,夹持部3与弹性部4相固连,以弹性部4在夹持部3的作用下发生弹性形变;固定部5悬置于弹性部4上方,也即固定部5的一端固定于弹性部4且另一端悬空设置,为弹性架6的弹性变形提供条件;弹性部4与固定部5之间设有弹性架6,弹性架6设有若干力检测件,力检测件可以用于检测弹性架6的弹性力,依据全部力检测件反馈的信号,方便借助弹性架6的弹性力获取第一夹钳1与第二夹钳2之间的三维力信息,通过矩阵转换获取夹持力及各自的力矩等 关键参数。在该具体实施例中,力检测件可以是压敏电阻,依据压敏电阻的变化阻值计算出三维力信息,但力检测件的类型不限于此。
第一夹钳1包括第一夹持部、第一弹性部及第一固定部,第二夹钳2包括第二夹持部、第二弹性部及第二固定部,第一夹持部与第二夹持部的结构相同,第一弹性部与第二弹性部的结构相同,第一固定部与第二固定部的结构相同。夹持部3、弹性部4及固定部5三者的结构具体可参照下述内容。
当第一夹钳1的夹持部3与第二夹钳2的夹持部3处于夹持状态时,第一夹钳1的弹性部4及第二夹钳2的弹性部4均在各自夹持部3的作用同时发送弹性变形,而弹性架6的一端固定于固定部5,使弹性架6带动与之相连的弹性架6同步发生弹性变形,使设于弹性架6上的力检测件进行力检测,依此解耦出三维力信息,相较于单维度检测而言,多维度力信息可有效提升力感知的灵敏性;此外,弹性件在弹性部4的作用下发生弹性形变,有利于提升力感知的量程,进一步提升力感知的灵敏性。
综上所述,本发明所提供的微创手术机器人的末端执行器能够提升力感知的灵敏性,灵敏性的提升有利于获取准确的力感知,有助于提升末端执行器的动作精度,降低误操作风险,手术的安全性较高。
为使弹性部4发生弹性形变,夹持部3与弹性部4一体式相连,二者沿线性设置,方便利用杠杆原理使弹性部4在夹持部3作用下发生弹性变形。
进一步地,弹性部4的横截面面积小于夹持部3的横截面面积,使弹性部4的刚性小于夹持部3的刚性,保证夹持部3具有足够的刚性可靠地夹持外物,同时提升弹性部4的弹性,进一步保证弹性部4在夹持部3作用下发生弹性变形。
在该具体实施例中,第一夹钳1的夹持部3与第二夹钳2的夹持部3均呈四棱锥状,且第一夹钳1的夹持部3与第二夹钳2的夹持部3的夹持面均为平面。在该具体实施例中,弹性部4可呈板状,也即第一夹持部的弹性部4与第二夹持部的弹性部4均为平板。具体地,夹持部3的夹持平面与弹性部4的底面共面设置。
为使弹性部4具有足够的弹性,弹性部4包括板本体、弹性板41和连接臂42,板本体与夹持部3一体式相连,弹性板41和连接臂42均设于板本体靠 近夹持部3的一端,但不限于此。弹性板41与弹性架6相抵,使弹性板41带动弹性架6同步发生弹性变形。弹性板41的两侧对称设有两根连接臂42,连接臂42的宽度远小于弹性板41的宽度,有利于进一步减小弹性部4的刚性,充分提升力感知的量程。两根连接臂42与弹性板41一体式相连,两根连接臂42远离弹性板41的一端与板本体一体式相邻。为进一步提升弹性部4的弹性,还可在弹性板41上增设若干通孔,以降低弹性板41的刚性。当然,弹性部4的结构不限于此,也可通过减小弹性部4的厚度或宽度或设置镂空结构等方式来提升弹性部4的弹性变形程度。
弹性架6包括固定环61、弹性臂62和连接柱63,固定环61贴附于弹性部4上,固定环61具有可利用黏胶粘固于弹性板41上。弹性臂62设有固定环61的中心,若干弹性臂62呈辐射状分布且若干弹性臂62一体式相连,当弹性板41发生弹性形变时,若干悬置的弹性臂62随之发生弹性形变。力检测件一体式设于弹性臂62上,当弹性臂62发生弹性变形时,全部力检测件进行力检测,便于解耦出三维力信息。连接柱63的一端与全部弹性臂62的中心相固连且另一端与固定部5相固连。连接柱63本身不具有弹性,为全部弹性臂62的变形提供条件。
在该具体实施例中,固定环61具体为方形固定环,弹性臂62具体包含四根,四根弹性臂62分别与方形固定环的内壁一一对应固连,使弹性臂62形成十字状结构。全部力检测件均匀分布于四根弹性臂62上。
具体地,利用MEMS(Micro-Electro-Mechanical System,微机电系统)离子注入工艺将十二个压敏电阻分别集成于四根弹性臂62上,每个四个压敏电阻组成一个惠斯通全桥电路,分别检测X轴、Y轴及Z轴三个维度的作用力。连接柱63具体为金属探针,金属探针可利用超精密机械加工工艺进行加工,并利用微装配技术将金属探针粘固在全部弹性臂62的中心。当第一夹钳1与第二夹钳2夹持外物时,弹性板41带动全部弹性臂62随之发生弹性变形,全部压敏电阻的阻值发生变化,通过变化的阻值可解耦出三维力信息,进而计算出准确的夹持力或力矩。当然,倒置弹性架6仍能够实现本发明的目的。
