WO2022050315A1 - Image display device and manufacturing method therefor - Google Patents

Image display device and manufacturing method therefor Download PDF

Info

Publication number
WO2022050315A1
WO2022050315A1 PCT/JP2021/032151 JP2021032151W WO2022050315A1 WO 2022050315 A1 WO2022050315 A1 WO 2022050315A1 JP 2021032151 W JP2021032151 W JP 2021032151W WO 2022050315 A1 WO2022050315 A1 WO 2022050315A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
display device
base material
image display
absorbing member
Prior art date
Application number
PCT/JP2021/032151
Other languages
French (fr)
Japanese (ja)
Inventor
孝伸 矢野
洪賛 趙
武史 仲野
創矢 大城
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021138605A external-priority patent/JP7065239B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180054488.4A priority Critical patent/CN116018264A/en
Priority to KR1020237006848A priority patent/KR102668102B1/en
Priority to KR1020237029593A priority patent/KR20230130165A/en
Publication of WO2022050315A1 publication Critical patent/WO2022050315A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an image display device and a method for manufacturing the same.
  • an image display device includes an image display member. Such an image display device is required to have high optical reliability.
  • an image display device provided with a shock absorbing film capable of suppressing damage to the surface of the image display member even if an impact is applied to the image display device is being studied.
  • a shock absorbing film having a support layer and an adhesive layer in order in the thickness direction has been proposed (see, for example, Patent Document 1 below).
  • the shock absorbing film described in the comparative example of Patent Document 1 discloses a structure in which the support layer is a thick PET film.
  • the shock absorbing film described in Patent Document 1 has a problem that the shock absorbing rate per unit thickness is insufficient. In this case, the thickness can be reduced, but the impact absorption is not excellent, or the impact absorption is excellent, but the thickness is increased.
  • the shock absorbing film is required to have durability against various shocks such as the shock of a ball and the shock of a point with a pen.
  • the present invention provides an image display device having excellent optical reliability and excellent durability against various impacts, and a method for manufacturing the same.
  • the present invention (1) is an image display device including a window member, a shock absorbing member, a panel member, and a protective member in order on one side in the thickness direction, and the shock absorbing member transmits 60% or more of all light rays.
  • the ball impact absorption rate of the shock absorbing member obtained by dropping a stainless steel ball having a transmittance of 10 g and a diameter of 13 mm from a height of 20 cm onto the shock absorbing member is determined by the thickness of the shock absorbing member.
  • the broken ball impact absorption rate per unit thickness of the impact absorbing member is 0.27% / ⁇ m or more, and a ballpoint pen having a weight of 7 g and a ball diameter of 0.7 mm at the tip thereof is impacted from a height of 20 cm.
  • the pen impact absorption rate of the shock absorbing member obtained by dropping it on the absorbing member is divided by the thickness of the shock absorbing member, and the pen impact absorbing rate per unit thickness of the shock absorbing member is 0.10% / ⁇ m.
  • the above-mentioned image display device is included.
  • the shock absorbing member has a total light transmittance of 60% or more. Therefore, the image display device has high optical reliability.
  • the ball impact absorption rate per unit thickness of the impact absorbing member is 0.27% / ⁇ m or more
  • the pen impact absorption rate per unit thickness of the impact absorbing member is 0.10%. / ⁇ m or more. Therefore, the image display device is excellent in durability against an impact on a ball and an impact by a pen. Therefore, the image display device is excellent in durability against various impacts.
  • the image display device in a test in which the image display device is bent so that the window member faces outward, the image display device is bent 200,000 times so that the distance between the two outward facing surfaces of the window member is 8 mm. Also includes the image display device according to (1), wherein the panel member is not damaged.
  • the image display device even if the image display device is bent 200,000 times in the above-mentioned bending test, the panel member is not damaged. Therefore, the image display device is excellent in bending resistance.
  • the present invention (3) is described in (1) or (2), wherein the shock absorbing member comprises a first adhesive layer, a base material, and a second adhesive layer in order toward one side in the thickness direction. Includes an image display device.
  • the present invention (4) includes the image display device according to (3), wherein the first adhesive layer is in contact with the window member, and the second adhesive layer is in contact with the panel member.
  • the first adhesive layer adheres to the window member.
  • the second adhesive layer adheres to the panel member. Therefore, the window member adheres to the panel member via the shock absorbing member. Further, since the shock absorbing member including the base material and the first adhesive layer and the second adhesive layer sandwiching the base material adheres to the window member and the panel member, the bending resistance is further improved.
  • the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, (3) or (4). ) Is included.
  • the present invention (6) is described in any one of (3) to (5), wherein the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer is 0.01 MPa or more and 0.05 MPa or less. Includes image display device.
  • the present invention (7) is described in any one of (3) to (6), wherein the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is 0.10 MPa or more and 0.15 MPa or less. Includes image display device.
  • the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer is 0.06 MPa or more.
  • the present invention includes the image display device according to any one of (3) to (8), wherein the substrate is singular.
  • the image display device there are multiple base materials. Further, the image display device further includes an intermediate adhesive layer arranged between the plurality of substrates. Therefore, it is easy to design various shock absorption performances according to the application and purpose.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is equal to or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, and the shear of the second adhesive layer at 25 ° C.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, and the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is high.
  • the image display device according to (10) or (11) which has a shear storage modulus lower than G'.
  • the present invention (13) is described in any one of (10) to (12), wherein the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is more than 0.05 MPa and 0.15 MPa or less. Includes image display device.
  • the base material includes a first base material in contact with the first adhesive layer and a second base material in contact with the second adhesive layer, and the first base material is the same.
  • the image display device according to any one of (10) to (13), which is thinner than the second substrate, is included.
  • the base material includes a first base material in contact with the first adhesive layer and a second base material in contact with the second adhesive layer, and the first base material is the same.
  • the image display device according to any one of (10) to (13), which is thicker than the second substrate, is included.
  • the present invention (16) is described in any one of (3) to (15), wherein the ratio of the thickness of the base material to the thickness of the shock absorbing member is 0.20 or more and 0.35 or less. Includes image display device.
  • the present invention (17) includes the image display device according to any one of (3) to (16), wherein the material of the base material is a cycloolefin resin and / or a polyester resin.
  • the present invention (18) includes the image display device according to (17), wherein the olefin resin is a cycloolefin resin.
  • the present invention (19) includes the image display device according to (17), wherein the polyester resin is polyethylene terephthalate.
  • the present invention (20) is a method for manufacturing an image display device in which a window member, a first adhesive layer, a base material, a second adhesive layer, a panel member, and a protective member are sequentially provided on one side in the thickness direction.
  • the 6th step and the 7th step of determining whether or not the 1st sample and the 2nd sample are damaged are provided after the 6th step, and in the 3rd step, the 1st sample is damaged.
  • the manufacturing conditions are changed so that the total thickness of the first adhesive layer and the second adhesive layer is made thicker, and if the second sample is damaged, the prototype is found.
  • the present invention includes a method for manufacturing an image display device, which changes the thickness of the base material so as to be thicker when the above-mentioned material is evaluated.
  • the prototype is evaluated and the manufacturing conditions are determined, so that the yield can be improved.
  • the image display device of the present invention has excellent optical reliability and excellent durability against various impacts.
  • the manufacturing method of the present invention can improve the yield.
  • FIG. 1 is a cross-sectional view of an organic EL display device according to a first embodiment of the image display member of the present invention.
  • 2A and 2B illustrate the ball drop test.
  • FIG. 2A shows the impact of the laminated body of the window member and the shock absorbing member.
  • FIG. 2B shows the impact load of only the window member.
  • 3A and 3B illustrate the pen drop test.
  • FIG. 3A shows the impact load of the laminated body of the window member and the impact absorbing member.
  • FIG. 3B shows the impact load of only the window member.
  • 4A and 4B illustrate the bending of the organic EL display device.
  • FIG. 4A is an organic EL display device before bending.
  • FIG. 4B is an organic EL display device after bending.
  • FIG. 5 is a process diagram of a method for manufacturing an organic EL display device.
  • FIG. 6 is a process chart of the second step. This is a ball drop test for the first sample. This is a pen drop test for the second sample.
  • FIG. 9 is an organic EL display device of the second embodiment.
  • FIG. 10 is an organic EL display device according to a modification of the second embodiment.
  • FIG. 11 is a modified organic EL display device.
  • FIG. 12 is a graph showing the shear storage elastic modulus G'of the first adhesive layer and the second adhesive layer from Examples 1 to 6.
  • organic electroluminescence display device according to the first embodiment of the image display member of the present invention will be described with reference to FIG.
  • the organic electroluminescence display device is simply abbreviated as "organic EL display device”.
  • the front side is the user's visual recognition side and the other side in the thickness direction.
  • the back side is the opposite side of the front side, which is an example of one side in the thickness direction.
  • the organic EL display device 1 extends in the plane direction.
  • the plane direction is orthogonal to the front and back directions.
  • the organic EL display device 1 has, for example, a flat plate shape.
  • the organic EL display device 1 has a front surface 21 and a back surface 22. Both the front surface 21 and the back surface 22 are flat.
  • the surface 21 is a surface visible to the user.
  • the organic EL display device 1 can be bent around the intermediate portion 24, for example.
  • the intermediate portion 24 is located between the two sides 23.
  • the two sides 23 face each other with a distance in the plane direction.
  • the organic EL display device 1 includes a window member 2, a shock absorbing member 3, an organic EL panel member 4, and a protective member 5 in order toward the back side.
  • the organic EL display device 1 does not include a polarizing element.
  • the splitter is usually arranged between the window member 2 and the organic EL panel member 4.
  • the organic EL display device 1 of the first embodiment includes a shock absorbing member 3 instead of the polarizing element.
  • the organic EL display device 1 preferably includes only a window member 2, a shock absorbing member 3, an organic EL panel member 4, and a protective member 5.
  • the window member 2 forms the surface 21 of the organic EL display device 1.
  • the window member 2 extends in the plane direction.
  • the window member 2 includes, for example, a hard coat layer 6 (see virtual line) and a window film 7 in order toward the back side.
  • the window member 2 includes only the window film 7.
  • the hard coat layer 6 is a protective member that suppresses damage caused by rubbing on the surface 21 of the organic EL display device 1.
  • the hardcourt layer 6 is made of, for example, a cured product of a curable composition or a molded product of a thermoplastic composition.
  • the thickness of the hard coat layer 6 is, for example, 5 ⁇ m or more, preferably 7 ⁇ m or more, and for example, 30 ⁇ m or less.
  • the hard coat layer 6 is described in, for example, Japanese Patent Application Laid-Open No. 2020-064236.
  • the material of the window film 7 is glass, the hard coat layer 6 is not provided on the window member 2.
  • the window film 7 is arranged on the back surface of the hard coat layer 6. Specifically, the window film 7 is in contact with the entire back surface of the hard coat layer 6. When the window member 2 does not include the hard coat layer 6, the window film 7 forms the surface 21 of the organic EL display device 1.
  • the material of the window film 7 include resin and glass.
  • the resin include a polyimide resin, an acrylic resin, and a polycarbonate resin.
  • the thickness of the window film 7 is, for example, 1 ⁇ m or more, and is, for example, 100 ⁇ m or less.
  • Examples of commercially available products include “CPI” (manufactured by KOLON) and G-LEAF (manufactured by NEC Glass Co., Ltd.).
  • the window film 7 is described in, for example, Japanese Patent Application Laid-Open No. 2020-064236.
  • the total light transmittance of the window member 2 is, for example, 80% or more, preferably 85% or more.
  • the upper limit of the total light transmittance of the window member 2 is not particularly limited.
  • the upper limit of the total light transmittance of the window member 2 is, for example, 100%.
  • the total light transmittance of the window member 2 is measured based on JIS K 7375-2008. The total light transmittance of the other members thereafter is also measured in the same manner as described above.
  • the shock absorbing member 3 extends in the plane direction.
  • the shock absorbing member 3 is arranged on the back surface of the window member 2. Specifically, the shock absorbing member 3 is in contact with the entire back surface of the window member 2.
  • the shock absorbing member 3 is arranged at the same position as the splitter provided in the conventional organic EL display device.
  • the shock absorbing member 3 includes a first adhesive layer 8, a base material 9, and a second adhesive layer 10 in order toward the back side. In the first embodiment, the shock absorbing member 3 preferably includes only the first adhesive layer 8, the base material 9, and the second adhesive layer 10.
  • the first adhesive layer 8 extends in the plane direction. In the first embodiment, the first adhesive layer 8 is singular.
  • the first adhesive layer 8 forms the surface of the shock absorbing member 3.
  • the first adhesive layer 8 is arranged on the back surface of the window film 7. Specifically, the first adhesive layer 8 is in contact with the entire back surface of the window film 7. Details of the material and physical properties of the first adhesive layer 8 will be described later.
  • the base material 9 extends in the plane direction.
  • the substrate 9 is singular.
  • the base material 9 has a sheet shape.
  • the base material 9 is arranged on the back surface of the first adhesive layer 8. Specifically, the base material 9 is in contact with the entire back surface of the first adhesive layer 8. Details of the material and physical properties of the base material 9 will be described later.
  • the second adhesive layer 10 extends in the plane direction.
  • the second adhesive layer 10 is singular.
  • the second adhesive layer 10 forms the back surface of the shock absorbing member 3.
  • the second adhesive layer 10 is arranged on the back surface of the base material 9. Specifically, the second adhesive layer 10 is in contact with the entire back surface of the base material 9. Details of the material and physical properties of the second adhesive layer 10 will be described later.
  • the thickness of the shock absorbing member 3 is not particularly limited.
  • the thickness of the shock absorbing member 3 is, for example, 40 ⁇ m or more, preferably 70 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the thickness of the shock absorbing member 3 is not more than the above-mentioned upper limit, it is easy to increase the pen shock absorbing rate per unit thickness.
  • the shock absorbing member 3 has a total light transmittance of 60% or more, a ball shock absorption rate per unit thickness of 0.27% / ⁇ m or more, and a pen shock absorption per unit thickness of 0.10% / ⁇ m or more. Has a rate.
  • the total light transmittance of the shock absorbing member 3 is preferably 65% or more, more preferably 70% or more, still more preferably 80% or more, particularly preferably 85% or more, and most preferably 90% or more. be.
  • the upper limit of the total light transmittance of the shock absorbing member 3 is not particularly limited. The upper limit of the total light transmittance of the shock absorbing member 3 is, for example, 100% or 99%. If the total light transmittance of the laminated body of the window member 2 and the shock absorbing member 3 is 60% or more, it can be said that the total light transmittance of the window member 2 is 60% or more. Other lower limit values can be defined in the same manner as when the lower limit value is 60%.
  • the ball impact absorption rate per unit thickness of the impact absorbing member 3 is 0.27% / ⁇ m or more.
  • the ball impact absorption rate per unit thickness of the impact absorbing member 3 is preferably 0.30% / ⁇ m or more, more preferably 0.32% / ⁇ m or more, still more preferably 0.34% / ⁇ m or more. be.
  • the ball impact absorption rate per unit thickness of the impact absorbing member 3 is a value obtained by dividing the ball impact absorption rate of the impact absorbing member 3 by the thickness of the impact absorbing member 3. As shown in FIG. 2A, the ball impact absorption rate of the impact absorbing member 3 is obtained by dropping a stainless steel ball 90 having a weight of 10 g and a diameter of 13 mm onto the impact absorbing member 3 from a height of 20 cm.
  • the ball impact absorption rate of the impact absorbing member 3 is not particularly limited.
  • the ball impact absorption rate of the impact absorbing member 3 is, for example, 20% or more, preferably 25% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more.
  • the upper limit of the ball impact absorption rate of the impact absorbing member 3 is not particularly limited.
  • the upper limit of the ball impact absorption rate of the impact absorbing member 3 is, for example, 90% or 85%.
  • the pen impact absorption rate per unit thickness of the impact absorbing member 3 is 0.10% / ⁇ m or more.
  • the pen shock absorption rate per unit thickness of the shock absorbing member 3 is preferably 0.11% / ⁇ m or more, more preferably 0.12% / ⁇ m or more, still more preferably 0.13% / ⁇ m or more.
  • the pen shock absorption rate per unit thickness of the shock absorbing member 3 is a value obtained by dividing the pen shock absorption rate of the shock absorbing member 3 by the thickness of the shock absorbing member 3. As shown in FIG. 3A, the pen shock absorption rate of the shock absorbing member 3 is such that the pen 95 having a weight of 7 g and a diameter of the ball 96 at the tip portion of 0.7 mm is dropped from a height of 20 cm onto the shock absorbing member 3. Desired.
  • the pen impact absorption rate of the impact absorbing member 3 is not particularly limited.
  • the pen shock absorption rate of the shock absorbing member 3 is, for example, 5% or more, preferably 6% or more, more preferably 7% or more, still more preferably 8% or more, and particularly preferably 9% or more. Further, 10% or more, 11% or more, 15% or more, 20% or more, 25% or more, and 30% or more are preferable.
  • the upper limit of the pen impact absorption rate of the impact absorbing member 3 is not particularly limited.
  • the upper limit of the pen impact absorption rate of the impact absorbing member 3 is, for example, 85% or 80%.
  • the organic EL panel member 4 shown in FIG. 1 is an example of a panel member.
  • the organic EL panel member 4 extends in the plane direction.
  • the organic EL panel member 4 is arranged on the back surface of the shock absorbing member 3.
  • the organic EL panel member 4 is in contact with the entire back surface of the shock absorbing member 3.
  • the organic EL panel member 4 is in contact with the second adhesive layer 10.
  • the organic EL panel member 4 includes a thin film sealing layer 11 and a panel body 12.
  • the thin film encapsulation layer 11 is referred to as TFE (Thin Film Encapsulation).
  • the thin film sealing layer 11 extends in the plane direction.
  • the thin film sealing layer 11 forms the surface of the organic EL panel member 4.
  • the thin film sealing layer 11 is arranged on the back surface of the second adhesive layer 10. Specifically, the thin film sealing layer 11 is in contact with the entire back surface of the second adhesive layer 10.
  • the thin film sealing layer 11 has high hardness but low toughness.
  • the material of the thin film sealing layer 11 is not particularly limited.
  • examples of the material of the thin film sealing layer 11 include an inorganic compound and a resin.
  • the inorganic compound include silicon nitride, silicon oxynitride, carbon nitride, and aluminum oxide.
  • the panel body 12 extends in the plane direction.
  • the surface of the panel body 12 is covered with the thin film sealing layer 11.
  • the panel body 12 forms the back surface of the organic EL panel member 4.
  • the panel body 12 includes a substrate, two electrodes, and an organic EL layer sandwiched between the two electrodes.
  • the thickness of the organic EL panel member 4 is, for example, 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and for example, 10 ⁇ m or more.
  • the protective member 5 extends in the plane direction.
  • the protective member 5 is arranged on the back surface of the organic EL panel member 4. Specifically, the protective member 5 is in contact with the entire back surface of the organic EL panel member 4.
  • the protective member 5 protects the organic EL panel member 4 from the back side.
  • the protective member 5 forms the back surface 22 of the organic EL display device 1.
  • the protective member 5 includes a front side adhesive layer 13 and a protective base material 14 in order toward the back side. Further, the protective member 5 may be provided with the back side adhesive layer 15 and the metal plate 16 in order on the back side of the protective base material 14, for example, as shown by a virtual line.
  • the protective member 5 includes a front side adhesive layer 13, a protective base material 14, a back side adhesive layer 15, and a metal plate 16 in order toward the back side.
  • the front adhesive layer 13 is arranged on the back surface of the panel body 12. Specifically, the front adhesive layer 13 is in contact with the entire back surface of the panel body 12. Further, the front adhesive layer 13 forms the surface of the protective member 5.
  • the material of the front adhesive layer 13 is not particularly limited.
  • the front adhesive layer 13 may be made of the same material as the first adhesive layer 8 described later.
  • the thickness of the front adhesive layer 13 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 40 ⁇ m or less.
  • the protective base material 14 is arranged on the back surface of the front side adhesive layer 13. Specifically, the protecting base material 14 is in contact with the entire back surface of the protecting base material 14.
  • the material of the protective base material 14 is not particularly limited.
  • the protective base material 14 may be made of the same material as the base material 9.
  • the thickness of the protecting base material 14 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 250 ⁇ m or less, preferably 100 ⁇ m or less.
  • the back side adhesive layer 15 is arranged on the back surface of the protective base material 14. Specifically, the back side adhesive layer 15 is in contact with the entire back surface of the protective base material 14.
  • the back side adhesive layer 15 may be made of the same material as the first adhesive layer 8 described later.
  • the thickness of the backside adhesive layer 15 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the metal plate 16 extends in the plane direction.
  • the metal plate 16 forms the back surface 22 of the organic EL display device 1.
  • the metal plate 16 is arranged on the back surface of the back surface adhesive layer 15. Specifically, the metal plate 16 is in contact with the entire back surface of the back surface adhesive layer 15.
  • Examples of the material of the metal plate 16 include metal.
  • Metals include, for example, aluminum, titanium, steel, 42 alloys, stainless steel, and magnesium alloys.
  • the metal is preferably stainless steel.
  • the thickness of the metal plate 16 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 70 ⁇ m or more, and for example, 200 ⁇ m or less.
  • the thickness of the protective member 5 is, for example, 20 ⁇ m or more, preferably 25 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the window member 2 is bent 200,000 times so that the distance between the above-mentioned surfaces 21 is 8 mm.
  • the organic EL panel member 4 is preferably not damaged.
  • the organic EL display device 1 can suppress the damage of the thin film sealing layer 11 after bending.
  • the panel member is not damaged even if the organic EL display device 1 is bent 200,000 times so that the distance between the surfaces 21 of the window member 2 is 6 mm. Therefore, the organic EL display device 1 can suppress damage to the thin film sealing layer 11 after bending.
  • the shear storage elastic modulus G'of each of the second adhesive layer 10 and the first adhesive layer 8 is not particularly limited.
  • the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is preferably the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8.
  • the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is more preferably higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8.
  • the shear storage elastic modulus G'of each of the first adhesive layer 8 and the second adhesive layer 10 is measured using a viscoelasticity measuring device. The heating rate is 5 ° C./min and the frequency is 1 Hz.
  • shear storage elastic modulus G'of the second adhesive layer 10 is the same as the shear storage elastic modulus G'of the first adhesive layer 8, the examples are plotted on the thick line shown in FIG. If the shear storage elastic modulus G'of the second adhesive layer 10 is higher than the shear storage elastic modulus G'of the first adhesive layer 8, the examples are plotted in an area diagonally above the left side of the thick line shown in FIG.
  • the organic EL display device 1 is further subjected to the impact resistance to the ball per unit thickness. Excellent, and even better due to the impact resistance to the pen per unit thickness. Further, the organic EL display device 1 is further excellent in bending resistance.
  • the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is, for example, 0.03 MPa or more. It is preferably 0.06 MPa or more.
  • the upper limit of the above values is not limited.
  • the upper limit of the above-mentioned value is, for example, 0.15 MPa.
  • the organic EL display device 1 is further excellent in impact resistance to a ball per unit thickness.
  • the region where the above value is 0.06 MPa or more includes the area on the thin solid line shown in FIG. 12 and the area diagonally above the left side of the solid line.
  • the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is, for example, 0.15 MPa or less, preferably 0.10 MPa or less, and more preferably 0.05 MPa or less.
  • the lower limit of the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is not limited.
  • the lower limit of the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is, for example, 0.01 MPa.
  • the organic EL display device 1 has excellent impact resistance to a ball per unit thickness and impact resistance to a pen per unit thickness. Excellent. Further, the organic EL display device 1 is excellent in bending resistance.
  • the shear storage elastic modulus G'of the first adhesive layer 8 is at least the above-mentioned lower limit, the impact absorbing member 3 can be reliably reshaped.
  • the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is, for example, 0.05 MPa or more, preferably 0.10 MPa or more.
  • the upper limit of the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is not limited.
  • the upper limit of the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is 0.15 MPa.
  • the organic EL display device 1 is excellent in impact resistance per unit thickness and is excellent in impact resistance to a pen per unit thickness. Further, the organic EL display device 1 is excellent in bending resistance.
  • the shear storage elastic modulus G'of the second adhesive layer 10 is not more than the above-mentioned upper limit, the impact absorbing member 3 can sufficiently absorb the external force.
  • the total light transmittance of each of the first adhesive layer 8 and the second adhesive layer 10 is, for example, 80% or more, preferably 85% or more.
  • the upper limit of the total light transmittance of each of the first adhesive layer 8 and the second adhesive layer 10 is not particularly limited.
  • the upper limit of the total light transmittance of each of the first adhesive layer 8 and the second adhesive layer 10 is, for example, 100%.
  • the tensile elastic modulus E of the base material 9 at 25 ° C. is, for example, 0.1 GPa or more, preferably 1 GPa or more, and more preferably 2 GPa or more.
  • the organic EL display device 1 is excellent in impact resistance per unit thickness for balls and impact resistance per unit thickness for pens. Further, the organic EL display device 1 is excellent in bending resistance.
  • the tensile elastic modulus E of the base material 9 is, for example, 15 GPa or less, preferably 5 GPa or less, and more preferably 1 GPa or less.
  • the impact resistance to the ball per unit thickness is excellent.
  • the tensile elastic modulus E of the base material 9 is measured using a tensile tester. Details of the measurement of the tensile modulus E of the base material 9 will be described in a later example.
  • the total light transmittance of the base material 9 is, for example, 80% or more, preferably 85% or more.
  • the upper limit of the total light transmittance of the base material 9 is, for example, 100%.
  • the first adhesive layer 8 and the second adhesive layer 10 are made of a material that can satisfy the above-mentioned physical properties.
  • the material include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, and epoxy adhesives.
  • examples thereof include a pressure-sensitive adhesive and a polyether-based pressure-sensitive adhesive. Acrylic adhesives are preferable.
  • acrylic pressure-sensitive adhesive examples include crosslinked products of acrylic-based base polymers.
  • the acrylic base polymer is obtained by polymerizing the monomer components.
  • the monomer component contains, for example, a (meth) acrylate having an alkyl moiety having 1 to 24 carbon atoms as a main component.
  • (Meta) acrylate means methacrylate and / or acrylate.
  • the definition and usage of the (meth) acrylate described above are as follows.
  • the alkyl moiety has a linear or branched chain.
  • Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl.
  • a (meth) acrylate having an alkyl moiety having 1 to 4 carbon atoms can be mentioned.
  • a (meth) acrylate having an alkyl moiety having 6 to 24 carbon atoms can be mentioned.
  • the ratio of the (meth) acrylate in the monomer component is, for example, 80% by mass or more, preferably 90% by mass or more, and for example, 100% by mass or less, preferably 99.5% by mass or less.
  • the monomer component further contains a functional group-containing (meth) acrylate as an optional component.
  • the functional group-containing (meth) acrylate include a hydroxyl group-containing (meth) acrylate and an amide group-containing (meth) acrylate.
  • the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Examples of the amide group-containing (meth) acrylate include (meth) acrylamide and dimethyl (meth) acrylamide.
  • the amide group-containing (meth) acrylate may include an intramolecular amide group-containing (meth) acrylate.
  • Examples of the intramolecular amide group-containing (meth) acrylate include N-vinyl-2-pyrrolidone.
  • the ratio of the functional group-containing (meth) acrylate in the monomer component is, for example, 1% by mass or more, preferably 5% by mass or more, and for example, 25% by mass or less, preferably 20% by mass or less.
  • the monomer component can be polymerized, for example, in the presence of a chain transfer agent.
  • chain transfer agent include thiol compounds.
  • thiol compound include ⁇ -thioglycerol.
  • the mass ratio of the chain transfer agent is, for example, 1 part by mass or more, and for example, 10 parts by mass or less with respect to 100 parts by mass of the monomer component.
  • the crosslinked product is obtained by blending a crosslinking agent with an acrylic base polymer and its reaction.
  • the cross-linking agent include an isocyanate cross-linking agent, a silane coupling agent, a peroxide, and a (meth) acrylate having a plurality of (meth) acryloyl groups.
  • the isocyanate cross-linking agent include a trimethylolpropane modified product of xylylene diisocyanate and a trimethylolpropane modified product of tolylene diisocyanate.
  • the silane coupling agent include epoxy group-containing silane coupling agents.
  • the epoxy group-containing silane coupling agent include 3-glycidoxypropyltrimethoxysilane.
  • Examples of the peroxide include organic peroxides.
  • Examples of the organic peroxide include benzoyl peroxide.
  • Examples of the (meth) acrylate having a plurality of (meth) acryloyl groups include hexanediol (meth) acrylate. These can be used alone or in combination.
  • the mass ratio of the cross-linking agent is, for example, 0.1 part by mass or more, and for example, 2 parts by mass or less with respect to 100 parts by mass of the acrylic base polymer.
  • the additive can be added to the acrylic base polymer together with the compounding of the cross-linking agent.
  • the additive include oligomers.
  • the oligomer include (meth) acrylic oligomers.
  • the weight average molecular weight of the (meth) acrylic oligomer is, for example, 1,000 or more, preferably 2,000 or more, and for example, 30,000 or less, preferably 10,000 or less.
  • the weight average molecular weight of the (meth) acrylic oligomer is calculated in terms of standard polystyrene by GPC.
  • the (meth) acrylic oligomer is obtained by polymerizing a monomer component.
  • the monomer component includes the above-mentioned (meth) acrylate having an alkyl moiety having 1 to 24 carbon atoms and the alicyclic (meth) acrylate having an alicyclic alkyl (cycloalifatic alkyl) moiety having 1 to 24 carbon atoms. including.
  • the alicyclic alkyl moiety include a monocyclic type and a polycyclic type.
  • Examples of the monocyclic alicyclic (meth) acrylate include cycloalkyl (meth) acrylate.
  • Examples of the cycloalkyl (meth) acrylate include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, and cyclooctyl (meth) acrylate.
  • Examples of the polycyclic alicyclic (meth) acrylate include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and tricyclopentanyl (meth) acrylate.
  • the ratio of the (meth) acrylate in the monomer component is, for example, 10% by mass or more, preferably 20% by mass or more, and for example, 70% by mass or less, preferably 45% by mass or less.
  • the proportion of the alicyclic (meth) acrylate in the monomer component is, for example, 30% by mass or more, preferably 55% by mass or more, and for example, 90% by mass or less, preferably 80% by mass
  • the glass transition temperature of the oligomer is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and for example, 150 ° C. or lower.
  • the glass transition temperature of the oligomer is calculated by the Fox formula.
  • the mass ratio of the oligomer is, for example, 0.01 part by mass or more, and for example, 1 part by mass or less with respect to 100 parts by mass of the acrylic base polymer.
  • the material of the base material 9 is a material that can satisfy the above-mentioned physical characteristics.
  • Examples of the material of the base material 9 include a resin.
  • the resin can be used alone or in combination.
  • examples of the resin include olefin resin, polyester resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin.
  • Preferred examples of the resin include olefin resin, polyester resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, cellulose resin, and polystyrene resin. More preferably, the resin includes an olefin resin and a polyester resin.
  • olefin resin examples include polyethylene, polypropylene, and cycloolefin polymer (COP).
  • the olefin resin is preferably COP.
  • COP is a polymer of monomer components containing cycloolefin.
  • cycloolefins include norbornene.
  • polyester resin examples include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate.
  • PET polyethylene terephthalate
  • the polyester resin includes, for example, a soft polyester resin (transparent soft polyester resin).
  • Preferred examples of the polyester resin include PET.
  • COP is particularly preferable as the material of the base material 9. COP can have a higher pen impact absorption rate per unit thickness than PET.
  • the base material 9 a commercially available product can be used.
  • Commercially available products include, for example, the Lumirer series (PET base material, Toray), the Zeonoa series (COP base material, Nippon Zeon), and the OKY series (transparent soft polyester resin base material, Bell Polyester Products). (Manufactured by the company).
  • the thicknesses of the first adhesive layer 8, the base material 9, and the second adhesive layer 10 are not particularly limited.
  • each of the first adhesive layer 8 and the second adhesive layer 10 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 40 ⁇ m or less.
  • the second adhesive layer 10 may have the same thickness as the first adhesive layer 8 or may have a different thickness from the first adhesive layer 8.
  • the thickness of the base material 9 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 75 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably less than 50 ⁇ m, and particularly preferably. , 45 ⁇ m or less, most preferably 30 ⁇ m or less.
  • the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is, for example, 0.10 or more, preferably 0.20 or more, and for example, 0.70 or less, preferably 0.60 or less. It is more preferably 0.40 or less, still more preferably 0.35 or less.
  • the ratio of the thickness of the base material 9 is at least the above-mentioned lower limit, the bending resistance is excellent.
  • the ratio of the thickness of the base material 9 is equal to or less than the above upper limit, the pen impact absorption rate per unit thickness is high.
  • the organic EL display device 1 is obtained by laminating a window member 2, a shock absorbing member 3, an organic EL panel member 4, and a protective member 5.
  • the shock absorbing member 3 is prepared as a shock absorbing member with a release sheet.
  • the shock absorbing member with a release sheet includes a shock absorbing member 3 and a release sheet laminated on the front surface and the back surface thereof, respectively.
  • the release sheet in the impact absorbing member with the release sheet is peeled from the impact absorbing member 3 to prepare the impact absorbing member 3.
  • this method includes a first step S1, a second step S2, a third step S3, and a fourth step S4 in order.
  • a prototype is prototyped.
  • a plurality of prototypes 40 are prototyped.
  • Each of the plurality of prototypes 40 has, for example, the same composition, the same thickness, and the same physical characteristics as each other.
  • the plurality of prototypes 40 include, for example, a first sample 61, a second sample 62, and further include a third sample 63.
  • the prototype 40 is also a pseudo sample.
  • the prototype 40 has the same configuration as the above-mentioned organic EL display device 1 except for the following points.
  • the organic EL panel member 4 of the prototype 40 includes an ITO layer 35 instead of the thin film sealing layer 11.
  • the ITO layer 35 is configured to evaluate damage due to strain that may be inflicted on the thin film encapsulation layer 11.
  • the ITO layer 35 is made of a composite oxide (ITO) of indium oxide and tin oxide.
  • the thickness of the ITO layer 35 is, for example, 100 nm or less, preferably 70 nm or less, more preferably 50 nm or less, and for example, 20 nm or more. By changing the thickness of the ITO layer 35, cracking due to strain can be controlled.
  • the organic EL panel member 4 including the ITO layer 35 and the panel body 12 is a dummy panel member 44. Further, in the prototype 40, for example, the shear storage elastic modulus G'at 25 ° C. of each of the first adhesive layer 8 and the second adhesive layer 10 is the same.
  • the prototype 40 is evaluated. As shown in FIG. 6, the second step S2 includes a fifth step S5, a sixth step S6, and a seventh step S7.
  • the first sample 61 and the second sample 62 are selected from the prototype 40.
  • the first sample 61 and the second sample 62 have the same composition, the same thickness, and the same physical characteristics as each other.
  • the third sample 63 may be subjected to a bending test described later.
  • a ball drop test (see FIG. 7) and a pen drop test (see FIG. 8) are carried out.
  • the ball 90 is dropped onto the first sample 61.
  • the weight of the ball 90 in the ball drop test is, for example, 1 g or more, preferably 2 g or more, and for example, 100 g or less, preferably 50 g or less.
  • the diameter of the ball 90 in the ball drop test is, for example, 1 mm or more, preferably 2 mm or more, and for example, 100 mm or less, preferably 50 mm or less.
  • the material of the ball is not limited, for example, metal.
  • the drop height of the ball 90 in the ball drop test is, for example, 2 cm or more, preferably 5 cm or more, and for example, 200 cm or less, preferably 100 cm or less.
  • the pen (ballpoint pen) 95 is dropped onto the second sample 62.
  • the pen 95 has a ball 96 at its tip.
  • the weight of the pen 95 in the pen drop test is, for example, 0.5 g or more, preferably 1 g or more, and for example, 50 g or less, preferably 30 g or less.
  • the diameter of the ball 96 in the pen drop test is, for example, 0.01 mm or more, preferably 0.1 mm or more, and for example, 5 mm or less, preferably 1 mm or less.
  • the drop height in the pen drop test is, for example, 2 cm or more, preferably 5 cm or more, and for example, 200 cm or less, preferably 100 cm or less.
  • step S7 it is determined whether or not the first sample 61 and the second sample 62 are damaged.
  • the manufacturing conditions are changed so that the total thickness of the first adhesive layer 8 and the second adhesive layer 10 becomes thicker. And decide. Further, in the third step, when the prototype 40 is evaluated as having damage to the second sample 62, the manufacturing conditions are changed and determined so that the thickness of the base material 9 is made thicker.
  • the organic EL display device 1 is manufactured based on the above-mentioned manufacturing conditions.
  • the organic EL display device 1 is manufactured as a product.
  • the third step S3 described above is not performed, that is, the manufacturing conditions are not changed. , The organic EL display device 1 is manufactured as a product.
  • the organic EL display device 1 As shown in FIG. 4A, when the user visually recognizes the entire surface 21 of the organic EL display device 1, the organic EL display device 1 is open. At this time, the surface 21 is a flat surface.
  • the organic EL display device 1 includes an intermediate portion 24, a first portion 17, and a second portion 18.
  • the intermediate portion 24 is located between the two sides 23.
  • the two sides 23 include a first side 23A and a second side 23B.
  • the first part 17 is an area including the first side 23A.
  • the second part 18 is an area including the second side 23B.
  • the organic EL display device 1 may be bent around the intermediate portion 24. That is, the organic EL display device 1 may be bent and used. In this case, the intermediate portion 24 forms a crease.
  • the surface 21 of the first part 17 and the surface 21 of the second part 18 face each other outward.
  • the back surface 22 of the first part 17 and the back surface 22 of the second part 18 approach each other and face each other.
  • the shock absorbing member 3 has a total light transmittance of 60% or more. Specifically, the total light transmittance of the shock absorbing member 3 provided in the organic EL display device 1 as a substitute for the polarizing element is high. Therefore, the organic EL display device 1 has high optical reliability. In particular, since the organic EL display device 1 of the first embodiment does not include a polarizing element, the optical reliability is particularly high.
  • the shock absorbing member 3 has a ball shock absorption rate per unit thickness of 0.27% / ⁇ m or more, and pen shock absorption per unit thickness of 0.10% / ⁇ m or more. Have a rate. Therefore, the organic EL display device 1 is excellent in durability against an impact on a ball and an impact by a pen. Therefore, the organic EL display device 1 is excellent in durability against various impacts.
  • the organic EL display device 1 is excellent in bending resistance.
  • the first adhesive layer 8 adheres to the window member 2.
  • the second adhesive layer 10 adheres to the organic EL panel member 4. Therefore, the window member 2 adheres to the organic EL panel member 4 via the shock absorbing member 3. Then, the shock absorbing member 3 including the base material 9 and the first adhesive layer 8 and the second adhesive layer 10 sandwiching the base material 9 adheres to the window member 2 and the organic EL panel member 4, so that the bending resistance further increases. Excellent.
  • the organic EL display device 1 when the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C. is the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8.
  • the organic EL display device 1 is excellent in impact resistance per unit thickness for a ball and impact resistance per unit thickness for a pen. Further, the organic EL display device 1 is excellent in bending resistance.
  • this organic EL display device 1 when the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, this organic The EL display device 1 is further excellent in impact resistance per unit thickness with respect to the ball, and further is further excellent in impact resistance per unit thickness with respect to the pen.
  • this organic EL display device 1 if the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is 0.01 MPa or more, the shock absorbing member 3 can be reliably reshaped. When the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is 0.05 MPa or less, the organic EL display device 1 is excellent in impact resistance per unit thickness to the ball.
  • the organic EL display device 1 if the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C. is 0.10 MPa or more, the organic EL display device 1 is excellent in bending resistance. When the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is 0.15 MPa or less, the impact absorbing member 3 can sufficiently absorb the external force.
  • the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is 0.
  • the organic EL display device 1 is excellent in impact resistance per unit thickness for balls and impact resistance per unit thickness for pens. Further, the organic EL display device 1 is excellent in both bending resistance and bending resistance.
  • the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is 0.20 or more, the impact resistance per unit thickness with respect to the pen is excellent.
  • the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is 0.35 or less, the ball shock absorbing rate per unit thickness is high.
  • the material of the base material 9 is an olefin resin and / or a polyester resin, the ball impact absorption rate per unit thickness and the pen impact absorption rate per unit thickness can be increased. ..
  • the organic EL display device 1 is manufactured by the manufacturing method including the first step S1 to the third step S3 described above, the prototype 40 is evaluated and the manufacturing conditions are determined, so that the yield can be improved.
  • the base material 9 is a plurality. Specifically, the base material 9 includes a first base material 25 and a second base material 26. Further, the shock absorbing member 3 further includes an intermediate adhesive layer 19.
  • the first base material 25 comes into contact with the first adhesive layer 8.
  • the first base material 25 is arranged on the back surface of the first adhesive layer 8.
  • the first base material 25 does not come into contact with the second adhesive layer 10.
  • the second base material 26 is arranged on the back side of the first base material 25 at intervals. The second base material 26 comes into contact with the second adhesive layer 10. The second base material 26 is arranged on the surface of the second adhesive layer 10. The second base material 26 does not come into contact with the first adhesive layer 8.
  • the intermediate adhesive layer 19 is singular in the second embodiment.
  • the intermediate adhesive layer 19 is interposed between the first base material 25 and the second base material 26.
  • the intermediate adhesive layer 19 is in contact with the first base material 25 and the second base material 26.
  • the intermediate adhesive layer 19 is in contact with the back surface of the first base material 25 and the front surface of the second base material 26.
  • the shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, an intermediate adhesive layer 19, a second base material 26, and a second adhesive layer 10 in order toward the back side.
  • the shock absorbing member 3 preferably has only the first adhesive layer 8, the first base material 25, the intermediate adhesive layer 19, the second base material 26, and the second adhesive layer 10. Be prepared.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is not particularly limited.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is equal to or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, and the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10. 'It is below.
  • the organic EL It can be seen that the display device 1 is excellent in impact resistance per unit thickness for balls and pens.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, and the shear storage elasticity G'of the second adhesive layer 10 at 25 ° C. It is lower than the rate G'. In this case, it is possible to more reliably achieve both high impact resistance per unit thickness for the ball and high bending resistance.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is, for example, 0.01 MPa or more, preferably 0.05 MPa or more, more preferably 0.05 MPa or more, and for example, 0.15 MPa or less. It is preferably 0.10 MPa or less.
  • the shear storage elastic modulus G'of the intermediate adhesive layer 19 exceeds the above-mentioned lower limit and falls below the above-mentioned upper limit, the impact resistance per unit thickness to the ball and the bending resistance are further excellent.
  • the thickness of the intermediate adhesive layer 19 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 40 ⁇ m or less, preferably 30 ⁇ m or less.
  • the ratio of the total thickness of the first base material 25 and the second base material 26 to the thickness of the shock absorbing member 3 is the same as the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 described above.
  • the thickness of the first base material 25 is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, and for example, 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the thickness of the second base material 26 is, for example, 5 or more, preferably 15 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the first base material 25 is, for example, thicker or thinner than the second base material 26.
  • the first base material 25 may have the same thickness as the second base material 26.
  • the first substrate 25 is thinner than the second substrate 26.
  • the impact resistance per unit thickness to the ball is further excellent.
  • the ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is preferably 0.9 or less, preferably 0.7 or less.
  • the lower limit of the ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is, for example, 0.1, or 0.2, for example.
  • the impact resistance per unit thickness with respect to the pen is further excellent.
  • the ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is preferably 1.1 or more, preferably 1.4 or more.
  • the upper limit of the ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is, for example, 10 or 5, for example.
  • the tensile elastic modulus E of the first base material 25 and the second base material 26 at 25 ° C. is the same as that of the base material 9 of the first embodiment at 25 ° C.
  • this organic EL display device 1 there are a plurality of base materials 9. Further, the organic EL display device 1 further includes an intermediate adhesive layer 19 arranged between the plurality of base materials 9. Therefore, it is easy to design various shock absorption performances according to the application and purpose.
  • the shear storage elastic modulus G'of the intermediate adhesive layer 19 is equal to or higher than the shear storage elastic modulus G'of the first adhesive layer 8, and the shear storage elasticity of the second adhesive layer 10 at 25 ° C.
  • the modulus is G'or less, the organic EL display device 1 is excellent in impact resistance per unit thickness with respect to the ball and bending resistance.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, and the second adhesive layer 10 has a shear storage elastic modulus G'. If it is lower than the shear storage elastic modulus G'at 25 ° C., the organic EL display device 1 can surely achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
  • this organic EL display device if the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 exceeds 0.05 MPa and is 0.15 MPa or less, a high impact resistance per unit thickness to the ball is obtained. It is possible to have high impact resistance per unit thickness for a pen and high bending resistance in parallel.
  • the organic EL display device 1 if the first base material 25 is thinner than the second base material 26, high impact resistance per unit thickness with respect to the ball and high bending resistance can be reliably achieved at the same time.
  • this organic EL display device 1 if the first base material 25 is thicker than the second base material 26, it is excellent in high impact resistance per unit thickness with respect to the pen.
  • the intermediate adhesive layer 19 includes a first intermediate adhesive layer 27 and a second intermediate adhesive layer 28.
  • the base material 9 further includes a third base material 29.
  • the first intermediate adhesive layer 27 comes into contact with the first base material 25. However, the first intermediate adhesive layer 27 does not come into contact with the second base material 26.
  • the first intermediate adhesive layer 27 is arranged on the back surface of the first base material 25.
  • the second intermediate adhesive layer 28 comes into contact with the second base material 26. However, the second intermediate adhesive layer 28 does not come into contact with the first base material 25.
  • the second intermediate adhesive layer 28 is arranged on the surface of the second base material 26.
  • the third base material 29 is arranged between the first intermediate adhesive layer 27 and the second intermediate adhesive layer 28.
  • the third base material 29 is in contact with the back surface of the first intermediate adhesive layer 27 and the front surface of the second intermediate adhesive layer 28.
  • the shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, a first intermediate adhesive layer 27, a third base material 29, a second intermediate adhesive layer 28, and a second base material 26.
  • the second adhesive layer 10 is provided in order toward the back side.
  • the shock absorbing member 3 preferably includes a first base material 25, a first intermediate adhesive layer 27, a third base material 29, a second intermediate adhesive layer 28, and a second base material 26. , Only with the second adhesive layer 10.
  • the ratio of the total thickness of the first base material 25, the second base material 26, and the third base material 29 to the thickness of the shock absorbing member 3 is the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 described above. The same is true.
  • the shear storage elastic modulus G'of the first intermediate adhesive layer 27 and the second intermediate adhesive layer 28 at 25 ° C. is the same as that of the intermediate adhesive layer 19 of the second embodiment at 25 ° C. ..
  • the shock absorbing member 3 composed of three layers is disclosed.
  • the shock absorbing member 3 composed of five layers is disclosed.
  • the shock absorbing member 3 composed of 7 layers is disclosed.
  • the shock absorbing member 3 may be made of [2n + 1 layer].
  • n is a positive number of 4 or more.
  • the shock absorbing member 3 is composed of an adhesive layer of [n + 1] layer and a base material of [n] layer.
  • the shock absorbing member 3 comes into contact with both the back surface of the window member 2 and the front surface of the organic EL panel member 4.
  • the shock absorbing member 3 may be arranged between the window member 2 and the organic EL panel member 4.
  • the shock absorbing member 3 is spaced from the back surface of the shock absorbing member 3 and is spaced from the front surface of the organic EL panel member 4. May be separated.
  • the shock absorbing member 3 may be in contact with any one of the back surface and the front surface described above, and may be spaced apart from the other.
  • the shock absorbing member 3 comes into contact with the back surface of the window member 2 and is separated from the organic EL panel member 4.
  • the shock absorbing member 3 is arranged so as to be separated from the organic EL panel member 4, the polarizing film 50, and the adhesive layer 51.
  • the polarizing film 50 comes into contact with the back surface of the second adhesive layer 10.
  • the polarizing film 50 includes a polarizing element.
  • the splitter include a film obtained by dyeing and stretching a hydrophilic film, a film obtained by dehydrating a hydrophilic film, and a film obtained by dehydroxating a polyvinyl chloride film.
  • the hydrophilic film include a PVA film.
  • the total light transmittance of the polarizing element is, for example, 30% or more, preferably 35% or more, more preferably 40% or more, and for example, 50% or less.
  • the thickness of the splitter is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, and for example, 15 ⁇ m or less, preferably 10 ⁇ m or less.
  • the splitter is described in JP-A-2020-149065 and JP-A-2019-218513.
  • the polarizing film 50 is formed by laminating a protective film on the above-mentioned polarizing element via an adhesive.
  • the adhesive layer 51 is interposed between the polarizing film 50 and the organic EL panel member 4.
  • the adhesive layer 51 comes into contact with the back surface of the polarizing film 50 and the front surface of the organic EL panel member 4.
  • the material, thickness, physical properties, etc. of the adhesive layer 51 are the same as those of the first adhesive layer 8 or the second adhesive layer 10.
  • the window member 2, the shock absorbing member 3, the polarizing film 50, the adhesive layer 51, the organic EL panel member 4, and the protective member 5 face the back side. Are arranged in order.
  • the organic EL display device 1 of the first embodiment Comparing the organic EL display device 1 of the first embodiment shown in FIG. 1 with the organic EL display device 1 of the modified example of FIG. 11, the organic EL display device 1 of the first embodiment has a polarizing film 50 and an adhesive layer. It does not have 51. Therefore, the organic EL display device 1 of the first embodiment is excellent in optical reliability because the polarizing element in the polarizing film 50 has the above-mentioned low total light transmittance.
  • the adhesive sheet D was prepared from the adhesive sheet A as follows.
  • Adhesive sheet A 43 parts by mass of lauryl acrylate (LA), 44 parts by mass of 2-ethylhexyl acrylate (2EHA), 6 parts by mass of 4-hydroxybutyl acrylate (4HBA), 7 parts by mass of N-vinyl-2-pyrrolidone (NVP), and BASF.
  • 0.015 parts by mass of "Irgacure 184" was blended and polymerized by irradiating with ultraviolet rays to obtain a base polymer composition (polymerization rate: about 10%).
  • DCPMA dicyclopentanyl methacrylate
  • MMA methyl methacrylate
  • ⁇ -thioglycerol 100 parts by mass of toluene
  • reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer.
  • the weight average molecular weight of the acrylic oligomer was 5100.
  • the glass transition temperature (Tg) was 130 ° C.
  • the pressure-sensitive adhesive composition is applied to the surface of a release sheet made of PET film (Mitsubishi Chemical "Diafoil MRF75”), and then a release sheet made of another PET film (Mitsubishi Chemical "Diafoil MRF75”) is applied. It was attached to the film. Then, the coating film was irradiated with ultraviolet rays to prepare a pressure-sensitive adhesive sheet A having a thickness of 50 ⁇ m.
  • Adhesive sheet B 99 parts by mass of butyl acrylate (BA) and 1 part by mass of 4-hydroxybutyl acrylate (HBA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. This prepared a monomer mixture.
  • an isocyanate-based cross-linking agent (trade name: Takenate D110N, trimethylolpropanexylylene diisocyanate, manufactured by Mitsui Chemicals, Inc.), benzoyl peroxide (commodity).
  • Niper BMT manufactured by Nippon Oil & Fats Co., Ltd.
  • 0.3 parts by mass and 0.08 parts by mass of a silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) are blended to form an acrylic pressure-sensitive adhesive composition.
  • KBM403 manufactured by Shin-Etsu Chemical Industry Co., Ltd.
  • the acrylic pressure-sensitive adhesive composition was uniformly applied to the surface of the release sheet made of PET film with a fountain coater, and dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes to obtain a pressure-sensitive adhesive sheet B having a thickness of 20 ⁇ m. Prepared.
  • Adhesive sheet C 99 parts by mass of butyl acrylate (BA) and 1 part by mass of 4-hydroxybutyl acrylate (HBA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler.
  • the surface of the release sheet made of PET film was uniformly coated with a fountain coater and dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes to prepare an adhesive sheet C having a thickness of 15 ⁇ m.
  • Adhesive sheet D 99 parts by mass of butyl acrylate (BA) and 1 part by mass of 4-hydroxybutyl acrylate (HBA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. This prepared a monomer mixture.
  • isocyanate-based cross-linking agent (trade name: Takenate D110N, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals, Inc.) and benzoyl peroxide (commodity) with respect to 100 parts by mass of the solid content of the solution of the acrylic base polymer.
  • Niper BMT manufactured by Nippon Oil & Fats Co., Ltd.
  • silane coupling agent trade name: KBM403, manufactured by Shin-Etsu Chemical Co., Ltd. 0.08 parts by mass to form an acrylic pressure-sensitive adhesive composition.
  • the acrylic pressure-sensitive adhesive composition was uniformly applied to the surface of the release sheet made of PET film with a fountain coater, and dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes to obtain a pressure-sensitive adhesive sheet D having a thickness of 5 ⁇ m. Prepared.
  • Shear storage elastic modulus of adhesive sheet G' The shear storage elastic modulus G'at 25 ° C. of each of the pressure-sensitive adhesive sheets A to C was measured.
  • the peeling sheet is peeled off, the outer shape is processed into a disk shape, sandwiched between parallel plates, and the dynamic viscoelasticity under the following conditions is used using "Advanced Shearometric Exhibition System (ARES)” manufactured by Shearometric Scientific.
  • AWS Advanced Shearometric Exhibition System
  • Shearometric Scientific By measurement, the shear storage elastic modulus G'of the pressure-sensitive adhesive sheet was determined.
  • the base material D was prepared from the base material A as follows.
  • Base material A A base material made of COP (trade name "Zeonoa”, manufactured by Nippon Zeon Corporation) was prepared as base material A.
  • Base material B A base material made of PET (trade name “Lumirror S10", manufactured by Toray Industries, Inc.) was prepared as the base material B.
  • Base material C A base material made of a transparent soft polyester resin (trade name "OKY100", manufactured by Bell Polyester Products Co., Ltd.) was prepared as the base material C.
  • Base material D A base material made of transparent polyimide (product name "C_50", manufactured by KOLON) was prepared as the base material D.
  • Each of the base material A to the base material D was externally processed into a rectangular shape having a width of 10 mm and a length of 100 mm.
  • the substrate was installed in a tensile tester (product name "Autograph AG-IS” manufactured by Shimadzu Corporation), and the strain and stress when pulled at 200 mm / min were measured, and the strain was 0.05% to 0.25.
  • the tensile elastic modulus E of the base material was calculated from the slope of the curve in the range of%.
  • the tensile elastic moduli E at 25 ° C. from the base material A to the base material D were 3 GPa, 3.5 GPa, 0.13 GPa, and 7 GPa, respectively.
  • Example 1 A first adhesive layer 8 made of the pressure-sensitive adhesive sheet A and a second adhesive layer 10 made of the pressure-sensitive adhesive sheet C were arranged on the front surface and the back surface of the base material 9 made of the base material A, respectively. As a result, a shock absorbing member 3 having the first adhesive layer 8, the base material 9, and the second adhesive layer 10 in order in the thickness direction was produced. That is, the shock absorbing member 3 composed of three layers was manufactured.
  • the window member 2, the shock absorbing member 3, the organic EL panel member 4, and the protective member 5 were laminated to manufacture a pseudo sample of the organic EL display device 1.
  • An ITO layer 35 was arranged on the surface of the organic EL panel member 4 as a substitute for the thin film sealing layer 11. The thickness of the ITO layer 35 was 40 nm.
  • the window member 2 is a window film having a thickness of 80 ⁇ m, which is a hard coat layer 6 having a thickness of 10 ⁇ m made of a cured product of the curable composition of Example 1 of JP-A-2020-064236 and “CPI” (manufactured by KOLON). 7 and.
  • a polyimide plate (trade name "UPILEX”, manufactured by Ube Industries, Ltd.) having a thickness of 25 ⁇ m was prepared as the panel body 12 of the dummy panel member 44.
  • the protective member 5 is made of the same material as the adhesive sheet A, and has a front side adhesive layer 13 having a thickness of 15 ⁇ m and a protective base material 14 made of a polyimide plate (trade name “UPILEX”, manufactured by Ube Industries, Ltd.) having a thickness of 50 ⁇ m on the back side. Arranged in order toward each other.
  • UPILEX polyimide plate
  • Example 40 (pseudo sample) of the organic EL display device 1 was manufactured in the same manner as in Example 1. However, the first adhesive layer 8, the base material 9, and / or the second adhesive layer 10 was changed from Table 1 to Table 3 and as described in Table 11.
  • Examples 11 to 23 A prototype 40 (pseudo sample) of the organic EL display device 1 was manufactured by processing in the same manner as in Example 1. However, as shown in FIG. 9, a shock absorbing member 3 composed of five layers was used. In addition, each layer was changed from Table 4 to Table 8. Specifically, the shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, an intermediate adhesive layer 19, a second base material 26, and a second adhesive layer 10 in this order.
  • Examples 24 to 26 A prototype 40 (pseudo sample) of the organic EL display device 1 was manufactured by processing in the same manner as in Example 1. However, as shown in FIG. 10, a shock absorbing member 3 composed of 7 layers was used. In addition, each layer was changed as described in Table 9. Specifically, the shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, a first intermediate adhesive layer 27, a third base material 29, a second intermediate adhesive layer 28, a second base material 26, and a second base material. The two adhesive layers 10 are provided in order.
  • a laminated body of the window member 2 and the shock absorbing member 3 was placed on the surface of the sensor 92 instead of the window member 2.
  • the back surface of the shock absorbing member 3 was brought into contact with the front surface of the sensor 92.
  • the above-mentioned ball was vertically dropped from a height of 20 cm onto the surface of the hard coat layer 6 of the window member 2.
  • the peak value SB1 of the impact load of the laminated body of the window member 2 and the impact absorbing member 3 was measured.
  • the ball impact absorption rate of the impact absorbing member 3 was obtained using the following formula.
  • Ball impact absorption rate (%) ⁇ (SA1-SB1) / SA1 ⁇ ⁇ 100 Subsequently, the ball impact absorption rate was divided by the thickness of the impact absorbing member 3 to calculate the ball impact absorption rate per unit thickness of the impact absorbing member 3.
  • a laminated body of the window member 2 and the shock absorbing member 3 was placed on the surface of the sensor 92 instead of the window member 2.
  • the back surface of the shock absorbing member 3 was brought into contact with the front surface of the sensor 92.
  • the above-mentioned pen was vertically dropped from a height of 20 cm onto the surface of the hard coat layer 6 of the window member 2. With the above-mentioned high recorder, the peak value SB2 of the impact load of the laminated body of the window member 2 and the impact absorbing member 3 was measured.
  • the pen impact absorption rate of the impact absorbing member 3 was calculated using the following formula.
  • Pen impact absorption rate (%) ⁇ (SA2-SB2) / SA2 ⁇ x 100 Subsequently, the pen impact absorption rate was divided by the thickness of the impact absorbing member 3 to calculate the pen impact absorption rate per unit thickness of the impact absorbing member 3.
  • The ratio of the resistance value of the ITO layer 35 after the test to the resistance value of the ITO layer 35 after the test was less than 1.1 times before the test.
  • X The ratio of the resistance value of the ITO layer 35 after the test to the resistance value of the ITO layer 35 after the test was 1.1 times or more before the test.
  • Total light transmittance of shock absorbing member 3 A laminated body of the shock absorbing member 3 and the window member 2 was prepared. The total light transmittance of the laminate was measured using a haze meter manufactured by Suga Test Instruments. The measurement was in accordance with JIS K7105.
  • the total light transmittance of the shock absorbing member 3 was obtained. If the total light transmittance of the above-mentioned laminated body is 60% or more, it can be said that the total light transmittance of the shock absorbing member 3 is also 60% or more.
  • Example 1 is described in Table 1 and Table 2 in an overlapping manner.
  • Example 7 is described in Table 2 and Table 11 in an overlapping manner.
  • Example 12 is described in Table 4 and Table 6 in an overlapping manner.
  • Example 13 is described in Table 4 and Table 7 in an overlapping manner.
  • Example 15 is described in Table 5 and Table 6 in an overlapping manner.
  • Example 16 is described in Table 5 and Table 7 in an overlapping manner.
  • FIG. 12 shows the shear storage elastic modulus G'of the first adhesive layer 8 and the shear storage elastic modulus G'of the second adhesive layer 10 from Examples 1 to 6.
  • Comparative Example 1 Comparative Example 5, Comparative Example 7, Comparative Example 10, and Comparative Example 11 all have ball impact absorption rates per unit thickness. It is less than 0.27% / ⁇ m. In Comparative Example 1, Comparative Example 5, Comparative Example 7, Comparative Example 10, and Comparative Example 11, the ball impact absorption rate per unit thickness is insufficient.
  • Comparative Example 7 peeling occurred at the time of bending. Comparative Example 7 has insufficient bending resistance.
  • Examples 1 to 29 have a ball impact absorption rate of 0.27% / ⁇ m or more per unit thickness.
  • the pen impact absorption rate per unit thickness is 0.10% / ⁇ m or more. Therefore, the organic EL display device 1 is excellent in durability against an impact on the ball 90 and an impact by the pen 95. Therefore, Examples 1 to 29 are excellent in durability against various impacts.
  • Example 1 Example 2, and Example 3
  • the shear storage elastic moduli G'of the first adhesive layer 8 are 0.03 MPa, 0.08 MPa, and 0.12 MPa, respectively. ..
  • Examples 1 to 3 examples in which the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C. is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 are Examples. 1 and Example 2. It can be seen that Examples 1 and 2 are superior in impact resistance per unit thickness to balls and pens as compared with Example 3.
  • Example 1 to 6 Examples of the first adhesive layer 8 having a shear storage elastic modulus G'at 25 ° C. of 0.05 MPa or less are Example 1, Example 4, and Example 5. Is. It can be seen that Example 1, Example 4, and Example 5 are superior in impact resistance per unit thickness to the ball as compared with Example 2, Example 3, and Example 6.
  • Examples 1 to 6 the examples in which the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is 0.10 MPa or more are Examples 1 to 3. It can be seen that Examples 1 to 3 are superior in bending resistance as compared with Examples 4 to 6.
  • Example 1 the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8.
  • the example of 0.06 MPa or more is Example 1. It can be seen that Example 1 can reliably achieve both high impact resistance per unit thickness for the ball and high impact resistance per unit thickness for the pen as compared with Examples 2 to 6.
  • the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is 0.20 or more and 0.35 or less.
  • Examples are Example 1 and Example 8. It can be seen that Examples 1 and 8 are superior in shock absorption per unit thickness to the ball as compared with Example 7 in which the ratio exceeds 0.35. It can be seen that Examples 1 and 8 are superior in impact resistance per unit thickness to the pen as compared with Example 9 in which the ratio is less than 0.20. These tendencies are the same in Examples 12, 13 and 15 to 26 in which the number of base materials 9 is a plurality.
  • Example 12 the units of Example 12, Example 15, and Example 18 having the above-mentioned ratio of the thickness of the base material 9 are higher than those of Example 17 in which the ratio exceeds 0.35. It can be seen that the ball impact absorption rate per thickness is high.
  • Examples 13, 16, and Example 20 having the above-mentioned ratio of the thickness of the base material 9 have a unit thickness per unit thickness as compared with Example 19 in which the ratio exceeds 0.35. It can be seen that the ball impact absorption rate is high.
  • Example 21 and Example 22 having the above-mentioned ratio of the thickness of the base material 9 absorb ball impact per unit thickness as compared with Example 23 in which the ratio exceeds 0.35. You can see that the rate is high.
  • Examples 24 and 25 having the above-mentioned ratio of the thickness of the base material 9 have balls per unit thickness as compared with Example 26 in which the ratio exceeds 0.35. It can be seen that the shock absorption rate is high.
  • Example 1 in which the material of the base material 9 is COP has a higher ball impact absorption rate per unit thickness than in Example 10 in which the material of the base material 9 is PET.
  • Example 7 in which the material of the base material 9 is COP and Example 29 in which the material of the base material 9 is a polyester resin are per unit thickness as compared with Comparative Example 11 in which the material of the base material 9 is a polyimide resin. It can be seen that the ball impact absorption rate is high.
  • the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8.
  • An example higher than the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is Example 11. Compared with Example 12 and Example 13, Example 11 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
  • Example 14 the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8.
  • Example 14 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
  • Example 11 the example in which the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 exceeds 0.05 MPa and is 0.15 MPa or less is Example 11. And Example 13. Compared with Example 12, Examples 11 and 13 can have high impact resistance per unit thickness for a ball, high impact resistance per unit thickness for a pen, and high bending resistance.
  • Examples 14 to 16 the examples in which the shear storage elastic modulus G'of the intermediate adhesive layer 19 at 25 ° C. is more than 0.05 MPa and 0.15 MPa or less are carried out. 14 and 16. Compared with Example 15, Examples 14 and 16 can have high impact resistance per unit thickness for a ball, high impact resistance per unit thickness for a pen, and high bending resistance.
  • Example 22 the example in which the first base material 25 is thicker than the second base material 26 is Example 22. Compared with Example 21, Example 22 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
  • Example 21 As can be seen from Table 8, of Example 21 and Example 22, the example in which the first base material 25 is thinner than the second base material 26 is Example 21. It can be seen that Example 21 has a higher pen impact absorption rate per unit thickness than Example 22.
  • Example 25 As can be seen from Table 9, of Examples 24 and 25, the example in which the first base material 25 is thinner than the second base material 26 is Example 25. Compared with Example 24, Example 25 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
  • the tensile modulus E of the base material 9 of Example 7, Example 29, and Comparative Example 11 is 3 GPa, 0.13 GPa, and 7 GPa, respectively.
  • the tensile elastic modulus E of the base material 9 of Comparative Example 11 is excessively high at 7 GPa. Therefore, Examples 1 and 29 are superior in ball impact absorption rate per unit thickness as compared with Comparative Example 11.
  • the materials of the base material 9 of Example 1, Example 29, and Comparative Example 11 are COP, polyester resin, and polyimide resin, respectively.
  • Example 1 in which the material of the base material 9 is COP and Example 29 in which the material of the base material 9 is a polyester resin are per unit thickness with respect to Comparative Example 11 in which the material of the base material 9 is a polyimide resin.
  • the image display member is used, for example, as an organic electroluminescence display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL display device (1) comprises, in order from a back side thereof, a window member (2), an impact absorption member (3), an organic EL panel member (4), and a protective member (5). The impact absorption member (3) has a total light ray transmittance of 60% or greater, a ball impact absorption rate per unit thickness of 0.27%/μm or greater, and a pen impact absorption rate per unit thickness of 0.10%/μm or greater.

