WO2022052112A1 - 抬头显示装置、抬头显示方法及车辆 - Google Patents

抬头显示装置、抬头显示方法及车辆 Download PDF

Info

Publication number
WO2022052112A1
WO2022052112A1 PCT/CN2020/115105 CN2020115105W WO2022052112A1 WO 2022052112 A1 WO2022052112 A1 WO 2022052112A1 CN 2020115105 W CN2020115105 W CN 2020115105W WO 2022052112 A1 WO2022052112 A1 WO 2022052112A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
film
areas
hoe
head
Prior art date
Application number
PCT/CN2020/115105
Other languages
English (en)
French (fr)
Inventor
周鹏程
张宇腾
于海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/115105 priority Critical patent/WO2022052112A1/zh
Priority to CN202080004886.0A priority patent/CN112639580A/zh
Publication of WO2022052112A1 publication Critical patent/WO2022052112A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0109Head-up displays characterised by optical features comprising holographic elements comprising details concerning the making of holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems

Definitions

  • the present application relates to the field of smart vehicles, and in particular, to a head-up display device, a head-up display method, and a vehicle.
  • Head-up display (HUD) technology also known as head-up display technology
  • HUD Head-up display
  • the image projection device in the HUD device projects important information during the driving of the car onto the windshield. After the reflection of the windshield, a virtual image is formed directly in front of the driver's line of sight, so that the driver does not need to bow his head. see this information.
  • the HUD avoids the driving risk that the driver cannot take into account the road conditions when looking down, and is a safer vehicle display method.
  • the traditional HUD mainly displays vehicle instrument information such as vehicle speed and fuel volume.
  • the imaging distance is about 2 to 3 meters.
  • Augmented reality (AR) HUD (AR-HUD) that has emerged in recent years superimposes digital images on the real environment outside the car, enabling drivers to obtain augmented reality visual effects, which can be used for AR navigation, adaptive cruise, lane departure Warning, etc.
  • the imaging distance of AR-HUD is generally about 7 to 15 meters.
  • the current mainstream solution is dual-screen display.
  • the specific implementation method is to use two sets of image generation units (PGUs) in the image projection device to generate AR images and instrument information respectively, and then convert the virtual image of the AR image and instrument information.
  • the virtual image is projected to two focal planes outside the windshield to realize traditional HUD and AR-HUD display, as shown in Figure 1.
  • two sets of PGUs are used to realize dual-screen display, which increases the volume and cost of the image projection device in the HUD device.
  • the present application provides a head-up display device, a head-up display method and a vehicle, which can be used to reduce the volume and cost of an image projection device in a HUD device.
  • a head-up display device including: a holographic optical element HOE film and an image projection device; the HOE film is attached to a light-transmitting plane, the HOE film includes N film regions, and the N film regions are The focal lengths are different, where N is a positive integer greater than or equal to 2; the image projection device includes an image generation module PGU and an optical mirror group, the PGU is used to generate a projection image, the projection image includes N image areas, the optical mirror The group is used to project the N image areas to the N thin film areas respectively, and through the reflection of the N thin film areas, the virtual images corresponding to the N image areas are focused to different depths outside the light transmission plane.
  • the image projection device includes an image generation module PGU and an optical mirror group, the PGU is used to generate a projection image, the projection image includes N image areas, the optical mirror The group is used to project the N image areas to the N thin film areas respectively, and through the reflection of the N thin film areas, the virtual images corresponding to the N image areas are focused to different depth
  • the relative positions and projection directions of the N image areas projected to the N thin film areas can be controlled so that the virtual images corresponding to the N image areas do not overlap.
  • the light-transmitting plane may be a windshield.
  • the HOE film can be attached to the outer side of the windshield, or attached to the inner side of the windshield, and can also be used as an interlayer of the windshield.
  • the HOE film is attached to the inner side of the windshield. This is because when it is attached to the inside of the windshield, the HUD image is reflected through the HOE film, and the reflection efficiency is more than 5 times that of the existing windshield directly, which can improve the image brightness and reduce power consumption.
  • the HOE film may include M film regions in addition to N film regions with different focal lengths.
  • the present application does not limit the focal lengths of the M thin film regions. That is, the HOE thin film may include N+M thin film regions, and it is required that among the plurality of thin film regions, at least N thin film regions have different focal lengths, and the focal lengths of other thin film regions are not limited.
  • the head-up display device of the embodiment of the present application includes a HOE film and an image projection device.
  • the HOE film includes N film regions with different focal lengths
  • the image projection device includes a PGU
  • the PGU includes N image regions.
  • the optical mirror group includes: a first curved mirror and a second curved mirror, the first curved mirror and the second curved mirror are located in the HOE Between the thin film and the PGU, each of the N image areas is sequentially reflected to the corresponding area in the N thin film areas by the first curved mirror and the second curved mirror.
  • the N image areas include: a first image area and a second image area, the first image area is used to display instrument information, and the second image area is for displaying augmented reality image information.
  • the preparation method of the HOE film includes: dividing the holographic dry plate into N areas to be processed according to N film areas; Each to-be-treated area is irradiated with a focused laser beam and a parallel laser beam, and the focal length of the focused laser used at each to-be-treated area is different.
  • the holographic dry board is made of a photosensitive material.
  • the photosensitive material includes at least one of photopolymer, silver halide, dichromated gelatin, and photorefractive crystal.
  • the thickness of the HOE film is less than or equal to 1 mm.
  • the HOE thin film is a volume Bragg grating or a surface relief grating.
  • the HOE thin film is prepared by any one of an exposure method, an electron beam lithography method, or a nanoimprint method.
  • the apparatus further includes: a controller, where the controller is configured to control the PGU to generate a projection image, where the projection image includes the N image regions.
  • a head-up display method is provided, the head-up display method is implemented in a head-up display device, and the head-up display device includes: a holographic optical element HOE film and an image projection device; the HOE film is attached to the light-transmitting plane, The HOE film includes N film regions, and the N film regions have different focal lengths, where N is a positive integer greater than or equal to 2; the image projection device includes an image generation module PGU and an optical lens group, the PGU is used to generate Projecting an image, the projected image includes N image areas; the head-up display method includes: projecting the N image areas to the N thin film areas through the optical lens group, and through the reflection of the N thin film areas, so that the N The virtual images corresponding to each image area are focused to different depths outside the light transmission plane.
  • the head-up display device includes: a holographic optical element HOE film and an image projection device; the HOE film is attached to the light-transmitting plane, The HOE film includes N film regions, and the N film
  • the optical mirror group includes: a first curved mirror and a second curved mirror, the first curved mirror and the second curved mirror are located in the HOE Between the thin film and the PGU, each of the N image areas is sequentially reflected to the corresponding area in the N thin film areas by the first curved mirror and the second curved mirror.
  • the N image areas include: a first image area and a second image area, the first image area is used to display instrument information, and the second image area is for displaying augmented reality image information.
  • the preparation method of the HOE film includes: dividing the holographic dry plate into N areas to be processed according to N film areas; Each to-be-treated area is irradiated with a focused laser beam and a parallel laser beam, and the focal length of the focused laser used at each to-be-treated area is different.
  • the holographic dry board is made of a photosensitive material.
  • the photosensitive material includes at least one of photopolymers, silver halides, dichromated gelatin, and photorefractive crystals.
  • the thickness of the HOE film is less than or equal to 1 mm.
  • the HOE thin film is a volume Bragg grating or a surface relief grating.
  • the HOE thin film is prepared by any one of an exposure method, an electron beam lithography method, or a nanoimprint method.
  • a method for preparing a HOE thin film of a holographic optical element includes N thin film regions, and the N thin film regions have different focal lengths, wherein N is a positive integer greater than or equal to 2; the preparation method The method includes: dividing the holographic dry plate into N areas to be processed according to the N thin film areas; irradiating each area to be processed with a focused laser beam and a parallel laser beam at each of the N areas to be processed, each The focal lengths of the focused lasers employed at the regions to be treated differ.
  • the co-irradiation with a focused laser beam and a parallel laser beam at each of the N to-be-treated areas includes: two sides of each of the N to-be-treated areas A beam of focused laser and a beam of parallel laser are used to irradiate together.
  • the focused lasers with different focal lengths can be generated by irradiating lenses with different focal lengths with parallel light.
  • the holographic dry board is made of a photosensitive material.
  • the photosensitive material includes at least one of photopolymer, silver halide, dichromated gelatin, and photorefractive crystal.
  • the thickness of the HOE film is less than or equal to 1 mm.
  • the HOE thin film is a volume Bragg grating or a surface relief grating.
  • a vehicle including the device in the first aspect or any possible implementation manner of the first aspect.
  • an in-vehicle system including the device in the first aspect or any possible implementation manner of the first aspect.
  • a controller in a sixth aspect, includes an input and output interface, a processor and a memory, the processor is used to control the input and output interface to send and receive signals or information, the memory is used to store a computer program, and the processor is used to The computer program is invoked and executed in the memory to cause the controller to perform the methods of the above-described aspects.
  • a seventh aspect provides a computer program product comprising instructions that, when the computer program product is run on a computer, causes the computer to execute the method in the second aspect or any implementation of the second aspect, and/or execute the above The third aspect or the method in any implementation manner of the third aspect.