固定部5具体为借助胶体固定于弹性部4远离夹持部3的一端的密封 壳,密封壳除了固定弹性架6外,密封壳还可使力检测件免受消毒液的影响,保证力检测件具有较高的检测精度。当然,固定部5还可具体为罩于弹性部4外周的密封胶体,仍能起到密封力检测件的作用,使力检测件免受消毒液的影响。胶体或密封胶体既能够使起到固定作用,又能够随弹性部4发生变形。
在该具体实施例中,固定壳借助胶体固定于弹性部4远离夹持部3的一端,
夹持部3设有避让槽31,当弹性部4发生弹性变形时,避让槽31用于避让固定壳,防止固定壳与夹持部3相抵。在该具体实施例中,避让槽31具体为三角状凹槽。为防止固定壳与夹持部3之间的缝隙过大,固定壳靠近夹持部3的一端设有三角状凸起,三角状凸缘与三角状凹槽相对,无论第一夹钳1与第二夹钳2是否夹持外物,三角状凸缘与三角状凹槽均不接触。当然,避让槽31结构不限于此。
本发明所提供的微创手术机器人,包括机器人本体和上述末端执行器,末端执行器设于机器人本体,具有相同的有益效果。
[根据细则91更正 25.12.2020] 
以上对本发明所提供的微创手术机器人及其末端执行器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种微创手术机器人的末端执行器,其特征在于,包括相互铰接的第一夹钳(1)和第二夹钳(2);所述第一夹钳(1)与所述第二夹钳(2)均对称设有夹持部(3)、弹性部(4)及固定部(5);所述夹持部(3)与所述弹性部(4)相固连,所述固定部(5)悬置于所述弹性部(4)上方;所述弹性部(4)与所述固定部(5)之间设有弹性架(6),所述弹性架(6)设有若干力检测件;当所述第一夹钳(1)的夹持部(3)与所述第二夹钳(2)的夹持部(3)处于夹持状态时,所述弹性部(4)带动所述弹性架(6)发生弹性变形以依据全部所述力检测件反馈的信号解耦出三维力信息。
  2. 根据权利要求1所述的微创手术机器人的末端执行器,其特征在于,所述夹持部(3)与所述弹性部(4)一体式相连,所述弹性部(4)的横截面面积小于所述夹持部(3)的横截面面积以使所述弹性部(4)的刚性小于所述夹持部(3)的刚性。
  3. 根据权利要求2所述的微创手术机器人的末端执行器,其特征在于,所述弹性部(4)呈板状,所述弹性部(4)包括与所述弹性架(6)相抵的弹性板(41)及两根分别对称设于所述弹性板(41)两侧的连接臂(42)。
  4. 根据权利要求3所述的微创手术机器人的末端执行器,其特征在于,所述弹性架(6)包括:
    贴附于所述弹性部(4)的固定环(61),所述固定环(61)的中心固设有若干一体式相连且呈辐射状分布的弹性臂(62),所述力检测件一体式设于所述弹性臂(62)以在所述弹性臂(62)发生弹性变形时解耦出所述三维力信息;
    一端与全部所述弹性臂(62)的中心相固连且另一端与所述固定部(5)相固连的连接柱(63)。
  5. 根据权利要求4所述的微创手术机器人的末端执行器,其特征在于,所述固定环(61)具体为方形固定环,全部所述弹性臂(62)与所述方形固定环的内壁一一对应相连以形成十字状结构。
  6. 根据权利要求1至3任一项所述的微创手术机器人的末端执行器,其特征在于,所述固定部(5)具体为借助胶体固定于所述弹性部(4)远 离所述夹持部(3)的一端的密封壳。
  7. 根据权利要求1至3任一项所述的微创手术机器人的末端执行器,其特征在于,所述固定部(5)具体为罩于所述弹性部(4)外周的密封胶体。
  8. 根据权利要求7所述的微创手术机器人的末端执行器,其特征在于,所述夹持部(3)设有避让槽(31),当所述弹性部(4)发生弹性变形时,所述避让槽(31)用于避让所述固定壳以防止所述固定壳与所述夹持部(3)相抵。
  9. 根据权利要求1至3任一项所述的微创手术机器人的末端执行器,其特征在于,所述力检测件具体为压敏电阻。
  10. 一种微创手术机器人,其特征在于,包括机器人本体和权利要求1至9任一项所述的末端执行器,所述末端执行器设于所述机器人本体。
PCT/CN2020/131362 2020-09-10 2020-11-25 一种微创手术机器人及其末端执行器 WO2022052323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010946741.4 2020-09-10
CN202010946741.4A CN111991087B (zh) 2020-09-10 2020-09-10 一种微创手术机器人及其末端执行器