Description

画像表示装置およびその製造方法Image display device and its manufacturing method
 本発明は、画像表示装置およびその製造方法に関する。 The present invention relates to an image display device and a method for manufacturing the same.
 従来、画像表示装置は、画像表示部材を備えることが知られている。そのような画像表示装置には、光学信頼性が高いことが求められる。 Conventionally, it is known that an image display device includes an image display member. Such an image display device is required to have high optical reliability.
 また、画像表示装置に衝撃が加えられても、画像表示部材の表面が損傷することを抑制できる衝撃吸収フィルムを備える画像表示装置が検討されている。 Further, an image display device provided with a shock absorbing film capable of suppressing damage to the surface of the image display member even if an impact is applied to the image display device is being studied.
 例えば、支持層と、粘着層とを厚み方向に順に備える衝撃吸収フィルムが提案されている(例えば、下記特許文献1参照。)。特許文献1の比較例に記載の衝撃吸収フィルムは、支持層が、厚いPETフィルムである構成を開示する。 For example, a shock absorbing film having a support layer and an adhesive layer in order in the thickness direction has been proposed (see, for example, Patent Document 1 below). The shock absorbing film described in the comparative example of Patent Document 1 discloses a structure in which the support layer is a thick PET film.
特開2020-060689号公報Japanese Unexamined Patent Publication No. 2020-060689
 しかし、特許文献1に記載の衝撃吸収フィルムは、単位厚み当たりの衝撃吸収率が不十分であるという不具合がある。この場合には、厚みを薄くできるが、衝撃吸収性に優れず、または、衝撃吸収性が優れるが、厚みが厚くなる。 However, the shock absorbing film described in Patent Document 1 has a problem that the shock absorbing rate per unit thickness is insufficient. In this case, the thickness can be reduced, but the impact absorption is not excellent, or the impact absorption is excellent, but the thickness is increased.
 とくに、衝撃吸収フィルムには、ボールによる衝撃、および、ペンによる点の衝撃のような様々な衝撃に対する耐久性が求められる。 In particular, the shock absorbing film is required to have durability against various shocks such as the shock of a ball and the shock of a point with a pen.
 本発明は、光学信頼性に優れ、様々な衝撃に対する耐久性に優れる画像表示装置およびその製造方法を提供する。 The present invention provides an image display device having excellent optical reliability and excellent durability against various impacts, and a method for manufacturing the same.
 本発明(1)は、ウインドウ部材と、衝撃吸収部材と、パネル部材と、保護部材とを厚み方向一方側に順に備える画像表示装置であり、前記衝撃吸収部材は、60%以上の全光線透過率を有し、重さ10g、直径13mmのステンレス製ボールを20cmの高さから前記衝撃吸収部材に落下させて求められる前記衝撃吸収部材の前記ボール衝撃吸収率を、前記衝撃吸収部材の厚みで割った、前記衝撃吸収部材の単位厚み当たりのボール衝撃吸収率は、0.27%/μm以上であり、重さ7g、先端部のボール直径0.7mmのボールペンを20cmの高さから前記衝撃吸収部材に落下させて求められる前記衝撃吸収部材のペン衝撃吸収率を、前記衝撃吸収部材の厚みで割った、前記衝撃吸収部材の単位厚み当たりのペン衝撃吸収率は、0.10%/μm以上である、画像表示装置を含む。 The present invention (1) is an image display device including a window member, a shock absorbing member, a panel member, and a protective member in order on one side in the thickness direction, and the shock absorbing member transmits 60% or more of all light rays. The ball impact absorption rate of the shock absorbing member obtained by dropping a stainless steel ball having a transmittance of 10 g and a diameter of 13 mm from a height of 20 cm onto the shock absorbing member is determined by the thickness of the shock absorbing member. The broken ball impact absorption rate per unit thickness of the impact absorbing member is 0.27% / μm or more, and a ballpoint pen having a weight of 7 g and a ball diameter of 0.7 mm at the tip thereof is impacted from a height of 20 cm. The pen impact absorption rate of the shock absorbing member obtained by dropping it on the absorbing member is divided by the thickness of the shock absorbing member, and the pen impact absorbing rate per unit thickness of the shock absorbing member is 0.10% / μm. The above-mentioned image display device is included.
 この画像表示装置では、衝撃吸収部材が60%以上の全光線透過率を有する。そのため、画像表示装置は、光学信頼性が高い。 In this image display device, the shock absorbing member has a total light transmittance of 60% or more. Therefore, the image display device has high optical reliability.
 また、この画像表示装置では、衝撃吸収部材の単位厚み当たりのボール衝撃吸収率は、0.27%/μm以上であり、衝撃吸収部材の単位厚み当たりのペン衝撃吸収率は、0.10%/μm以上である。そのため、画像表示装置は、ボールに対する衝撃、および、ペンによる衝撃に対する耐久性に優れる。従って、画像表示装置は、様々な衝撃に対する耐久性に優れる。 Further, in this image display device, the ball impact absorption rate per unit thickness of the impact absorbing member is 0.27% / μm or more, and the pen impact absorption rate per unit thickness of the impact absorbing member is 0.10%. / Μm or more. Therefore, the image display device is excellent in durability against an impact on a ball and an impact by a pen. Therefore, the image display device is excellent in durability against various impacts.
 本発明(2)は、前記ウインドウ部材が外側に向くように前記画像表示装置を折り曲げる試験において、前記ウインドウ部材における両外側に向く2つの表面の間隔が8mmとなるように200,000回折り曲げても、前記パネル部材が損傷しない、(1)に記載の画像表示装置を含む。 According to the present invention (2), in a test in which the image display device is bent so that the window member faces outward, the image display device is bent 200,000 times so that the distance between the two outward facing surfaces of the window member is 8 mm. Also includes the image display device according to (1), wherein the panel member is not damaged.
 この画像表示装置では、上記した折り曲げ試験において画像表示装置を200,000回折り曲げても、パネル部材が損傷しない。そのため、画像表示装置は、耐折り曲げ性に優れる。 In this image display device, even if the image display device is bent 200,000 times in the above-mentioned bending test, the panel member is not damaged. Therefore, the image display device is excellent in bending resistance.
 本発明(3)は、前記衝撃吸収部材が、第1粘着層と、基材と、第2粘着層とを、前記厚み方向一方側に向かって順に備える、(1)または(2)に記載の画像表示装置を含む。 The present invention (3) is described in (1) or (2), wherein the shock absorbing member comprises a first adhesive layer, a base material, and a second adhesive layer in order toward one side in the thickness direction. Includes an image display device.
 本発明(4)は、前記第1粘着層は、前記ウインドウ部材に接触し、前記第2粘着層は、前記パネル部材に接触する、(3)に記載の画像表示装置を含む。 The present invention (4) includes the image display device according to (3), wherein the first adhesive layer is in contact with the window member, and the second adhesive layer is in contact with the panel member.
 この画像表示装置では、第1粘着層がウインドウ部材に粘着する。第2粘着層がパネル部材に粘着する。そのため、ウインドウ部材が、衝撃吸収部材を介して、パネル部材に粘着する。そして、基材と、それを挟む第1粘着層および第2粘着層とを備える衝撃吸収部材が、ウインドウ部材とパネル部材とに粘着するので、耐折り曲げ性により一層優れる。 In this image display device, the first adhesive layer adheres to the window member. The second adhesive layer adheres to the panel member. Therefore, the window member adheres to the panel member via the shock absorbing member. Further, since the shock absorbing member including the base material and the first adhesive layer and the second adhesive layer sandwiching the base material adheres to the window member and the panel member, the bending resistance is further improved.
 本発明(5)は、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’が、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’と同一または高い、(3)または(4)に記載の画像表示装置を含む。 In the present invention (5), the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, (3) or (4). ) Is included.
 本発明(6)は、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’が、0.01MPa以上、0.05MPa以下である、(3)から(5)のいずれか一項に記載の画像表示装置を含む。 The present invention (6) is described in any one of (3) to (5), wherein the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer is 0.01 MPa or more and 0.05 MPa or less. Includes image display device.
 本発明(7)は、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’が、0.10MPa以上、0.15MPa以下である、(3)から(6)のいずれか一項に記載の画像表示装置を含む。 The present invention (7) is described in any one of (3) to (6), wherein the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is 0.10 MPa or more and 0.15 MPa or less. Includes image display device.
 本発明(8)は、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’から、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’を引いた値が、0.06MPa以上である、(3)から(7)のいずれか一項に記載の画像表示装置を含む。 In the present invention (8), the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer is 0.06 MPa or more. The image display device according to any one of (3) to (7) is included.
 本発明(9)は、前記基材が、単数である、(3)から(8)のいずれか一項に記載の画像表示装置を含む。 The present invention (9) includes the image display device according to any one of (3) to (8), wherein the substrate is singular.
 また、この画像表示装置では、基材が単数であるので、構成が簡易である。 Further, in this image display device, since the base material is singular, the configuration is simple.
 本発明(10)は、前記基材が、複数であり、複数の前記基材の間に配置される中間粘着層をさらに備える、(3)から(8)のいずれか一項に記載の画像表示装置を含む。 The image according to any one of (3) to (8), wherein the present invention (10) has a plurality of the base materials and further includes an intermediate adhesive layer arranged between the plurality of the base materials. Includes display device.
 この画像表示装置では、基材が、複数である。また、画像表示装置は、複数の基材の間に配置される中間粘着層をさらに備える。そのため、用途および目的に応じた様々な衝撃吸収性能を設計し易い。 In this image display device, there are multiple base materials. Further, the image display device further includes an intermediate adhesive layer arranged between the plurality of substrates. Therefore, it is easy to design various shock absorption performances according to the application and purpose.
 本発明(11)は、前記中間粘着層の25℃におけるせん断貯蔵弾性率G’が、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’以上、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’以下である、(10)に記載の画像表示装置を含む。 In the present invention (11), the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is equal to or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, and the shear of the second adhesive layer at 25 ° C. The image display device according to (10), which has a storage elastic modulus of G'or less.
 本発明(12)は、前記中間粘着層の25℃におけるせん断貯蔵弾性率G’が、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’より高く、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’より低い、(10)または(11)に記載の画像表示装置を含む。 In the present invention (12), the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, and the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is high. Includes the image display device according to (10) or (11), which has a shear storage modulus lower than G'.
 本発明(13)は、前記中間粘着層の25℃におけるせん断貯蔵弾性率G’が、0.05MPa超過、0.15MPa以下である、(10)から(12)のいずれか一項に記載の画像表示装置を含む。 The present invention (13) is described in any one of (10) to (12), wherein the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is more than 0.05 MPa and 0.15 MPa or less. Includes image display device.
 本発明(14)は、前記基材は、前記第1粘着層に接触する第1基材と、前記第2粘着層に接触する第2基材とを含み、前記第1基材が、前記第2基材より薄い、(10)から(13)のいずれか一項に記載の画像表示装置を含む。 In the present invention (14), the base material includes a first base material in contact with the first adhesive layer and a second base material in contact with the second adhesive layer, and the first base material is the same. The image display device according to any one of (10) to (13), which is thinner than the second substrate, is included.
 本発明(15)は、前記基材は、前記第1粘着層に接触する第1基材と、前記第2粘着層に接触する第2基材とを含み、前記第1基材が、前記第2基材より厚い、(10)から(13)のいずれか一項に記載の画像表示装置を含む。 In the present invention (15), the base material includes a first base material in contact with the first adhesive layer and a second base material in contact with the second adhesive layer, and the first base material is the same. The image display device according to any one of (10) to (13), which is thicker than the second substrate, is included.
 本発明(16)は、前記衝撃吸収部材の厚みに対する前記基材の厚みの比率が、0.20以上、0.35以下である、(3)から(15)のいずれか一項に記載の画像表示装置を含む。 The present invention (16) is described in any one of (3) to (15), wherein the ratio of the thickness of the base material to the thickness of the shock absorbing member is 0.20 or more and 0.35 or less. Includes image display device.
 本発明(17)は、前記基材の材料が、シクロオレフィン樹脂および/またはポリエステル樹脂である、(3)から(16)のいずれか一項に記載の画像表示装置を含む。 The present invention (17) includes the image display device according to any one of (3) to (16), wherein the material of the base material is a cycloolefin resin and / or a polyester resin.
 本発明(18)は、前記オレフィン樹脂が、シクロオレフィン樹脂である、(17)に記載の画像表示装置を含む。 The present invention (18) includes the image display device according to (17), wherein the olefin resin is a cycloolefin resin.
 本発明(19)は、前記ポリエステル樹脂が、ポリエチレンテレフタレートである、(17)に記載の画像表示装置を含む。 The present invention (19) includes the image display device according to (17), wherein the polyester resin is polyethylene terephthalate.
 本発明(20)は、ウインドウ部材と、第1粘着層と、基材と、第2粘着層と、パネル部材と、保護部材とを厚み方向一方側に順に備える画像表示装置の製造方法であり、試作品を試作する第1工程と、前記試作品を評価する第2工程と、前記評価に基づいて製造条件を決定する第3工程と、前記製造条件に基づいて製品を製造する第4工程とを備え、前記第2工程は、第1サンプルおよび第2サンプルを前記試作品から作製する第5工程と、前記第1サンプルにボールを落下させ、前記第2サンプルに、ボールペンを落下させる第6工程と、第6工程の後に、前記第1サンプルおよび前記第2サンプルに損傷があるか否かを判断する第7工程とを備え、前記第3工程では、前記第1サンプルに損傷があると前記試作品を評価した場合に、前記第1粘着層および前記第2粘着層の合計厚みをより厚くするように、前記製造条件を変更し、前記第2サンプルに損傷があると前記試作品を評価した場合に、前記基材の厚みをより厚くするように変更する、画像表示装置の製造方法を含む。 The present invention (20) is a method for manufacturing an image display device in which a window member, a first adhesive layer, a base material, a second adhesive layer, a panel member, and a protective member are sequentially provided on one side in the thickness direction. , The first step of prototyping a prototype, the second step of evaluating the prototype, the third step of determining manufacturing conditions based on the evaluation, and the fourth step of manufacturing a product based on the manufacturing conditions. In the second step, a fifth step of preparing a first sample and a second sample from the prototype, and a second step of dropping a ball on the first sample and dropping a ball pen on the second sample. The 6th step and the 7th step of determining whether or not the 1st sample and the 2nd sample are damaged are provided after the 6th step, and in the 3rd step, the 1st sample is damaged. When the prototype is evaluated, the manufacturing conditions are changed so that the total thickness of the first adhesive layer and the second adhesive layer is made thicker, and if the second sample is damaged, the prototype is found. The present invention includes a method for manufacturing an image display device, which changes the thickness of the base material so as to be thicker when the above-mentioned material is evaluated.
 この製造方法によれば、試作品を評価して、製造条件を決定するので、歩留まりを向上できる。 According to this manufacturing method, the prototype is evaluated and the manufacturing conditions are determined, so that the yield can be improved.
 本発明の画像表示装置は、光学信頼性に優れ、様々な衝撃に対する耐久性に優れる。 The image display device of the present invention has excellent optical reliability and excellent durability against various impacts.
 本発明の製造方法は、歩留まりを向上できる。 The manufacturing method of the present invention can improve the yield.
図1は、本発明の画像表示部材の第1実施形態である有機EL表示装置の断面図である。FIG. 1 is a cross-sectional view of an organic EL display device according to a first embodiment of the image display member of the present invention. 図2Aおよび図2Bは、ボール落下試験を説明する。図2Aは、ウインドウ部材と衝撃吸収部材との積層体の衝撃を求める。図2Bは、ウインドウ部材のみの衝撃荷重を求める。2A and 2B illustrate the ball drop test. FIG. 2A shows the impact of the laminated body of the window member and the shock absorbing member. FIG. 2B shows the impact load of only the window member. 図3Aおよび図3Bは、ペン落下試験を説明する。図3Aは、ウインドウ部材と衝撃吸収部材との積層体の衝撃荷重を求める。図3Bは、ウインドウ部材のみの衝撃荷重を求める。3A and 3B illustrate the pen drop test. FIG. 3A shows the impact load of the laminated body of the window member and the impact absorbing member. FIG. 3B shows the impact load of only the window member. 図4Aおよび図4Bは、有機EL表示装置の折り曲げを説明する。図4Aが、折り曲げ前の有機EL表示装置である。図4Bが、折り曲げ後の有機EL表示装置である。4A and 4B illustrate the bending of the organic EL display device. FIG. 4A is an organic EL display device before bending. FIG. 4B is an organic EL display device after bending. 図5は、有機EL表示装置の製造方法の工程図である。FIG. 5 is a process diagram of a method for manufacturing an organic EL display device. 図6は、第2工程の工程図である。FIG. 6 is a process chart of the second step. 第1サンプルに対するボール落下試験である。This is a ball drop test for the first sample. 第2サンプルに対するペン落下試験である。This is a pen drop test for the second sample. 図9は、第2実施形態の有機EL表示装置である。FIG. 9 is an organic EL display device of the second embodiment. 図10は、第2実施形態の変形例の有機EL表示装置である。FIG. 10 is an organic EL display device according to a modification of the second embodiment. 図11は、変形例の有機EL表示装置である。FIG. 11 is a modified organic EL display device. 図12は、実施例1から実施例6までの第1粘着層と第2粘着層とのせん断貯蔵弾性率G’を示すグラフである。FIG. 12 is a graph showing the shear storage elastic modulus G'of the first adhesive layer and the second adhesive layer from Examples 1 to 6.
 [第1実施形態]
 本発明の画像表示部材の第1実施形態である有機エレクトロルミネセンス表示装置を、図1を参照して説明する。以降、有機エレクトロルミネセンス表示装置は、単に「有機EL表示装置」と略称する。図1において、有機EL表示装置1では、表側が、ユーザの視認側であり、また、厚み方向他方側である。裏側は、表側の反対側であり、厚み方向一方側の一例である。
[First Embodiment]
The organic electroluminescence display device according to the first embodiment of the image display member of the present invention will be described with reference to FIG. Hereinafter, the organic electroluminescence display device is simply abbreviated as "organic EL display device". In FIG. 1, in the organic EL display device 1, the front side is the user's visual recognition side and the other side in the thickness direction. The back side is the opposite side of the front side, which is an example of one side in the thickness direction.
 図1に示すように、有機EL表示装置1は、面方向に延びる。面方向は、表裏方向に直交する。有機EL表示装置1は、例えば、平板形状を有する。有機EL表示装置1は、表面21と、裏面22とを有する。表面21と裏面22とは、いずれも、平坦である。表面21は、ユーザに視認可能な面である。有機EL表示装置1は、例えば、中間部24を中心にして折り曲げ可能である。中間部24は、2つの辺23の間に位置する。2つの辺23は、面方向に間隔を隔てて対向する。 As shown in FIG. 1, the organic EL display device 1 extends in the plane direction. The plane direction is orthogonal to the front and back directions. The organic EL display device 1 has, for example, a flat plate shape. The organic EL display device 1 has a front surface 21 and a back surface 22. Both the front surface 21 and the back surface 22 are flat. The surface 21 is a surface visible to the user. The organic EL display device 1 can be bent around the intermediate portion 24, for example. The intermediate portion 24 is located between the two sides 23. The two sides 23 face each other with a distance in the plane direction.
 有機EL表示装置1は、ウインドウ部材2と、衝撃吸収部材3と、有機ELパネル部材4と、保護部材5とを裏側に向かって順に備える。一方、本実施形態では、有機EL表示装置1は、偏光子を備えない。偏光子は、通常、ウインドウ部材2と、有機ELパネル部材4との間に配置される。第1実施形態の有機EL表示装置1は、偏光子に代えて、衝撃吸収部材3を備える。有機EL表示装置1は、好ましくは、ウインドウ部材2と、衝撃吸収部材3と、有機ELパネル部材4と、保護部材5とのみを備える。 The organic EL display device 1 includes a window member 2, a shock absorbing member 3, an organic EL panel member 4, and a protective member 5 in order toward the back side. On the other hand, in the present embodiment, the organic EL display device 1 does not include a polarizing element. The splitter is usually arranged between the window member 2 and the organic EL panel member 4. The organic EL display device 1 of the first embodiment includes a shock absorbing member 3 instead of the polarizing element. The organic EL display device 1 preferably includes only a window member 2, a shock absorbing member 3, an organic EL panel member 4, and a protective member 5.
 ウインドウ部材2は、有機EL表示装置1における表面21を形成する。ウインドウ部材2は、面方向に延びる。ウインドウ部材2は、例えば、ハードコート層6(仮想線参照)と、ウインドウフィルム7とを、裏側に向かって順に備える。または、ウインドウ部材2は、ウインドウフィルム7のみを備える。 The window member 2 forms the surface 21 of the organic EL display device 1. The window member 2 extends in the plane direction. The window member 2 includes, for example, a hard coat layer 6 (see virtual line) and a window film 7 in order toward the back side. Alternatively, the window member 2 includes only the window film 7.
 ウインドウフィルム7の材料が樹脂であれば、ハードコート層6がウインドウ部材2に備えられることが好ましい。ハードコート層6は、有機EL表示装置1の表面21における、摺擦に起因する損傷を抑制する保護部材である。ハードコート層6は、例えば、硬化性組成物の硬化体、または、熱可塑性組成物の成形体からなる。ハードコート層6の厚みは、例えば、5μm以上、好ましくは、7μm以上であり、また、例えば、30μm以下である。ハードコート層6は、例えば、特開2020-064236号公報に記載される。他方、ウインドウフィルム7の材料がガラスであれば、ハードコート層6がウインドウ部材2に備えられない。 If the material of the window film 7 is resin, it is preferable that the hard coat layer 6 is provided in the window member 2. The hard coat layer 6 is a protective member that suppresses damage caused by rubbing on the surface 21 of the organic EL display device 1. The hardcourt layer 6 is made of, for example, a cured product of a curable composition or a molded product of a thermoplastic composition. The thickness of the hard coat layer 6 is, for example, 5 μm or more, preferably 7 μm or more, and for example, 30 μm or less. The hard coat layer 6 is described in, for example, Japanese Patent Application Laid-Open No. 2020-064236. On the other hand, if the material of the window film 7 is glass, the hard coat layer 6 is not provided on the window member 2.
 ウインドウ部材2がハードコート層6を備える場合には、ウインドウフィルム7は、ハードコート層6の裏面に配置されている。具体的には、ウインドウフィルム7は、ハードコート層6の裏面の全部に接触している。ウインドウ部材2がハードコート層6を備えない場合には、ウインドウフィルム7は、有機EL表示装置1の表面21を形成する。ウインドウフィルム7の材料としては、例えば、樹脂、および、ガラスが挙げられる。樹脂としては、例えば、ポリイミド樹脂、アクリル樹脂、および、ポリカーボネート樹脂が挙げられる。ウインドウフィルム7の厚みは、例えば、1μm以上であり、また、例えば、100μm以下である。ウインドウフィルム7は、市販品を用いることができる。市販品としては、例えば、「CPI」(KOLON社製)、G-LEAF(日本電気ガラス社製)が挙げられる。ウインドウフィルム7は、例えば、特開2020-064236号公報に記載される。 When the window member 2 includes the hard coat layer 6, the window film 7 is arranged on the back surface of the hard coat layer 6. Specifically, the window film 7 is in contact with the entire back surface of the hard coat layer 6. When the window member 2 does not include the hard coat layer 6, the window film 7 forms the surface 21 of the organic EL display device 1. Examples of the material of the window film 7 include resin and glass. Examples of the resin include a polyimide resin, an acrylic resin, and a polycarbonate resin. The thickness of the window film 7 is, for example, 1 μm or more, and is, for example, 100 μm or less. As the window film 7, a commercially available product can be used. Examples of commercially available products include "CPI" (manufactured by KOLON) and G-LEAF (manufactured by NEC Glass Co., Ltd.). The window film 7 is described in, for example, Japanese Patent Application Laid-Open No. 2020-064236.
 ウインドウ部材2の全光線透過率は、例えば、80%以上、好ましくは、85%以上である。ウインドウ部材2の全光線透過率の上限は、特に限定されない。ウインドウ部材2の全光線透過率の上限は、例えば、100%である。ウインドウ部材2の全光線透過率は、JIS K 7375-2008に基づいて測定される。以降の他の部材の全光線透過率も、上記と同様にして測定される。 The total light transmittance of the window member 2 is, for example, 80% or more, preferably 85% or more. The upper limit of the total light transmittance of the window member 2 is not particularly limited. The upper limit of the total light transmittance of the window member 2 is, for example, 100%. The total light transmittance of the window member 2 is measured based on JIS K 7375-2008. The total light transmittance of the other members thereafter is also measured in the same manner as described above.
 衝撃吸収部材3は、面方向に延びる。衝撃吸収部材3は、ウインドウ部材2の裏面に配置されている。具体的には、衝撃吸収部材3は、ウインドウ部材2の裏面の全部に接触している。衝撃吸収部材3は、従来の有機EL表示装置が備える偏光子と同一位置に配置されている。衝撃吸収部材3は、第1粘着層8と、基材9と、第2粘着層10とを、裏側に向かって順に備える。第1実施形態では、衝撃吸収部材3は、好ましくは、第1粘着層8と、基材9と、第2粘着層10とのみを備える。 The shock absorbing member 3 extends in the plane direction. The shock absorbing member 3 is arranged on the back surface of the window member 2. Specifically, the shock absorbing member 3 is in contact with the entire back surface of the window member 2. The shock absorbing member 3 is arranged at the same position as the splitter provided in the conventional organic EL display device. The shock absorbing member 3 includes a first adhesive layer 8, a base material 9, and a second adhesive layer 10 in order toward the back side. In the first embodiment, the shock absorbing member 3 preferably includes only the first adhesive layer 8, the base material 9, and the second adhesive layer 10.
 第1粘着層8は、面方向に延びる。第1実施形態では、第1粘着層8は、単数である。第1粘着層8は、衝撃吸収部材3の表面を形成する。第1粘着層8は、ウインドウフィルム7の裏面に配置されている。具体的には、第1粘着層8は、ウインドウフィルム7の裏面の全部に接触している。第1粘着層8の材料および物性の詳細は、後述する。 The first adhesive layer 8 extends in the plane direction. In the first embodiment, the first adhesive layer 8 is singular. The first adhesive layer 8 forms the surface of the shock absorbing member 3. The first adhesive layer 8 is arranged on the back surface of the window film 7. Specifically, the first adhesive layer 8 is in contact with the entire back surface of the window film 7. Details of the material and physical properties of the first adhesive layer 8 will be described later.
 基材9は、面方向に延びる。第1実施形態では、基材9は、単数である。基材9は、シート形状を有する。基材9は、第1粘着層8の裏面に配置されている。具体的には、基材9は、第1粘着層8の裏面の全部に接触している。基材9の材料および物性の詳細は、後述する。 The base material 9 extends in the plane direction. In the first embodiment, the substrate 9 is singular. The base material 9 has a sheet shape. The base material 9 is arranged on the back surface of the first adhesive layer 8. Specifically, the base material 9 is in contact with the entire back surface of the first adhesive layer 8. Details of the material and physical properties of the base material 9 will be described later.
 第2粘着層10は、面方向に延びる。第2粘着層10は、単数である。第2粘着層10は、衝撃吸収部材3の裏面を形成する。第2粘着層10は、基材9の裏面に配置されている。具体的には、第2粘着層10は、基材9の裏面の全部に接触している。第2粘着層10の材料および物性の詳細は、後述する。 The second adhesive layer 10 extends in the plane direction. The second adhesive layer 10 is singular. The second adhesive layer 10 forms the back surface of the shock absorbing member 3. The second adhesive layer 10 is arranged on the back surface of the base material 9. Specifically, the second adhesive layer 10 is in contact with the entire back surface of the base material 9. Details of the material and physical properties of the second adhesive layer 10 will be described later.
 衝撃吸収部材3の厚みは、特に限定されない。衝撃吸収部材3の厚みは、例えば、40μm以上、好ましくは、70μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下、より好ましくは、100μm以下である。衝撃吸収部材3の厚みが上記した上限以下であれば、単位厚み当たりのペン衝撃吸収率を高くし易い。 The thickness of the shock absorbing member 3 is not particularly limited. The thickness of the shock absorbing member 3 is, for example, 40 μm or more, preferably 70 μm or more, and for example, 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less. When the thickness of the shock absorbing member 3 is not more than the above-mentioned upper limit, it is easy to increase the pen shock absorbing rate per unit thickness.
 この衝撃吸収部材3は、60%以上の全光線透過率と、0.27%/μm以上の単位厚み当たりのボール衝撃吸収率と、0.10%/μm以上の単位厚み当たりのペン衝撃吸収率とを有する。 The shock absorbing member 3 has a total light transmittance of 60% or more, a ball shock absorption rate per unit thickness of 0.27% / μm or more, and a pen shock absorption per unit thickness of 0.10% / μm or more. Has a rate.
 衝撃吸収部材3の全光線透過率が60%未満であれば、視認性が低下する。衝撃吸収部材3の全光線透過率は、好ましくは、65%以上、より好ましくは、70%以上、さらに好ましくは、80%以上、とりわけ好ましくは、85%以上、最も好ましくは、90%以上である。衝撃吸収部材3の全光線透過率の上限は、特に限定されない。衝撃吸収部材3の全光線透過率の上限は、例えば、100%、また、99%である。なお、ウインドウ部材2と衝撃吸収部材3との積層体の全光線透過率が60%以上であれば、ウインドウ部材2の全光線透過率が60%以上であると言える。他の下限値についても、下限値60%であるときと同様に定義できる。 If the total light transmittance of the shock absorbing member 3 is less than 60%, the visibility is lowered. The total light transmittance of the shock absorbing member 3 is preferably 65% or more, more preferably 70% or more, still more preferably 80% or more, particularly preferably 85% or more, and most preferably 90% or more. be. The upper limit of the total light transmittance of the shock absorbing member 3 is not particularly limited. The upper limit of the total light transmittance of the shock absorbing member 3 is, for example, 100% or 99%. If the total light transmittance of the laminated body of the window member 2 and the shock absorbing member 3 is 60% or more, it can be said that the total light transmittance of the window member 2 is 60% or more. Other lower limit values can be defined in the same manner as when the lower limit value is 60%.
 衝撃吸収部材3の単位厚み当たりのボール衝撃吸収率は、0.27%/μm以上である。 The ball impact absorption rate per unit thickness of the impact absorbing member 3 is 0.27% / μm or more.