  • a computer-readable storage medium stores program codes for device execution, the program codes including the second aspect or any possible implementation manner of the second aspect. and/or instructions for executing the method in the third aspect or any implementation manner of the third aspect.
  • a chip in a ninth aspect, includes a processor and a data interface, the processor reads an instruction stored in a memory through the data interface, and executes the second aspect or any possible implementation of the second aspect and/or perform the above third aspect or the method in any implementation manner of the third aspect.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to execute the method in the second aspect or any possible implementation manner of the second aspect, and/or execute the method in the third aspect or any implementation manner of the third aspect.
  • FIG. 1 is an example diagram of a head-up display scene provided by an embodiment of the present application.
  • Fig. 2 is a plane example diagram of a head-up display scene provided by an embodiment of the present application
  • FIG. 3 is an example diagram of an existing head-up display device provided by an embodiment of the present application.
  • FIG. 4 is an example diagram of an application scenario of a head-up display provided by an embodiment of the present application.
  • FIG. 5 is an example diagram of a head-up display device provided by an embodiment of the present application.
  • FIG. 6 is a structural example diagram of a dual-screen head-up display device provided by an embodiment of the present application.
  • FIG. 7 is a structural example diagram of a three-screen head-up display device provided by an embodiment of the present application.
  • FIG. 8 is an example diagram of a preparation method of a HOE film provided in the embodiment of the present application.
  • FIG. 9 is an exemplary diagram of preparing a bifocal HOE film by an exposure method provided in an embodiment of the present application.
  • FIG. 10 is an example diagram of a head-up display method provided by an embodiment of the present application.
  • Head-up display (HUD) technology also known as head-up display technology
  • HUD head-up display technology
  • vehicle-mounted HUD is used as an example for description.
  • the traditional vehicle HUD mainly displays vehicle instrument information such as vehicle speed and fuel volume.
  • the imaging distance is about 2 to 3 meters.
  • Augmented reality (AR) HUD (AR-HUD) that has emerged in recent years superimposes digital images on the real environment outside the car, enabling drivers to obtain augmented reality visual effects, which can be used for AR navigation, adaptive cruise, lane departure Warning and other scenarios.
  • AR-HUD Augmented reality HUD
  • the imaging distance of AR-HUD is generally about 7 to 15 meters. It can be seen that the imaging distance between AR-HUD and traditional HUD is not consistent.
  • images of two focal planes need to be generated. And in order to improve the driver's experience and driving safety, it is usually required that the images of the two focal planes (dual screens) do not overlap each other and do not interfere with each other.
  • the "screen” referred to in this application is a focal plane, which represents the imaging position of a virtual image, rather than a screen in the actual sense.
  • FIG. 2 is a schematic plan view of a head-up display scene provided by an embodiment of the present application.
  • the image projection device in the vehicle-mounted HUD device can be installed near the windshield.
  • the image projection device can image the projected object A and object B at different depths outside the windshield by using the windshield or the glass, mirrors and other light-transmitting planes near the windshield, so that the driver does not lower his head. , You can see the driving information without turning your head.
  • object A can display vehicle instrument information such as vehicle speed and fuel level.
  • Object B can display AR image information, superimposing the digital image on the real environment outside the car.
  • the existing solution adopts two sets of picture generation units (PGU) in the image projection device to realize the traditional HUD and AR-HUD respectively on the two focal planes at the same time.
  • the two sets of PGUs share the curved mirror optical system at the rear end. Due to the different distances from the curved mirror, the positions of the virtual images formed through the windshield are also different, forming two different depths of screen A and screen B. Image display. So that the closer A screen can display instrument information, and the far B screen can display AR image information.
  • the present application provides a head-up display device, which is mainly based on a PGU and a multi-focal holographic optical element (HOE) film to realize dual-screen or even multi-screen display, which can effectively reduce the cost of the image projection device and volume.
  • HOE holographic optical element
  • the multi-focal length HOE film is a polymer film, and its different film regions correspond to different focal lengths, and can be attached to the windshield as a diffractive optical element.
  • Different film areas in the multi-focal length HOE film can respectively reflect the light in different image areas of the projected image generated by the PGU in the image projection device, and focus the virtual images corresponding to the different image areas to different depths outside the vehicle.
  • the use of two sets of PGUs in the image projection device is effectively avoided, and the distance between the two sets of PGUs and the curved mirror is controlled to realize imaging at different depths, thereby effectively reducing the cost and volume of the image projection device.
  • FIG. 4 is an example diagram of an application scenario of a head-up display provided by an embodiment of the present application.
  • an application scenario provided by the present application is a vehicle-mounted HUD.
  • the image projection device in the vehicle usually placed in the console under the windshield of the vehicle
  • projects an image and passes through the The reflection of the HOE film attached to the windshield makes the virtual image corresponding to the image area focus on different depths outside the vehicle.
  • the closer virtual image screen can display instrument information, and the imaging distance is about 2 to 3 meters; the farther virtual image screen displays AR navigation, AR early warning and other information, and the imaging distance is about 7 to 15 meters.
  • FIG. 5 is an example diagram of a head-up display device provided by an embodiment of the present application.
  • the head-up display device 400 includes a HOE film 410 and an image projection device 420 .
  • the HOE film 410 is attached to the light-transmitting plane.
  • the HOE film 410 includes N film regions, and the N film regions have different focal lengths, where N is a positive integer greater than or equal to 2.
  • the image projection device 420 includes an image generation module PGU421 and an optical lens group 422 .
  • the PGU 421 is used to generate a projection image
  • the projection image includes N image areas
  • the optical lens group 422 is used to respectively project the N image areas to the N thin film areas, and through the reflection of the N thin film areas, the The virtual images corresponding to the N image regions are focused to different depths outside the light transmission plane.
  • the optical mirror group 422 may include two curved mirrors; alternatively, may include one curved mirror and one flat mirror; alternatively, may include one curved mirror and one or more lenses; or alternatively, may include one For the plane mirror and the lens, the present application does not limit the composition of the optical lens group 422 .
  • the optical mirror group 422 includes: a first curved mirror M 1 and a second curved mirror M 2 , the first curved mirror M 1 and the second curved mirror M 2 are located between the HOE film 410 and the PGU 421 , Each of the N image areas is sequentially reflected by the first curved mirror M 1 and the second curved mirror M 2 to a corresponding area in the N thin film areas.
  • the first curved mirror is used to amplify the image area
  • the second curved mirror is used to reduce aberrations, so that the imaging at different depths outside the light transmission plane is in a better state.
  • the above-mentioned light-transmitting plane may be a windshield or a glass near the windshield, a reflector, or the like.
  • the light-transmitting plane is described as a windshield in the embodiments of the present application.
  • the image projection device 420 may also be referred to as a HUD light machine, and is used to project the light of the image generated by the PGU 421 into different areas of the HOE film 410 .
  • the image projection device 420 can be placed in the console under the windshield, or at other positions near the windshield, as long as the image light projected by it is reflected in different areas of the HOE film 410 differently outside the windshield. It only needs to present a corresponding virtual image at the depth, which is not limited in this application.
  • the apparatus 400 may further include: a controller for controlling the PGU to generate a projection image, where the projection image includes N image areas.
  • each of the N image areas may independently present the same or different image content.
  • the relative positions and projection directions of the N image areas projected to the N thin film areas can be controlled so that the virtual images corresponding to the N image areas do not overlap each other and do not interfere with each other.
  • this application does not limit the arrangement of the N film regions, which can be arranged up and down, left and right, and can also be arranged in other ways, as long as it can ensure that the virtual images corresponding to the N image regions do not overlap each other, and without interfering with each other.
  • the N image areas include: a first image area and a second image area, the first image area is used for displaying instrument information, and the second image area is used for displaying augmented reality image information.
  • the focal lengths of the HOE thin film areas corresponding to the first image area and the second image area it is possible to display different image contents at different depths, that is, at 2 to 3 meters Display instrument information at a distance, and display augmented reality image information at a distance of 7 to 15 meters, enabling dual-screen display.
  • the thickness of the HOE film 410 is less than or equal to 1 mm.
  • the HOE film 410 may specifically be a volume bragg grating (VBG) or a surface-relief grating (SRG).
  • VBG volume bragg grating
  • SRG surface-relief grating
  • the internal refractive index of the VBG changes periodically, and the surface structure of the SRG changes periodically, so that the incident light can be modulated by the internal refractive index grating or relief grating to realize the reflection and focusing of the light.
  • the HOE thin film 410 is prepared by any one of exposure method, electron beam lithography method or nanoimprint method.
  • the preparation of the HOE film 410 will be described in detail by taking the exposure method as an example, which will not be repeated here.
  • the HOE film 410 may be attached to the outer side of the windshield, or may be attached to the inner side of the windshield, or may also be used as an interlayer of the windshield, which is not limited in this application.
  • the HOE film 410 is attached to the inner side of the windshield. This is because the reflectivity is about 10% when reflecting through the existing windshield; and when the HOE film 410 is attached to the inside of the windshield, the HUD image is reflected through the HOE film 410, and the reflection efficiency is above 50%. As a result, image brightness can be improved while power consumption can be reduced.
  • the HOE film 410 may further include M film regions in addition to N film regions with different focal lengths.