Publications (1)

Publication Number Publication Date
WO2022052323A1 true WO2022052323A1 (zh) 2022-03-17

Family

ID=73468516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131362 WO2022052323A1 (zh) 2020-09-10 2020-11-25 一种微创手术机器人及其末端执行器

Country Status (2)

Country Link
CN (1) CN111991087B (zh)
WO (1) WO2022052323A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113940714B (zh) * 2021-11-03 2023-04-07 苏州大学 一种具有力感知功能的微创手术持针钳

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070078484A1 (en) * 2005-10-03 2007-04-05 Joseph Talarico Gentle touch surgical instrument and method of using same
CN202105024U (zh) * 2011-04-28 2012-01-11 黑龙江科技学院 手术微器械三维力传感器
CN104095670A (zh) * 2014-07-14 2014-10-15 华侨大学 一种应变式测力和组织夹伤报警的外科手术夹钳
CN105606272A (zh) * 2015-10-30 2016-05-25 哈尔滨工程大学 三维测力传感器和应用三维测力传感器的手术微器械指尖
CN207509259U (zh) * 2017-09-21 2018-06-19 中广核研究院有限公司 一种用于机器人的可测力末端执行装置
CN111558954A (zh) * 2020-04-17 2020-08-21 鲁班嫡系机器人(深圳)有限公司 力传感器组件、测量方法及包括该组件的执行器、机器人

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638827A (en) * 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
CA2715441C (en) * 1995-06-07 2013-01-08 Sri International Surgical manipulator for a telerobotic system
US6969385B2 (en) * 2002-05-01 2005-11-29 Manuel Ricardo Moreyra Wrist with decoupled motion transmission
US7559452B2 (en) * 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US8496647B2 (en) * 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
US7845537B2 (en) * 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7422139B2 (en) * 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US20080065104A1 (en) * 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Minimally invasive surgical instrument advancement
US8931682B2 (en) * 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
EP2127604A1 (en) * 2008-05-30 2009-12-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO An instrument for minimally invasive surgery
DE102008041602B4 (de) * 2008-08-27 2015-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Roboter und Verfahren zum Steuern eines Roboters
JP5478341B2 (ja) * 2010-04-12 2014-04-23 株式会社神戸製鋼所 把持装置及びこれを備えた作業機械
JP5936914B2 (ja) * 2011-08-04 2016-06-22 オリンパス株式会社 操作入力装置およびこれを備えるマニピュレータシステム
KR20110009527U (ko) * 2011-08-23 2011-10-06 주식회사 이턴 수술용 인스트루먼트의 죠 구조
CN102499757B (zh) * 2011-10-17 2014-06-11 上海交通大学 具有力反馈的九自由度微创手术机器人主操作手
DE202012100017U1 (de) * 2012-01-04 2012-03-22 Aesculap Ag Elektrochirurgisches Instrument und Maulteil hierfür
KR101967635B1 (ko) * 2012-05-15 2019-04-10 삼성전자주식회사 엔드 이펙터 및 원격 제어 장치
WO2014025399A1 (en) * 2012-08-08 2014-02-13 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
KR101418717B1 (ko) * 2012-12-18 2014-07-14 (주)미래컴퍼니 수술용 로봇의 마스터 그립퍼 구조
CN104274244B (zh) * 2013-07-04 2016-08-10 上海工程技术大学 微创手术器械的触觉反馈系统
US20150053743A1 (en) * 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Error detection arrangements for surgical instrument assemblies
US20150272582A1 (en) * 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Power management control systems for surgical instruments
BR112017004321B1 (pt) * 2014-09-05 2022-04-19 Ethicon Llc Instrumento cirúrgico
ITUB20154977A1 (it) * 2015-10-16 2017-04-16 Medical Microinstruments S R L Strumento medicale e metodo di fabbricazione di detto strumento medicale
CN107744405B (zh) * 2017-08-31 2024-01-30 首都医科大学附属北京天坛医院 一种机器人从端装置、操作系统及其控制方法
CN107838950B (zh) * 2017-09-21 2024-03-01 中广核研究院有限公司 一种用于机器人的可测力末端执行装置
CN108542469B (zh) * 2018-02-14 2020-04-28 天津大学 基于图像反馈的六维力传感器、夹持探头及夹持器械
CN108433814B (zh) * 2018-03-16 2019-12-24 微创(上海)医疗机器人有限公司 手术机器人系统及其手术器械
CN110353808B (zh) * 2018-04-10 2022-03-01 苏州迈澜医疗科技有限公司 操作手