 対して、衝撃吸収部材3の単位厚み当たりのボール衝撃吸収率が0.27%/μm未満であれば、単位厚み当たりのボールに対する耐衝撃性が低い。そのため、ボール90(図7参照)に対する効率のよい衝撃吸収効果が得られない。衝撃吸収部材3の単位厚み当たりのボール衝撃吸収率は、好ましくは、0.30%/μm以上、より好ましくは、0.32%/μm以上、さらに好ましくは、0.34%/μm以上である。 On the other hand, if the ball impact absorption rate per unit thickness of the impact absorbing member 3 is less than 0.27% / μm, the impact resistance to the ball per unit thickness is low. Therefore, an efficient impact absorption effect on the ball 90 (see FIG. 7) cannot be obtained. The ball impact absorption rate per unit thickness of the impact absorbing member 3 is preferably 0.30% / μm or more, more preferably 0.32% / μm or more, still more preferably 0.34% / μm or more. be.
 衝撃吸収部材3の単位厚み当たりのボール衝撃吸収率は、衝撃吸収部材3のボール衝撃吸収率を、衝撃吸収部材3の厚みで割った値である。図2Aに示すように、衝撃吸収部材3のボール衝撃吸収率は、重さ10g、直径13mmのステンレス製ボール90を20cmの高さから衝撃吸収部材3に落下させて求められる。 The ball impact absorption rate per unit thickness of the impact absorbing member 3 is a value obtained by dividing the ball impact absorption rate of the impact absorbing member 3 by the thickness of the impact absorbing member 3. As shown in FIG. 2A, the ball impact absorption rate of the impact absorbing member 3 is obtained by dropping a stainless steel ball 90 having a weight of 10 g and a diameter of 13 mm onto the impact absorbing member 3 from a height of 20 cm.
 衝撃吸収部材3のボール衝撃吸収率は、特に限定されない。衝撃吸収部材3のボール衝撃吸収率は、例えば、20%以上、好ましくは、25%以上、より好ましくは、30%以上、さらに好ましくは、40%以上、とりわけ好ましくは、50%以上である。衝撃吸収部材3のボール衝撃吸収率の上限は、特に限定されない。衝撃吸収部材3のボール衝撃吸収率の上限は、例えば、90%、また、85%である。 The ball impact absorption rate of the impact absorbing member 3 is not particularly limited. The ball impact absorption rate of the impact absorbing member 3 is, for example, 20% or more, preferably 25% or more, more preferably 30% or more, still more preferably 40% or more, and particularly preferably 50% or more. The upper limit of the ball impact absorption rate of the impact absorbing member 3 is not particularly limited. The upper limit of the ball impact absorption rate of the impact absorbing member 3 is, for example, 90% or 85%.
 衝撃吸収部材3の単位厚み当たりのペン衝撃吸収率は、0.10%/μm以上である。 The pen impact absorption rate per unit thickness of the impact absorbing member 3 is 0.10% / μm or more.
 対して、衝撃吸収部材3の単位厚み当たりのペン衝撃吸収率が0.10%/μm未満であれば、単位厚み当たりのペンに対する耐衝撃性が低い。そのため、ペン(図8参照)に対する効率のよい衝撃吸収効果が得られない。衝撃吸収部材3の単位厚み当たりのペン衝撃吸収率は、好ましくは、0.11%/μm以上、より好ましくは、0.12%/μm以上、さらに好ましくは、0.13%/μm以上、さらには、0.14%/μm以上、0.15%/μm以上、0.17%/μm以上、0.19%/μm以上、0.20%/μm以上、0.22%/μm以上が好適である。 On the other hand, if the pen impact absorption rate per unit thickness of the impact absorbing member 3 is less than 0.10% / μm, the impact resistance to the pen per unit thickness is low. Therefore, an efficient impact absorption effect on the pen (see FIG. 8) cannot be obtained. The pen shock absorption rate per unit thickness of the shock absorbing member 3 is preferably 0.11% / μm or more, more preferably 0.12% / μm or more, still more preferably 0.13% / μm or more. Furthermore, 0.14% / μm or more, 0.15% / μm or more, 0.17% / μm or more, 0.19% / μm or more, 0.20% / μm or more, 0.22% / μm or more. Is preferable.
 衝撃吸収部材3の単位厚み当たりのペン衝撃吸収率は、衝撃吸収部材3のペン衝撃吸収率を、衝撃吸収部材3の厚みで割った値である。図3Aに示すように、衝撃吸収部材3のペン衝撃吸収率は、重さ7g、先端部のボール96の直径が0.7mmのペン95を20cmの高さから衝撃吸収部材3に落下させて求められる。 The pen shock absorption rate per unit thickness of the shock absorbing member 3 is a value obtained by dividing the pen shock absorption rate of the shock absorbing member 3 by the thickness of the shock absorbing member 3. As shown in FIG. 3A, the pen shock absorption rate of the shock absorbing member 3 is such that the pen 95 having a weight of 7 g and a diameter of the ball 96 at the tip portion of 0.7 mm is dropped from a height of 20 cm onto the shock absorbing member 3. Desired.
 衝撃吸収部材3のペン衝撃吸収率は、特に限定されない。衝撃吸収部材3のペン衝撃吸収率は、例えば、5%以上、好ましくは、6%以上、より好ましくは、7%以上、さらに好ましくは、8%以上、とりわけ好ましくは、9%以上であり、さらには、10%以上、11%以上、15%以上、20%以上、25%以上、30%以上が好適である。衝撃吸収部材3のペン衝撃吸収率の上限は、特に限定されない。衝撃吸収部材3のペン衝撃吸収率の上限は、例えば、85%、また、80%である。 The pen impact absorption rate of the impact absorbing member 3 is not particularly limited. The pen shock absorption rate of the shock absorbing member 3 is, for example, 5% or more, preferably 6% or more, more preferably 7% or more, still more preferably 8% or more, and particularly preferably 9% or more. Further, 10% or more, 11% or more, 15% or more, 20% or more, 25% or more, and 30% or more are preferable. The upper limit of the pen impact absorption rate of the impact absorbing member 3 is not particularly limited. The upper limit of the pen impact absorption rate of the impact absorbing member 3 is, for example, 85% or 80%.
 図1に示す有機ELパネル部材4は、パネル部材の一例である。有機ELパネル部材4は、面方向に延びる。有機ELパネル部材4は、衝撃吸収部材3の裏面に配置されている。有機ELパネル部材4は、衝撃吸収部材3の裏面の全部に接触している。具体的には、有機ELパネル部材4は、第2粘着層10に接触している。有機ELパネル部材4は、薄膜封止層11と、パネル本体12とを含む。 The organic EL panel member 4 shown in FIG. 1 is an example of a panel member. The organic EL panel member 4 extends in the plane direction. The organic EL panel member 4 is arranged on the back surface of the shock absorbing member 3. The organic EL panel member 4 is in contact with the entire back surface of the shock absorbing member 3. Specifically, the organic EL panel member 4 is in contact with the second adhesive layer 10. The organic EL panel member 4 includes a thin film sealing layer 11 and a panel body 12.
 薄膜封止層11は、TFE(Thin Film Encapsulation)と称呼される。薄膜封止層11は、面方向に延びる。薄膜封止層11は、有機ELパネル部材4の表面を形成する。薄膜封止層11は、第2粘着層10の裏面に配置される。具体的には、薄膜封止層11は、第2粘着層10の裏面の全部に接触している。薄膜封止層11は、硬度が高い一方、靱性が低い。薄膜封止層11の材料は、特に限定されない。具体的には、薄膜封止層11の材料としては、例えば、無機化合物、および、樹脂が挙げられる。
 無機化合物としては、例えば、窒化シリコン、酸窒化シリコン、窒化炭素、および、酸化アルミニウムが挙げられる。
The thin film encapsulation layer 11 is referred to as TFE (Thin Film Encapsulation). The thin film sealing layer 11 extends in the plane direction. The thin film sealing layer 11 forms the surface of the organic EL panel member 4. The thin film sealing layer 11 is arranged on the back surface of the second adhesive layer 10. Specifically, the thin film sealing layer 11 is in contact with the entire back surface of the second adhesive layer 10. The thin film sealing layer 11 has high hardness but low toughness. The material of the thin film sealing layer 11 is not particularly limited. Specifically, examples of the material of the thin film sealing layer 11 include an inorganic compound and a resin.
Examples of the inorganic compound include silicon nitride, silicon oxynitride, carbon nitride, and aluminum oxide.
 パネル本体12は、面方向に延びる。パネル本体12の表面は、薄膜封止層11に被覆される。パネル本体12は、有機ELパネル部材4の裏面を形成する。パネル本体12は、図示しないが、基板と、2つの電極と、2つの電極に挟まれる有機EL層とを含む。 The panel body 12 extends in the plane direction. The surface of the panel body 12 is covered with the thin film sealing layer 11. The panel body 12 forms the back surface of the organic EL panel member 4. Although not shown, the panel body 12 includes a substrate, two electrodes, and an organic EL layer sandwiched between the two electrodes.
 有機ELパネル部材4の厚みは、例えば、40μm以下、好ましくは、30μm以下、より好ましくは、20μm以下であり、また、例えば、10μm以上である。 The thickness of the organic EL panel member 4 is, for example, 40 μm or less, preferably 30 μm or less, more preferably 20 μm or less, and for example, 10 μm or more.
 保護部材5は、面方向に延びる。保護部材5は、有機ELパネル部材4の裏面に配置されている。具体的には、保護部材5は、有機ELパネル部材4の裏面の全部に接触している。保護部材5は、有機ELパネル部材4を裏側から保護する。保護部材5は、有機EL表示装置1の裏面22を形成する。保護部材5は、表側粘着層13と、保護基材14とを裏側に向かって順に備える。また、保護部材5は、保護基材14の裏側において、例えば、仮想線で示すように、裏側粘着層15と、金属板16とを順に備えてもよい。この場合には、保護部材5は、表側粘着層13と、保護基材14と、裏側粘着層15と、金属板16とを裏側に向かって順に備える。 The protective member 5 extends in the plane direction. The protective member 5 is arranged on the back surface of the organic EL panel member 4. Specifically, the protective member 5 is in contact with the entire back surface of the organic EL panel member 4. The protective member 5 protects the organic EL panel member 4 from the back side. The protective member 5 forms the back surface 22 of the organic EL display device 1. The protective member 5 includes a front side adhesive layer 13 and a protective base material 14 in order toward the back side. Further, the protective member 5 may be provided with the back side adhesive layer 15 and the metal plate 16 in order on the back side of the protective base material 14, for example, as shown by a virtual line. In this case, the protective member 5 includes a front side adhesive layer 13, a protective base material 14, a back side adhesive layer 15, and a metal plate 16 in order toward the back side.
 表側粘着層13は、パネル本体12の裏面に配置されている。具体的には、表側粘着層13は、パネル本体12の裏面の全部に接触している。また、表側粘着層13は、保護部材5における表面を形成する。表側粘着層13の材料は、特に限定されない。表側粘着層13は、後述する第1粘着層8と同一の材料からなっていてもよい。表側粘着層13の厚みは、例えば、1μm以上、好ましくは、5μm以上であり、また、例えば、50μm以下、好ましくは、40μm以下である。 The front adhesive layer 13 is arranged on the back surface of the panel body 12. Specifically, the front adhesive layer 13 is in contact with the entire back surface of the panel body 12. Further, the front adhesive layer 13 forms the surface of the protective member 5. The material of the front adhesive layer 13 is not particularly limited. The front adhesive layer 13 may be made of the same material as the first adhesive layer 8 described later. The thickness of the front adhesive layer 13 is, for example, 1 μm or more, preferably 5 μm or more, and for example, 50 μm or less, preferably 40 μm or less.
 保護基材14は、表側粘着層13の裏面に配置されている。具体的には、保護基材14は、保護基材14の裏面の全部に接触している。保護基材14の材料は、特に限定されない。保護基材14は、基材9と同一の材料からなっていてもよい。保護基材14の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、250μm以下、好ましくは、100μm以下である。 The protective base material 14 is arranged on the back surface of the front side adhesive layer 13. Specifically, the protecting base material 14 is in contact with the entire back surface of the protecting base material 14. The material of the protective base material 14 is not particularly limited. The protective base material 14 may be made of the same material as the base material 9. The thickness of the protecting base material 14 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 250 μm or less, preferably 100 μm or less.
 保護部材5が裏側粘着層15と金属板16とを備える場合には、裏側粘着層15は、保護基材14の裏面に配置されている。具体的には、裏側粘着層15は、保護基材14の裏面の全部に接触している。裏側粘着層15は、後述する第1粘着層8と同一の材料からなっていてもよい。裏側粘着層15の厚みは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 When the protective member 5 includes the back side adhesive layer 15 and the metal plate 16, the back side adhesive layer 15 is arranged on the back surface of the protective base material 14. Specifically, the back side adhesive layer 15 is in contact with the entire back surface of the protective base material 14. The back side adhesive layer 15 may be made of the same material as the first adhesive layer 8 described later. The thickness of the backside adhesive layer 15 is, for example, 10 μm or more, preferably 30 μm or more, and for example, 100 μm or less, preferably 50 μm or less.
 金属板16は、面方向に延びる。金属板16は、有機EL表示装置1の裏面22を形成する。金属板16は、裏側粘着層15の裏面に配置されている。具体的には、金属板16は、裏側粘着層15の裏面の全部に接触している。金属板16の材料としては、例えば、金属が挙げられる。金属としては、例えば、アルミニウム、チタン、鋼、42アロイ、ステンレス、および、マグネシウム合金が挙げられる。金属として、好ましくは、ステンレスが挙げられる。金属板16の厚みは、例えば、5μm以上、好ましくは、10μm以上、より好ましくは、70μm以上であり、また、例えば、200μm以下である。 The metal plate 16 extends in the plane direction. The metal plate 16 forms the back surface 22 of the organic EL display device 1. The metal plate 16 is arranged on the back surface of the back surface adhesive layer 15. Specifically, the metal plate 16 is in contact with the entire back surface of the back surface adhesive layer 15. Examples of the material of the metal plate 16 include metal. Metals include, for example, aluminum, titanium, steel, 42 alloys, stainless steel, and magnesium alloys. The metal is preferably stainless steel. The thickness of the metal plate 16 is, for example, 5 μm or more, preferably 10 μm or more, more preferably 70 μm or more, and for example, 200 μm or less.
 保護部材5の厚みは、例えば、20μm以上、好ましくは、25μm以上であり、また、例えば、1,000μm以下、好ましくは、500μm以下である。 The thickness of the protective member 5 is, for example, 20 μm or more, preferably 25 μm or more, and for example, 1,000 μm or less, preferably 500 μm or less.
 図4Aおよび図4Bに示すように、ウインドウ部材2が外側に向くように有機EL表示装置1を折り曲げる試験において、ウインドウ部材2の上記した表面21の間隔が8mmとなるように200,000回折り曲げても、有機ELパネル部材4が、好ましくは、損傷しない。 As shown in FIGS. 4A and 4B, in a test in which the organic EL display device 1 is bent so that the window member 2 faces outward, the window member 2 is bent 200,000 times so that the distance between the above-mentioned surfaces 21 is 8 mm. However, the organic EL panel member 4 is preferably not damaged.
 上記した回数の折り曲げによって有機ELパネル部材4が損傷しなければ、この有機EL表示装置1は、折り曲げ後における薄膜封止層11の破損を抑制できる。 If the organic EL panel member 4 is not damaged by the above-mentioned number of bendings, the organic EL display device 1 can suppress the damage of the thin film sealing layer 11 after bending.
 好ましくは、ウインドウ部材2が外側に向くように有機EL表示装置1を折り曲げる試験において、ウインドウ部材2の表面21の間隔が6mmとなるように200,000回折り曲げても、パネル部材が損傷しない。そのため、この有機EL表示装置1は、折り曲げ後における薄膜封止層11の破損を抑制できる。 Preferably, in a test in which the organic EL display device 1 is bent so that the window member 2 faces outward, the panel member is not damaged even if the organic EL display device 1 is bent 200,000 times so that the distance between the surfaces 21 of the window member 2 is 6 mm. Therefore, the organic EL display device 1 can suppress damage to the thin film sealing layer 11 after bending.
 [衝撃吸収部材3の詳細]
 以下、衝撃吸収部材3の弾性率、材料および厚みを説明する。
[Details of shock absorbing member 3]
Hereinafter, the elastic modulus, material, and thickness of the shock absorbing member 3 will be described.
 [弾性率]
 第2粘着層10と第1粘着層8とのそれぞれのせん断貯蔵弾性率G’は、特に限定されない。第2粘着層10の25℃におけるせん断貯蔵弾性率G’は、好ましくは、第1粘着層8の25℃におけるせん断貯蔵弾性率G’と同一または高い。第2粘着層10の25℃におけるせん断貯蔵弾性率G’は、より好ましくは、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高い。第1粘着層8および第2粘着層10のそれぞれのせん断貯蔵弾性率G’は、粘弾性測定装置を用いて測定される。昇温速度は、5℃/分であり、周波数は、1Hzである。詳細は、後の実施例で記載する。なお、第2粘着層10のせん断貯蔵弾性率G’が第1粘着層8のせん断貯蔵弾性率G’と同一であれば、図12に示す太線上に実施例がプロットされる。第2粘着層10のせん断貯蔵弾性率G’が第1粘着層8のせん断貯蔵弾性率G’より高ければ、図12に示す太線より左側斜め上方のエリアに実施例がプロットされる。
[Elastic modulus]
The shear storage elastic modulus G'of each of the second adhesive layer 10 and the first adhesive layer 8 is not particularly limited. The shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is preferably the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8. The shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is more preferably higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8. The shear storage elastic modulus G'of each of the first adhesive layer 8 and the second adhesive layer 10 is measured using a viscoelasticity measuring device. The heating rate is 5 ° C./min and the frequency is 1 Hz. Details will be described in later examples. If the shear storage elastic modulus G'of the second adhesive layer 10 is the same as the shear storage elastic modulus G'of the first adhesive layer 8, the examples are plotted on the thick line shown in FIG. If the shear storage elastic modulus G'of the second adhesive layer 10 is higher than the shear storage elastic modulus G'of the first adhesive layer 8, the examples are plotted in an area diagonally above the left side of the thick line shown in FIG.
 第2粘着層10と第1粘着層8とのそれぞれのせん断貯蔵弾性率G’が上記の好ましい関係を満足すれば、この有機EL表示装置1は、単位厚み当たりのボールに対する耐衝撃性により一層優れ、単位厚み当たりのペンに対する耐衝撃性により一層優れる。さらには、有機EL表示装置1は、耐折り曲げ性により一層優れる。 If the respective shear storage elastic moduli G'of the second adhesive layer 10 and the first adhesive layer 8 satisfy the above-mentioned preferable relationship, the organic EL display device 1 is further subjected to the impact resistance to the ball per unit thickness. Excellent, and even better due to the impact resistance to the pen per unit thickness. Further, the organic EL display device 1 is further excellent in bending resistance.
 より具体的には、第2粘着層10の25℃におけるせん断貯蔵弾性率G’から、第1粘着層8の25℃におけるせん断貯蔵弾性率G’を引いた値が、例えば、0.03MPa以上、好ましくは、0.06MPa以上である。上記した値の上限は、限定されない。上記した値の上限は、例えば、0.15MPaである。上記した値が上記した下限以上であれば、有機EL表示装置1は、単位厚み当たりのボールに対する耐衝撃性により一層優れる。なお、上記の値が0.06MPa以上である領域は、図12に示す細い実線上と、その実線より左側斜め上方のエリアとを含む。 More specifically, the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is, for example, 0.03 MPa or more. It is preferably 0.06 MPa or more. The upper limit of the above values is not limited. The upper limit of the above-mentioned value is, for example, 0.15 MPa. When the above-mentioned value is equal to or more than the above-mentioned lower limit, the organic EL display device 1 is further excellent in impact resistance to a ball per unit thickness. The region where the above value is 0.06 MPa or more includes the area on the thin solid line shown in FIG. 12 and the area diagonally above the left side of the solid line.
 第1粘着層8の25℃におけるせん断貯蔵弾性率G’は、例えば、0.15MPa以下、好ましくは、0.10MPa以下、より好ましくは、0.05MPa以下である。第1粘着層8の25℃におけるせん断貯蔵弾性率G’の下限は、限定されない。第1粘着層8の25℃におけるせん断貯蔵弾性率G’の下限は、例えば、0.01MPaである。第1粘着層8のせん断貯蔵弾性率G’が上記した上限以下であれば、有機EL表示装置1は、単位厚み当たりのボールに対する耐衝撃性に優れ、単位厚み当たりのペンに対する耐衝撃性に優れる。また、有機EL表示装置1は、耐折り曲げ性に優れる。第1粘着層8のせん断貯蔵弾性率G’が上記した下限以上であれば、衝撃吸収部材3を確実に保形できる。 The shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is, for example, 0.15 MPa or less, preferably 0.10 MPa or less, and more preferably 0.05 MPa or less. The lower limit of the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is not limited. The lower limit of the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is, for example, 0.01 MPa. When the shear storage elastic modulus G'of the first adhesive layer 8 is equal to or less than the above upper limit, the organic EL display device 1 has excellent impact resistance to a ball per unit thickness and impact resistance to a pen per unit thickness. Excellent. Further, the organic EL display device 1 is excellent in bending resistance. When the shear storage elastic modulus G'of the first adhesive layer 8 is at least the above-mentioned lower limit, the impact absorbing member 3 can be reliably reshaped.
 第2粘着層10の25℃におけるせん断貯蔵弾性率G’は、例えば、0.05MPa以上、好ましくは、0.10MPa以上である。第2粘着層10の25℃におけるせん断貯蔵弾性率G’の上限は、限定されない。第2粘着層10の25℃におけるせん断貯蔵弾性率G’の上限は、0.15MPaである。第2粘着層10のせん断貯蔵弾性率G’が上記した下限以上であれば、有機EL表示装置1は、単位厚み当たりの耐衝撃性に優れ、単位厚み当たりのペンに対する耐衝撃性に優れる。また、有機EL表示装置1は、耐折り曲げ性に優れる。第2粘着層10のせん断貯蔵弾性率G’が上記した上限以下であれば、衝撃吸収部材3が外力を十分に吸収できる。 The shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is, for example, 0.05 MPa or more, preferably 0.10 MPa or more. The upper limit of the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is not limited. The upper limit of the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is 0.15 MPa. When the shear storage elastic modulus G'of the second adhesive layer 10 is at least the above-mentioned lower limit, the organic EL display device 1 is excellent in impact resistance per unit thickness and is excellent in impact resistance to a pen per unit thickness. Further, the organic EL display device 1 is excellent in bending resistance. When the shear storage elastic modulus G'of the second adhesive layer 10 is not more than the above-mentioned upper limit, the impact absorbing member 3 can sufficiently absorb the external force.
 第1粘着層8および第2粘着層10のそれぞれの全光線透過率は、例えば、80%以上、好ましくは、85%以上である。第1粘着層8および第2粘着層10のそれぞれの全光線透過率の上限は、特に限定されない。第1粘着層8および第2粘着層10のそれぞれの全光線透過率の上限は、例えば、100%である。 The total light transmittance of each of the first adhesive layer 8 and the second adhesive layer 10 is, for example, 80% or more, preferably 85% or more. The upper limit of the total light transmittance of each of the first adhesive layer 8 and the second adhesive layer 10 is not particularly limited. The upper limit of the total light transmittance of each of the first adhesive layer 8 and the second adhesive layer 10 is, for example, 100%.
 基材9の25℃における引張弾性率Eは、例えば、0.1GPa以上、好ましくは、1GPa以上、さらに好ましくは、2GPa以上である。基材9の引張弾性率Eが上記した下限以上であれば、有機EL表示装置1のボールに対する単位厚み当たりの耐衝撃性と、ペンに対する単位厚み当たりの耐衝撃性とに優れる。さらに、有機EL表示装置1は、耐折り曲げ性とに優れる。 The tensile elastic modulus E of the base material 9 at 25 ° C. is, for example, 0.1 GPa or more, preferably 1 GPa or more, and more preferably 2 GPa or more. When the tensile elastic modulus E of the base material 9 is equal to or higher than the above-mentioned lower limit, the organic EL display device 1 is excellent in impact resistance per unit thickness for balls and impact resistance per unit thickness for pens. Further, the organic EL display device 1 is excellent in bending resistance.
 基材9の引張弾性率Eは、例えば、15GPa以下、好ましくは、5GPa以下、より好ましくは、1GPa以下である。基材9の引張弾性率Eが上記した上限以下であれば、単位厚み当たりのボールに対する耐衝撃性に優れる。 The tensile elastic modulus E of the base material 9 is, for example, 15 GPa or less, preferably 5 GPa or less, and more preferably 1 GPa or less. When the tensile elastic modulus E of the base material 9 is not more than the above-mentioned upper limit, the impact resistance to the ball per unit thickness is excellent.
 基材9の引張弾性率Eは、引張試験機を用いて測定される。基材9の引張弾性率Eの測定の詳細は、後の実施例で記載する。 The tensile elastic modulus E of the base material 9 is measured using a tensile tester. Details of the measurement of the tensile modulus E of the base material 9 will be described in a later example.
 基材9の全光線透過率は、例えば、80%以上、好ましくは、85%以上である。基材9の全光線透過率の上限は、例えば、100%である。 The total light transmittance of the base material 9 is, for example, 80% or more, preferably 85% or more. The upper limit of the total light transmittance of the base material 9 is, for example, 100%.
 [材料]
 第1粘着層8および第2粘着層10は、上記した物性を満足できる材料からなる。材料としては、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤、および、ポリエーテル系粘着剤が挙げられる。好ましくは、アクリル系粘着剤が挙げられる。
[material]
The first adhesive layer 8 and the second adhesive layer 10 are made of a material that can satisfy the above-mentioned physical properties. Examples of the material include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, polyamide adhesives, urethane adhesives, fluorine adhesives, and epoxy adhesives. Examples thereof include a pressure-sensitive adhesive and a polyether-based pressure-sensitive adhesive. Acrylic adhesives are preferable.
 アクリル系粘着剤としては、例えば、アクリル系ベースポリマーの架橋体が挙げられる。アクリル系ベースポリマーは、モノマー成分を重合して得られる。モノマー成分は、例えば、炭素数1から24のアルキル部分を有する(メタ)アクリレートを主成分として含む。(メタ)アクリレートは、メタクリレートおよび/またはアクリレートを意味する。
 上記した(メタ)アクリレートの定義および用法は、以下同様である。アルキル部分は、直鎖状または分岐鎖状を有する。(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、イソヘキシル(メタ)アクリレート、イソヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、イコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、および、テトラコシル(メタ)アクリレートが挙げられる。好ましくは、比較的硬い第2粘着層10を調製する観点から、炭素数1から4のアルキル部分を有する(メタ)アクリレートが挙げられる。
 好ましくは、比較的軟らかい第1粘着層8を調製する観点から、炭素数6から24のアルキル部分を有する(メタ)アクリレートが挙げられる。モノマー成分における(メタ)アクリレートの割合は、例えば、80質量%以上、好ましくは、90質量%以上であり、また、例えば、100質量%以下、好ましくは、99.5質量%以下である。
Examples of the acrylic pressure-sensitive adhesive include crosslinked products of acrylic-based base polymers. The acrylic base polymer is obtained by polymerizing the monomer components. The monomer component contains, for example, a (meth) acrylate having an alkyl moiety having 1 to 24 carbon atoms as a main component. (Meta) acrylate means methacrylate and / or acrylate.
The definition and usage of the (meth) acrylate described above are as follows. The alkyl moiety has a linear or branched chain. Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, and pentyl. (Meta) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, isohexyl (meth) acrylate, isoheptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, Nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate Examples thereof include meta) acrylate, icosyl (meth) acrylate, dococil (meth) acrylate, and tetracosyl (meth) acrylate. Preferably, from the viewpoint of preparing a relatively hard second adhesive layer 10, a (meth) acrylate having an alkyl moiety having 1 to 4 carbon atoms can be mentioned.
Preferably, from the viewpoint of preparing a relatively soft first adhesive layer 8, a (meth) acrylate having an alkyl moiety having 6 to 24 carbon atoms can be mentioned. The ratio of the (meth) acrylate in the monomer component is, for example, 80% by mass or more, preferably 90% by mass or more, and for example, 100% by mass or less, preferably 99.5% by mass or less.
 モノマー成分は、さらに、官能基含有(メタ)アクリレートを任意成分として含む。官能基含有(メタ)アクリレートとしては、例えば、ヒドロキシル基含有(メタ)アクリレート、および、アミド基含有(メタ)アクリレートが挙げられる。ヒドロキシル基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、および、4-ヒドロキシブチル(メタ)アクリレートが挙げられる。アミド基含有(メタ)アクリレートとしては、例えば、(メタ)アクリルアミド、および、ジメチル(メタ)アクリルアミドが挙げられる。なお、アミド基含有(メタ)アクリレートは、分子内アミド基含有(メタ)アクリレートを含むことができる。分子内アミド基含有(メタ)アクリレートとしては、例えば、N-ビニル-2-ピロリドンが挙げられる。モノマー成分における官能基含有(メタ)アクリレートの割合は、例えば、1質量%以上、好ましくは、5質量%以上であり、また、例えば、25質量%以下、好ましくは、20質量%以下である。 The monomer component further contains a functional group-containing (meth) acrylate as an optional component. Examples of the functional group-containing (meth) acrylate include a hydroxyl group-containing (meth) acrylate and an amide group-containing (meth) acrylate. Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Examples of the amide group-containing (meth) acrylate include (meth) acrylamide and dimethyl (meth) acrylamide. The amide group-containing (meth) acrylate may include an intramolecular amide group-containing (meth) acrylate. Examples of the intramolecular amide group-containing (meth) acrylate include N-vinyl-2-pyrrolidone. The ratio of the functional group-containing (meth) acrylate in the monomer component is, for example, 1% by mass or more, preferably 5% by mass or more, and for example, 25% by mass or less, preferably 20% by mass or less.
 モノマー成分を、例えば、連鎖移動剤の存在下で、重合することができる。連鎖移動剤としては、例えば、チオール化合物が挙げられる。チオール化合物としては、例えば、α-チオグリセロールが挙げられる。連鎖移動剤の質量割合は、モノマー成分100質量部に対して、例えば、1質量部以上、また、例えば、10質量部以下である。 The monomer component can be polymerized, for example, in the presence of a chain transfer agent. Examples of the chain transfer agent include thiol compounds. Examples of the thiol compound include α-thioglycerol. The mass ratio of the chain transfer agent is, for example, 1 part by mass or more, and for example, 10 parts by mass or less with respect to 100 parts by mass of the monomer component.
 架橋体は、アクリル系ベースポリマーに対する架橋剤の配合およびその反応によって、得られる。架橋剤としては、例えば、イソシアネート架橋剤、シランカップリング剤、過酸化物、および、(メタ)アクリロイル基を複数有する(メタ)アクリレートが挙げられる。イソシアネート架橋剤としては、例えば、キシリレンジイソシアネートのトリメチロールプロパン変性体、および、トリレンジイソシアネートのトリメチロールプロパン変性体が挙げられる。シランカップリング剤としては、例えば、エポキシ基含有シランカップリング剤が挙げられる。エポキシ基含有シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシランが挙げられる。過酸化物としては、例えば、有機過酸化物が挙げられる。有機過酸化物としては、例えば、ベンゾイルパーオキサイドが挙げられる。(メタ)アクリロイル基を複数有する(メタ)アクリレートとしては、例えば、ヘキサンジオール(メタ)アクリレートが挙げられる。これらは、単独使用または併用できる。架橋剤の質量割合は、アクリル系ベースポリマー100質量部に対して、例えば、0.1質量部以上、また、例えば、2質量部以下である。 The crosslinked product is obtained by blending a crosslinking agent with an acrylic base polymer and its reaction. Examples of the cross-linking agent include an isocyanate cross-linking agent, a silane coupling agent, a peroxide, and a (meth) acrylate having a plurality of (meth) acryloyl groups. Examples of the isocyanate cross-linking agent include a trimethylolpropane modified product of xylylene diisocyanate and a trimethylolpropane modified product of tolylene diisocyanate. Examples of the silane coupling agent include epoxy group-containing silane coupling agents. Examples of the epoxy group-containing silane coupling agent include 3-glycidoxypropyltrimethoxysilane. Examples of the peroxide include organic peroxides. Examples of the organic peroxide include benzoyl peroxide. Examples of the (meth) acrylate having a plurality of (meth) acryloyl groups include hexanediol (meth) acrylate. These can be used alone or in combination. The mass ratio of the cross-linking agent is, for example, 0.1 part by mass or more, and for example, 2 parts by mass or less with respect to 100 parts by mass of the acrylic base polymer.