  • the present application does not limit the focal lengths of the M thin film regions. That is to say, the HOE film 410 may include N+M film regions, and it is required that among the plurality of film regions, at least the N film regions have different focal lengths to achieve dual-screen or multi-screen display at different depths, while for other The focal length of the thin film area may not be limited.
  • the head-up display device of the embodiment of the present application includes a HOE film and an image projection device.
  • the HOE film includes N film regions with different focal lengths
  • the image projection device includes a PGU
  • the PGU includes N image regions.
  • the depth of the virtual image is formed by controlling the focal length of the thin film area, not by controlling the distance between different image areas and the curved mirror, so that no special HUD rear optical lens group design is required, reducing the need for Difficulty in optical design and processing.
  • the HOE film since the HOE film has the function of a lens, the image from the HUD can be enlarged, so the field of view of the system can be further improved.
  • the existing HUD uses the windshield to reflect the HUD image. Since both the inner and outer surfaces of the glass reflect the image, and there is a certain deviation, ghost images will occur.
  • the reflection of the HOE film used in this application to the image area belongs to the diffraction principle, and usually only diffracts once, and the diffraction angle is different from the reflection angle of the windshield. Therefore, the user will only observe one diffraction image of the HUD, but will not observe the reflection images on the inside and outside of the windshield, and will not observe ghosting.
  • FIG. 6 is a structural example diagram of a dual-screen head-up display device provided by an embodiment of the present application.
  • the head-up display device is mainly composed of an image projection device, a windshield, and a HOE film, wherein the image projection device includes a PGU, a first curved mirror M 1 and a second curved mirror M 2 .
  • the HOE film is attached to the inside of the windshield.
  • the projected image generated by the PGU is divided into two image areas, IA and IB , and reflected on the HOE film on the windshield through mirrors M 1 and M 2 .
  • the HOE film is likewise divided into two film regions with different focal lengths f A and f B , respectively.
  • the focal length f A film area reflects the light in the IA image area, and is focused and imaged at the A screen at a relatively close depth; the focal length f B film area reflects the light in the IB image area, and is focused and imaged at the B screen at a far depth.
  • the IA image area may be the above-mentioned first image area, displaying instrument information; the IB image area may be the above-mentioned second image area, displaying AR image information.
  • only one PGU can be used to realize dual-screen display. Moreover, the driver can observe the closer A screen and the far B screen at the same time, and the images of the A screen and the B screen do not overlap each other and do not interfere with each other.
  • FIG. 7 is a structural example diagram of a three-screen head-up display device provided by an embodiment of the present application.
  • the head-up display device is also composed of an image projection device, a windshield, and a HOE film, wherein the image projection device includes a PGU, a first curved mirror M 1 and a second curved mirror M 2 .
  • the HOE film is attached to the inside of the windshield.
  • the projected image generated by the PGU is divided into three image areas I A , I B and I C and reflected on the HOE film on the windshield by the mirrors M 1 and M 2 .
  • the HOE film is also divided into three film regions with different focal lengths f A , f B and f C , respectively.
  • the focal length f A film area reflects the light in the IA image area, and is focused and imaged at the A screen at a relatively close depth; the focal length f B film area reflects the light in the IB image area, and is focused and imaged at the B screen at a far depth; The focal length f C film area reflects light from the IC image area, focusing on the C screen at a greater depth.
  • only one PGU can be used to realize three-screen display.
  • HUD image display of more focal planes can be achieved by setting more PGU areas and HOE focal lengths, which will not be described here.
  • the present application can not only realize bifocal HUD display by setting two film areas on the HOE film, but also set trifocal HUD display or more focal planes to provide richer stereoscopic image display for AR navigation.
  • FIG. 8 is an example diagram of a method for preparing an HOE film provided in an embodiment of the present application.
  • the HOE film includes N film regions, and the N film regions have different focal lengths, wherein N is a positive integer greater than or equal to 2.
  • the preparation method 700 includes steps S710 and S720. These steps are described in detail below.
  • S710 Divide the holographic dry plate into N regions to be processed according to the N thin film regions.
  • the holographic dry board is made of photosensitive material.
  • the photosensitive material may include at least one of photopolymer, silver halide, dichromate gelatin, and photorefractive crystal.
  • the photosensitive materials include but are not limited to the above-mentioned exemplary materials, and any photosensitive materials that can be made into the HOE films described in this application fall within the protection scope of this application.
  • the thickness of the HOE film is less than or equal to 1 mm.
  • the HOE film is a volume Bragg grating or a surface relief grating.
  • co-irradiating each of the N to-be-treated areas with a focused laser beam and a parallel laser beam includes: irradiating the N to-be-treated areas on both sides of each to-be-treated area respectively A focused laser and a parallel laser are irradiated together.
  • a certain angle is formed between the main axis of the condensing laser and the parallel laser, and the size of the included angle is not limited in the present application, and may be perpendicular to each other or at other angles.
  • N thin film areas with different focal lengths is achieved by employing different focal lengths of the focused laser light at each area to be treated.
  • focused lasers of different focal lengths can be generated by illuminating lenses with different focal lengths with parallel light.
  • a dual-focal length HOE film can be prepared, and a multi-focal length HOE film can also be prepared, which is not limited in this application.
  • FIG. 9 is an exemplary diagram of preparing a bifocal HOE film by an exposure method provided in an embodiment of the present application.
  • the production of the HOE film is divided into two steps, respectively recording the grating fringes of the A and B screens corresponding to the to-be-treated area.
  • the first step is to cover the area to be processed corresponding to screen A with a light baffle, and then a focused laser generated by a lens with a focal length of f B and a parallel laser beam together illuminate both sides of screen B corresponding to the area to be processed, Thereby, the grating fringes of the corresponding area of the B screen are recorded;
  • the second step cover the corresponding area of the B screen with a light baffle, and use the same method to expose the to-be-processed area corresponding to the A screen again.
  • the focused laser used for this exposure Produced by a lens of focal length f A.
  • the method for fabricating the HOE thin film also includes electron beam lithography, nano-imprinting, etc., which is not limited in this application.
  • FIG. 10 is an example diagram of a head-up display method provided by an embodiment of the present application.
  • the head-up display method 900 is implemented in a head-up display device 400.
  • the head-up display device 400 includes: a holographic optical element HOE film and an image projection device; the HOE film is attached to the light-transmitting plane, and the HOE film 410 includes N N thin film areas have different focal lengths, where N is a positive integer greater than or equal to 2;
  • the image projection device includes an image generation module PGU and an optical lens group, the PGU is used to generate a projection image, and the projection image includes N image area.
  • the head-up display method 900 includes step S910 : projecting the N image areas to the N thin film areas respectively through the optical lens group, and through the reflection of the N thin film areas, so that the virtual images corresponding to the N image areas are focused to different depths outside the light transmission plane place.
  • the optical mirror group includes: a first curved mirror and a second curved mirror, the first curved mirror and the second curved mirror are located between the HOE film and the PGU, the N image areas Each image area in the N thin film areas is sequentially reflected to the corresponding area in the N thin film areas by the first curved mirror and the second curved mirror.
  • the N image areas include: a first image area and a second image area, the first image area is used for displaying instrument information, and the second image area is used for displaying augmented reality image information.
  • the preparation method of the HOE film includes: dividing the holographic dry plate into N areas to be processed according to N film areas; using a focused laser beam and a The parallel laser beams are irradiated together, and the focal lengths of the focused laser beams used at each area to be treated are different.
  • the holographic dry board can be made of photosensitive material.
  • the photosensitive material may include at least one of photopolymer, silver halide, dichromate gelatin, and photorefractive crystal.
  • the thickness of the HOE film is less than or equal to 1 mm.
  • the HOE film is a volume Bragg grating or a surface relief grating.
  • the HOE thin film is prepared by any one of exposure method, electron beam lithography method or nanoimprint method.
  • An embodiment of the present application further provides a vehicle, including the above head-up display device 400 .
  • the vehicle may be an electric vehicle, for example, a pure electric vehicle, an extended-range electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, a new energy vehicle, etc., which are not specifically limited in this application.
  • An embodiment of the present application further provides an in-vehicle system, including the above head-up display device 400 .
  • An embodiment of the present application further provides a controller, the controller includes an input/output interface, a processor and a memory, the processor is used to control the input/output interface to send and receive signals or information, the memory is used to store a computer program, the processor is used to The computer program is invoked and executed from memory to cause the controller to perform the method 700 described above, and/or perform the method 900.
  • Embodiments of the present application also provide a computer program product containing instructions, when the computer program product runs on a computer, the computer causes the computer to execute the above-mentioned method 700 and/or execute the method 900 .
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable medium stores program codes for device execution, where the program codes include instructions for executing the foregoing method 700 and/or executing the method 900 instruction.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a data interface, the processor reads an instruction stored in a memory through the data interface, executes the above method 700, and/or executes the method 700.
  • the chip may further include a memory, in which instructions are stored, the processor is configured to execute the instructions stored in the memory, and when the instructions are executed, the The processor is configured to perform the method 700 described above, and/or perform the method 900 .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