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070078484A1 (en) * 2005-10-03 2007-04-05 Joseph Talarico Gentle touch surgical instrument and method of using same
CN202105024U (zh) * 2011-04-28 2012-01-11 黑龙江科技学院 手术微器械三维力传感器
CN104095670A (zh) * 2014-07-14 2014-10-15 华侨大学 一种应变式测力和组织夹伤报警的外科手术夹钳
CN105606272A (zh) * 2015-10-30 2016-05-25 哈尔滨工程大学 三维测力传感器和应用三维测力传感器的手术微器械指尖
CN207509259U (zh) * 2017-09-21 2018-06-19 中广核研究院有限公司 一种用于机器人的可测力末端执行装置
CN111558954A (zh) * 2020-04-17 2020-08-21 鲁班嫡系机器人(深圳)有限公司 力传感器组件、测量方法及包括该组件的执行器、机器人

Also Published As

Publication number Publication date
CN111991087A (zh) 2020-11-27
CN111991087B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
KR101572902B1 (ko) 최소 침습 로봇 수술 시스템을 위한 힘의 평가 방법
Berkelman et al. A miniature instrument tip force sensor for robot/human cooperative microsurgical manipulation with enhanced force feedback
WO2022052323A1 (zh) 一种微创手术机器人及其末端执行器
Carrozza et al. Towards a force-controlled microgripper for assembling biomedical microdevices
Schöpfer et al. Using a piezo-resistive tactile sensor for detection of incipient slippage
CN101380241B (zh) 一种基于仿图仪的远程运动中心机构
CN114191099B (zh) 微创手术机器人主从跟踪延时测试方法
WO2022052320A1 (zh) 一种微创手术机器人
US20100312393A1 (en) Robot with camera
WO2002025292A3 (en) Manipulator for a test head with active compliance
WO2022052322A1 (zh) 一种微创手术机器人及其末端夹持器
Khadem et al. A modular force‐controlled robotic instrument for minimally invasive surgery–efficacy for being used in autonomous grasping against a variable pull force
CN107421627A (zh) 一种基于减速器驱动柔性梁振动形态视觉测量装置及方法
Li et al. Design and application of multi-dimensional force/torque sensors in surgical robots: A review
Wang et al. Task space compliant control and six-dimensional force regulation toward automated robotic ultrasound imaging
Han et al. Monocular vision-based retinal membrane peeling with a handheld robot
Menciassi et al. A sensorized/spl mu/electro discharge machined superelastic alloy microgripper for micromanipulation: simulation and characterization
JP2617489B2 (ja) 関節センサー
WO2022052321A1 (zh) 一种微创手术机器人及其末端集成夹持器
JP2014058003A (ja) 校正治具及びロボット装置並びに校正治具を用いたロボット装置の校正方法
CN116324361A (zh) 扭矩传感器元件和扭矩传感器
Callaghan et al. Force measurement methods in telerobotic surgery: Implications for end-effector manufacture
Lei et al. Design and experimental validation of a master manipulator with position and posture decoupling for laparoscopic surgical robot
CN217853081U (zh) 微创手术末端执行器及微创手术机器人
CN113940714B (zh) 一种具有力感知功能的微创手术持针钳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953108

Country of ref document: EP

Kind code of ref document: A1