 架橋剤の配合とともに、添加剤をアクリル系ベースポリマーに添加することができる。添加剤としては、オリゴマーが挙げられる。オリゴマーとして、例えば、(メタ)アクリルオリゴマーが挙げられる。(メタ)アクリルオリゴマーの重量平均分子量は、例えば、1、000以上、好ましくは、2,000以上であり、また、例えば、30,000以下、好ましくは、10,000以下である。(メタ)アクリルオリゴマーの重量平均分子量は、GPCによる標準ポリスチレン換算による。(メタ)アクリルオリゴマーは、モノマー成分を重合して得られる。モノマー成分は、上記した炭素数1から24のアルキル部分を有する(メタ)アクリレートと、炭素数1から24の脂環式アルキル(シクロアリファティックアルキル)部分を有する脂環式(メタ)アクリレートとを含む。脂環式アルキル部分としては、例えば、単環式、および、多環式が挙げられる。単環式の脂環式(メタ)アクリレートとしては、例えば、シクロアルキル(メタ)アクリレートが挙げられる。シクロアルキル(メタ)アクリレートとしては、例えば、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、および、シクロオクチル(メタ)アクリレートが挙げられる。多環式の脂環式(メタ)アクリレートとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、および、トリシクロペンタニル(メタ)アクリレートが挙げられる。モノマー成分における(メタ)アクリレートの割合は、例えば、10質量%以上、好ましくは、20質量%以上であり、また、例えば、70質量%以下、好ましくは、45質量%以下である。モノマー成分における脂環式(メタ)アクリレートの割合は、例えば、30質量%以上、好ましくは、55質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下である。 The additive can be added to the acrylic base polymer together with the compounding of the cross-linking agent. Examples of the additive include oligomers. Examples of the oligomer include (meth) acrylic oligomers. The weight average molecular weight of the (meth) acrylic oligomer is, for example, 1,000 or more, preferably 2,000 or more, and for example, 30,000 or less, preferably 10,000 or less. The weight average molecular weight of the (meth) acrylic oligomer is calculated in terms of standard polystyrene by GPC. The (meth) acrylic oligomer is obtained by polymerizing a monomer component. The monomer component includes the above-mentioned (meth) acrylate having an alkyl moiety having 1 to 24 carbon atoms and the alicyclic (meth) acrylate having an alicyclic alkyl (cycloalifatic alkyl) moiety having 1 to 24 carbon atoms. including. Examples of the alicyclic alkyl moiety include a monocyclic type and a polycyclic type. Examples of the monocyclic alicyclic (meth) acrylate include cycloalkyl (meth) acrylate. Examples of the cycloalkyl (meth) acrylate include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, and cyclooctyl (meth) acrylate. Examples of the polycyclic alicyclic (meth) acrylate include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and tricyclopentanyl (meth) acrylate. The ratio of the (meth) acrylate in the monomer component is, for example, 10% by mass or more, preferably 20% by mass or more, and for example, 70% by mass or less, preferably 45% by mass or less. The proportion of the alicyclic (meth) acrylate in the monomer component is, for example, 30% by mass or more, preferably 55% by mass or more, and for example, 90% by mass or less, preferably 80% by mass or less.
 オリゴマーのガラス転移温度は、例えば、20℃以上、好ましくは、50℃以上、より好ましく、80℃以上であり、また、例えば、150℃以下である。オリゴマーのガラス転移温度は、Fox式により算出される。 The glass transition temperature of the oligomer is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and for example, 150 ° C. or lower. The glass transition temperature of the oligomer is calculated by the Fox formula.
 オリゴマーの質量割合は、アクリル系ベースポリマー100質量部に対して、例えば、0.01質量部以上、また、例えば、1質量部以下である。 The mass ratio of the oligomer is, for example, 0.01 part by mass or more, and for example, 1 part by mass or less with respect to 100 parts by mass of the acrylic base polymer.
 基材9の材料は、上記した物性を満足できる材料からなる。基材9の材料としては、例えば、樹脂が挙げられる。樹脂は、単独使用または併用できる。樹脂としては、例えば、オレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、および、ポリスチレン樹脂が挙げられる。樹脂として、好ましくは、オレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、セルロース樹脂、および、ポリスチレン樹脂が挙げられる。樹脂として、さらに好ましくは、オレフィン樹脂、および、ポリエステル樹脂が挙げられる。 The material of the base material 9 is a material that can satisfy the above-mentioned physical characteristics. Examples of the material of the base material 9 include a resin. The resin can be used alone or in combination. Examples of the resin include olefin resin, polyester resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin. Preferred examples of the resin include olefin resin, polyester resin, acrylic resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, cellulose resin, and polystyrene resin. More preferably, the resin includes an olefin resin and a polyester resin.
 オレフィン樹脂として、例えば、ポリエチレン、ポリプロピレン、および、シクロオレフィンポリマー(COP)が挙げられる。オレフィン樹脂として、好ましくは、COPが挙げられる。COPは、シクロオレフィンを含むモノマー成分の重合体である。シクロオレフィンとして、例えば、ノルボルネンが挙げられる。 Examples of the olefin resin include polyethylene, polypropylene, and cycloolefin polymer (COP). The olefin resin is preferably COP. COP is a polymer of monomer components containing cycloolefin. Examples of cycloolefins include norbornene.
 ポリエステル樹脂として、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、および、ポリエチレンナフタレートが挙げられる。ポリエステル樹脂は、例えば、軟質ポリエステル樹脂(透明軟質ポリエステル樹脂)を含む。ポリエステル樹脂として、好ましくは、PETが挙げられる。 Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. The polyester resin includes, for example, a soft polyester resin (transparent soft polyester resin). Preferred examples of the polyester resin include PET.
 基材9の材料として、とりわけ好ましくは、COPが挙げられる。COPは、PETに比べて、単位厚み当たりのペン衝撃吸収率を高くできる。 COP is particularly preferable as the material of the base material 9. COP can have a higher pen impact absorption rate per unit thickness than PET.
 基材9は、市販品を用いることができる。市販品としては、例えば、ルミラーシリーズ(PET製基材、東レ社製)、ゼオノアシリーズ(COP製基材、日本ゼオン社製)、および、OKYシリーズ(透明軟質ポリエステル樹脂性基材、ベルポリエステルプロダクツ社製)が挙げられる。 As the base material 9, a commercially available product can be used. Commercially available products include, for example, the Lumirer series (PET base material, Toray), the Zeonoa series (COP base material, Nippon Zeon), and the OKY series (transparent soft polyester resin base material, Bell Polyester Products). (Manufactured by the company).
 [厚み]
 第1粘着層8と基材9と第2粘着層10とのそれぞれの厚みは、特に限定されない。
[Thickness]
The thicknesses of the first adhesive layer 8, the base material 9, and the second adhesive layer 10 are not particularly limited.
 第1粘着層8および第2粘着層10のそれぞれの厚みは、例えば、1μm以上、好ましくは、5μm以上であり、また、例えば、50μm以下、好ましくは、40μm以下である。第2粘着層10は、第1粘着層8と同じ厚みでもよく、また、第1粘着層8と異なる厚みでもよい。 The thickness of each of the first adhesive layer 8 and the second adhesive layer 10 is, for example, 1 μm or more, preferably 5 μm or more, and for example, 50 μm or less, preferably 40 μm or less. The second adhesive layer 10 may have the same thickness as the first adhesive layer 8 or may have a different thickness from the first adhesive layer 8.
 基材9の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、100μm以下、好ましくは、75μm以下、より好ましくは、50μm以下、さらに好ましくは、50μm未満、とりわけ好ましくは、45μm以下、最も好ましくは、30μm以下である。 The thickness of the base material 9 is, for example, 5 μm or more, preferably 10 μm or more, and for example, 100 μm or less, preferably 75 μm or less, more preferably 50 μm or less, still more preferably less than 50 μm, and particularly preferably. , 45 μm or less, most preferably 30 μm or less.
 衝撃吸収部材3の厚みに対する基材9の厚みの比率は、例えば、0.10以上、好ましくは、0.20以上であり、また、例えば、0.70以下、好ましくは、0.60以下、より好ましくは、0.40以下、さらに好ましくは、0.35以下である。基材9の厚みの比率が上記した下限以上であれば、耐折り曲げ性に優れる。基材9の厚みの比率が上記した上限以下であれば、単位厚み当たりのペン衝撃吸収率が高い。 The ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is, for example, 0.10 or more, preferably 0.20 or more, and for example, 0.70 or less, preferably 0.60 or less. It is more preferably 0.40 or less, still more preferably 0.35 or less. When the ratio of the thickness of the base material 9 is at least the above-mentioned lower limit, the bending resistance is excellent. When the ratio of the thickness of the base material 9 is equal to or less than the above upper limit, the pen impact absorption rate per unit thickness is high.
 [有機EL表示装置1の製造]
 有機EL表示装置1は、ウインドウ部材2と、衝撃吸収部材3と、有機ELパネル部材4と、保護部材5とを積層することにより、得られる。
[Manufacturing of organic EL display device 1]
The organic EL display device 1 is obtained by laminating a window member 2, a shock absorbing member 3, an organic EL panel member 4, and a protective member 5.
 なお、図示しないが、衝撃吸収部材3は、剥離シート付き衝撃吸収部材として準備される。剥離シート付き衝撃吸収部材は、衝撃吸収部材3と、その表面および裏面にそれぞれ積層された剥離シートとを備える。剥離シート付き衝撃吸収部材における剥離シートを衝撃吸収部材3から剥離して、衝撃吸収部材3を準備する。 Although not shown, the shock absorbing member 3 is prepared as a shock absorbing member with a release sheet. The shock absorbing member with a release sheet includes a shock absorbing member 3 and a release sheet laminated on the front surface and the back surface thereof, respectively. The release sheet in the impact absorbing member with the release sheet is peeled from the impact absorbing member 3 to prepare the impact absorbing member 3.
 また、試作品40を用いて有機EL表示装置1を製造する別の製造方法を、図5から図6を参照して説明する。この方法は、図5に示すように、第1工程S1と、第2工程S2と、第3工程S3と、第4工程S4とを順に備える。 Further, another manufacturing method for manufacturing the organic EL display device 1 using the prototype 40 will be described with reference to FIGS. 5 to 6. As shown in FIG. 5, this method includes a first step S1, a second step S2, a third step S3, and a fourth step S4 in order.
 第1工程S1では、試作品を試作する。例えば、複数の試作品40を試作する。複数の試作品40のそれぞれは、例えば、互いに、同一の構成、同一の厚み、同一の物性を有する。複数の試作品40は、例えば、第1サンプル61と、第2サンプル62とを含み、さらには、第3サンプル63を含む。試作品40は、疑似サンプルでもある。試作品40は、下記の点を除いて、上記した有機EL表示装置1と同一の構成を有する。試作品40の有機ELパネル部材4では、薄膜封止層11に代えて、ITO層35を備える。ITO層35は、薄膜封止層11に付与されうる歪みに起因する損傷を評価するように構成される。ITO層35は、酸化インジウムと酸化スズとの複合酸化物(ITO)からなる。ITO層35の厚みは、例えば、100nm以下、好ましくは、70nm以下、より好ましくは、50nm以下であり、また、例えば、20nm以上である。ITO層35の厚みを変えることで、ひずみに対する割れをコントロールすることができる。上記したITO層35とパネル本体12とを備える有機ELパネル部材4は、ダミーパネル部材44である。
 また、試作品40では、例えば、第1粘着層8と第2粘着層10とのそれぞれの25℃におけるせん断貯蔵弾性率G’は、同一である。
In the first step S1, a prototype is prototyped. For example, a plurality of prototypes 40 are prototyped. Each of the plurality of prototypes 40 has, for example, the same composition, the same thickness, and the same physical characteristics as each other. The plurality of prototypes 40 include, for example, a first sample 61, a second sample 62, and further include a third sample 63. The prototype 40 is also a pseudo sample. The prototype 40 has the same configuration as the above-mentioned organic EL display device 1 except for the following points. The organic EL panel member 4 of the prototype 40 includes an ITO layer 35 instead of the thin film sealing layer 11. The ITO layer 35 is configured to evaluate damage due to strain that may be inflicted on the thin film encapsulation layer 11. The ITO layer 35 is made of a composite oxide (ITO) of indium oxide and tin oxide. The thickness of the ITO layer 35 is, for example, 100 nm or less, preferably 70 nm or less, more preferably 50 nm or less, and for example, 20 nm or more. By changing the thickness of the ITO layer 35, cracking due to strain can be controlled. The organic EL panel member 4 including the ITO layer 35 and the panel body 12 is a dummy panel member 44.
Further, in the prototype 40, for example, the shear storage elastic modulus G'at 25 ° C. of each of the first adhesive layer 8 and the second adhesive layer 10 is the same.
 第2工程S2では、試作品40を評価する。第2工程S2は、図6に示すように、第5工程S5と、第6工程S6と、第7工程S7とを備える。 In the second step S2, the prototype 40 is evaluated. As shown in FIG. 6, the second step S2 includes a fifth step S5, a sixth step S6, and a seventh step S7.
 第5工程S5では、第1サンプル61および第2サンプル62を試作品40から選択する。第1サンプル61および第2サンプル62は、互いに、同一の構成、同一の厚み、同一の物性を有する。併せて、第3サンプル63を、後述する折り曲げ試験に供してもよい。 In the fifth step S5, the first sample 61 and the second sample 62 are selected from the prototype 40. The first sample 61 and the second sample 62 have the same composition, the same thickness, and the same physical characteristics as each other. At the same time, the third sample 63 may be subjected to a bending test described later.
 第6工程S6では、ボール落下試験(図7参照)と、ペン落下試験(図8参照)とを実施する。 In the sixth step S6, a ball drop test (see FIG. 7) and a pen drop test (see FIG. 8) are carried out.
 図7に示すように、ボール落下試験では、ボール90を第1サンプル61に落下させる。ボール落下試験におけるボール90の重さは、例えば、1g以上、好ましくは、2g以上であり、また、例えば、100g以下、好ましくは、50g以下である。ボール落下試験におけるボール90の直径は、例えば、1mm以上、好ましくは、2mm以上であり、また、例えば、100mm以下、好ましくは、50mm以下である。ボールの材質は、限定されず、例えば、金属である。ボール落下試験におけるボール90の落下高さは、例えば、2cm以上、好ましくは、5cm以上であり、また、例えば、200cm以下、好ましくは、100cm以下である。 As shown in FIG. 7, in the ball drop test, the ball 90 is dropped onto the first sample 61. The weight of the ball 90 in the ball drop test is, for example, 1 g or more, preferably 2 g or more, and for example, 100 g or less, preferably 50 g or less. The diameter of the ball 90 in the ball drop test is, for example, 1 mm or more, preferably 2 mm or more, and for example, 100 mm or less, preferably 50 mm or less. The material of the ball is not limited, for example, metal. The drop height of the ball 90 in the ball drop test is, for example, 2 cm or more, preferably 5 cm or more, and for example, 200 cm or less, preferably 100 cm or less.
 図8に示すように、ペン落下試験では、ペン(ボールペン)95を第2サンプル62に落下させる。ペン95は、その先端部にボール96を有する。 As shown in FIG. 8, in the pen drop test, the pen (ballpoint pen) 95 is dropped onto the second sample 62. The pen 95 has a ball 96 at its tip.
 ペン落下試験におけるペン95の重さは、例えば、0.5g以上、好ましくは、1g以上であり、また、例えば、50g以下、好ましくは、30g以下である。ペン落下試験におけるボール96の直径は、例えば、0.01mm以上、好ましくは、0.1mm以上であり、また、例えば、5mm以下、好ましくは、1mm以下である。ペン落下試験における落下高さは、例えば、2cm以上、好ましくは、5cm以上であり、また、例えば、200cm以下、好ましくは、100cm以下である。 The weight of the pen 95 in the pen drop test is, for example, 0.5 g or more, preferably 1 g or more, and for example, 50 g or less, preferably 30 g or less. The diameter of the ball 96 in the pen drop test is, for example, 0.01 mm or more, preferably 0.1 mm or more, and for example, 5 mm or less, preferably 1 mm or less. The drop height in the pen drop test is, for example, 2 cm or more, preferably 5 cm or more, and for example, 200 cm or less, preferably 100 cm or less.
 第7工程S7では、第1サンプル61および第2サンプル62に損傷があるか否かを判断する。 In the seventh step S7, it is determined whether or not the first sample 61 and the second sample 62 are damaged.
 そして、第3工程では、第1サンプル61に損傷があると試作品40を評価した場合に、第1粘着層8および第2粘着層10の合計厚みをより厚くするように、製造条件を変更し決定する。また、第3工程では、第2サンプル62に損傷があると試作品40を評価した場合に、基材9の厚みをより厚くするように製造条件を変更し決定する。 Then, in the third step, when the prototype 40 is evaluated as having damage to the first sample 61, the manufacturing conditions are changed so that the total thickness of the first adhesive layer 8 and the second adhesive layer 10 becomes thicker. And decide. Further, in the third step, when the prototype 40 is evaluated as having damage to the second sample 62, the manufacturing conditions are changed and determined so that the thickness of the base material 9 is made thicker.
 第4工程S4では、上記した製造条件に基づいて有機EL表示装置1を製造する。 In the fourth step S4, the organic EL display device 1 is manufactured based on the above-mentioned manufacturing conditions.
 これによって、有機EL表示装置1を製品として製造する。 Thereby, the organic EL display device 1 is manufactured as a product.
 なお、第7工程S7において、第1サンプル61および第2サンプル62のいずれにも損傷がないと判断した場合には、上記した第3工程S3を経ず、つまり、製造条件を変更せずに、有機EL表示装置1を製品として製造する。 If it is determined in the seventh step S7 that neither the first sample 61 nor the second sample 62 is damaged, the third step S3 described above is not performed, that is, the manufacturing conditions are not changed. , The organic EL display device 1 is manufactured as a product.
 [有機EL表示装置1の使用]
 図4Aに示すように、ユーザが、有機EL表示装置1の表面21の全部を視認するときには、有機EL表示装置1は、開かれている。このとき、表面21は、平坦面である。有機EL表示装置1は、中間部24と、第1部17と、第2部18とを含む。中間部24は、2つの辺23の中間に位置する。2つの辺23は、第1辺23Aと、第2辺23Bとを含む。第1部17は、第1辺23Aを含むエリアである。第2部18は、第2辺23Bを含むエリアである。
[Use of organic EL display device 1]
As shown in FIG. 4A, when the user visually recognizes the entire surface 21 of the organic EL display device 1, the organic EL display device 1 is open. At this time, the surface 21 is a flat surface. The organic EL display device 1 includes an intermediate portion 24, a first portion 17, and a second portion 18. The intermediate portion 24 is located between the two sides 23. The two sides 23 include a first side 23A and a second side 23B. The first part 17 is an area including the first side 23A. The second part 18 is an area including the second side 23B.
 図4Bに示すように、有機EL表示装置1を、中間部24を中心にして折り曲げる場合がある。つまり、有機EL表示装置1は、折り曲げられて使用される場合がある。この場合には、中間部24は、折り目を形成する。第1部17の表面21と第2部18の表面21とは、互いに外側に向く。この場合には、第1部17の裏面22と第2部18の裏面22とは、近づいて対向する。 As shown in FIG. 4B, the organic EL display device 1 may be bent around the intermediate portion 24. That is, the organic EL display device 1 may be bent and used. In this case, the intermediate portion 24 forms a crease. The surface 21 of the first part 17 and the surface 21 of the second part 18 face each other outward. In this case, the back surface 22 of the first part 17 and the back surface 22 of the second part 18 approach each other and face each other.
 [第1実施形態の作用効果]
 そして、この有機EL表示装置1では、衝撃吸収部材3が60%以上の全光線透過率を有する。具体的には、偏光子の代替で有機EL表示装置1に設けられた衝撃吸収部材3の全光線透過率が高い。そのため、有機EL表示装置1は、光学信頼性が高い。特に、第1実施形態の有機EL表示装置1は、偏光子を備えないので、光学信頼性がとりわけ高い。
[Action and effect of the first embodiment]
In this organic EL display device 1, the shock absorbing member 3 has a total light transmittance of 60% or more. Specifically, the total light transmittance of the shock absorbing member 3 provided in the organic EL display device 1 as a substitute for the polarizing element is high. Therefore, the organic EL display device 1 has high optical reliability. In particular, since the organic EL display device 1 of the first embodiment does not include a polarizing element, the optical reliability is particularly high.
 また、この有機EL表示装置1では、衝撃吸収部材3が0.27%/μm以上の単位厚み当たりのボール衝撃吸収率を有し、0.10%/μm以上の単位厚み当たりのペン衝撃吸収率を有する。そのため、有機EL表示装置1は、ボールに対する衝撃、および、ペンによる衝撃に対する耐久性に優れる。従って、有機EL表示装置1は、様々な衝撃に対する耐久性に優れる。 Further, in the organic EL display device 1, the shock absorbing member 3 has a ball shock absorption rate per unit thickness of 0.27% / μm or more, and pen shock absorption per unit thickness of 0.10% / μm or more. Have a rate. Therefore, the organic EL display device 1 is excellent in durability against an impact on a ball and an impact by a pen. Therefore, the organic EL display device 1 is excellent in durability against various impacts.
 さらに、ウインドウ部材2が外側に向くように有機EL表示装置1を折り曲げる試験において、ウインドウ部材2における2つの表面21の間隔が8mmとなるように200,000回折り曲げても、有機ELパネル部材4が損傷しない。そのため、有機EL表示装置1は、耐折り曲げ性に優れる。 Further, in a test in which the organic EL display device 1 is bent so that the window member 2 faces outward, even if the organic EL panel member 4 is bent 200,000 times so that the distance between the two surfaces 21 of the window member 2 is 8 mm, the organic EL panel member 4 is bent. Does not damage. Therefore, the organic EL display device 1 is excellent in bending resistance.
 また、この有機EL表示装置1では、第1粘着層8がウインドウ部材2に粘着する。第2粘着層10が有機ELパネル部材4に粘着する。そのため、ウインドウ部材2が、衝撃吸収部材3を介して、有機ELパネル部材4に粘着する。そして、基材9と、それを挟む第1粘着層8および第2粘着層10とを備える衝撃吸収部材3が、ウインドウ部材2と有機ELパネル部材4とに粘着するので、耐折り曲げ性により一層優れる。 Further, in this organic EL display device 1, the first adhesive layer 8 adheres to the window member 2. The second adhesive layer 10 adheres to the organic EL panel member 4. Therefore, the window member 2 adheres to the organic EL panel member 4 via the shock absorbing member 3. Then, the shock absorbing member 3 including the base material 9 and the first adhesive layer 8 and the second adhesive layer 10 sandwiching the base material 9 adheres to the window member 2 and the organic EL panel member 4, so that the bending resistance further increases. Excellent.
 また、この有機EL表示装置1では、第2粘着層10の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’と同一または高い場合には、この有機EL表示装置1は、ボールに対する単位厚み当たりの耐衝撃性と、ペンに対する単位厚み当たりの耐衝撃性とに優れる。また、この有機EL表示装置1は、耐折り曲げ性に優れる。 Further, in the organic EL display device 1, when the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C. is the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8. The organic EL display device 1 is excellent in impact resistance per unit thickness for a ball and impact resistance per unit thickness for a pen. Further, the organic EL display device 1 is excellent in bending resistance.
 とりわけ、この有機EL表示装置1では、第2粘着層10の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高い場合には、この有機EL表示装置1は、ボールに対する単位厚み当たりの耐衝撃性により一層優れ、さらには、ペンに対する単位厚み当たりの耐衝撃性により一層優れる。 In particular, in this organic EL display device 1, when the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, this organic The EL display device 1 is further excellent in impact resistance per unit thickness with respect to the ball, and further is further excellent in impact resistance per unit thickness with respect to the pen.
 また、この有機EL表示装置1では、第1粘着層8の25℃におけるせん断貯蔵弾性率G’が、0.01MPa以上であれば、衝撃吸収部材3を確実に保形できる。第1粘着層8の25℃におけるせん断貯蔵弾性率G’が、0.05MPa以下であれば、有機EL表示装置1は、ボールに対する単位厚み当たりの耐衝撃性に優れる。 Further, in this organic EL display device 1, if the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is 0.01 MPa or more, the shock absorbing member 3 can be reliably reshaped. When the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is 0.05 MPa or less, the organic EL display device 1 is excellent in impact resistance per unit thickness to the ball.
 この有機EL表示装置1では、第2粘着層10の25℃におけるせん断貯蔵弾性率G’が、0.10MPa以上であれば、有機EL表示装置1は、耐折り曲げ性に優れる。第2粘着層10の25℃におけるせん断貯蔵弾性率G’が、0.15MPa以下であれば、衝撃吸収部材3が外力を十分に吸収できる。 In this organic EL display device 1, if the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C. is 0.10 MPa or more, the organic EL display device 1 is excellent in bending resistance. When the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is 0.15 MPa or less, the impact absorbing member 3 can sufficiently absorb the external force.
 また、この有機EL表示装置1では、第2粘着層10の25℃におけるせん断貯蔵弾性率G’から、第1粘着層8の25℃におけるせん断貯蔵弾性率G’を引いた値が、0.06MPa以上であれば、有機EL表示装置1は、ボールに対する単位厚み当たりの耐衝撃性と、ペンに対する単位厚み当たりの耐衝撃性とに優れる。また、この有機EL表示装置1は、耐折り曲げ性との両方に優れる。 Further, in this organic EL display device 1, the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 is 0. When it is 06 MPa or more, the organic EL display device 1 is excellent in impact resistance per unit thickness for balls and impact resistance per unit thickness for pens. Further, the organic EL display device 1 is excellent in both bending resistance and bending resistance.
 また、この有機EL表示装置1では、基材9が単数であるので、構成が簡易である。 Further, in this organic EL display device 1, since the base material 9 is singular, the configuration is simple.
 また、この有機EL表示装置1では、衝撃吸収部材3の厚みに対する基材9の厚みの比率が、0.20以上であれば、ペンに対する単位厚み当たりの耐衝撃性に優れる。衝撃吸収部材3の厚みに対する基材9の厚みの比率が、0.35以下であれば、単位厚み当たりのボール衝撃吸収率が高い。 Further, in this organic EL display device 1, if the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is 0.20 or more, the impact resistance per unit thickness with respect to the pen is excellent. When the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is 0.35 or less, the ball shock absorbing rate per unit thickness is high.
 また、この有機EL表示装置1では、基材9の材料が、オレフィン樹脂および/またはポリエステル樹脂であれば、単位厚み当たりのボール衝撃吸収率、および、単位厚み当たりのペン衝撃吸収率を高くできる。 Further, in the organic EL display device 1, if the material of the base material 9 is an olefin resin and / or a polyester resin, the ball impact absorption rate per unit thickness and the pen impact absorption rate per unit thickness can be increased. ..
 上記した第1工程S1から第3工程S3を備える製造方法により有機EL表示装置1を製造すれば、試作品40を評価して、製造条件を決定するので、歩留まりを向上できる。 If the organic EL display device 1 is manufactured by the manufacturing method including the first step S1 to the third step S3 described above, the prototype 40 is evaluated and the manufacturing conditions are determined, so that the yield can be improved.
 [第2実施形態]
 以下の第2実施形態において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第2実施形態は、特記する以外、第1実施形態と同様の作用効果を奏することができる。
[Second Embodiment]
In the following second embodiment, the same members and processes as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the second embodiment can exhibit the same effects as those of the first embodiment, except for special mention.
 図9に示すように、第2実施形態では、基材9は、複数である。具体的には、基材9は、第1基材25と、第2基材26とを含む。また、衝撃吸収部材3は、中間粘着層19をさらに備える。 As shown in FIG. 9, in the second embodiment, the base material 9 is a plurality. Specifically, the base material 9 includes a first base material 25 and a second base material 26. Further, the shock absorbing member 3 further includes an intermediate adhesive layer 19.
 第1基材25は、第1粘着層8に接触する。第1基材25は、第1粘着層8の裏面に配置されている。第1基材25は、第2粘着層10に接触しない。 The first base material 25 comes into contact with the first adhesive layer 8. The first base material 25 is arranged on the back surface of the first adhesive layer 8. The first base material 25 does not come into contact with the second adhesive layer 10.
 第2基材26は、第1基材25の裏側に間隔を隔てて配置されている。第2基材26は、第2粘着層10に接触する。第2基材26は、第2粘着層10の表面に配置されている。第2基材26は、第1粘着層8に接触しない。 The second base material 26 is arranged on the back side of the first base material 25 at intervals. The second base material 26 comes into contact with the second adhesive layer 10. The second base material 26 is arranged on the surface of the second adhesive layer 10. The second base material 26 does not come into contact with the first adhesive layer 8.
 中間粘着層19は、第2実施形態では、単数である。中間粘着層19は、第1基材25と第2基材26との間に介在している。中間粘着層19は、第1基材25と第2基材26とに接触している。具体的には、中間粘着層19は、第1基材25の裏面と、第2基材26の表面とに接触している。 The intermediate adhesive layer 19 is singular in the second embodiment. The intermediate adhesive layer 19 is interposed between the first base material 25 and the second base material 26. The intermediate adhesive layer 19 is in contact with the first base material 25 and the second base material 26. Specifically, the intermediate adhesive layer 19 is in contact with the back surface of the first base material 25 and the front surface of the second base material 26.
 この衝撃吸収部材3は、第1粘着層8と、第1基材25と、中間粘着層19と、第2基材26と、第2粘着層10とを裏側に向かって順に備える。第2実施形態では、衝撃吸収部材3は、好ましくは、第1粘着層8と、第1基材25と、中間粘着層19と、第2基材26と、第2粘着層10とのみを備える。 The shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, an intermediate adhesive layer 19, a second base material 26, and a second adhesive layer 10 in order toward the back side. In the second embodiment, the shock absorbing member 3 preferably has only the first adhesive layer 8, the first base material 25, the intermediate adhesive layer 19, the second base material 26, and the second adhesive layer 10. Be prepared.
 [中間粘着層19の詳細]
 中間粘着層19の25℃におけるせん断貯蔵弾性率G’は、特に限定されない。好ましくは、中間粘着層19の25℃におけるせん断貯蔵弾性率G’は、第1粘着層8の25℃におけるせん断貯蔵弾性率G’以上、第2粘着層10の25℃におけるせん断貯蔵弾性率G’以下である。
[Details of Intermediate Adhesive Layer 19]
The shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is not particularly limited. Preferably, the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is equal to or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, and the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10. 'It is below.
 中間粘着層19のせん断貯蔵弾性率G’が第1粘着層8のせん断貯蔵弾性率G’以上であり、第2粘着層10の25℃におけるせん断貯蔵弾性率G’以下であれば、有機EL表示装置1は、ボールおよびペンに対する単位厚み当たりの耐衝撃性に優れることが分かる。 If the shear storage elastic modulus G'of the intermediate adhesive layer 19 is equal to or greater than the shear storage elastic modulus G'of the first adhesive layer 8 and equal to or less than the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C., the organic EL It can be seen that the display device 1 is excellent in impact resistance per unit thickness for balls and pens.
 より好ましくは、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高く、第2粘着層10の25℃におけるせん断貯蔵弾性率G’より低い。この場合には、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とをより確実に両立できる。 More preferably, the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, and the shear storage elasticity G'of the second adhesive layer 10 at 25 ° C. It is lower than the rate G'. In this case, it is possible to more reliably achieve both high impact resistance per unit thickness for the ball and high bending resistance.
 中間粘着層19の25℃におけるせん断貯蔵弾性率G’は、例えば、0.01MPa以上、好ましくは、0.05MPa以上、より好ましくは、0.05MPa超過であり、また、例えば、0.15MPa以下、好ましくは、0.10MPa以下である。 The shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is, for example, 0.01 MPa or more, preferably 0.05 MPa or more, more preferably 0.05 MPa or more, and for example, 0.15 MPa or less. It is preferably 0.10 MPa or less.
 中間粘着層19のせん断貯蔵弾性率G’が上記した下限を上回り、上記した上限を下回れば、ボールに対する単位厚み当たりの耐衝撃性と、耐折り曲げ性とに、より一層優れる。 If the shear storage elastic modulus G'of the intermediate adhesive layer 19 exceeds the above-mentioned lower limit and falls below the above-mentioned upper limit, the impact resistance per unit thickness to the ball and the bending resistance are further excellent.
 中間粘着層19の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、40μm以下、好ましくは、30μm以下である。 The thickness of the intermediate adhesive layer 19 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 40 μm or less, preferably 30 μm or less.