一种抬头显示装置(400)和抬头显示方法(900),可以应用于汽车、航空、航天和航海等领域中。其中,抬头显示装置(400)包括:全息光学元件HOE薄膜(410)和图像投射装置(420);HOE薄膜(410)贴附于透光平面上,HOE薄膜(410)包括N个薄膜区域,N个薄膜区域的焦距(fA,fB,fC)不同;图像投射装置(420)包括一个图像生成模块PGU(421)和光学镜组(422),PGU(421)用于生成投射图像,投射图像包括N个图像区域(IA,IB,IC),光学镜组(422)用于将N个图像区域(IA,IB,IC)分别投射至N个薄膜区域,经过N个薄膜区域的反射,使得N个图像区域(IA,IB,IC)对应的虚像聚焦到透光平面外的不同深度处。基于一个PGU(421)和HOE薄膜(410)就能够实现双屏甚至多屏显示,有效降低了HUD装置(400)中图像投射装置(420)的体积和成本。

Description

抬头显示装置、抬头显示方法及车辆 技术领域
本申请涉及智能车领域,特别涉及一种抬头显示装置、抬头显示方法及车辆。
背景技术
抬头显示(head up display,HUD)技术又称平视显示技术,近年来逐步在汽车领域、航空航天领域以及航海领域获得了越来越广泛地应用。例如,在汽车领域,HUD装置中的图像投射装置把汽车行驶中的重要信息投影到挡风玻璃上,经过挡风玻璃的反射,在驾驶员视线正前方形成虚像,使得驾驶员无需低头就可以看到这些信息。相比于仪表盘、中控屏等需要驾驶员低头观察的显示方式,HUD避免了驾驶员低头观察时无法顾及路况可能引发的驾驶风险,是更安全的车载显示方式。
目前传统的HUD主要显示车速、油量等汽车仪表信息,为了不干扰路况,成像距离在2至3米左右。近年来兴起的增强现实(augmented reality,AR)HUD(AR-HUD)将数字图像叠加在车外真实环境上,使得驾驶员获得增强现实的视觉效果,可用于AR导航、自适应巡航、车道偏离预警等。为了使AR图像与路面信息更好的融合,AR-HUD的成像距离一般在7至15米左右。
由于AR-HUD与传统HUD成像距离并不一致,为了同时显示车速等仪表信息和AR图像,则需产生两个焦面的图像。目前主流的方案是双屏显示,具体实现方式为,在图像投射装置中采用两套图像生成模块(picture generation unit,PGU),分别生成AR图像和仪表信息,然后将AR图像的虚像和仪表信息的虚像投射至挡风玻璃外的两个焦面处,以实现传统HUD和AR-HUD显示,如图1所示。但采用两套PGU来实现双屏显示,增加了HUD装置中图像投射装置的体积和成本。
发明内容
本申请提供一种抬头显示装置、抬头显示方法及车辆,可以用于降低HUD装置中图像投射装置的体积和成本。
第一方面,提供了一种抬头显示装置,包括:全息光学元件HOE薄膜和图像投射装置;该HOE薄膜贴附于透光平面上,该HOE薄膜包括N个薄膜区域,该N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;该图像投射装置包括一个图像生成模块PGU和光学镜组,该PGU用于生成投射图像,该投射图像包括N个图像区域,该光学镜组用于将该N个图像区域分别投射至该N个薄膜区域,经过该N个薄膜区域的反射,使得该N个图像区域对应的虚像聚焦到该透光平面外的不同深度处。
优选地,可以通过控制N个图像区域投射至N个薄膜区域的相对位置以及投射方向使得N个图像区域对应的虚像不重叠。
可选地,透光平面可以为挡风玻璃。可选地,HOE薄膜可以贴附于挡风玻璃外侧, 也可以贴附于挡风玻璃内侧,还可以作为挡风玻璃的夹层。优选地,在本申请实施例中,将HOE薄膜贴附于挡风玻璃内侧。这是由于贴附于挡风玻璃内侧时,通过HOE薄膜反射HUD图像,反射效率为现有直接采用挡风玻璃的5倍以上,从而能够提升图像亮度,并且降低功耗。
应理解,HOE薄膜除包括N个焦距不同的薄膜区域之外,还可以包括M个薄膜区域。且本申请对M个薄膜区域的焦距不做限定。也就是说,HOE薄膜可以包括N+M个薄膜区域,并要求在多个薄膜区域中,至少N个薄膜区域的焦距不同,而其他薄膜的区域的焦距不做限定。
本申请实施例的抬头显示装置,包括HOE薄膜和图像投射装置。其中,HOE薄膜包括N个焦距不同的薄膜区域,图像投射装置包括一个PGU,该PGU包括N个图像区域。该N个图像区域的图像内容被投射至HOE薄膜的不同薄膜区域时,会受到不同程度的聚焦,从而在透光平面外的不同深度处呈现N个图像区域对应的虚像,实现了N屏(N≥2)显示。也就是说,本申请基于一个PGU和HOE薄膜就能够实现双屏甚至多屏显示,有效降低了HUD装置中图像投射装置的体积和成本。
结合第一方面,在第一方面的某些实现方式中,该光学镜组包括:第一曲面反射镜和第二曲面反射镜,该第一曲面反射镜和该第二曲面反射镜位于该HOE薄膜与该PGU之间,该N个图像区域中的每个图像区域依次经第一曲面反射镜和第二曲面反射镜反射到该N个薄膜区域中的对应区域。
结合第一方面,在第一方面的某些实现方式中,该N个图像区域包括:第一图像区域和第二图像区域,该第一图像区域用于显示仪表信息,该第二图像区域用于显示增强现实图像信息。
应理解,在本申请实施例中,通过控制第一图像区域和第二图像区域所对应的HOE薄膜区域的焦距大小,能够实现在不同深度处显示不同的图像内容,即可以在2至3米距离处显示仪表信息,在7至15米距离处显示增强现实图像信息,从而实现双屏显示。
结合第一方面,在第一方面的某些实现方式中,该HOE薄膜的制备方法包括:将全息干板按照N个薄膜区域划分为N个待处理区域;在N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,每个待处理区域处所采用的聚焦激光的焦距不同。
结合第一方面,在第一方面的某些实现方式中,该全息干板采用光敏材料制作。
结合第一方面,在第一方面的某些实现方式中,该光敏材料包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
结合第一方面,在第一方面的某些实现方式中,该HOE薄膜的厚度小于或等于1mm。
结合第一方面,在第一方面的某些实现方式中,该HOE薄膜为体布拉格光栅或表面浮雕光栅。
结合第一方面,在第一方面的某些实现方式中,该HOE薄膜通过曝光法、电子束光刻法或纳米压印法中任一种方式制备。
结合第一方面,在第一方面的某些实现方式中,该装置还包括:控制器,该控制器用于控制该PGU生成投射图像,该投射图像包括该N个图像区域。
第二方面,提供了一种抬头显示方法,该抬头显示方法在抬头显示装置中实现,该抬 头显示装置包括:全息光学元件HOE薄膜和图像投射装置;该HOE薄膜贴附于透光平面上,该HOE薄膜包括N个薄膜区域,该N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;该图像投射装置包括一个图像生成模块PGU和光学镜组,该PGU用于生成投射图像,该投射图像包括N个图像区域;该抬头显示方法包括:将该N个图像区域通过该光学镜组分别投射至该N个薄膜区域,经过该N个薄膜区域的反射,使得该N个图像区域对应的虚像聚焦到该透光平面外的不同深度处。
结合第二方面,在第二方面的某些实现方式中,该光学镜组包括:第一曲面反射镜和第二曲面反射镜,该第一曲面反射镜和该第二曲面反射镜位于该HOE薄膜与该PGU之间,该N个图像区域中的每个图像区域依次经第一曲面反射镜和第二曲面反射镜反射到所述N个薄膜区域中的对应区域。
结合第二方面,在第二方面的某些实现方式中,该N个图像区域包括:第一图像区域和第二图像区域,该第一图像区域用于显示仪表信息,该第二图像区域用于显示增强现实图像信息。
结合第二方面,在第二方面的某些实现方式中,该HOE薄膜的制备方法包括:将全息干板按照N个薄膜区域划分为N个待处理区域;在N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,每个待处理区域处所采用的聚焦激光的焦距不同。
结合第二方面,在第二方面的某些实现方式中,该全息干板采用光敏材料制作。
结合第二方面,在第二方面的某些实现方式中,该光敏材料包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
结合第二方面,在第二方面的某些实现方式中,该HOE薄膜的厚度小于或等于1mm。
结合第二方面,在第二方面的某些实现方式中,该HOE薄膜为体布拉格光栅或表面浮雕光栅。
结合第二方面,在第二方面的某些实现方式中,该HOE薄膜通过曝光法、电子束光刻法或纳米压印法中任一种方式制备。
第三方面,提供了一种全息光学元件HOE薄膜的制备方法,该HOE薄膜包括N个薄膜区域,该N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;该制备方法包括:将全息干板按照该N个薄膜区域划分为N个待处理区域;在该N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,该每个待处理区域处所采用的聚焦激光的焦距不同。
可选地,该在该N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射包括:在该N个待处理区域中的每个待处理区域的两面处分别用一束聚焦激光和一束平行激光共同照射。