 [第1基材25と第2基材26との詳細]
 衝撃吸収部材3の厚みに対する、第1基材25と第2基材26との合計厚みの比率は、上記した衝撃吸収部材3の厚みに対する基材9の厚みの比率と同様である。
[Details of the first base material 25 and the second base material 26]
The ratio of the total thickness of the first base material 25 and the second base material 26 to the thickness of the shock absorbing member 3 is the same as the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 described above.
 第1基材25の厚みは、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、50μm以下、好ましくは、20μm以下である。 The thickness of the first base material 25 is, for example, 1 μm or more, preferably 3 μm or more, and for example, 50 μm or less, preferably 20 μm or less.
 第2基材26の厚みは、例えば、5以上、好ましくは、15μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The thickness of the second base material 26 is, for example, 5 or more, preferably 15 μm or more, and for example, 100 μm or less, preferably 50 μm or less.
 第1基材25は、例えば、第2基材26より厚いまたは薄い。第1基材25は、第2基材26と同一厚みであってもよい。好ましくは、第1基材25は、第2基材26より薄い。 The first base material 25 is, for example, thicker or thinner than the second base material 26. The first base material 25 may have the same thickness as the second base material 26. Preferably, the first substrate 25 is thinner than the second substrate 26.
 第1基材25が第2基材26より薄ければ、ボールに対する単位厚み当たりの耐衝撃性がより一層優れる。 If the first base material 25 is thinner than the second base material 26, the impact resistance per unit thickness to the ball is further excellent.
 第2基材26の厚みに対する第1基材25の厚みの比率は、好ましくは、0.9以下、好ましくは、0.7以下である。また、第2基材26の厚みに対する第1基材25の厚みの比率の下限は、例えば、0.1、また、例えば、0.2である。 The ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is preferably 0.9 or less, preferably 0.7 or less. The lower limit of the ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is, for example, 0.1, or 0.2, for example.
 他方、第1基材25が第2基材26より厚ければ、ペンに対する単位厚み当たりの耐衝撃性がより一層優れる。 On the other hand, if the first base material 25 is thicker than the second base material 26, the impact resistance per unit thickness with respect to the pen is further excellent.
 第2基材26の厚みに対する第1基材25の厚みの比率は、好ましくは、1.1以上、好ましくは、1.4以上である。また、第2基材26の厚みに対する第1基材25の厚みの比率の上限は、例えば、10、また、例えば、5である。 The ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is preferably 1.1 or more, preferably 1.4 or more. The upper limit of the ratio of the thickness of the first base material 25 to the thickness of the second base material 26 is, for example, 10 or 5, for example.
 第1基材25と第2基材26とのそれぞれの25℃における引張弾性率Eは、第1実施形態の基材9の25℃における引張弾性率Eと同様である。 The tensile elastic modulus E of the first base material 25 and the second base material 26 at 25 ° C. is the same as that of the base material 9 of the first embodiment at 25 ° C.
 [第2実施形態の作用効果]
 この有機EL表示装置1では、基材9が、複数である。また、有機EL表示装置1は、複数の基材9の間に配置される中間粘着層19をさらに備える。そのため、用途および目的に応じた様々な衝撃吸収性能を設計し易い。
[Action and effect of the second embodiment]
In this organic EL display device 1, there are a plurality of base materials 9. Further, the organic EL display device 1 further includes an intermediate adhesive layer 19 arranged between the plurality of base materials 9. Therefore, it is easy to design various shock absorption performances according to the application and purpose.
 また、この有機EL表示装置1では、中間粘着層19のせん断貯蔵弾性率G’が第1粘着層8のせん断貯蔵弾性率G’以上であり、第2粘着層10の25℃におけるせん断貯蔵弾性率G’以下であれば、有機EL表示装置1は、ボールに対する単位厚み当たりの耐衝撃性と、耐折り曲げ性とに優れる。 Further, in this organic EL display device 1, the shear storage elastic modulus G'of the intermediate adhesive layer 19 is equal to or higher than the shear storage elastic modulus G'of the first adhesive layer 8, and the shear storage elasticity of the second adhesive layer 10 at 25 ° C. When the modulus is G'or less, the organic EL display device 1 is excellent in impact resistance per unit thickness with respect to the ball and bending resistance.
 さらに、この有機EL表示装置1では、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高く、第2粘着層10の25℃におけるせん断貯蔵弾性率G’より低ければ、有機EL表示装置1は、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを確実に両立できる。 Further, in this organic EL display device 1, the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8, and the second adhesive layer 10 has a shear storage elastic modulus G'. If it is lower than the shear storage elastic modulus G'at 25 ° C., the organic EL display device 1 can surely achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
 具体的には、この有機EL表示装置1では、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が、0.05MPa超過、0.15MPa以下であればボールに対する単位厚み当たりの高い耐衝撃性と、ペンに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを並立できる。 Specifically, in this organic EL display device 1, if the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 exceeds 0.05 MPa and is 0.15 MPa or less, a high impact resistance per unit thickness to the ball is obtained. It is possible to have high impact resistance per unit thickness for a pen and high bending resistance in parallel.
 また、この有機EL表示装置1において、第1基材25が、第2基材26より薄ければ、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを確実に両立できる。 Further, in the organic EL display device 1, if the first base material 25 is thinner than the second base material 26, high impact resistance per unit thickness with respect to the ball and high bending resistance can be reliably achieved at the same time.
 一方、この有機EL表示装置1において、第1基材25が、第2基材26より厚ければ、ペンに対する単位厚み当たりの高い耐衝撃性に優れる。 On the other hand, in this organic EL display device 1, if the first base material 25 is thicker than the second base material 26, it is excellent in high impact resistance per unit thickness with respect to the pen.
 [第2実施形態の変形例]
 以下の変形例において、上記した第2実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第2実施形態と同様の作用効果を奏することができる。さらに、第2実施形態およびその変形例を適宜組み合わせることができる。
[Modified example of the second embodiment]
In the following modification, the same members and processes as those in the second embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the second embodiment, except for special mention. Further, the second embodiment and its modifications can be combined as appropriate.
 この変形例では、図10に示すように、中間粘着層19は、複数である。具体的には、中間粘着層19は、第1中間粘着層27と、第2中間粘着層28とを含む。基材9は、第3基材29をさらに含む。 In this modification, as shown in FIG. 10, there are a plurality of intermediate adhesive layers 19. Specifically, the intermediate adhesive layer 19 includes a first intermediate adhesive layer 27 and a second intermediate adhesive layer 28. The base material 9 further includes a third base material 29.
 第1中間粘着層27は、第1基材25に接触する。しかし、第1中間粘着層27は、第2基材26に接触しない。第1中間粘着層27は、第1基材25の裏面に配置されている。 The first intermediate adhesive layer 27 comes into contact with the first base material 25. However, the first intermediate adhesive layer 27 does not come into contact with the second base material 26. The first intermediate adhesive layer 27 is arranged on the back surface of the first base material 25.
 第2中間粘着層28は、第2基材26に接触する。しかし、第2中間粘着層28は、第1基材25に接触しない。第2中間粘着層28は、第2基材26の表面に配置されている。 The second intermediate adhesive layer 28 comes into contact with the second base material 26. However, the second intermediate adhesive layer 28 does not come into contact with the first base material 25. The second intermediate adhesive layer 28 is arranged on the surface of the second base material 26.
 第3基材29は、第1中間粘着層27と第2中間粘着層28との間に配置されている。第3基材29は、第1中間粘着層27の裏面と、第2中間粘着層28の表面とに接触している。 The third base material 29 is arranged between the first intermediate adhesive layer 27 and the second intermediate adhesive layer 28. The third base material 29 is in contact with the back surface of the first intermediate adhesive layer 27 and the front surface of the second intermediate adhesive layer 28.
 この衝撃吸収部材3は、第1粘着層8と、第1基材25と、第1中間粘着層27と、第3基材29と、第2中間粘着層28と、第2基材26と、第2粘着層10とを裏側に向かって順に備える。この変形例では、衝撃吸収部材3は、好ましくは、第1基材25と、第1中間粘着層27と、第3基材29と、第2中間粘着層28と、第2基材26と、第2粘着層10とのみを備える。 The shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, a first intermediate adhesive layer 27, a third base material 29, a second intermediate adhesive layer 28, and a second base material 26. , The second adhesive layer 10 is provided in order toward the back side. In this modification, the shock absorbing member 3 preferably includes a first base material 25, a first intermediate adhesive layer 27, a third base material 29, a second intermediate adhesive layer 28, and a second base material 26. , Only with the second adhesive layer 10.
 衝撃吸収部材3の厚みに対する、第1基材25と第2基材26と第3基材29との合計厚みの比率は、上記した衝撃吸収部材3の厚みに対する基材9の厚みの比率と同様である。 The ratio of the total thickness of the first base material 25, the second base material 26, and the third base material 29 to the thickness of the shock absorbing member 3 is the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 described above. The same is true.
 第1中間粘着層27と第2中間粘着層28とのそれぞれ25℃におけるせん断貯蔵弾性率G’は、第2実施形態の中間粘着層19の25℃におけるせん断貯蔵弾性率G’と同様である。 The shear storage elastic modulus G'of the first intermediate adhesive layer 27 and the second intermediate adhesive layer 28 at 25 ° C. is the same as that of the intermediate adhesive layer 19 of the second embodiment at 25 ° C. ..
 第1実施形態では、図1に示すように、3層からなる衝撃吸収部材3を開示した。第2実施形態では、図9に示すように、5層からなる衝撃吸収部材3を開示した。第2実施形態の変形例では、図10に示すように、7層からなる衝撃吸収部材3を開示した。図示しないが、衝撃吸収部材3が、[2n+1層]からなっていてもよい。変形例では、nは、4以上の正数である。変形例では、衝撃吸収部材3は、[n+1]層の粘着層と、[n]層の基材とからなる。 In the first embodiment, as shown in FIG. 1, the shock absorbing member 3 composed of three layers is disclosed. In the second embodiment, as shown in FIG. 9, the shock absorbing member 3 composed of five layers is disclosed. In the modified example of the second embodiment, as shown in FIG. 10, the shock absorbing member 3 composed of 7 layers is disclosed. Although not shown, the shock absorbing member 3 may be made of [2n + 1 layer]. In the modified example, n is a positive number of 4 or more. In the modified example, the shock absorbing member 3 is composed of an adhesive layer of [n + 1] layer and a base material of [n] layer.
 第1実施形態では、衝撃吸収部材3は、ウインドウ部材2の裏面と、有機ELパネル部材4の表面との両方に接触する。しかし、衝撃吸収部材3は、ウインドウ部材2と有機ELパネル部材4の間に配置されていればよく、例えば、衝撃吸収部材3の裏面と間隔が隔てられ、有機ELパネル部材4の表面と間隔が隔てられもよい。また、衝撃吸収部材3は、上記した裏面および表面とのうち、いずれか一方に接触し、他方と間隔が隔てられてもよい。具体的には、図11に示すように、衝撃吸収部材3は、ウインドウ部材2の裏面と接触し、有機ELパネル部材4と間隔が隔てられる。詳しくは、衝撃吸収部材3は、有機ELパネル部材4と、偏光フィルム50および粘着層51を隔てて配置される。 In the first embodiment, the shock absorbing member 3 comes into contact with both the back surface of the window member 2 and the front surface of the organic EL panel member 4. However, the shock absorbing member 3 may be arranged between the window member 2 and the organic EL panel member 4. For example, the shock absorbing member 3 is spaced from the back surface of the shock absorbing member 3 and is spaced from the front surface of the organic EL panel member 4. May be separated. Further, the shock absorbing member 3 may be in contact with any one of the back surface and the front surface described above, and may be spaced apart from the other. Specifically, as shown in FIG. 11, the shock absorbing member 3 comes into contact with the back surface of the window member 2 and is separated from the organic EL panel member 4. Specifically, the shock absorbing member 3 is arranged so as to be separated from the organic EL panel member 4, the polarizing film 50, and the adhesive layer 51.
 偏光フィルム50は、第2粘着層10の裏面に接触する。偏光フィルム50は、偏光子を含む。偏光子としては、例えば、親水性フィルムを染色処理および延伸処理されたフィルム、親水性フィルムを脱水処理したフィルム、および、ポリ塩化ビニルフィルムを脱塩酸処理したフィルムが挙げられる。親水性フィルムとしては、例えば、PVAフィルムが挙げられる。偏光子の全光線透過率は、例えば、30%以上、好ましくは、35%以上、より好ましくは、40%以上であり、また、例えば、50%以下である。偏光子の厚みは、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、15μm以下、好ましくは、10μm以下である。偏光子は、特開2020-149065号公報、および、特開2019-218513号公報に記載される。偏光フィルム50は、上記した偏光子に接着剤を介して保護フィルムを積層することで形成される。 The polarizing film 50 comes into contact with the back surface of the second adhesive layer 10. The polarizing film 50 includes a polarizing element. Examples of the splitter include a film obtained by dyeing and stretching a hydrophilic film, a film obtained by dehydrating a hydrophilic film, and a film obtained by dehydroxating a polyvinyl chloride film. Examples of the hydrophilic film include a PVA film. The total light transmittance of the polarizing element is, for example, 30% or more, preferably 35% or more, more preferably 40% or more, and for example, 50% or less. The thickness of the splitter is, for example, 1 μm or more, preferably 3 μm or more, and for example, 15 μm or less, preferably 10 μm or less. The splitter is described in JP-A-2020-149065 and JP-A-2019-218513. The polarizing film 50 is formed by laminating a protective film on the above-mentioned polarizing element via an adhesive.
 粘着層51は、偏光フィルム50と有機ELパネル部材4との間に介在する。粘着層51は、偏光フィルム50の裏面と、有機ELパネル部材4の表面とに接触する。粘着層51の材料、厚み、物性等は、第1粘着層8または第2粘着層10と同様である。 The adhesive layer 51 is interposed between the polarizing film 50 and the organic EL panel member 4. The adhesive layer 51 comes into contact with the back surface of the polarizing film 50 and the front surface of the organic EL panel member 4. The material, thickness, physical properties, etc. of the adhesive layer 51 are the same as those of the first adhesive layer 8 or the second adhesive layer 10.
 図11の変形例の有機EL表示装置1では、ウインドウ部材2と、衝撃吸収部材3と、偏光フィルム50と、粘着層51と、有機ELパネル部材4と、保護部材5とは、裏側に向かって順に配置される。 In the organic EL display device 1 of the modified example of FIG. 11, the window member 2, the shock absorbing member 3, the polarizing film 50, the adhesive layer 51, the organic EL panel member 4, and the protective member 5 face the back side. Are arranged in order.
 図1に示す第1実施形態の有機EL表示装置1と、図11の変形例の有機EL表示装置1とを対比すると、第1実施形態の有機EL表示装置1は、偏光フィルム50および粘着層51を備えない。従って、第1実施形態の有機EL表示装置1は、偏光フィルム50における偏光子が上記した低い全光線透過率を有することから、光学信頼性に優れる。 Comparing the organic EL display device 1 of the first embodiment shown in FIG. 1 with the organic EL display device 1 of the modified example of FIG. 11, the organic EL display device 1 of the first embodiment has a polarizing film 50 and an adhesive layer. It does not have 51. Therefore, the organic EL display device 1 of the first embodiment is excellent in optical reliability because the polarizing element in the polarizing film 50 has the above-mentioned low total light transmittance.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 Examples and comparative examples are shown below, and the present invention will be described in more detail. The present invention is not limited to Examples and Comparative Examples. In addition, specific numerical values such as the compounding ratio (ratio), physical property values, parameters, etc. used in the following description are the compounding ratios (ratio) corresponding to those described in the above-mentioned "mode for carrying out the invention". ), Physical property values, parameters, etc. can be replaced with the upper limit (numerical value defined as "less than or equal to" or "less than") or the lower limit (numerical value defined as "greater than or equal to" or "excess").
 [粘着シートの調製]
 粘着シートAから粘着シートDを以下の通り、調製した。
[Preparation of adhesive sheet]
The adhesive sheet D was prepared from the adhesive sheet A as follows.
 [粘着シートA]
 ラウリルアクリレート(LA)43質量部、2-エチルヘキシルアクリレート(2EHA)44質量部、4-ヒドロキシブチルアクリレート(4HBA)6質量部、N-ビニル-2-ピロリドン(NVP)7質量部、および、BASF製「イルガキュア184」0.015質量部を配合し、紫外線を照射して重合し、ベースポリマー組成物(重合率:約10%)を得た。
[Adhesive sheet A]
43 parts by mass of lauryl acrylate (LA), 44 parts by mass of 2-ethylhexyl acrylate (2EHA), 6 parts by mass of 4-hydroxybutyl acrylate (4HBA), 7 parts by mass of N-vinyl-2-pyrrolidone (NVP), and BASF. 0.015 parts by mass of "Irgacure 184" was blended and polymerized by irradiating with ultraviolet rays to obtain a base polymer composition (polymerization rate: about 10%).
 別途、メタクリル酸ジシクロペンタニル(DCPMA)60質量部、メタクリル酸メチル(MMA)40質量部、α-チオグリセロール3.5質量部、および、トルエン100質量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、2,2’-アゾビスイソブチロニトリル(AIBN)0.2質量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、連鎖移動剤および未反応モノマーを乾燥除去して、固形状のアクリル系オリゴマーを得た。アクリル系オリゴマーの重量平均分子量は5100であった。ガラス転移温度(Tg)は130℃であった。 Separately, 60 parts by mass of dicyclopentanyl methacrylate (DCPMA), 40 parts by mass of methyl methacrylate (MMA), 3.5 parts by mass of α-thioglycerol, and 100 parts by mass of toluene are mixed and subjected to a nitrogen atmosphere. The mixture was stirred at 70 ° C. for 1 hour. Next, 0.2 parts by mass of 2,2'-azobisisobutyronitrile (AIBN) was added and reacted at 70 ° C. for 2 hours, then heated to 80 ° C. and reacted for 2 hours. Then, the reaction solution was heated to 130 ° C., and toluene, the chain transfer agent and the unreacted monomer were dried and removed to obtain a solid acrylic oligomer. The weight average molecular weight of the acrylic oligomer was 5100. The glass transition temperature (Tg) was 130 ° C.
 ベースポリマー組成物の固形分100質量部に対して、1,6-ヘキサンジオールジアクリレート(HDDA)0.07質量部、アクリル系オリゴマー1質量部、シランカップリング剤(信越化学製「KBM403」)0.3質量部を添加した後、これらを均一に混合して、粘着剤組成物を調製した。 0.07 parts by mass of 1,6-hexanediol diacrylate (HDDA), 1 part by mass of acrylic oligomer, silane coupling agent ("KBM403" manufactured by Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by mass of the solid content of the base polymer composition. After adding 0.3 parts by mass, these were uniformly mixed to prepare a pressure-sensitive adhesive composition.
 粘着剤組成物を、PETフィルム(三菱ケミカル製「ダイアホイルMRF75」)からなる剥離シートの表面に塗布し、その後、別のPETフィルム(三菱ケミカル製「ダイアホイルMRF75」)からなる剥離シートを塗膜に貼り合わせた。その後、塗膜に紫外線を照射して、厚み50μmの粘着シートAを調製した。 The pressure-sensitive adhesive composition is applied to the surface of a release sheet made of PET film (Mitsubishi Chemical "Diafoil MRF75"), and then a release sheet made of another PET film (Mitsubishi Chemical "Diafoil MRF75") is applied. It was attached to the film. Then, the coating film was irradiated with ultraviolet rays to prepare a pressure-sensitive adhesive sheet A having a thickness of 50 μm.
 [粘着シートB]
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート(BA)99質量部、4-ヒドロキシブチルアクリレート(HBA)1質量部を仕込んだ。これにより、モノマー混合物を調製した。
[Adhesive sheet B]
99 parts by mass of butyl acrylate (BA) and 1 part by mass of 4-hydroxybutyl acrylate (HBA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. This prepared a monomer mixture.
 さらに、モノマー混合物100質量部に対して、2,2'-アゾビスイソブチロニトリル0.1質量部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って7時間重合反応させた。その後、得られた反応液に、酢酸エチルを加えて、固形分濃度30%に調整した、重量平均分子量160万のアクリル系ベースポリマーの溶液を調製した。 Further, 0.1 part by mass of 2,2'-azobisisobutyronitrile was charged with ethyl acetate with respect to 100 parts by mass of the monomer mixture, nitrogen gas was introduced with gentle stirring to replace nitrogen, and then the flask was used. The liquid temperature inside was maintained at around 55 ° C. and the polymerization reaction was carried out for 7 hours. Then, ethyl acetate was added to the obtained reaction solution to prepare a solution of an acrylic base polymer having a weight average molecular weight of 1.6 million adjusted to a solid content concentration of 30%.
  アクリル系ベースポリマーの溶液の固形分100質量部に対して、イソシアネート系架橋剤(商品名:タケネートD110N、トリメチロールプロパンキシリレンジイソシアネート、三井化学社製)0.1質量部、ベンゾイルパーオキサイド(商品名:ナイパーBMT、日本油脂社製)0.3質量部と、シランカップリング剤(商品名:KBM403、信越化学工業社製)0.08質量部とを配合して、アクリル系粘着剤組成物を調製した。 With respect to 100 parts by mass of the solid content of the solution of the acrylic base polymer, 0.1 part by mass of an isocyanate-based cross-linking agent (trade name: Takenate D110N, trimethylolpropanexylylene diisocyanate, manufactured by Mitsui Chemicals, Inc.), benzoyl peroxide (commodity). Name: Niper BMT, manufactured by Nippon Oil & Fats Co., Ltd. 0.3 parts by mass and 0.08 parts by mass of a silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) are blended to form an acrylic pressure-sensitive adhesive composition. Was prepared.
  アクリル系粘着剤組成物を、PETフィルムからなる剥離シートの表面に、ファウンテンコータで均一に塗工し、155℃の空気循環式恒温オーブンで2分間乾燥することにより、厚み20μmの粘着シートBを調製した。 The acrylic pressure-sensitive adhesive composition was uniformly applied to the surface of the release sheet made of PET film with a fountain coater, and dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes to obtain a pressure-sensitive adhesive sheet B having a thickness of 20 μm. Prepared.
 [粘着シートC]
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート(BA)99質量部、4-ヒドロキシブチルアクリレート(HBA)1質量部を仕込んだ。
[Adhesive sheet C]
99 parts by mass of butyl acrylate (BA) and 1 part by mass of 4-hydroxybutyl acrylate (HBA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler.
 さらに、モノマー混合物100質量部に対して、2,2'-アゾビスイソブチロニトリル0.1質量部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って7時間重合反応させた。その後、得られた反応液に、酢酸エチルおよびトルエンの混合溶媒(質量比で、95/5)を加えて、固形分濃度30%に調整したアクリル系ベースポリマーの溶液を調製した。 Further, 0.1 part by mass of 2,2'-azobisisobutyronitrile was charged with ethyl acetate with respect to 100 parts by mass of the monomer mixture, nitrogen gas was introduced with gentle stirring to replace nitrogen, and then the flask was used. The liquid temperature inside was maintained at around 55 ° C. and the polymerization reaction was carried out for 7 hours. Then, a mixed solvent of ethyl acetate and toluene (95/5 by mass ratio) was added to the obtained reaction solution to prepare a solution of an acrylic base polymer adjusted to a solid content concentration of 30%.
 アクリル系ベースポリマーの溶液の固形分100質量部に対して、トリメチロールプロパン/トリレンジイソシアネート(日本ポリウレタン工業社製、商品名:コロネートL)0.15質量部と、シランカップリング剤(商品名:KBM403、信越化学工業社製)0.08質量部を配合して、アクリル系粘着剤組成物を調製した。 To 100 parts by mass of the solid content of the solution of the acrylic base polymer, 0.15 parts by mass of trimethylolpropane / tolylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate L) and a silane coupling agent (trade name). : KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.08 parts by mass was blended to prepare an acrylic pressure-sensitive adhesive composition.
 PETフィルムからなる剥離シートの表面に、ファウンテンコータで均一に塗工し、155℃の空気循環式恒温オーブンで2分間乾燥することにより、厚み15μmの粘着シートCを調製した。 The surface of the release sheet made of PET film was uniformly coated with a fountain coater and dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes to prepare an adhesive sheet C having a thickness of 15 μm.
 [粘着シートD]
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート(BA)99質量部、4-ヒドロキシブチルアクリレート(HBA)1質量部を仕込んだ。これにより、モノマー混合物を調製した。
[Adhesive sheet D]
99 parts by mass of butyl acrylate (BA) and 1 part by mass of 4-hydroxybutyl acrylate (HBA) were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. This prepared a monomer mixture.
 さらに、モノマー混合物100質量部に対して、2,2'-アゾビスイソブチロニトリル0.1質量部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って7時間重合反応させた。その後、得られた反応液に、酢酸エチルを加えて、固形分濃度30%に調整した、重量平均分子量160万のアクリル系ベースポリマーの溶液を調製した。 Further, 0.1 part by mass of 2,2'-azobisisobutyronitrile was charged with ethyl acetate with respect to 100 parts by mass of the monomer mixture, nitrogen gas was introduced with gentle stirring to replace nitrogen, and then the flask was used. The liquid temperature inside was maintained at around 55 ° C. and the polymerization reaction was carried out for 7 hours. Then, ethyl acetate was added to the obtained reaction solution to prepare a solution of an acrylic base polymer having a weight average molecular weight of 1.6 million adjusted to a solid content concentration of 30%.
  アクリル系ベースポリマーの溶液の固形分100質量部に対して、イソシアネート系架橋剤(商品名:タケネートD110N、トリメチロールプロパンキシリレンジイソシアネート、三井化学社製)0.1質量部、ベンゾイルパーオキサイド(商品名:ナイパーBMT、日本油脂社製)0.3質量部と、シランカップリング剤(商品名:KBM403、信越化学工業社製)0.08質量部を配合して、アクリル系粘着剤組成物を調製した。 0.1 part by mass of isocyanate-based cross-linking agent (trade name: Takenate D110N, trimethylolpropane xylylene diisocyanate, manufactured by Mitsui Chemicals, Inc.) and benzoyl peroxide (commodity) with respect to 100 parts by mass of the solid content of the solution of the acrylic base polymer. Name: Niper BMT, manufactured by Nippon Oil & Fats Co., Ltd. 0.3 parts by mass and silane coupling agent (trade name: KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.08 parts by mass to form an acrylic pressure-sensitive adhesive composition. Prepared.
  アクリル系粘着剤組成物を、PETフィルムからなる剥離シートの表面に、ファウンテンコータで均一に塗工し、155℃の空気循環式恒温オーブンで2分間乾燥することにより、厚み5μmの粘着シートDを調製した。 The acrylic pressure-sensitive adhesive composition was uniformly applied to the surface of the release sheet made of PET film with a fountain coater, and dried in an air circulation type constant temperature oven at 155 ° C. for 2 minutes to obtain a pressure-sensitive adhesive sheet D having a thickness of 5 μm. Prepared.
 [粘着シートのせん断貯蔵弾性率G’]
 粘着シートAからCのそれぞれの25℃におけるせん断貯蔵弾性率G’を測定した。
[Shear storage elastic modulus of adhesive sheet G']
The shear storage elastic modulus G'at 25 ° C. of each of the pressure-sensitive adhesive sheets A to C was measured.
 具体的には、剥離シートを剥離し、これを円盤状に外形加工し、パラレルプレートに挟み込み、Rheometric Scientific社製「Advanced Rheometric Expansion System(ARES)」を用いて、以下の条件の動的粘弾性測定により、粘着シートのせん断貯蔵弾性率G’を求めた。 Specifically, the peeling sheet is peeled off, the outer shape is processed into a disk shape, sandwiched between parallel plates, and the dynamic viscoelasticity under the following conditions is used using "Advanced Shearometric Exhibition System (ARES)" manufactured by Shearometric Scientific. By measurement, the shear storage elastic modulus G'of the pressure-sensitive adhesive sheet was determined.
 [測定条件]
 モード:ねじり
 温度:-40℃から150℃
 昇温速度:5℃/分
 周波数:1Hz
[Measurement condition]
Mode: Torsion temperature: -40 ° C to 150 ° C
Temperature rise rate: 5 ° C / min Frequency: 1Hz
 [基材の準備]
 基材Aから基材Dを以下の通り、準備した。
[Preparation of base material]
The base material D was prepared from the base material A as follows.
 [基材A]
 COPからなる基材(商品名「ゼオノア」、日本ゼオン社製)を、基材Aとして準備した。
[Base material A]
A base material made of COP (trade name "Zeonoa", manufactured by Nippon Zeon Corporation) was prepared as base material A.
 [基材B]
 PETからなる基材(商品名「ルミラーS10」、東レ社製)を、基材Bとして準備した。
[Base material B]
A base material made of PET (trade name "Lumirror S10", manufactured by Toray Industries, Inc.) was prepared as the base material B.
 [基材C]
 透明軟質ポリエステル樹脂からなる基材(商品名「OKY100」、ベルポリエステルプロダクツ社製)を、基材Cとして準備した。
[Base material C]
A base material made of a transparent soft polyester resin (trade name "OKY100", manufactured by Bell Polyester Products Co., Ltd.) was prepared as the base material C.
 [基材D]
 透明ポリイミドからなる基材(製品名「C_50」、KOLON社製)を、基材Dとして準備した。
[Base material D]
A base material made of transparent polyimide (product name "C_50", manufactured by KOLON) was prepared as the base material D.
 [基材の引張弾性率E]
 基材Aから基材Dのそれぞれの25℃における引張弾性率Eを測定した。
[Tension elastic modulus E of the base material]
The tensile elastic modulus E at 25 ° C. of each of the base materials A and the base material D was measured.
 基材Aから基材Dのそれぞれを幅10mm、長さ100mmの矩形形状に外形加工した。基材を引張試験機(島津製作所製 製品名「オートグラフAG-IS」)に設置し、200mm/minで引っ張った時の、ひずみと応力を測定し、ひずみが0.05%~0.25%の範囲における曲線の傾きから、基材の引張弾性率Eを算出した。基材Aから基材Dのそれぞれの25℃における引張弾性率Eは、それぞれ、3GPaと、3.5GPaと、0.13GPaと、7GPaとであった。 Each of the base material A to the base material D was externally processed into a rectangular shape having a width of 10 mm and a length of 100 mm. The substrate was installed in a tensile tester (product name "Autograph AG-IS" manufactured by Shimadzu Corporation), and the strain and stress when pulled at 200 mm / min were measured, and the strain was 0.05% to 0.25. The tensile elastic modulus E of the base material was calculated from the slope of the curve in the range of%. The tensile elastic moduli E at 25 ° C. from the base material A to the base material D were 3 GPa, 3.5 GPa, 0.13 GPa, and 7 GPa, respectively.
 [第1実施形態に対応する有機EL表示装置1の疑似サンプルの製造]
  実施例1
 基材Aからなる基材9の表面と裏面とのそれぞれに、粘着シートAからなる第1粘着層8と、粘着シートCからなる第2粘着層10とのそれぞれを配置した。これにより、第1粘着層8と、基材9と、第2粘着層10とを厚み方向に順に備える衝撃吸収部材3を作製した。つまり、3層からなる衝撃吸収部材3を作製した。
[Manufacturing of a pseudo sample of the organic EL display device 1 corresponding to the first embodiment]
Example 1
A first adhesive layer 8 made of the pressure-sensitive adhesive sheet A and a second adhesive layer 10 made of the pressure-sensitive adhesive sheet C were arranged on the front surface and the back surface of the base material 9 made of the base material A, respectively. As a result, a shock absorbing member 3 having the first adhesive layer 8, the base material 9, and the second adhesive layer 10 in order in the thickness direction was produced. That is, the shock absorbing member 3 composed of three layers was manufactured.
 図1に示すように、その後、ウインドウ部材2と、衝撃吸収部材3と、有機ELパネル部材4と、保護部材5とを積層して、有機EL表示装置1の疑似サンプルを製造した。なお、有機ELパネル部材4の表面に、薄膜封止層11の代替として、ITO層35を配置した。ITO層35の厚みは、40nmであった。 As shown in FIG. 1, after that, the window member 2, the shock absorbing member 3, the organic EL panel member 4, and the protective member 5 were laminated to manufacture a pseudo sample of the organic EL display device 1. An ITO layer 35 was arranged on the surface of the organic EL panel member 4 as a substitute for the thin film sealing layer 11. The thickness of the ITO layer 35 was 40 nm.
 ウインドウ部材2は、特開2020-064236号公報の実施例1の硬化性組成物の硬化体からなる厚み10μmのハードコート層6と、「CPI」(KOLON社製)からなる厚み80μmのウインドウフィルム7とを備える。 The window member 2 is a window film having a thickness of 80 μm, which is a hard coat layer 6 having a thickness of 10 μm made of a cured product of the curable composition of Example 1 of JP-A-2020-064236 and “CPI” (manufactured by KOLON). 7 and.
 ダミーパネル部材44におけるパネル本体12として、厚み25μmのポリイミド板(商品名「UPILEX」、宇部興産社製)を準備した。 A polyimide plate (trade name "UPILEX", manufactured by Ube Industries, Ltd.) having a thickness of 25 μm was prepared as the panel body 12 of the dummy panel member 44.
 保護部材5は、粘着シートAと同一材料からなり、厚み15μmの表側粘着層13と、厚み50μmのポリイミド板(商品名「UPILEX」、宇部興産社製)からなる保護基材14とを裏側に向かって順に配置した。 The protective member 5 is made of the same material as the adhesive sheet A, and has a front side adhesive layer 13 having a thickness of 15 μm and a protective base material 14 made of a polyimide plate (trade name “UPILEX”, manufactured by Ube Industries, Ltd.) having a thickness of 50 μm on the back side. Arranged in order toward each other.
  実施例2から実施例10と、実施例27から実施例29と、比較例1から比較例5と、比較例10と、比較例11
 実施例1と同様にして、有機EL表示装置1の試作品40(疑似サンプル)を製造した。但し、第1粘着層8、基材9、および/または、第2粘着層10を表1から表3、および、表11の記載の通りに変更した。
Examples 2 to 10, Example 27 to Example 29, Comparative Example 1 to Comparative Example 5, Comparative Example 10, and Comparative Example 11.
A prototype 40 (pseudo sample) of the organic EL display device 1 was manufactured in the same manner as in Example 1. However, the first adhesive layer 8, the base material 9, and / or the second adhesive layer 10 was changed from Table 1 to Table 3 and as described in Table 11.
 [第2実施形態に対応する有機EL表示装置1の製造]
  実施例11から実施例23
 実施例1と同様に処理して、有機EL表示装置1の試作品40(疑似サンプル)を製造した。但し、図9に示すように、5層からなる衝撃吸収部材3を用いた。また、各層を表4から表8の記載の通りに変更した。具体的には、衝撃吸収部材3は、第1粘着層8と第1基材25と中間粘着層19と第2基材26と第2粘着層10とを順に備える。
[Manufacturing of Organic EL Display Device 1 Corresponding to the Second Embodiment]
Examples 11 to 23
A prototype 40 (pseudo sample) of the organic EL display device 1 was manufactured by processing in the same manner as in Example 1. However, as shown in FIG. 9, a shock absorbing member 3 composed of five layers was used. In addition, each layer was changed from Table 4 to Table 8. Specifically, the shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, an intermediate adhesive layer 19, a second base material 26, and a second adhesive layer 10 in this order.
 [第2実施形態の変形例に対応する有機EL表示装置1の製造]
  実施例24から実施例26
 実施例1と同様に処理して、有機EL表示装置1の試作品40(疑似サンプル)を製造した。但し、図10に示すように、7層からなる衝撃吸収部材3を用いた。また、各層を表9の記載の通りに変更した。具体的には、衝撃吸収部材3は、第1粘着層8と第1基材25と第1中間粘着層27と第3基材29と第2中間粘着層28と第2基材26と第2粘着層10とを順に備える。
[Manufacturing of an organic EL display device 1 corresponding to a modified example of the second embodiment]
Examples 24 to 26
A prototype 40 (pseudo sample) of the organic EL display device 1 was manufactured by processing in the same manner as in Example 1. However, as shown in FIG. 10, a shock absorbing member 3 composed of 7 layers was used. In addition, each layer was changed as described in Table 9. Specifically, the shock absorbing member 3 includes a first adhesive layer 8, a first base material 25, a first intermediate adhesive layer 27, a third base material 29, a second intermediate adhesive layer 28, a second base material 26, and a second base material. The two adhesive layers 10 are provided in order.
 [衝撃吸収部材3が粘着層30のみからなる有機EL表示装置1の製造]
  比較例6から比較例9
 実施例1と同様に処理して、有機EL表示装置1の試作品40(疑似サンプル)を製造した。但し、図示しないが、1層からなる衝撃吸収部材3を用いた。衝撃吸収部材3は、粘着層30のみからなる。粘着層30を表10の記載の通りに変更した。
[Manufacturing of an organic EL display device 1 in which the shock absorbing member 3 is composed of only the adhesive layer 30]
Comparative Example 6 to Comparative Example 9
A prototype 40 (pseudo sample) of the organic EL display device 1 was manufactured by processing in the same manner as in Example 1. However, although not shown, a shock absorbing member 3 composed of one layer was used. The shock absorbing member 3 is composed of only the adhesive layer 30. The adhesive layer 30 was changed as described in Table 10.
 [評価]
 下記の項目を評価した。それらの結果を表1から表11に記載する。
[evaluation]
The following items were evaluated. The results are shown in Tables 1 to 11.
 [衝撃吸収部材3の単位厚み当たりのボール衝撃吸収率]
 各実施例および各比較例における衝撃吸収部材3を準備した。次いで、図2Bに示すように、ステンレス板91の表面に設置したPCB社製のセンサー(製品名:480C02)92の表面にウインドウ部材2のみを載せた。この場合、ウインドウフィルム7をセンサー92の表面に接触させた。ウインドウ部材2のハードコート層6の表面に、重さ10g、直径13mmのステンレス製ボールを20cmの高さから垂直落下させた。センサー92に接続したヒオキ社製のハイレコーダ(製品名:MR8870)で、ウインドウ部材2のみ衝撃荷重のピーク値SA1を測定した。
[Ball impact absorption rate per unit thickness of impact absorbing member 3]
The impact absorbing member 3 in each example and each comparative example was prepared. Next, as shown in FIG. 2B, only the window member 2 was placed on the surface of the sensor (product name: 480C02) 92 manufactured by PCB, which was installed on the surface of the stainless steel plate 91. In this case, the window film 7 was brought into contact with the surface of the sensor 92. A stainless steel ball weighing 10 g and having a diameter of 13 mm was vertically dropped from a height of 20 cm onto the surface of the hard coat layer 6 of the window member 2. The peak value SA1 of the impact load was measured only for the window member 2 with a high recorder (product name: MR8870) manufactured by Hioki Co., Ltd. connected to the sensor 92.
 次に、図2Aに示すように、ウインドウ部材2に代えて、ウインドウ部材2と衝撃吸収部材3との積層体をセンサー92の表面に載せた。衝撃吸収部材3の裏面をセンサー92の表面に接触させた。ウインドウ部材2のハードコート層6の表面に、上記したボールを20cmの高さから垂直落下させた。上記したハイレコーダで、ウインドウ部材2と衝撃吸収部材3との積層体の衝撃荷重のピーク値SB1を測定した。 Next, as shown in FIG. 2A, a laminated body of the window member 2 and the shock absorbing member 3 was placed on the surface of the sensor 92 instead of the window member 2. The back surface of the shock absorbing member 3 was brought into contact with the front surface of the sensor 92. The above-mentioned ball was vertically dropped from a height of 20 cm onto the surface of the hard coat layer 6 of the window member 2. With the above-mentioned high recorder, the peak value SB1 of the impact load of the laminated body of the window member 2 and the impact absorbing member 3 was measured.
 下記式を用いて、衝撃吸収部材3のボール衝撃吸収率を求めた。 The ball impact absorption rate of the impact absorbing member 3 was obtained using the following formula.
   ボール衝撃吸収率(%)={(SA1-SB1)/SA1}×100
 続いて、ボール衝撃吸収率を衝撃吸収部材3の厚みで割って、衝撃吸収部材3の単位厚み当りのボール衝撃吸収率を算出した。
Ball impact absorption rate (%) = {(SA1-SB1) / SA1} × 100
Subsequently, the ball impact absorption rate was divided by the thickness of the impact absorbing member 3 to calculate the ball impact absorption rate per unit thickness of the impact absorbing member 3.
 [衝撃吸収部材3のペン衝撃吸収率と、衝撃吸収部材3における単位厚み当たりのペン衝撃吸収率]
 各実施例および各比較例における衝撃吸収部材3を準備した。次いで、図3Bに示すように、ステンレス板91の表面に設置したPCB社製のセンサー(製品名:480C02)92の表面にウインドウ部材2のみを載せた。この場合、ウインドウフィルム7をセンサー92の表面に接触させた。ウインドウ部材2のハードコート層6の表面に、重さ7g、ボール直径0.7mmのボールペン(ぺんてる株式会社製の油性ボールペン「BK407黒」)を20cmの高さから垂直落下させた。センサー92に接続したヒオキ社製のハイレコーダ(製品名:MR8870)で、ウインドウ部材2のみ衝撃荷重のピーク値SA2を測定した。
[Pen impact absorption rate of shock absorbing member 3 and pen impact absorption rate per unit thickness of shock absorbing member 3]
The impact absorbing member 3 in each example and each comparative example was prepared. Next, as shown in FIG. 3B, only the window member 2 was placed on the surface of the sensor (product name: 480C02) 92 manufactured by PCB, which was installed on the surface of the stainless steel plate 91. In this case, the window film 7 was brought into contact with the surface of the sensor 92. A ballpoint pen weighing 7 g and having a ball diameter of 0.7 mm (oil-based ballpoint pen "BK407 Black" manufactured by Pentel Co., Ltd.) was vertically dropped from a height of 20 cm on the surface of the hard coat layer 6 of the window member 2. The peak value SA2 of the impact load was measured only for the window member 2 with a high recorder (product name: MR8870) manufactured by Hioki Co., Ltd. connected to the sensor 92.
 次に、図3Aに示すように、ウインドウ部材2に代えて、ウインドウ部材2と衝撃吸収部材3との積層体をセンサー92の表面に載せた。衝撃吸収部材3の裏面をセンサー92の表面に接触させた。ウインドウ部材2のハードコート層6の表面に、上記したペンを20cmの高さから垂直落下させた。上記したハイレコーダで、ウインドウ部材2と衝撃吸収部材3との積層体の衝撃荷重のピーク値SB2を測定した。 Next, as shown in FIG. 3A, a laminated body of the window member 2 and the shock absorbing member 3 was placed on the surface of the sensor 92 instead of the window member 2. The back surface of the shock absorbing member 3 was brought into contact with the front surface of the sensor 92. The above-mentioned pen was vertically dropped from a height of 20 cm onto the surface of the hard coat layer 6 of the window member 2. With the above-mentioned high recorder, the peak value SB2 of the impact load of the laminated body of the window member 2 and the impact absorbing member 3 was measured.
 下記式を用いて、衝撃吸収部材3のペン衝撃吸収率を求めた。 The pen impact absorption rate of the impact absorbing member 3 was calculated using the following formula.
   ペン衝撃吸収率(%)={(SA2-SB2)/SA2}×100
 続いて、ペン衝撃吸収率を衝撃吸収部材3の厚みで割って、衝撃吸収部材3の単位厚み当りのペン衝撃吸収率を算出した。
Pen impact absorption rate (%) = {(SA2-SB2) / SA2} x 100
Subsequently, the pen impact absorption rate was divided by the thickness of the impact absorbing member 3 to calculate the pen impact absorption rate per unit thickness of the impact absorbing member 3.
 [有機EL表示装置1の折り曲げ試験]
(1) 表面21間の距離8mmでの折り曲げ試験
 有機EL表示装置1(疑似サンプル)を外形加工して第3サンプル63を作製した。図4Aから図4Bで示すように、屈曲および開きを200,000回繰り返す屈曲試験を実施した。具体的には、耐久試験機(型番「DMLHB-FS-C」、YUASA社製)を用いた。ウインドウ部材2において両外側に向く2つの表面21の間隔を8mmとした。
 屈曲試験前におけるITO層35の抵抗値に対する、屈曲試験後におけるITO層35の抵抗値の比率を、テスターにより測定した。
 ITO層35の抵抗値の変化を、薄膜封止層11の損傷の有無として評価した。
[Bending test of organic EL display device 1]
(1) Bending test at a distance of 8 mm between the surfaces 21 The organic EL display device 1 (pseudo sample) was externally processed to prepare a third sample 63. As shown in FIGS. 4A to 4B, a bending test was performed in which bending and opening were repeated 200,000 times. Specifically, a durability tester (model number "DMLHB-FS-C", manufactured by YUASA) was used. In the window member 2, the distance between the two surfaces 21 facing both outer sides was set to 8 mm.
The ratio of the resistance value of the ITO layer 35 after the bending test to the resistance value of the ITO layer 35 before the bending test was measured by a tester.
The change in the resistance value of the ITO layer 35 was evaluated as the presence or absence of damage to the thin film sealing layer 11.
 ○:試験後におけるITO層35の抵抗値に対する、試験後におけるITO層35の抵抗値の比率が、試験前1.1倍未満であった。
 ×:試験後におけるITO層35の抵抗値に対する、試験後におけるITO層35の抵抗値の比率が、試験前1.1倍以上であった。
◯: The ratio of the resistance value of the ITO layer 35 after the test to the resistance value of the ITO layer 35 after the test was less than 1.1 times before the test.
X: The ratio of the resistance value of the ITO layer 35 after the test to the resistance value of the ITO layer 35 after the test was 1.1 times or more before the test.
(2) 表面21間の距離6mmでの折り曲げ試験
 上記(1)で「○」評価の有機EL表示装置1について、間隔が6mmとなるように、上記と同様の折り曲げ試験を実施した。
(2) Bending test at a distance of 6 mm between the surfaces 21 The same bending test as described above was carried out for the organic EL display device 1 evaluated as “◯” in (1) above so that the interval was 6 mm.
[衝撃吸収部材3の全光線透過率]
 衝撃吸収部材3とウインドウ部材2との積層体を調製した。積層体の全光線透過率をスガ試験機製ヘイズメーターを用いて測定した。測定は、JIS K7105に準じた。
[Total light transmittance of shock absorbing member 3]
A laminated body of the shock absorbing member 3 and the window member 2 was prepared. The total light transmittance of the laminate was measured using a haze meter manufactured by Suga Test Instruments. The measurement was in accordance with JIS K7105.
 上記結果から、衝撃吸収部材3の全光線透過率を求めた。上記した積層体の全光線透過率が60%以上であれば、衝撃吸収部材3の全光線透過率も60%以上と言える。 From the above results, the total light transmittance of the shock absorbing member 3 was obtained. If the total light transmittance of the above-mentioned laminated body is 60% or more, it can be said that the total light transmittance of the shock absorbing member 3 is also 60% or more.
 いずれかの実施例は、容易に対比するために、複数の表に記載した。実施例1は、表1と表2とに重複して記載した。実施例7は、表2と表11とに重複して記載した。実施例12は、表4と表6とに重複して記載した。実施例13は、表4と表7とに重複して記載した。実施例15は、表5と表6とに重複して記載した。実施例16は、表5と表7とに重複して記載した。 Any example is listed in multiple tables for easy comparison. Example 1 is described in Table 1 and Table 2 in an overlapping manner. Example 7 is described in Table 2 and Table 11 in an overlapping manner. Example 12 is described in Table 4 and Table 6 in an overlapping manner. Example 13 is described in Table 4 and Table 7 in an overlapping manner. Example 15 is described in Table 5 and Table 6 in an overlapping manner. Example 16 is described in Table 5 and Table 7 in an overlapping manner.
 実施例1から実施例6までの第1粘着層8のせん断貯蔵弾性率G’と第2粘着層10ののせん断貯蔵弾性率G’とを図12に示す。 FIG. 12 shows the shear storage elastic modulus G'of the first adhesive layer 8 and the shear storage elastic modulus G'of the second adhesive layer 10 from Examples 1 to 6.
 [実施例と比較例との検証]
 表3、表10、表11から分かるように、比較例1から比較例5と、比較例7と、比較例10と、比較例11とは、いずれも、単位厚み当たりのボール衝撃吸収率が0.27%/μm未満である。比較例1から比較例5と、比較例7と、比較例10と、比較例11とは、単位厚み当たりのボール衝撃吸収率が、不十分である。
[Verification between Examples and Comparative Examples]
As can be seen from Tables 3, 10, and 11, Comparative Example 1, Comparative Example 5, Comparative Example 7, Comparative Example 10, and Comparative Example 11 all have ball impact absorption rates per unit thickness. It is less than 0.27% / μm. In Comparative Example 1, Comparative Example 5, Comparative Example 7, Comparative Example 10, and Comparative Example 11, the ball impact absorption rate per unit thickness is insufficient.
 表10から分かるように、比較例6から比較例9は、いずれも、単位厚み当たりのペン衝撃吸収率が0.10%/μm未満である。比較例6から比較例9は、ペンに対する単位厚み当たりのペン衝撃吸収率が、不十分である。 As can be seen from Table 10, in each of Comparative Example 6 to Comparative Example 9, the pen impact absorption rate per unit thickness is less than 0.10% / μm. In Comparative Examples 6 to 9, the pen impact absorption rate per unit thickness with respect to the pen is insufficient.
 比較例7は、折り曲げ時に剥離を生じた。比較例7は、耐折り曲げ性が不十分である。 In Comparative Example 7, peeling occurred at the time of bending. Comparative Example 7 has insufficient bending resistance.
 対して、表1、表2、表4から表9および表11から分かるように、実施例1から実施例29は、いずれも、単位厚み当たりのボール衝撃吸収率が0.27%/μm以上であり、単位厚み当たりのペン衝撃吸収率が0.10%/μm以上である。そのため、有機EL表示装置1は、ボール90に対する衝撃、および、ペン95による衝撃に対する耐久性に優れる。従って、実施例1から実施例29は、様々な衝撃に対する耐久性に優れる。 On the other hand, as can be seen from Table 1, Table 2, Table 4 to Table 9 and Table 11, all of Examples 1 to 29 have a ball impact absorption rate of 0.27% / μm or more per unit thickness. The pen impact absorption rate per unit thickness is 0.10% / μm or more. Therefore, the organic EL display device 1 is excellent in durability against an impact on the ball 90 and an impact by the pen 95. Therefore, Examples 1 to 29 are excellent in durability against various impacts.
 [各実施例の検証]
 表1から分かるように、実施例1から実施例6では、基材9が同一であるが、第1粘着層8および/または第2粘着層10のせん断貯蔵弾性率G’が変動する。
[Verification of each embodiment]
As can be seen from Table 1, in Examples 1 to 6, the base material 9 is the same, but the shear storage elastic modulus G'of the first adhesive layer 8 and / or the second adhesive layer 10 varies.
 具体的には、実施例1と、実施例2と、実施例3とは、それぞれ、第1粘着層8のせん断貯蔵弾性率G’が、0.03MPa、0.08MPa、0.12MPaである。 Specifically, in Example 1, Example 2, and Example 3, the shear storage elastic moduli G'of the first adhesive layer 8 are 0.03 MPa, 0.08 MPa, and 0.12 MPa, respectively. ..
 実施例1から実施例3のうち、第2粘着層10の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高い実施例は、実施例1と、実施例2とである。実施例1と実施例2とは、実施例3に比べて、ボールおよびペンに対する単位厚み当たりの耐衝撃性に優れることが分かる。 Among Examples 1 to 3, examples in which the shear storage elastic modulus G'of the second adhesive layer 10 at 25 ° C. is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 are Examples. 1 and Example 2. It can be seen that Examples 1 and 2 are superior in impact resistance per unit thickness to balls and pens as compared with Example 3.
 実施例1から実施例6のうち、第1粘着層8の25℃におけるせん断貯蔵弾性率G’が、0.05MPa以下ある実施例は、実施例1と、実施例4と、実施例5とである。実施例1と実施例4と実施例5とは、実施例2と実施例3と実施例6とに比べて、ボールに対する単位厚み当たりの耐衝撃性に優れることが分かる。 Among Examples 1 to 6, Examples of the first adhesive layer 8 having a shear storage elastic modulus G'at 25 ° C. of 0.05 MPa or less are Example 1, Example 4, and Example 5. Is. It can be seen that Example 1, Example 4, and Example 5 are superior in impact resistance per unit thickness to the ball as compared with Example 2, Example 3, and Example 6.
 また、実施例1から実施例6のうち、第2粘着層10の25℃におけるせん断貯蔵弾性率G’が、0.10MPa以上である実施例は、実施例1から実施例3である。実施例1から実施例3は、実施例4から実施例6に比べて、耐折り曲げ性に優れることが分かる。 Further, among Examples 1 to 6, the examples in which the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is 0.10 MPa or more are Examples 1 to 3. It can be seen that Examples 1 to 3 are superior in bending resistance as compared with Examples 4 to 6.
 さらに、実施例1から実施例6のうち、第2粘着層10の25℃におけるせん断貯蔵弾性率G’から、第1粘着層8の25℃におけるせん断貯蔵弾性率G’を引いた値が、0.06MPa以上である実施例は、実施例1である。実施例1は、実施例2から実施例6に比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、ペンに対する単位厚み当たりの高い耐衝撃性とを確実に両立できることが分かる。 Further, in Examples 1 to 6, the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8 from the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8. The example of 0.06 MPa or more is Example 1. It can be seen that Example 1 can reliably achieve both high impact resistance per unit thickness for the ball and high impact resistance per unit thickness for the pen as compared with Examples 2 to 6.
 表2から分かるように、実施例1と実施例7から実施例9までのうち、衝撃吸収部材3の厚みに対する基材9の厚みの比率が、0.20以上、0.35以下である実施例は、実施例1と実施例8とである。実施例1と実施例8とは、比率が0.35を超過する実施例7に比べて、ボールに対する単位厚み当たりの衝撃吸収性に優れることが分かる。実施例1と実施例8とは、比率が0.20未満である実施例9に比べて、ペンに対する単位厚み当たりの耐衝撃性に優れることが分かる。これらの傾向は、基材9が複数である実施例12と実施例13と実施例15から実施例26とでも同様である。 As can be seen from Table 2, among Examples 1 and 7 to 9, the ratio of the thickness of the base material 9 to the thickness of the shock absorbing member 3 is 0.20 or more and 0.35 or less. Examples are Example 1 and Example 8. It can be seen that Examples 1 and 8 are superior in shock absorption per unit thickness to the ball as compared with Example 7 in which the ratio exceeds 0.35. It can be seen that Examples 1 and 8 are superior in impact resistance per unit thickness to the pen as compared with Example 9 in which the ratio is less than 0.20. These tendencies are the same in Examples 12, 13 and 15 to 26 in which the number of base materials 9 is a plurality.
 つまり、表6から分かるように、基材9の厚みの上記した比率を有する実施例12と実施例15と実施例18とは、比率が0.35を超過する実施例17に比べて、単位厚み当たりのボール衝撃吸収率が高いことが分かる。 That is, as can be seen from Table 6, the units of Example 12, Example 15, and Example 18 having the above-mentioned ratio of the thickness of the base material 9 are higher than those of Example 17 in which the ratio exceeds 0.35. It can be seen that the ball impact absorption rate per thickness is high.
 表7から分かるように、基材9の厚みの上記した比率を有する実施例13と実施例16と実施例20とは、比率が0.35を超過する実施例19に比べて、単位厚み当たりのボール衝撃吸収率が高いことが分かる。 As can be seen from Table 7, Examples 13, 16, and Example 20 having the above-mentioned ratio of the thickness of the base material 9 have a unit thickness per unit thickness as compared with Example 19 in which the ratio exceeds 0.35. It can be seen that the ball impact absorption rate is high.
 表8から分かるように、基材9の厚みの上記した比率を有する実施例21と実施例22とは、比率が0.35を超過する実施例23に比べて、単位厚み当たりのボール衝撃吸収率が高いことが分かる。 As can be seen from Table 8, Example 21 and Example 22 having the above-mentioned ratio of the thickness of the base material 9 absorb ball impact per unit thickness as compared with Example 23 in which the ratio exceeds 0.35. You can see that the rate is high.
 また、表9から分かるように、基材9の厚みの上記した比率を有する実施例24と実施例25とは、比率が0.35を超過する実施例26に比べて、単位厚み当たりのボール衝撃吸収率が高いことが分かる。 Further, as can be seen from Table 9, Examples 24 and 25 having the above-mentioned ratio of the thickness of the base material 9 have balls per unit thickness as compared with Example 26 in which the ratio exceeds 0.35. It can be seen that the shock absorption rate is high.
 また、表2から分かるように、実施例1と実施例10とは、基材9の材料のみが異なる。基材9の材料がCOPである実施例1は、基材9の材料がPETである実施例10に比べて、単位厚み当たりのボール衝撃吸収率が高いことが分かる。 Further, as can be seen from Table 2, only the material of the base material 9 is different between Example 1 and Example 10. It can be seen that Example 1 in which the material of the base material 9 is COP has a higher ball impact absorption rate per unit thickness than in Example 10 in which the material of the base material 9 is PET.
 表11から分かるように、実施例7と実施例29と比較例11とは、基材9の材料のみが異なる。基材9の材料がCOPである実施例7と、基材9の材料がポリエステル樹脂である実施例29とは、基材9の材料がポリイミド樹脂である比較例11に比べて、単位厚み当たりのボール衝撃吸収率が高いことが分かる。 As can be seen from Table 11, only the material of the base material 9 is different between Example 7, Example 29, and Comparative Example 11. Example 7 in which the material of the base material 9 is COP and Example 29 in which the material of the base material 9 is a polyester resin are per unit thickness as compared with Comparative Example 11 in which the material of the base material 9 is a polyimide resin. It can be seen that the ball impact absorption rate is high.
 また、表4から分かるように、実施例11から実施例13のうち、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高く、第2粘着層10の25℃におけるせん断貯蔵弾性率G’より低い実施例は、実施例11である。実施例11は、実施例12と実施例13とに比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを両立できる。 Further, as can be seen from Table 4, in Examples 11 to 13, the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8. An example higher than the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is Example 11. Compared with Example 12 and Example 13, Example 11 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
 また、表5から分かるように、実施例14から実施例16のうち、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が、第1粘着層8の25℃におけるせん断貯蔵弾性率G’より高く、第2粘着層10の25℃におけるせん断貯蔵弾性率G’より低い実施例は、実施例14である。実施例14は、実施例15と実施例16とに比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを両立できる。 Further, as can be seen from Table 5, in Examples 14 to 16, the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 is the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer 8. An example which is higher and lower than the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer 10 is Example 14. Compared with Example 15 and Example 16, Example 14 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
 表4から分かるように、実施例11から実施例13のうち、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が0.05MPa超過、0.15MPa以下である実施例は、実施例11と実施例13とである。実施例11と実施例13とは、実施例12に比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、ペンに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを並立できる。 As can be seen from Table 4, among Examples 11 to 13, the example in which the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer 19 exceeds 0.05 MPa and is 0.15 MPa or less is Example 11. And Example 13. Compared with Example 12, Examples 11 and 13 can have high impact resistance per unit thickness for a ball, high impact resistance per unit thickness for a pen, and high bending resistance.
 また、表5から分かるように、実施例14から実施例16のうち、中間粘着層19の25℃におけるせん断貯蔵弾性率G’が0.05MPa超過、0.15MPa以下である実施例は、実施例14と実施例16とである。実施例14と実施例16とは、実施例15に比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、ペンに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを並立できる。 Further, as can be seen from Table 5, among Examples 14 to 16, the examples in which the shear storage elastic modulus G'of the intermediate adhesive layer 19 at 25 ° C. is more than 0.05 MPa and 0.15 MPa or less are carried out. 14 and 16. Compared with Example 15, Examples 14 and 16 can have high impact resistance per unit thickness for a ball, high impact resistance per unit thickness for a pen, and high bending resistance.
 さらに、表8から分かるように、実施例21と実施例22とのうち、第1基材25が第2基材26より厚い実施例は、実施例22である。実施例22は、実施例21に比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを両立できる。 Further, as can be seen from Table 8, of Example 21 and Example 22, the example in which the first base material 25 is thicker than the second base material 26 is Example 22. Compared with Example 21, Example 22 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
 表8から分かるように、実施例21と実施例22とのうち、第1基材25が第2基材26より薄い実施例は、実施例21である。実施例21は、実施例22に比べて、単位厚み当たりのペン衝撃吸収率が高いことが分かる。 As can be seen from Table 8, of Example 21 and Example 22, the example in which the first base material 25 is thinner than the second base material 26 is Example 21. It can be seen that Example 21 has a higher pen impact absorption rate per unit thickness than Example 22.
 表9から分かるように、実施例24と実施例25とのうち、第1基材25が第2基材26より薄い実施例は、実施例25である。実施例25は、実施例24に比べて、ボールに対する単位厚み当たりの高い耐衝撃性と、高い耐折り曲げ性とを両立できる。 As can be seen from Table 9, of Examples 24 and 25, the example in which the first base material 25 is thinner than the second base material 26 is Example 25. Compared with Example 24, Example 25 can achieve both high impact resistance per unit thickness with respect to the ball and high bending resistance.
 表11から分かるように、実施例7と、実施例29と、比較例11との基材9の引張弾性率Eは、それぞれ、3GPaと、0.13GPaと、7GPaとである。比較例11の基材9の引張弾性率Eは、7GPaと過度に高い。そのため、実施例1および実施例29は、比較例11に対して、単位厚み当たりのボール衝撃吸収率に優れる。 As can be seen from Table 11, the tensile modulus E of the base material 9 of Example 7, Example 29, and Comparative Example 11 is 3 GPa, 0.13 GPa, and 7 GPa, respectively. The tensile elastic modulus E of the base material 9 of Comparative Example 11 is excessively high at 7 GPa. Therefore, Examples 1 and 29 are superior in ball impact absorption rate per unit thickness as compared with Comparative Example 11.
 さらに、実施例1と、実施例29と、比較例11との基材9の材料は、それぞれ、COPと、ポリエステル樹脂と、ポリイミド樹脂である。基材9の材料がCOPである実施例1、および、基材9の材料がポリエステル樹脂である実施例29は、基材9の材料がポリイミド樹脂である比較例11に対して、単位厚み当たりのボール衝撃吸収率に優れる。 Further, the materials of the base material 9 of Example 1, Example 29, and Comparative Example 11 are COP, polyester resin, and polyimide resin, respectively. Example 1 in which the material of the base material 9 is COP and Example 29 in which the material of the base material 9 is a polyester resin are per unit thickness with respect to Comparative Example 11 in which the material of the base material 9 is a polyimide resin. Excellent ball impact absorption rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
 画像表示部材は、例えば、有機エレクトロルミネセンス表示装置として使用される。 The image display member is used, for example, as an organic electroluminescence display device.
1 有機EL表示装置
2 ウインドウ部材
3 衝撃吸収部材
4 有機ELパネル部材
5 保護部材
8 第1粘着層
9 基材
10 第2粘着層
19 中間粘着層
21 表面
22 裏面
25 第1基材
26 第2基材
29 第3基材
90 ボール
95 ペン
96 ボール(ペンの先端部)
S1 第1工程
S2 第2工程
S3 第3工程
S4 第4工程
S5 第5工程
S6 第6工程
S7 第7工程
1 Organic EL display device 2 Window member 3 Shock absorbing member 4 Organic EL panel member 5 Protective member 8 First adhesive layer 9 Base material 10 Second adhesive layer 19 Intermediate adhesive layer 21 Front surface 22 Back surface 25 First base material 26 Second base Material 29 Third base material 90 Ball 95 Pen 96 Ball (tip of pen)
S1 1st process S2 2nd process S3 3rd process S4 4th process S5 5th process S6 6th process S7 7th process