可选地,该不同焦距的聚焦激光可以通过平行光照射焦距不同的透镜产生。
结合第三方面,在第三方面的某些实现方式中,该全息干板采用光敏材料制作。
结合第三方面,在第三方面的某些实现方式中,该光敏材料包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
结合第三方面,在第三方面的某些实现方式中,该HOE薄膜的厚度小于或等于1mm。
结合第三方面,在第三方面的某些实现方式中,该HOE薄膜为体布拉格光栅或表面 浮雕光栅。
第四方面,提供了一种车辆,包括如第一方面或者第一方面任一可能的实现方式中的装置。
第五方面,提供了一种车载系统,包括如第一方面或者第一方面任一可能的实现方式中的装置。
第六方面,提供了一种控制器,该控制器包括输入输出接口、处理器和存储器,该处理器用于控制输入输出接口收发信号或信息,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该控制器执行上述各方面中的方法。
第七方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第二方面或者第二方面的任一实现方式中的方法,和/或执行上述第三方面或者第三方面的任一实现方式中的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读介质存储用于设备执行的程序代码,所述程序代码包括用于执行第二方面或者第二方面的任一可能的实现方式中的方法的指令,和/或执行上述第三方面或者第三方面的任一实现方式中的方法的指令。
第九方面,提供一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行第二方面或者第二方面的任一可能的实现方式中的方法,和/或执行上述第三方面或者第三方面的任一实现方式中的方法。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行第二方面或者第二方面的任一可能的实现方式中的方法,和/或执行上述第三方面或者第三方面的任一实现方式中的方法。
附图说明
图1是本申请实施例提供的一种抬头显示场景的示例图;
图2是本申请实施例提供的一种抬头显示场景的平面示例图;
图3是本申请实施例提供的一种现有抬头显示装置示例图;
图4是本申请实施例提供的一种抬头显示的应用场景示例图;
图5是本申请实施例提供的一种抬头显示装置的示例图;
图6是本申请实施例提供的一种双屏抬头显示装置的结构示例图;
图7是本申请实施例提供的一种三屏抬头显示装置的结构示例图;
图8是本申请实施例提供的一种HOE薄膜的制备方法示例图;
图9是本申请实施例提供的一种曝光法制备双焦距HOE薄膜的示例图;
图10是本申请实施例提供的一种抬头显示方法示例图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
抬头显示(head up display,HUD)技术又称平视显示技术,近年来逐步在汽车领域、航空航天领域以及航海领域获得了越来越广泛地应用。例如,可以应用于车辆上,也可以应用于飞机、航天航空飞行器、轮船等其他交通工具上。为便于描述,在本申请中,均以 车载HUD为例进行描述。但应理解,这并不能作为对本申请的限定。
目前传统的车载HUD主要显示车速、油量等汽车仪表信息,为了不干扰路况,成像距离在2至3米左右。近年来兴起的增强现实(augmented reality,AR)HUD(AR-HUD)将数字图像叠加在车外真实环境上,使得驾驶员获得增强现实的视觉效果,可用于AR导航、自适应巡航、车道偏离预警等场景。为了使AR图像与路面信息更好的融合,AR-HUD的成像距离一般在7至15米左右。由此可知,AR-HUD与传统HUD成像距离并不一致,为了同时显示车速等仪表信息和AR图像,则需产生两个焦面的图像。并且为了提高驾驶员的体验和驾驶的安全性,通常要求两个焦面(双屏)图像互不重叠,互不干扰。
应理解,本申请中所涉及的“屏”均为焦面,表示虚像的成像位置,而不是实际意义上的屏幕。
图2是本申请实施例提供的一种抬头显示场景的平面示例图。如图2所示,车载HUD装置中的图像投射装置可以安装在挡风玻璃附近。该图像投射装置可以利用该挡风玻璃或挡风玻璃附近的玻璃、反射镜等透光平面将投射出的对象A和对象B分别成像于挡风玻璃之外不同深度处,便于驾驶员不低头、不转头就能够看到这些驾驶信息。其中,对象A可以显示车速、油量等汽车仪表信息。对象B可以显示AR图像信息,将数字图像叠加在车外真实环境上。
现有方案在图像投射装置中采用了两套图像生成模块(picture generation unit,PGU)以同时在两个焦面上分别实现传统HUD和AR-HUD。如图3所示,两套PGU共用后端的曲面镜光学系统,由于离曲面镜的距离不同,经过挡风玻璃所成的虚像位置也不同,形成了A屏和B屏两个不同深度处的图像显示。以使得较近的A屏能够显示仪表信息,较远的B屏能够显示AR图像信息。
但采用两套PGU来实现双屏显示,增加了HUD装置中图像投射装置的体积和成本。
针对上述问题,本申请提供了一种抬头显示装置,主要基于一个PGU和多焦距的全息光学元件(holographic optical element,HOE)薄膜来实现双屏甚至多屏显示,可以有效降低图像投射装置的成本和体积。
其中,多焦距的HOE薄膜是一种聚合物薄膜,其不同薄膜区域对应不同焦距,且可作为衍射光学元件贴附于挡风玻璃上。多焦距的HOE薄膜中的不同薄膜区域能够分别对图像投射装置中PGU生成的投射图像的不同图像区域的光线进行反射,将不同图像区域对应的虚像聚焦到车外的不同深度处。有效避免在图像投射装置中使用两套PGU,并控制两套PGU离曲面镜的距离来实现不同深度的成像,从而有效降低了图像投射装置的成本和体积。
为了更好的理解本申请实施例的方案,在进行本申请实施例的装置描述之前,首先结合附图4对本申请实施例的一种应用场景进行简单的描述。
图4是本申请实施例提供的一种抬头显示的应用场景示例图。
如图4所示,本申请提供的一种应用场景是车载HUD,在驾驶员驾驶汽车时,车内的图像投射装置(通常置于汽车挡风玻璃下方的控制台里)投射出图像,经过挡风玻璃上贴附的HOE薄膜反射,使得图像区对应的虚像聚焦到车外的不同深度处。其中较近的虚像屏幕可以显示仪表信息,成像距离约在2至3米左右;较远的虚像屏幕显示AR导航、AR预警等信息,成像距离约在7至15米左右。
下面将结合附图详细说明本申请提供的抬头显示装置。图5是本申请实施例提供的一种抬头显示装置的示例图。如图5所示,该抬头显示装置400包括HOE薄膜410和图像投射装置420。
其中,HOE薄膜410贴附于透光平面上,HOE薄膜410包括N个薄膜区域,N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数。
图像投射装置420包括一个图像生成模块PGU421和光学镜组422。该PGU421用于生成投射图像,该投射图像包括N个图像区域,该光学镜组422用于将该N个图像区域分别投射至该N个薄膜区域,经过该N个薄膜区域的反射,使得该N个图像区域对应的虚像聚焦到该透光平面外的不同深度处。
可选地,光学镜组422可以包括两个曲面反射镜;或者,可以包括一个曲面反射镜和一个平面反射镜;或者,可以包括一个曲面镜和一个或多个透镜;又或者,可以包括一个平面镜和透镜,本申请对光学镜组422的组成不做限定。
优选地,光学镜组422包括:第一曲面反射镜M 1和第二曲面反射镜M 2,第一曲面反射镜M 1和第二曲面反射镜M 2位于HOE薄膜410与该PGU421之间,该N个图像区域中的每个图像区域依次经第一曲面反射镜M 1和第二曲面反射镜M 2反射到该N个薄膜区域中的对应区域。
其中,第一曲面反射镜用于对图像区域进行放大,第二曲面反射镜用于减小像差,使得在透光平面外的不同深度处的成像处于更优的状态。
应理解,在汽车中,上述透光平面可以为挡风玻璃或挡风玻璃附近的玻璃、反射镜等。又由于下文实施例中均以车载HUD为例,因而为便于描述,在本申请实施例中均将透光平面描述为挡风玻璃。
可选地,图像投射装置420也可以称为HUD光机,用于将PGU421生成图像的光线投射到HOE薄膜410的不同区域中。图像投射装置420可以放置于挡风玻璃下方的控制台里,也可以放置在挡风玻璃附近的其他位置,只要其投射出的图像光线经HOE薄膜410不同区域的反射能在挡风玻璃外侧不同深度处呈现出对应的虚像即可,本申请对此不做限定。
可选地,装置400还可以包括:控制器,用于控制PGU生成投射图像,投射图像包括N个图像区域。
应理解,该N个图像区域中每个图像区域可以独立呈现相同或不同的图像内容。
应理解,可以通过控制N个图像区域投射至N个薄膜区域的相对位置以及投射方向使得N个图像区域对应的虚像互不重叠,且互不干扰。
应理解,本申请对N个薄膜区域的排布不做限定,可以上下排布,可以左右排布,还可以呈其他方式排布,只要能保证N个图像区域对应的虚像互不重叠,且互不干扰即可。
可选地,N个图像区域包括:第一图像区域和第二图像区域,第一图像区域用于显示仪表信息,第二图像区域用于显示增强现实图像信息。