Claims (20)

  1.  ウインドウ部材と、衝撃吸収部材と、パネル部材と、保護部材とを厚み方向一方側に順に備える画像表示装置であり、
     前記衝撃吸収部材は、60%以上の全光線透過率を有し、
     重さ10g、直径13mmのステンレス製ボールを20cmの高さから前記衝撃吸収部材に落下させて求められる前記衝撃吸収部材の前記ボール衝撃吸収率を、前記衝撃吸収部材の厚みで割った、前記衝撃吸収部材の単位厚み当たりのボール衝撃吸収率は、0.27%/μm以上であり、
     重さ7g、先端部のボール直径0.7mmのボールペンを20cmの高さから前記衝撃吸収部材に落下させて求められる前記衝撃吸収部材のペン衝撃吸収率を、前記衝撃吸収部材の厚みで割った、前記衝撃吸収部材の単位厚み当たりのペン衝撃吸収率は、0.10%/μm以上である、画像表示装置。
    An image display device including a window member, a shock absorbing member, a panel member, and a protective member in order on one side in the thickness direction.
    The shock absorbing member has a total light transmittance of 60% or more and has a total light transmittance of 60% or more.
    The impact is obtained by dropping a stainless steel ball having a weight of 10 g and a diameter of 13 mm from a height of 20 cm onto the impact absorbing member, and dividing the ball impact absorption rate of the impact absorbing member by the thickness of the impact absorbing member. The ball impact absorption rate per unit thickness of the absorbing member is 0.27% / μm or more.
    The pen impact absorption rate of the shock absorbing member obtained by dropping a ballpoint pen having a weight of 7 g and a ball diameter of 0.7 mm at the tip from a height of 20 cm onto the shock absorbing member is divided by the thickness of the shock absorbing member. An image display device having a pen impact absorption rate per unit thickness of the impact absorbing member of 0.10% / μm or more.
  2.  前記ウインドウ部材が外側に向くように前記画像表示装置を折り曲げる試験において、
     前記ウインドウ部材における両外側に向く2つの表面の間隔が8mmとなるように200,000回折り曲げても、前記パネル部材が損傷しない、請求項1に記載の画像表示装置。
    In a test in which the image display device is bent so that the window member faces outward.
    The image display device according to claim 1, wherein the panel member is not damaged even if the window member is bent 200,000 times so that the distance between the two surfaces facing the outside of the window member is 8 mm.
  3.  前記衝撃吸収部材が、第1粘着層と、基材と、第2粘着層とを、前記厚み方向一方側に向かって順に備える、請求項1または請求項2に記載の画像表示装置。 The image display device according to claim 1 or 2, wherein the shock absorbing member includes a first adhesive layer, a base material, and a second adhesive layer in order toward one side in the thickness direction.
  4.  前記第1粘着層は、前記ウインドウ部材に接触し、
     前記第2粘着層は、前記パネル部材に接触する、請求項3に記載の画像表示装置。
    The first adhesive layer comes into contact with the window member and
    The image display device according to claim 3, wherein the second adhesive layer is in contact with the panel member.
  5.  前記第2粘着層の25℃におけるせん断貯蔵弾性率G’が、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’と同一または高い、請求項3または請求項4に記載の画像表示装置。 The image display device according to claim 3 or 4, wherein the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is the same as or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer. ..
  6.  前記第1粘着層の25℃におけるせん断貯蔵弾性率G’が、0.01MPa以上、0.05MPa以下である、請求項3から請求項5のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 3 to 5, wherein the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer is 0.01 MPa or more and 0.05 MPa or less.
  7.  前記第2粘着層の25℃におけるせん断貯蔵弾性率G’が、0.10MPa以上、0.15MPa以下である、請求項3から請求項6のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 3 to 6, wherein the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is 0.10 MPa or more and 0.15 MPa or less.
  8.  前記第2粘着層の25℃におけるせん断貯蔵弾性率G’から、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’を引いた値が、0.06MPa以上である、請求項3から請求項7のいずれか一項に記載の画像表示装置。 According to claim 3, the value obtained by subtracting the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer from the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer is 0.06 MPa or more. Item 6. The image display device according to any one of items 7.
  9.  前記基材が、単数である、請求項3から請求項8のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 3 to 8, wherein the base material is singular.
  10.  前記基材が、複数であり、
     複数の前記基材の間に配置される中間粘着層をさらに備える、請求項3から請求項8のいずれか一項に記載の画像表示装置。
    There are a plurality of the base materials,
    The image display device according to any one of claims 3 to 8, further comprising an intermediate adhesive layer arranged between the plurality of substrates.
  11.  前記中間粘着層の25℃におけるせん断貯蔵弾性率G’が、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’以上、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’以下である、請求項10に記載の画像表示装置。 The shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is equal to or higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer and equal to or less than the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer. The image display device according to claim 10.
  12.  前記中間粘着層の25℃におけるせん断貯蔵弾性率G’が、前記第1粘着層の25℃におけるせん断貯蔵弾性率G’より高く、前記第2粘着層の25℃におけるせん断貯蔵弾性率G’より低い、請求項10または請求項11に記載の画像表示装置。 The shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is higher than the shear storage elastic modulus G'at 25 ° C. of the first adhesive layer, and is higher than the shear storage elastic modulus G'at 25 ° C. of the second adhesive layer. Low, image display device according to claim 10 or 11.
  13.  前記中間粘着層の25℃におけるせん断貯蔵弾性率G’が、0.05MPa超過、0.15MPa以下である、請求項10から請求項12のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 10 to 12, wherein the shear storage elastic modulus G'at 25 ° C. of the intermediate adhesive layer is more than 0.05 MPa and 0.15 MPa or less.
  14.  前記基材は、
      前記第1粘着層に接触する第1基材と、
      前記第2粘着層に接触する第2基材とを含み、
     前記第1基材が、前記第2基材より薄い、請求項10から請求項13のいずれか一項に記載の画像表示装置。
    The base material is
    With the first base material in contact with the first adhesive layer,
    Including a second base material in contact with the second adhesive layer, including
    The image display device according to any one of claims 10 to 13, wherein the first base material is thinner than the second base material.
  15.  前記基材は、
      前記第1粘着層に接触する第1基材と、
      前記第2粘着層に接触する第2基材とを含み、
     前記第1基材が、前記第2基材より厚い、請求項10から請求項13のいずれか一項に記載の画像表示装置。
    The base material is
    With the first base material in contact with the first adhesive layer,
    Including a second base material in contact with the second adhesive layer, including
    The image display device according to any one of claims 10 to 13, wherein the first base material is thicker than the second base material.
  16.  前記衝撃吸収部材の厚みに対する前記基材の厚みの比率が、0.20以上、0.35以下である、請求項3から請求項15のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 3 to 15, wherein the ratio of the thickness of the base material to the thickness of the shock absorbing member is 0.20 or more and 0.35 or less.
  17.  前記基材の材料が、オレフィン樹脂および/またはポリエステル樹脂である、請求項3から請求項16のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 3 to 16, wherein the material of the base material is an olefin resin and / or a polyester resin.
  18.  前記オレフィン樹脂が、シクロオレフィン樹脂である、請求項17に記載の画像表示装置。 The image display device according to claim 17, wherein the olefin resin is a cycloolefin resin.
  19.  前記ポリエステル樹脂が、ポリエチレンテレフタレートである、請求項17に記載の画像表示装置。 The image display device according to claim 17, wherein the polyester resin is polyethylene terephthalate.
  20.  ウインドウ部材と、第1粘着層と、基材と、第2粘着層と、パネル部材と、保護部材とを厚み方向一方側に順に備える画像表示装置の製造方法であり、
     試作品を試作する第1工程と、
     前記試作品を評価する第2工程と、
     前記評価に基づいて製造条件を決定する第3工程と、
     前記製造条件に基づいて製品を製造する第4工程とを備え、
     前記第2工程は、
      第1サンプルおよび第2サンプルを前記試作品から作製する第5工程と、
      前記第1サンプルにボールを落下させ、前記第2サンプルにボールペンを落下させる第6工程と、
      第6工程の後に、前記第1サンプルおよび前記第2サンプルに損傷があるか否かを判断する第7工程とを備え、
     前記第3工程では、前記第1サンプルに損傷があると前記試作品を評価した場合に、前記第1粘着層および前記第2粘着層の合計厚みをより厚くするように、前記製造条件を変更し、前記第2サンプルに損傷があると前記試作品を評価した場合に、前記基材の厚みをより厚くするように変更する、画像表示装置の製造方法。
     