应理解,在本申请实施例中,通过控制第一图像区域和第二图像区域所对应的HOE薄膜区域的焦距大小,能够实现在不同深度处显示不同的图像内容,即可以在2至3米距离处显示仪表信息,在7至15米距离处显示增强现实图像信息,从而实现双屏显示。可选地,HOE薄膜410的厚度小于或等于1mm。
可选地,HOE薄膜410具体可以是体布拉格光栅(volume bragg grating,VBG),或者表面浮雕光栅(surface-relief grating,SRG)。其中,VBG的内部折射率周期性变化,SRG的表面结构周期性变化,使得通过内部的折射率光栅或者浮雕光栅,可以对入射的光线进行调制,以实现对光线的反射和聚焦。
可选地,HOE薄膜410通过曝光法、电子束光刻法或纳米压印法中任一种方式制备。在下文中将以曝光法为例对HOE薄膜410的制备进行详细描述,此处不再赘述。
应理解,HOE薄膜410可以贴附于挡风玻璃外侧,也可以贴附于挡风玻璃内侧,或者还可以作为挡风玻璃的夹层,本申请对此不做限定。
优选地,在本申请实施例中,将HOE薄膜410贴附于挡风玻璃内侧。这是由于通过现有的挡风玻璃进行反射时,反射率约在10%左右;而HOE薄膜410贴附于挡风玻璃内侧时,通过HOE薄膜410反射HUD图像,反射效率在50%以上,从而能够提升图像亮度,同时还可以降低功耗。
应理解,在本申请实施例中,HOE薄膜410除包括N个焦距不同的薄膜区域之外,还可以包括M个薄膜区域。且本申请对M个薄膜区域的焦距不做限定。也就是说,HOE薄膜410可以包括N+M个薄膜区域,并要求在多个薄膜区域中,至少N个薄膜区域的焦距不同,以实现不同深度处的双屏或多屏显示,而对其他薄膜区域的焦距可以不做限定。
本申请实施例的抬头显示装置,包括HOE薄膜和图像投射装置。其中,HOE薄膜包括N个焦距不同的薄膜区域,图像投射装置包括一个PGU,该PGU包括N个图像区域。该N个图像区域的图像内容被投射至HOE薄膜的不同薄膜区域时,会受到不同程度的聚焦,从而在透光平面外的不同深度处呈现N个图像区域对应的虚像,实现了N屏(N≥2)显示。也就是说,本申请基于一个PGU和HOE薄膜就能够实现双屏甚至多屏显示,有效降低了HUD装置中图像投射装置的体积和成本。
在本申请实施例中,虚像的深度是通过控制薄膜区域的焦距而形成的,并不是通过控制不同图像区域到曲面镜的距离形成,从而不需要特殊的HUD后端光学透镜组设计,降低了光学设计加工难度。
在本申请实施例中,由于HOE薄膜具有透镜功能,可以对来自HUD的图像进行放大,因而还能够进一步提升系统的视场。另外,现有HUD采用挡风玻璃反射HUD图像,由于玻璃内外两个表面均反射图像,并且有一定的偏差,就会产生重影。但本申请所使用的HOE薄膜对图像区域的反射属于衍射原理,且通常只会衍射一次,衍射角与风挡的反射角是不同的。因此,用户只会观察到HUD的一个衍射图像,而不会观察到挡风玻璃内侧和外侧的反射图像,不会观察到重影。
示例性地,下面将结合图6和图7对本申请实施例的抬头显示装置的具体结构进行详细介绍。
图6是本申请实施例提供的一种双屏抬头显示装置的结构示例图。
如图6所示,该抬头显示装置主要由图像投射装置、挡风玻璃、HOE薄膜构成,其中图像投射装置包括一块PGU、第一曲面反射镜M 1和第二曲面反射镜M 2。HOE薄膜贴附于挡风玻璃内侧。PGU生成的投射图像被划分为I A和I B两个图像区域,并通过反射镜M 1、M 2反射到风挡玻璃上的HOE薄膜上。HOE薄膜同样被划分为两个薄膜区域,且分别具有不同的焦距f A和f B。其中焦距f A薄膜区域反射I A图像区域的光线,聚焦成像在较 近深度处的A屏;其中焦距f B薄膜区域反射I B图像区域的光线,聚焦成像在较远深度处的B屏处。其中,I A图像区域可以为上述第一图像区域,显示仪表信息;I B图像区域可以为上述第二图像区域,显示AR图像信息。
在本实施例中,仅使用一个PGU即可实现双屏显示。而且,驾驶员可以同时观察到较近的A屏和较远的B屏,A屏与B屏图像互不重叠,互不干扰。
图7是本申请实施例提供的一种三屏抬头显示装置的结构示例图。如图7所示,该抬头显示装置同样由图像投射装置、挡风玻璃、HOE薄膜构成,其中图像投射装置包括一块PGU、第一曲面反射镜M 1和第二曲面反射镜M 2。HOE薄膜贴附于挡风玻璃内侧。PGU生成的投射图像被划分为I A、I B和I C三个图像区域,并通过反射镜M 1、M 2反射到风挡玻璃上的HOE薄膜上。HOE薄膜同样被划分为三个薄膜区域,且分别具有不同的焦距f A、f B和f C。其中焦距f A薄膜区域反射I A图像区域的光线,聚焦成像在较近深度处的A屏;焦距f B薄膜区域反射I B图像区域的光线,聚焦成像在较远深度处的B屏处;焦距f C薄膜区域反射I C图像区域的光线,聚焦成像在更远深度处的C屏处。
在本实施例中,仅使用一个PGU即可实现三屏显示。
可选地,更多焦面的HUD图像显示可以通过设置更多的PGU区域和HOE焦距来实现,此处不再赘述。
应理解,本申请不仅可以通过在HOE薄膜上设置两个薄膜区域来实现双焦面HUD显示,还可以设置三焦面或更多焦面HUD显示,为AR导航提供更加丰富的立体图像显示。
图8是本申请实施例提供的一种HOE薄膜的制备方法示例图。该HOE薄膜包括N个薄膜区域,N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数。
如图8所示,该制备方法700包括步骤S710和S720。下面对这些步骤进行详细描述。
S710,将全息干板按照N个薄膜区域划分为N个待处理区域。
可选地,全息干板采用光敏材料制作。
可选地,光敏材料可以包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。应理解,光敏材料包括但不限于上述示例材料,凡是能够制成本申请所述的HOE薄膜的光敏材料,均落在本申请的保护范围内。
可选地,HOE薄膜的厚度小于或等于1mm。
可选地,HOE薄膜为体布拉格光栅或表面浮雕光栅。
S720,在N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,每个待处理区域处所采用的聚焦激光的焦距不同。
可选地,在N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射包括:在N个待处理区域中的每个待处理区域的两面分别处用一束聚焦激光和一束平行激光共同照射。
应理解,该聚光激光的主轴线与该平行激光之间呈一定的夹角,本申请对夹角的大小不做限定,可以相互垂直,也可以呈其他角度。
通过在每个待处理区域处采用不同的聚焦激光的焦距来实现包括N个焦距不同的薄膜区域。
可选地,不同焦距的聚焦激光可以通过平行光照射焦距不同的透镜产生。
可选地,根据方法700可以制备双焦距HOE薄膜,也可以制备多焦距HOE薄膜,本 申请对此不做限定。
示例性地,图9是本申请实施例提供的一种曝光法制备双焦距HOE薄膜的示例图。
如图9所示,HOE薄膜的制作分为两步,分别记录A、B屏对应待处理区域的光栅条纹。具体地,第一步:用挡光板遮住A屏对应的待处理区域,然后由一束焦距为f B的透镜产生的聚焦激光和一束平行激光共同照射B屏对应待处理区域的两面,从而记录得到B屏对应区域的光栅条纹;第二步:用挡光板遮住B屏对应的区域,再次对A屏对应的待处理区域采用同样的方式进行曝光,此次曝光所用到的聚焦激光由焦距为f A的透镜产生。经过上述两次曝光后得到如图6中所涉及的双焦距HOE薄膜。
可选地,除了曝光方法,制作HOE薄膜的方法还包括电子束光刻、纳米压印等,本申请对此不做限定。
图10是本申请实施例提供的一种抬头显示方法示例图。如图10所示,该抬头显示方法900在抬头显示装置400中实现,抬头显示装置400包括:全息光学元件HOE薄膜和图像投射装置;HOE薄膜贴附于透光平面上,HOE薄膜410括N个薄膜区域,N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;图像投射装置包括一个图像生成模块PGU和光学镜组,PGU用于生成投射图像,投射图像包括N个图像区域。
抬头显示方法900包括步骤S910:将N个图像区域通过光学镜组分别投射至N个薄膜区域,经过N个薄膜区域的反射,使得N个图像区域对应的虚像聚焦到透光平面外的不同深度处。
可选地,该光学镜组包括:第一曲面反射镜和第二曲面反射镜,该第一曲面反射镜和该第二曲面反射镜位于HOE薄膜与该PGU之间,所述N个图像区域中的每个图像区域依次经第一曲面反射镜和第二曲面反射镜反射到N个薄膜区域中的对应区域。
可选地,该N个图像区域包括:第一图像区域和第二图像区域,第一图像区域用于显示仪表信息,第二图像区域用于显示增强现实图像信息。
可选地,该HOE薄膜的制备方法包括:将全息干板按照N个薄膜区域划分为N个待处理区域;在N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,每个待处理区域处所采用的聚焦激光的焦距不同。
可选地,全息干板可以采用光敏材料制作。
可选地,光敏材料可以包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