    It is a method of manufacturing an image display device in which a window member, a first adhesive layer, a base material, a second adhesive layer, a panel member, and a protective member are sequentially provided on one side in the thickness direction.
    The first process of prototyping a prototype and
    The second step of evaluating the prototype and
    The third step of determining the manufacturing conditions based on the evaluation and
    A fourth step of manufacturing a product based on the above manufacturing conditions is provided.
    The second step is
    The fifth step of preparing the first sample and the second sample from the prototype, and
    The sixth step of dropping the ball on the first sample and dropping the ballpoint pen on the second sample,
    After the sixth step, a seventh step of determining whether or not the first sample and the second sample are damaged is provided.
    In the third step, when the prototype is evaluated as having damage to the first sample, the manufacturing conditions are changed so that the total thickness of the first adhesive layer and the second adhesive layer becomes thicker. A method for manufacturing an image display device, wherein when the prototype is evaluated as being damaged in the second sample, the thickness of the base material is changed to be thicker.
PCT/JP2021/032151 2020-09-04 2021-09-01 Image display device and manufacturing method therefor WO2022050315A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180054488.4A CN116018264A (en) 2020-09-04 2021-09-01 Image display device and method of manufacturing the same
KR1020237006848A KR102668102B1 (en) 2020-09-04 2021-09-01 Image display device and manufacturing method thereof
KR1020237029593A KR20230130165A (en) 2020-09-04 2021-09-01 Image display device and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-149278 2020-09-04
JP2020149278 2020-09-04
JP2021138605A JP7065239B2 (en) 2020-09-04 2021-08-27 Image display device and its manufacturing method
JP2021-138605 2021-08-27

Publications (1)

Publication Number Publication Date
WO2022050315A1 true WO2022050315A1 (en) 2022-03-10

Family

ID=80491006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032151 WO2022050315A1 (en) 2020-09-04 2021-09-01 Image display device and manufacturing method therefor

Country Status (4)

Country Link
KR (1) KR20230130165A (en)
CN (1) CN116018264A (en)
TW (1) TW202231458A (en)
WO (1) WO2022050315A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011461A1 (en) * 2004-07-27 2006-02-02 Jsr Corporation Shock absorber, shock absorption laminate structure, shock absorption laminate structure for liquid crystal display, shock absorption laminate structure for plasma display, shock absorption laminate structure for organic electroluminescece display and display apparatus
JP2010078733A (en) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd Impact absorbing material for image display device and composite filter for image display device
US20170373281A1 (en) * 2016-06-28 2017-12-28 Samsung Display Co., Ltd. Display device
JP2018091993A (en) * 2016-12-02 2018-06-14 株式会社Kalbas Protective cover for flat display
WO2019066078A1 (en) * 2017-09-29 2019-04-04 大日本印刷株式会社 Optical film and image display device
JP2019532356A (en) * 2016-09-21 2019-11-07 スリーエム イノベイティブ プロパティズ カンパニー Protective display film containing glass
US20190346591A1 (en) * 2018-05-10 2019-11-14 Applied Materials, Inc. Replaceable cover lens for flexible display
US20200081162A1 (en) * 2018-09-12 2020-03-12 Samsung Display Co., Ltd. Flexible window and flexible display device comprising the same
JP2020083996A (en) * 2018-11-21 2020-06-04 日東電工株式会社 Pressure-sensitive adhesive sheet and production method of the same, and production method of image display device
JP2020135636A (en) * 2019-02-22 2020-08-31 住友化学株式会社 Flexible laminate and picture display unit equipped with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060689A (en) 2018-10-10 2020-04-16 日立化成株式会社 Image display device and impact absorption film
JP7300906B2 (en) * 2018-11-16 2023-06-30 住友化学株式会社 Optical layered body and image display device provided with the same
US20210407341A1 (en) * 2019-08-19 2021-12-30 Boe Technology Group Co., Ltd. Flexible display apparatus and fabrication method thereof
JP6856720B2 (en) * 2019-08-20 2021-04-07 日東電工株式会社 An image display device including a laminated body with a glass layer and the laminated body with the glass layer.
JP2021061141A (en) * 2019-10-04 2021-04-15 日東電工株式会社 Display device and base material multilayer body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011461A1 (en) * 2004-07-27 2006-02-02 Jsr Corporation Shock absorber, shock absorption laminate structure, shock absorption laminate structure for liquid crystal display, shock absorption laminate structure for plasma display, shock absorption laminate structure for organic electroluminescece display and display apparatus
JP2010078733A (en) * 2008-09-25 2010-04-08 Dainippon Printing Co Ltd Impact absorbing material for image display device and composite filter for image display device
US20170373281A1 (en) * 2016-06-28 2017-12-28 Samsung Display Co., Ltd. Display device
JP2019532356A (en) * 2016-09-21 2019-11-07 スリーエム イノベイティブ プロパティズ カンパニー Protective display film containing glass
JP2018091993A (en) * 2016-12-02 2018-06-14 株式会社Kalbas Protective cover for flat display
WO2019066078A1 (en) * 2017-09-29 2019-04-04 大日本印刷株式会社 Optical film and image display device
US20190346591A1 (en) * 2018-05-10 2019-11-14 Applied Materials, Inc. Replaceable cover lens for flexible display
US20200081162A1 (en) * 2018-09-12 2020-03-12 Samsung Display Co., Ltd. Flexible window and flexible display device comprising the same
JP2020083996A (en) * 2018-11-21 2020-06-04 日東電工株式会社 Pressure-sensitive adhesive sheet and production method of the same, and production method of image display device
JP2020135636A (en) * 2019-02-22 2020-08-31 住友化学株式会社 Flexible laminate and picture display unit equipped with the same

Also Published As

Publication number Publication date
CN116018264A (en) 2023-04-25
TW202231458A (en) 2022-08-16
KR20230130165A (en) 2023-09-11
KR20230038802A (en) 2023-03-21

Similar Documents

Publication Publication Date Title
JP7253590B2 (en) Adhesive layer for flexible image display device, laminate for flexible image display device, and flexible image display device
JP7171569B2 (en) Low dielectric constant optically clear adhesive for flexible electronic displays
JP6697359B2 (en) Adhesives for flexible displays, adhesive sheets, flexible laminated members and flexible displays
TWI516559B (en) Optical-use pressure-sensitive adhesive sheet
JP4813509B2 (en) Double-sided pressure-sensitive adhesive sheet, method for producing the same, and method for fixing plastic film
TW201711848A (en) Acrylic-based flexible assembly layer
TW202300333A (en) Layered body for flexible image display device, and flexible image display device
US20160208148A1 (en) Double-sided pressures-sensitive-adhesive sheet and image display device
CN111484809A (en) Touch panel
JP7253903B2 (en) Adhesive sheet, method for producing same, and method for producing image display device
WO2011065341A1 (en) Double-sided pressure-sensitive adhesive sheet for optical use
JP7065239B2 (en) Image display device and its manufacturing method
WO2022050315A1 (en) Image display device and manufacturing method therefor
JP2022007904A (en) Optical multilayer body, optical multilayer body with adhesive layer, and image display device
EP3983458A1 (en) Polymers derived from a (meth)acrylate macromer, adhesive compositions, and articles
JP7353399B2 (en) Laminated body for flexible image display device and flexible image display device
WO2022168714A1 (en) Adhesive agent, adhesive sheet, optical film provided with adhesive agent, and optical laminate
KR102668102B1 (en) Image display device and manufacturing method thereof
WO2021251475A1 (en) Film mirror laminate and mirror member
WO2022219957A1 (en) Protecting member, and organic electroluminescence display device
WO2023100866A1 (en) Adhesive sheet and method for manufacturing adhesive sheet
JP7299378B2 (en) LAMINATE FOR FLEXIBLE IMAGE DISPLAY DEVICE AND FLEXIBLE IMAGE DISPLAY DEVICE
WO2021261120A1 (en) Optical multilayer body, optical multilayer body with adhesive layer, and image display device
JP7406908B2 (en) Glass shatter prevention sheet
KR20230096891A (en) Optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006848

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864372

Country of ref document: EP

Kind code of ref document: A1