可选地,HOE薄膜的厚度小于或等于1mm。
可选地,HOE薄膜为体布拉格光栅或表面浮雕光栅。
可选地,HOE薄膜通过曝光法、电子束光刻法或纳米压印法中任一种方式制备。
本申请实施例还提供了一种车辆,包括上述抬头显示装置400。应理解,车辆可以是电动汽车,例如,纯电动汽车、增程式电动汽车、混合动力电动汽车、燃料电池汽车、新能源汽车等,本申请对此不做具体限定。
本申请实施例还提供了一种车载系统,包括上述抬头显示装置400。
本申请实施例还提供了一种控制器,该控制器包括输入输出接口、处理器和存储器,该处理器用于控制输入输出接口收发信号或信息,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该控制器执行上述方法700,和/或执行 方法900。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述方法700,和/或执行方法900。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读介质存储用于设备执行的程序代码,所述程序代码包括用于执行上述方法700的指令,和/或执行方法900的指令。
本申请实施例还提供了一种芯片,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,执行上述方法700,和/或执行方法700。
可选地,作为一种实现方式,所述芯片还可以包括存储器,所述存储器中存储有指令,所述处理器用于执行所述存储器上存储的指令,当所述指令被执行时,所述处理器用于执行上述方法700,和/或执行方法900。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种抬头显示装置,其特征在于,包括:全息光学元件HOE薄膜和图像投射装置;
    所述HOE薄膜贴附于透光平面上,所述HOE薄膜包括N个薄膜区域,所述N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;
    所述图像投射装置包括一个图像生成模块PGU和光学镜组,所述PGU用于生成投射图像,所述投射图像包括N个图像区域,所述光学镜组用于将所述N个图像区域分别投射至所述N个薄膜区域,经过所述N个薄膜区域的反射,使得所述N个图像区域对应的虚像聚焦到所述透光平面外的不同深度处。
  2. 如权利要求1所述的装置,其特征在于,所述光学镜组包括:
    第一曲面反射镜和第二曲面反射镜,所述第一曲面反射镜和所述第二曲面反射镜位于所述HOE薄膜与所述PGU之间,所述N个图像区域中的每个图像区域依次经所述第一曲面反射镜和所述第二曲面反射镜反射到所述N个薄膜区域中的对应区域。
  3. 如权利要求1或2所述的装置,其特征在于,所述N个图像区域包括:
    第一图像区域和第二图像区域,所述第一图像区域用于显示仪表信息,所述第二图像区域用于显示增强现实图像信息。
  4. 如权利要求1至3中任一项所述的装置,其特征在于,所述HOE薄膜的制备方法包括:
    将全息干板按照所述N个薄膜区域划分为N个待处理区域;
    在所述N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,所述每个待处理区域处所采用的聚焦激光的焦距不同。
  5. 如权利要求4所述的装置,其特征在于,所述全息干板采用光敏材料制作。
  6. 如权利要求5所述的装置,其特征在于,所述光敏材料包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
  7. 如权利要求1至6中任一项所述的装置,其特征在于,所述HOE薄膜的厚度小于或等于1mm。
  8. 如权利要求1至7中任一项所述的装置,其特征在于,所述HOE薄膜为体布拉格光栅或表面浮雕光栅。
  9. 如权利要求1至8中任一项所述的装置,其特征在于,所述HOE薄膜通过曝光法、电子束光刻法或纳米压印法中任一种方式制备。
  10. 如权利要求1至9中任一项所述的装置,其特征在于,所述装置还包括:
    控制器,所述控制器用于控制所述PGU生成投射图像,所述投射图像包括所述N个图像区域。
  11. 一种抬头显示方法,其特征在于,所述抬头显示方法在抬头显示装置中实现,所述抬头显示装置包括:全息光学元件HOE薄膜和图像投射装置;
    所述HOE薄膜贴附于透光平面上,所述HOE薄膜包括N个薄膜区域,所述N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;
    所述图像投射装置包括一个图像生成模块PGU和光学镜组,所述PGU用于生成投射 图像,所述投射图像包括N个图像区域;
    所述抬头显示方法包括:
    将所述N个图像区域通过所述光学镜组分别投射至所述N个薄膜区域,经过所述N个薄膜区域的反射,使得所述N个图像区域对应的虚像聚焦到所述透光平面外的不同深度处。
  12. 如权利要求11所述的方法,其特征在于,所述光学镜组包括:
    第一曲面反射镜和第二曲面反射镜,所述第一曲面反射镜和所述第二曲面反射镜位于所述HOE薄膜与所述PGU之间,所述N个图像区域中的每个图像区域依次经所述第一曲面反射镜和所述第二曲面反射镜反射到所述N个薄膜区域中的对应区域。
  13. 如权利要求11或12所述的方法,其特征在于,所述N个图像区域包括:
    第一图像区域和第二图像区域,所述第一图像区域用于显示仪表信息,所述第二图像区域用于显示增强现实图像信息。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述HOE薄膜的制备方法包括:
    将全息干板按照所述N个薄膜区域划分为N个待处理区域;
    在所述N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,所述每个待处理区域处所采用的聚焦激光的焦距不同。
  15. 如权利要求14所述的方法,其特征在于,所述全息干板采用光敏材料制作。
  16. 如权利要求15所述的方法,其特征在于,所述光敏材料包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
  17. 如权利要求11至16中任一项所述的方法,其特征在于,所述HOE薄膜的厚度小于或等于1mm。
  18. 如权利要求11至17中任一项所述的方法,其特征在于,所述HOE薄膜为体布拉格光栅或表面浮雕光栅。
  19. 如权利要求11至18中任一项所述的方法,其特征在于,所述HOE薄膜通过曝光法、电子束光刻法或纳米压印法中任一种方式制备。
  20. 一种全息光学元件HOE薄膜的制备方法,其特征在于,所述HOE薄膜包括N个薄膜区域,所述N个薄膜区域的焦距不同,其中,N为大于或等于2的正整数;
    所述制备方法包括:
    将全息干板按照所述N个薄膜区域划分为N个待处理区域;
    在所述N个待处理区域中的每个待处理区域处用一束聚焦激光和一束平行激光共同照射,所述每个待处理区域处所采用的聚焦激光的焦距不同。
  21. 如权利要求20所述的方法,其特征在于,所述全息干板采用光敏材料制作。
  22. 如权利要求21所述的方法,其特征在于,所述光敏材料包括:光致聚合物、卤化银、重铬酸盐明胶以及光折变晶体中的至少一种。
  23. 如权利要求20至22中任一项所述的方法,其特征在于,所述HOE薄膜的厚度小于或等于1mm。
  24. 如权利要求20至23中任一项所述的方法,其特征在于,所述HOE薄膜为体布拉格光栅或表面浮雕光栅。
  25. 一种车辆,其特征在于,包括权利要求1至10中任一项所述的抬头显示装置。
  26. 一种车载系统,其特征在于,包括权利要求1至10中任一项所述的抬头显示装置。
  27. 一种计算机程序,所述计算机程序包括用于执行权利要求11至19中任一项所述的抬头显示方法,和/或用于执行权利要求20至24中任一项所述的制备方法的指令。
  28. 一种计算机可读介质,其特征在于,用于存储计算机程序,该计算机程序包括用于执行权利要求11至19中任一项所述的抬头显示方法,和/或用于权利要求20至24中任一项所述的制备方法的指令。
PCT/CN2020/115105 2020-09-14 2020-09-14 抬头显示装置、抬头显示方法及车辆 WO2022052112A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/115105 WO2022052112A1 (zh) 2020-09-14 2020-09-14 抬头显示装置、抬头显示方法及车辆
CN202080004886.0A CN112639580A (zh) 2020-09-14 2020-09-14 抬头显示装置、抬头显示方法及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115105 WO2022052112A1 (zh) 2020-09-14 2020-09-14 抬头显示装置、抬头显示方法及车辆

Publications (1)

Publication Number Publication Date
WO2022052112A1 true WO2022052112A1 (zh) 2022-03-17

Family

ID=75291258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115105 WO2022052112A1 (zh) 2020-09-14 2020-09-14 抬头显示装置、抬头显示方法及车辆

Country Status (2)

Country Link
CN (1) CN112639580A (zh)
WO (1) WO2022052112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482865A (zh) * 2023-06-20 2023-07-25 北京数字光芯集成电路设计有限公司 一种基于Micro-LED的抬头显示装置、车载系统及车辆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296267A (zh) * 2021-06-15 2021-08-24 刘娟 多深度平视显示方法和系统
WO2022268076A1 (en) * 2021-06-21 2022-12-29 University Of Central Florida Research Foundation, Inc. Optical display system and electronics device
CN114167615B (zh) * 2021-12-13 2023-10-20 深圳前海智云谷科技有限公司 一种产生不同位置图像的图像生成单元及ar hud
CN114879361A (zh) * 2021-12-16 2022-08-09 北京灵犀微光科技有限公司 抬头显示系统、方法及车载系统
CN114815241B (zh) * 2021-12-16 2022-12-16 北京灵犀微光科技有限公司 抬头显示系统、方法及车载系统
CN114779470A (zh) * 2022-03-16 2022-07-22 青岛虚拟现实研究院有限公司 一种增强现实抬头显示系统的显示方法
CN116931263A (zh) * 2022-03-30 2023-10-24 华为技术有限公司 一种抬头显示装置、抬头显示方法及车辆
CN115171412B (zh) * 2022-08-09 2024-04-12 阿波罗智联(北京)科技有限公司 车辆行驶状态的显示方法、系统及装置
CN115128815B (zh) * 2022-08-29 2022-12-20 泽景(西安)汽车电子有限责任公司 一种图像展示方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168230A (ja) * 2002-11-21 2004-06-17 Nissan Motor Co Ltd 車両用表示装置
DE102014224189A1 (de) * 2014-11-26 2016-06-02 Continental Automotive Gmbh Holographisches Head-up-Anzeigesystem
CN107018397A (zh) * 2016-01-08 2017-08-04 罗伯特·博世有限公司 用于运行视野显示设备的方法和装置
CN107428293A (zh) * 2015-03-25 2017-12-01 马自达汽车株式会社 平视显示装置
CN111352242A (zh) * 2018-12-21 2020-06-30 乐金显示有限公司 实现虚拟图像的显示设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408057B2 (ja) * 2010-06-30 2014-02-05 コニカミノルタ株式会社 映像表示装置およびヘッドマウントディスプレイ
CN106896506B (zh) * 2017-04-28 2019-07-26 京东方科技集团股份有限公司 一种平视显示装置、平视显示方法及车辆
CN109975978B (zh) * 2017-12-27 2022-04-12 乐金显示有限公司 平视显示装置
CN108490613B (zh) * 2018-03-28 2020-01-10 京东方科技集团股份有限公司 一种抬头显示装置及其控制方法、车辆
CN110775063B (zh) * 2019-09-25 2021-08-13 华为技术有限公司 一种车载设备的信息显示方法、装置及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168230A (ja) * 2002-11-21 2004-06-17 Nissan Motor Co Ltd 車両用表示装置
DE102014224189A1 (de) * 2014-11-26 2016-06-02 Continental Automotive Gmbh Holographisches Head-up-Anzeigesystem
CN107428293A (zh) * 2015-03-25 2017-12-01 马自达汽车株式会社 平视显示装置
CN107018397A (zh) * 2016-01-08 2017-08-04 罗伯特·博世有限公司 用于运行视野显示设备的方法和装置
CN111352242A (zh) * 2018-12-21 2020-06-30 乐金显示有限公司 实现虚拟图像的显示设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482865A (zh) * 2023-06-20 2023-07-25 北京数字光芯集成电路设计有限公司 一种基于Micro-LED的抬头显示装置、车载系统及车辆
CN116482865B (zh) * 2023-06-20 2023-09-08 北京数字光芯集成电路设计有限公司 一种基于Micro-LED的抬头显示装置、车载系统及车辆

Also Published As

Publication number Publication date
CN112639580A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022052112A1 (zh) 抬头显示装置、抬头显示方法及车辆
CN110737092A (zh) 平视显示器
WO2022052111A1 (zh) 抬头显示装置、抬头显示方法及车辆
CN112204461B (zh) 图像投影仪
WO2020167263A1 (en) Holographic head-up display device
CN217639770U (zh) 一种图像组合器和ar近眼显示光学系统
EP3671358B1 (en) Method of manufacturing full-color holographic optical element by using photopolymer and head-up display device with the same
CN113168012A (zh) 表示虚拟图像的体积显示装置及其方法
JP2021152643A (ja) 瞳孔拡張方法
JP2023553250A (ja) 任意の距離でゴースト像がない投影
JP7390558B2 (ja) 虚像表示システム、画像表示方法、ヘッドアップディスプレイ、及び移動体
CN115877560B (zh) 一种激光扫描成像模组及装置、ar显示设备
CN112198661A (zh) 用于车辆抬头显示器的光学扩展器
US11762195B2 (en) Holographic display system with conjugate image removal for a motor vehicle
CN112824968B (zh) 投影设备和方法
JP2022135957A (ja) ヘッドアップディスプレイ
JP2021162703A (ja) ヘッドアップディスプレイ装置及びヘッドアップディスプレイシステム
JP3483274B2 (ja) 画像表示装置
JP2913901B2 (ja) 表示装置
WO2019150129A1 (en) Polarising display
CN114815241B (zh) 抬头显示系统、方法及车载系统
WO2019096492A1 (en) High head type optical display device
CN112764219B (zh) 抬头显示系统及其应用
CN220872780U (zh) 增强现实抬头显示装置和车辆
JP2024074725A (ja) 画像投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952900

Country of ref document: EP

Kind code of ref document: A1